Muhammad Abdul Wahab
email: muhammad.abdulwahab@centralesupelec.frβindependentresearcher

Pascal Cotret
email: pascal.cotret@gmail.com

Mounir Nasr

Guillaume Hiet

Vianney Lapôtre

Guy Gogniat

Arnab Kumar Biswas

A novel lightweight hardware-assisted static instrumentation approach for ARM SoC using debug components

 2].

Introduction

Software security is still a hot topic despite an important amount of research and development. Existing solutions are either too expensive in terms of cost, performance, power and area or either target a limited threat model. On the other side, attackers have more and more tools and vulnerabilities available in order to exploit existing systems. Therefore, it is important to provide solutions that can be easily adjusted on existing embedded systems without requiring important development effort.

One common approach for software security is performed through events monitoring (such as library calls, syscalls, specific instructions and so on). However, software-only solutions add important runtime overhead [START_REF] Dalton | Raksha: A flexible information flow architecture for software security[END_REF]: that is the reason why hardware-assisted solutions have been proposed. While they improve the performance overhead, proof-of-concepts are usually implemented on FPGAs rather than heterogeneous SoCs due to the amount of effort, time and money required to develop secure solutions on these platforms. Therefore, most of existing works cannot retrieve information required for monitoring purposes on a hardcore CPU.

Instrumentation is a common solution to implement hardware-assisted software security solutions. It is used in DIFT (Dynamic Information Flow Tracking) [2] in order to protect against different types of software attacks. Instrumentation can also be used for behavior monitoring [START_REF] Drewry | Flayer: Exposing application internals[END_REF], performance analysis [START_REF] Shende | The tau parallel performance system[END_REF] and software error detection [START_REF] So | An empirical study on software error detection: voting, instrumentation and fagan inspection[END_REF].

As it was previously written, instrumentation can be done statically or dynamically. Static approaches modify the binary without requiring another process and cover all paths of the code while dynamic solutions require another process that instruments the binary and provides information only on the path taken by the application. Static approaches provide less information than dynamic ones but are usually faster in terms of performance because they do not require another external process.

All existing works using instrumentation do not provide a detailed description of their implementations. Some works such as [START_REF] Heo | Implementing an applicationspecific instruction-set processor for system-level dynamic program analysis engines[END_REF] use custom tools without describing them while others use compilers or existing dynamic instrumentation frameworks for instrumentation without providing in-depth details. This work puts forward a novel approach for static instrumentation that can be used on ARM SoCs with CS (CoreSight) debug components. This work does not target some features of instrumentation frameworks allowing to place the code at a given location. Nevertheless, it presents how the code is instrumented and how the instrumented data can be recovered on a reconfigurable device such as those included in Xilinx Zynq SoCs. The main goal of this work is to propose an instrumentation solution for ARM-based SoCs which is easy to implement with minor modifications, targeting modern OS (operating system) such as Linux kernel. Furthermore, the approach developed in this work is able to send both user space and kernel space information. This paper is organized as follows. Section 2 provides insights on existing instrumentation approaches. Section 3 presents the proposed architecture and provides implementation details. Section 4 provides different use cases. Section 5 details implementation results and Section 6 gives some conclusions and future perspectives.

Related work and assumptions

A lot of works have been done on instrumentation frameworks: these frameworks can be architecturedependent or independent, secure, static or dynamic. Soot [START_REF]Soot -a framework for analyzing and transforming java and android applications[END_REF] is a static instrumentation framework for Java and Android applications. Wala [START_REF] Ibm | libraries for analysis (wala)[END_REF] also provides static instrumentation library for Java bytecode. Atom [START_REF] Srivastava | Atom: A system for building customized program analysis tools[END_REF] is another static binary instrumentation framework on the Alpha processor platform for the Tru-64 OS. PEBIL [START_REF] Laurenzano | Pebil: Efficient static binary instrumentation for linux[END_REF] is a static binary instrumentation framework for x86-64 architecture. Dyninst [START_REF] Bernat | Anywhere, any-time binary instrumentation[END_REF] is a static and dynamic instrumentation framework for multiple platforms (mainly x86-64 and ARM). Hijacker [START_REF] Pellegrini | Hijacker: Efficient static software instrumentation with applications in high performance computing: Poster paper[END_REF] is an open-source customizable static binary instrumentation tool. CSI (Comprehensive Static Instrumentation) [START_REF] Schardl | The csi framework for compiler-inserted program instrumentation[END_REF] is also a static instrumentation framework for LLVM. LLVM [START_REF]The llvm compiler infrastructure[END_REF], an open-source compiler, can be used to create passes and instrument code.

