
HAL Id: hal-01911621
https://hal.science/hal-01911621v1

Submitted on 6 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel lightweight hardware-assisted static
instrumentation approach for ARM SoC using debug

components
Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume

Hiet, Vianney Lapotre, Gogniat Guy, Arnab Kumar Biswas

To cite this version:
Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume Hiet, Vianney Lapotre, et
al.. A novel lightweight hardware-assisted static instrumentation approach for ARM SoC using debug
components. AsianHOST 2018 - Asian Hardware Oriented Security and Trust Symposium, Dec 2018,
Hong Kong, China. pp.1-13, �10.1109/asianhost.2018.8607177�. �hal-01911621�

https://hal.science/hal-01911621v1
https://hal.archives-ouvertes.fr

A novel lightweight hardware-assisted static instrumentation
approach for ARM SoC using debug components

Muhammad Abdul Wahab α, Pascal Cotret β, Mounir Nasr Allah γ, Guillaume Hiet γ

Vianney Lapôtre δ, Guy Gogniat δ and Arnab Kumar Biswas δ

α IETR - CentraleSupélec, muhammad.abdulwahab@centralesupelec.fr
β Independent researcher, pascal.cotret@gmail.com

γ INRIA CIDRE - CentraleSupélec, firstname.lastname@centralesupelec.fr
δ Lab-STICC - University of South Brittany, firstname.lastname@univ-ubs.fr

(preprint)

Abstract

Most of hardware-assisted solutions for software security, program monitoring, and event-checking
approaches require instrumentation of the target software, an operation which can be performed
using an SBI (Static Binary Instrumentation) or a DBI (Dynamic Binary Instrumentation) frame-
work. Hardware-assisted instrumentation can use one of these two solutions to instrument data to a
memory-mapped register. Both these approaches require an in-depth knowledge of frameworks and
an important amount of software modifications in order to instrument a whole application. This
work proposes a novel way to instrument an application, at the source code level, taking advantage
of underlying hardware debug components such as CS (CoreSight) components available on Xilinx
Zynq SoCs. As an example, the instrumentation approach proposed in this work is used to detect
a double free security attack. Furthermore, it is evaluated in terms of runtime and area overhead.
Results show that the proposed solution takes 30 µs on average to instrument an instruction while the
optimized version only takes 0.014 µs which is ten times better than usual memory-mapped register
solutions used in existing works [1, 2].

1 Introduction

Software security is still a hot topic despite an important amount of research and development. Existing
solutions are either too expensive in terms of cost, performance, power and area or either target a limited
threat model. On the other side, attackers have more and more tools and vulnerabilities available in order
to exploit existing systems. Therefore, it is important to provide solutions that can be easily adjusted on
existing embedded systems without requiring important development effort.

One common approach for software security is performed through events monitoring (such as library
calls, syscalls, specific instructions and so on). However, software-only solutions add important runtime
overhead [3]: that is the reason why hardware-assisted solutions have been proposed. While they improve
the performance overhead, proof-of-concepts are usually implemented on FPGAs rather than heteroge-
neous SoCs due to the amount of effort, time and money required to develop secure solutions on these
platforms. Therefore, most of existing works cannot retrieve information required for monitoring purposes
on a hardcore CPU.

Instrumentation is a common solution to implement hardware-assisted software security solutions. It
is used in DIFT (Dynamic Information Flow Tracking) [2] in order to protect against different types of
software attacks. Instrumentation can also be used for behavior monitoring [4], performance analysis [5]
and software error detection [6].

1

mailto:muhammad.abdulwahab@centralesupelec.fr
mailto:pascal.cotret@gmail.com
mailto:firstname.lastname@centralesupelec.fr
mailto:firstname.lastname@univ-ubs.fr

As it was previously written, instrumentation can be done statically or dynamically. Static approaches
modify the binary without requiring another process and cover all paths of the code while dynamic solu-
tions require another process that instruments the binary and provides information only on the path taken
by the application. Static approaches provide less information than dynamic ones but are usually faster
in terms of performance because they do not require another external process.