In [START_REF] Fogarty | Minimising the impact of software instrumentation using on-chip debug and a secondary cpu core[END_REF], the author presented an original solution using the debug components and a secondary CPU core (based on the NXP CPU12X architecture) to extract instrumentation data. The main drawback of this solution is that it wastes another GPP (General Purpose Processor) for instrumentation: as a consequence, the power consumption of this solution is doubled.

Hardware-assisted instrumentation can use one of the above methods to instrument the application in order to recover instrumented data on the FPGA part of a heterogeneous SoC. However, using these frameworks require an in-depth knowledge of their API. In modern OS (e.g. Linux), the memory-mapped solution used in [START_REF] Heo | Implementing an applicationspecific instruction-set processor for system-level dynamic program analysis engines[END_REF]2] requires an important number of software modifications. More precisely, it requires to map the physical address of the instrumentation register to a virtual address. This modification requires changing the kernel ELF binary loader. Then, this virtual address is sent towards the register included in instrumented instructions (which can be done through relocation). Finally, the binary can use this virtual address to write instrumented data. These changes require invasive modifications of the kernel. The solution proposed in this work provides the lowest amount of software modifications.

The contributions of this work are the following:

• A novel, simple and hardware-assisted instrumentation approach that takes advantage of CS debug components.

• This work proposes to add a system call to take advantage of the context ID feature provided by the CS PTM component and use the CS TPIU component and the EMIO interface in order to send trace and instrumented data towards the FPGA part.

• An improved and the first open-source version of the PFT (Program Flow Trace) decoder that allows to decode trace and recover instrumented data on the FPGA part of ARM SoC such as Xilinx Zynq.

3 Proposed approach

Software modifications

Instrumenting code using CS components can be done with a specific configuration; then, by adding a syscall and using the newly added syscall with a few lines of C code.

Configuring Coresight

ARM CS components technical reference manual [START_REF] Arm | CoreSight Components Technical Reference Manual[END_REF] explains how to program all CS components. The Linux kernel 4.9 provides a driver for CS components. However, the support for CS components on Zynq SoC was missing. The device tree was patched in order to use Linux kernel drivers of CS components. The approach proposed in this work requires the activation of a specific feature known as context ID, that has not been used in any existing work to the best of our knowledge. Enabling context ID generates specific PFT (Program Flow Trace) packets providing information about the context ID of an application. The context ID of an application consists of the PID (Process ID) and ASID (Application Specific ID) of the application. The kernel is responsible for writing this value to a specific context id register. By enabling context ID tracing in the CS PTM component, this value is sent into the trace. Instead of writing PID and ASID into the context ID register, the value to be written is the value to instrument.

Adding syscall

Listing 1 shows the kernel code to be added in order to write the value to the context ID register.

Listing 1: Custom syscall code in kernel/sys.c file SYSCALL_DEFINE1(wctxtid, unsigned int, instrumentation_data){ asm volatile("mcr p15, 0, %0, c13, c0, 1\n" ::"r"(instrumentation_data):); isb(); return 0; } The mcr instruction is used to write the instrumented value to the context ID register located in coprocessor 15 while the isb() instruction triggers the write [START_REF] Arm | ARM Architecture Reference Manual -ARMv7-A and ARMv7-R edition[END_REF].

Listing 2: Custom syscall definition in include/linux/syscalls.h file asmlinkage long sys_wctxtid(unsigned int instrumentation_data);

The syscall definition needs to be added into the kernel source as shown in Listing 2. Finally, a number needs to be associated with the new syscall as shown in Listing 3.

Listing 3: Associate a number to custom syscall in arch/arm/kernel/calls.S file / * 397 * / CALL(sys_wctxtid)

Writing C code

Once the kernel code has been modified, it is compiled with the write to the context ID register option enabled in order to obtain the Linux kernel binary file (uImage). Once the modified kernel is booted, Listing 4 shows how the newly added syscall can be used in any C program.

PFT decoder

The TPIU export raw traces to the FPGA part via EMIO interface. Listing 5 shows an example of raw trace. Trace must be decoded in order to recover instrumented data on the FPGA part. The PFT protocol [START_REF] Arm | CoreSight Program Flow Trace Architecture Specification[END_REF] presents 11 different trace packets and their corresponding headers. Figure 2 shows the overall architecture of the PFT decoder. Depending on the generic ctxtid value, the context id packet is decoded. For instance, if the generic ctxtid is equal to "11", then the FSM starts a counter that counts the number of received trace samples. When this number is equal to 4, then the instrumented data bytes are correctly received. When the packet FSM finishes decoding packet, it goes back to wait state and sends the stop signal to global FSM which then looks for the next packet type. The other packet FSMs use similar mechanism to communicate with global FSM and have similar state machines. All inputs are registered: for instance, input data is registered to obtain data reg signal. All FSMs work with data reg registered signal. When the global FSM detects an I-Sync packet, it enables a start i signal (e.g. this is the case at the third clock cycle) to enable the corresponding slave FSM. The I-Sync packet FSM then decodes the packet according to the PFT architecture as shown by i sync state reg, i sync state next, i sync address, instrumented data and instrument en signals. The instrumented data signal contains the value instrumented by software. In the meantime, the global FSM waits for a stop signal which is enabled by the packet FSM when the packet is decoded. Enabling stop i signal at the thirteenth clock cycle changes the global FSM state according to data reg signal. This allows to decode the received trace on-the-fly. The trace en signal allows to determine when valid decoded trace is available while the instrument enable signal allows to determine when valid instrumented data is available. Outputs of the PFT decoder are also registered to avoid timing failures due to longer critical paths.

PFT Decoder

Optimization

Rather than creating a new syscall as proposed earlier, this work proposes to modify an existing syscall called in the instrumented application. For example, if a malloc call is done in the instrumented program and its behavior needs to be monitored, the associated syscall , which is either mmap or brk, can be modified in order to add the proposed code inside the existing syscall. This way, a specific syscall is not required while reducing the runtime overhead. This optimization is not possible if the program does not use any syscall which is rather rare as most programs require kernel services which are only accessible through syscalls. Another optimization could be to send multiple instrumented data values at each syscall rather than sending one value. However, this is not possible due to the fact that the PTM sends only the last instrumented value rather than all instrumented values during a syscall.

Case studies 4.1 Double Free

Listing 7 shows a straightforward double-free attack. There are three allocated memory areas: A, B and C. First, A and C are allocated. Then, A is freed. Later, B is allocated and A is freed again. This is the line where the attack happens. However, when this code is compiled and executed, the Linux kernel does not detect any error. This type of attack can lead to heap overflow, attack code execution or illegitimate privilege elevation. Listing 8 shows the instrumented code in order to detect the double free attack. Each time a malloc or free function is called, another instruction is added in order to send the information about the library function. In order to distinguish a malloc call from a free call, an example value of 12 MSB bits (0xfff) is added to the malloc call whereas (0xffe) is added to the free library call. Then, the lower 20 bits are used to specify the region allocated or freed. As an example, numbers are shown in instrumented value but static analysis can provide generic variables, containing numerical values, that can be easily inserted instead of numbers. Then, the program is compiled and executed after configuring CS components as explained in subsection 3.1.1. An example output of the program execution and the content of memories is shown in Listing 9. After the configuration of CS components, the program is launched and the content of the decoded trace memory is recovered using AXI BRAM controller (not shown in Figure 1 as it is not required for the proposed design but is added for debug purposes).