All existing works using instrumentation do not provide a detailed description of their implementations.
Some works such as [1] use custom tools without describing them while others use compilers or existing dy-
namic instrumentation frameworks for instrumentation without providing in-depth details. This work puts
forward a novel approach for static instrumentation that can be used on ARM SoCs with CS (CoreSight)
debug components. This work does not target some features of instrumentation frameworks allowing to
place the code at a given location. Nevertheless, it presents how the code is instrumented and how the
instrumented data can be recovered on a reconfigurable device such as those included in Xilinx Zynq SoCs.
The main goal of this work is to propose an instrumentation solution for ARM-based SoCs which is easy to
implement with minor modifications, targeting modern OS (operating system) such as Linux kernel. Fur-
thermore, the approach developed in this work is able to send both user space and kernel space information.

This paper is organized as follows. Section 2 provides insights on existing instrumentation approaches.
Section 3 presents the proposed architecture and provides implementation details. Section 4 provides
different use cases. Section 5 details implementation results and Section 6 gives some conclusions and
future perspectives.

2 Related work and assumptions

A lot of works have been done on instrumentation frameworks: these frameworks can be architecture-
dependent or independent, secure, static or dynamic. Soot [7] is a static instrumentation framework for
Java and Android applications. Wala [8] also provides static instrumentation library for Java bytecode.
Atom [9] is another static binary instrumentation framework on the Alpha processor platform for the
Tru-64 OS. PEBIL [10] is a static binary instrumentation framework for x86-64 architecture. Dyninst [11]
is a static and dynamic instrumentation framework for multiple platforms (mainly x86-64 and ARM). Hi-
jacker [12] is an open-source customizable static binary instrumentation tool. CSI (Comprehensive Static
Instrumentation) [13] is also a static instrumentation framework for LLVM. LLVM [14], an open-source
compiler, can be used to create passes and instrument code.

In [15], the author presented an original solution using the debug components and a secondary CPU
core (based on the NXP CPU12X architecture) to extract instrumentation data. The main drawback of
this solution is that it wastes another GPP (General Purpose Processor) for instrumentation: as a conse-
quence, the power consumption of this solution is doubled.

Hardware-assisted instrumentation can use one of the above methods to instrument the application
in order to recover instrumented data on the FPGA part of a heterogeneous SoC. However, using these
frameworks require an in-depth knowledge of their API. In modern OS (e.g. Linux), the memory-mapped
solution used in [1, 2] requires an important number of software modifications. More precisely, it requires
to map the physical address of the instrumentation register to a virtual address. This modification requires
changing the kernel ELF binary loader. Then, this virtual address is sent towards the register included
in instrumented instructions (which can be done through relocation). Finally, the binary can use this
virtual address to write instrumented data. These changes require invasive modifications of the kernel.
The solution proposed in this work provides the lowest amount of software modifications.

2

The contributions of this work are the following:

• A novel, simple and hardware-assisted instrumentation approach that takes advantage of CS debug
components.

• This work proposes to add a system call to take advantage of the context ID feature provided by
the CS PTM component and use the CS TPIU component and the EMIO interface in order to send
trace and instrumented data towards the FPGA part.

• An improved and the first open-source version of the PFT (Program Flow Trace) decoder that allows
to decode trace and recover instrumented data on the FPGA part of ARM SoC such as Xilinx Zynq.

3 Proposed approach

3.1 Software modifications

Instrumenting code using CS components can be done with a specific configuration; then, by adding a
syscall and using the newly added syscall with a few lines of C code.

3.1.1 Configuring Coresight

ARM CS components technical reference manual [16] explains how to program all CS components. The
Linux kernel 4.9 provides a driver for CS components. However, the support for CS components on Zynq
SoC was missing. The device tree was patched in order to use Linux kernel drivers of CS components. The
approach proposed in this work requires the activation of a specific feature known as context ID, that has
not been used in any existing work to the best of our knowledge. Enabling context ID generates specific
PFT (Program Flow Trace) packets providing information about the context ID of an application. The
context ID of an application consists of the PID (Process ID) and ASID (Application Specific ID) of the
application. The kernel is responsible for writing this value to a specific context id register. By enabling
context ID tracing in the CS PTM component, this value is sent into the trace. Instead of writing PID
and ASID into the context ID register, the value to be written is the value to instrument.