The first value obtained in the decoded trace is 0x106a0 which is the address where tracing is started as configured in CS components (Table 1). Then, next values show the control flow changes in the program. In this case study, the decoded trace is not used. Then, the content of the instrumented data memory is displayed (containing the values inserted into the program). It can be noticed that the value 0xffe00001 is present twice while 0xfff00001 is present only once which means that the first region is freed twice and allocated once. This example shows that the instrumented data can be successfully recovered on the FPGA part and with a simple static analysis, the double free attack can be detected. root@zedboard: /tests-appli# ./get-instrumented-data.elf /dev/mem opened. Memory mapped at address 0xb6fba000. fff00001 fff00002 ffe00001 fff00003 ffe00001 00 00 00 00 00 00 00 00 00

Other use cases

This method allows reconstructing the CFG on the FPGA side using a decoded trace [2]. Therefore, using decoded trace, a control flow checker unit can be implemented on the FPGA to make sure that no control-flow variations occur during program execution. This information is very important as it cannot be determined statically. Moreover, it can be recovered without adding syscall by correctly configuring CS components and avoiding important runtime overhead in existing control-flow checker solutions.

There are other attacks that can be detected using this instrumentation strategy (for instance, event checking): static analysis can detect events that are sent towards the FPGA part in order to verify some properties. Therefore, this work suits the LTL (Linear Temporal Logic) hardware-assisted verification solutions.

Implementation Results

Xilinx tools 2017.1 are used on a Xilinx Zedboard with a Z-7020 SoC (dual-core Cortex-A9 running at 667 MHz and an Artix-7 FPGA) to implement the architecture shown in Figure 1. The PFT decoder and memory controllers are working at the frequency of 250 MHz. Following subsections present an evaluation of this work in terms of runtime and area overheads.

Time overhead analysis

CS components do not add any execution time overhead as shown by Wahab et al. [2]. Even though this work uses a different configuration of CS components (context ID tracing is enabled), CS components still do not affect the execution time. The time overhead is measured by using Linux perf command and by launching MiBench benchmark applications with and without enabling CS components.

The overhead is only due to syscalls. On the target platform, the overhead of added syscall is 30 µs while being 0.150 µs for the memory-mapped register approach. This work presents a method which is slower than existing memory-mapped approaches. However, with the optimization (subsection 3.3), time overhead can be reduced. If additional instructions mcr and isb() are added to an existing call, the overhead due to the syscall is removed and the global overhead is only due to the execution of mcr and isb() instructions. The mcr() instruction takes 1+B cycles (where B is the number of cycles spent in the coprocessor busy-wait loop) and the isb() instruction takes 4 cycles. Therefore, both instructions take 1+B+4 = B+5 cycles at 667MHz. If this value is equal to ten cycles which is the case if the coprocessor is availble, then the runtime overhead introduced would be 0.014 µs which is more than ten times better than the 0.15 µs required for the memory-mapped register approach.

Latency and bandwidth

If n is the number of packets received in a PFT packet, the PFT decoder requires (n+1) clock cycles to decode a trace. The maximum value of n in this work is 10. In other words, the PFT decoder requires only one additional cycle to decode a trace and recover instrumented data while the solution based on memory-mapped register requires on average 30 cycles in average to receive valid instrumented data due to timing delays introduced by the handshake between different channels. In this work, as 8 bits are sent at each clock cycle at the frequency of 250 MHz, the trace bandwidth is 250*8 = 2000 Mbits/s. The maximum bandwidth of the trace port is 250*32 = 8000 Mbits/s. The AXI interface on a Zedboard can go up to 200 MHz. Therefore, the maximum bandwidth of the AXI port is 200*32 = 6400 Mbits/s.

Area results

Table 2 shows the area overhead of proposed architecture which only requires 0.34% of slice LUTs, 0.47% of slice registers and 2.86% of BRAMs on a Zynq Z-7020 device. The memory-mapped solution requires 1684 slice LUTs (3.17%), 1523 slice registers (1.43%) and no BRAM. The memory-mapped register solution takes more area because the memory required to store data is implemented in FPGA itself rather than in BRAM as in this work. Furthermore, the memory-mapped register approach requires an AXI interconnect block which has internal FIFOs making it larger in terms of area occupation.

Comparison with related works

Table 3 compares this work with the usual memory-mapped register solution which is widely used in existing hardware-assisted instrumentation approaches. This work requires only few minor modifications of the kernel (addition of mcr and isb() instructions) while memory-mapped register solutions need a modified kernel ELF loader and relocation units. This work has a lower latency and a higher maximum bandwidth than the memory-mapped solution. Furthermore, the area overhead is 6 times smaller than existing works.

Conclusion

This work proposes to exploit the context ID feature of the CoreSight PTM component in order to instrument an application. The generated trace, which also contains the instrumented data, is sent to the FPGA part using the CS TPIU component and EMIO interface. Software modifications required to instrument are minimal (about 10 lines are changed in the Linux kernel). Furthermore, the hardware design required to decode traces takes less than 0.5% of the FPGA area on a Zynq SoC. This work takes 30 µs for each instruction added in the source code. The optimized version, which consists in removing context switch time overhead by modifying existing syscall used in the application rather than adding a new syscall, give a runtime overhead of 0.014 µs: it is 10 times better than 0.15 µs required for a memorymapped register solution. In terms of perspectives, the approach presented in this work will be ported to Intel-based SoCs by taking advantage of the Intel PT (Processor Trace) debug component.

Figure 1 :

 1 Figure 1: Overall architecture

Figure 2 :

 2 Figure 2: PFT decoder architecture

Figure 3

 3 Figure 3 shows the FSM diagram of I-Sync packet. The FSM is in wait state by default. When the start signal is set by the global FSM, I-Sync packet FSM goes into i sync state and starts counting trace samples. The received four samples contain the current PC (Program Counter) value of ARM CPU. Once four samples are received, the state machine goes into i sync ib state. If context id tracing is enabled, it can send one, two or four bytes.

Figure 3 :

 3 Figure 3: Finite State Machine diagram for the I-Sync packet decoder

 0

Figure 4 :

 4 Figure 4: Timing diagram of global FSM and I-Sync FSM of PFT decoder (Figure 2)

Listing 5 :

 5 Raw trace root@zedboard-hardblare:˜/tests_appli#./trace_etb 00000000 00 00 00 00 00 80 08 78 04 01 00 21 f4 ee 03 00 00000010 8b 03 08 8c 04 01 00 21 f4 ee 03 00 9d 03 08 98 00000020 04 01 00 21 ff ff ff ff 9d 03 08 a8 04 01 00 21 00000030 dd dd dd dd 85 03 08 b4 04 01 00 21 dd dd dd dd 00000040 9d 03 08 c4 04 01 00 21 aa aa aa aa 9d 03 08 d4 00000050 04 01 00 21 11 11 11 11 fd bc cf db 0d 01 00 00 PFT packets a-sync packet i-sync packet branch address packet Listing 5 shows the trace at the input of PFT decoder. It contains different packets detailed in a Technical Reference Manual provided by ARM [18]. Listing 6: Instrumented data from decoded raw trace 0003eef4 0003eef4 ffffffff dddddddd aaaaaaaa 11111111 Listing 6 shows the content of the instrumented data memory. The values obtained correspond to the values inserted in the program source code.

Listing 7 :

 7 Double free vulnerability example code #include <stdio.h> #include <stdlib.h> #include <string.h> #define WORD_SIZE (size_t)-1>0xFFFFFFFFUL?8:4 #define SIZEOFNORMALCHUNK 0x100-WORD_SIZE #define SIZEOFFASTCHUNK 0x60-WORD_SIZE int main(){ char * A, * B, * C; A = malloc(SIZEOFNORMALCHUNK); C = malloc(SIZEOFNORMALCHUNK); free(A); // same location as A B = malloc(SIZEOFNORMALCHUNK); if (B) // Double Free! free(A); return 0; }

Listing 8 :

 8 Instrumented code for double free detection A = malloc(SIZEOFNORMALCHUNK); // instrumented code syscall(397,0xfff00001); code syscall(397,0xffe00001); }

Listing 9 :

 9 Execution output for double free example code root@zedboard: /tests-appli#./trace-tpiu-topleaks coresight-tpiu f8803000.tpiu: TPIU enabled coresight-replicator amba:replicator: REPLICATOR enabled coresight-funnel f8804000.funnel: FUNNEL inport 0 enabled coresight-etm3x f889c000.ptm0: ETM tracing enabled DECODE TRACE 00 106a0 10358 106c0 104d4 106ec b6e3ec88 1057c 10378 10598 1039c 105a0 103c0 105b8 1039c 105c0 103c0 105d8 10384 105e0 103c0 105f0 10378 10600 1039c 10608 103c0 10620 10384 10628 103c0 10638 10390 10644 10378 10654 10378 10660 1050c 1066c 10390 10678 10378 10690 b6e3ecf8 b6e3ec00 00 00

6

 6

Table 1 :

 1 CS configuration in Linux kernel driver

	File name	Value	Description
	mode	0x30	Enable branch broadcast and context ID feature
	addr idx	1	Choose address comparator
	addr acctype	0	Choose comparison access type
	addr range	0x106a0 0x10700	Enable trace in address space given
	enable source	1	Enable PTM component

Table 1

 1 shows the values used to program the PTM component in the Linux kernel sysfs file system. TPIU (Trace Port Interface Unit) is used as trace sink to recover trace on the FPGA part via EMIO interface [2].

 Figure1shows the overall architecture of the approach proposed in this work (implemented on a Zynq SoC). After configuring CS components and running the program, trace is obtained on the FPGA part through the EMIO interface according to the PFT (Program Flow Trace) protocol[START_REF] Arm | CoreSight Program Flow Trace Architecture Specification[END_REF]. The important module developed in this work is the PFT decoder that differs with previous existing implementation. Furthermore, this work improves the solution of Wahab et al.[2] by adding the support of the context ID register. To make this work beneficial for the community, everything will be published online at: https://bitbucket.org/hardblare/hw-static-instrumentation

	CS components PTM TPIU	trace EMIO interface	PFT decoder	Mem Controller 1	Decoded trace memory
	ARM			Mem Controller	Instrumented data
	Cortex-A9		FPGA logic	2	BRAMs memory
	Listing 4: Example instrumented code	
	#include <unistd.h>				
	#include <sys/syscall.h>				
	int main(){				
	unsigned dataToSend = 0x1234abcd;			
	// system call number is 397				
	// (cf calls.S file change)				
	syscall(397, dataToSend);				
	return 0;				
	}				
	3.2 Hardware design				
	3.2.1 Overall architecture				

Table 2 :

 2 Post-implementation area results of overall architecture on Xilinx Zynq Z-7020

	IP Name	Slice LUTs (in %)	Slice registers (in %)	BRAM tiles
	PFT Decoder	126 (0.24%)	240 (0.23%)	0
	Mem controller 1	18 (0.03%)	79 (0.08%)	0
	Mem controller 2	18 (0.03%)	79 (0.08%)	0
	Decoded trace memory	2 (0.01%)	0	2 (1.43%)
	Instrumented data memory	2 (0.01%)	0	2 (1.43%)
	Miscellaneous	16 (0.03%)	97 (0.09%)	0
	Total Design	182 (0.34%)	495 (0.47%)	4 (2.86%)
	Memory-mapped 1684 (3.17%) 1523 (1.43%)	0 (0%)
	Total Available	53200	106400	140

Table 3 :

 3 Comparison with previous works

	Metric	This work	Optimized solution	Existing works (memory-mapped)
	Software modifications	+	+	++
	Latency (clock cycles)	(n+1) ≤ 10 (n+1) ≤ 10	30
	Maximum bandwidth (Mbits/s)	8000	8000	6400
	Runtime overhead (µs)	30	0.014	0.150
	Area overhead (%)	0.47	0.47	3.17