Table 1: CS configuration in Linux kernel driver

File name Value Description

mode 0x30
Enable branch broadcast
and context ID feature

addr idx 1 Choose address comparator
addr acctype 0 Choose comparison access type

addr range
0x106a0
0x10700

Enable trace in
address space given

enable source 1 Enable PTM component

Table 1 shows the values used to program the PTM component in the Linux kernel sysfs file system.
TPIU (Trace Port Interface Unit) is used as trace sink to recover trace on the FPGA part via EMIO
interface [2].

3.1.2 Adding syscall

Listing 1 shows the kernel code to be added in order to write the value to the context ID register.

3

Listing 1: Custom syscall code in kernel/sys.c file

SYSCALL_DEFINE1(wctxtid, unsigned int, instrumentation_data){
asm volatile("mcr p15, 0, %0, c13, c0, 1\n"

::"r"(instrumentation_data):);
isb();
return 0;

}

The mcr instruction is used to write the instrumented value to the context ID register located in
coprocessor 15 while the isb() instruction triggers the write [17].

Listing 2: Custom syscall definition in include/linux/syscalls.h file

asmlinkage long sys_wctxtid(unsigned int instrumentation_data);

The syscall definition needs to be added into the kernel source as shown in Listing 2. Finally, a number
needs to be associated with the new syscall as shown in Listing 3.

Listing 3: Associate a number to custom syscall in arch/arm/kernel/calls.S file

/* 397 */ CALL(sys_wctxtid)

3.1.3 Writing C code

Once the kernel code has been modified, it is compiled with the write to the context ID register option
enabled in order to obtain the Linux kernel binary file (uImage). Once the modified kernel is booted,
Listing 4 shows how the newly added syscall can be used in any C program.

Listing 4: Example instrumented code

#include <unistd.h>
#include <sys/syscall.h>
int main(){

unsigned dataToSend = 0x1234abcd;
// system call number is 397
// (cf calls.S file change)
syscall(397, dataToSend);
return 0;

}

3.2 Hardware design

3.2.1 Overall architecture

Figure 1 shows the overall architecture of the approach proposed in this work (implemented on a Zynq
SoC). After configuring CS components and running the program, trace is obtained on the FPGA part
through the EMIO interface according to the PFT (Program Flow Trace) protocol [18]. The important
module developed in this work is the PFT decoder that differs with previous existing implementation.
Furthermore, this work improves the solution of Wahab et al. [2] by adding the support of the context
ID register. To make this work beneficial for the community, everything will be published online at:
https://bitbucket.org/hardblare/hw-static-instrumentation

4

https://bitbucket.org/hardblare/hw-static-instrumentation

Decoded
trace

memory

ARM
Cortex-A9

PFT
decoder

trace

FPGA logic BRAMs

EMIO
interface

Mem
Controller

1

Mem
Controller

2

Instrumented
data

memory

CS components

PTM
TPIU

Figure 1: Overall architecture

3.2.2 PFT decoder

The TPIU export raw traces to the FPGA part via EMIO interface. Listing 5 shows an example of
raw trace. Trace must be decoded in order to recover instrumented data on the FPGA part. The PFT
protocol [18] presents 11 different trace packets and their corresponding headers. Figure 2 shows the overall
architecture of the PFT decoder.

PFT Decoder

Global FSM

I-Sync packet FSM

Branch address packet
FSM

Waypoint packet FSM

start_b

start_i

start_w

stop_i

stop_wstop_b

A

D

Q1

Q4

ENB

Reg ister

data_reg

data

A

D

Q1

Q4

ENB

Reg ister

global_state_reg

i_sync_state_reg

global_state_next

i_sync_state_next

instrumented_data

instrument_enable

trace_en
i_sync_address

Figure 2: PFT decoder architecture

The PFT decoder consists of four FSMs (Finite State Machines): a global FSM that controls the other
three packet FSMs (I-Sync, branch address, and waypoint). There are other PFT packets such as a-sync,
exception that are also decoded by the global FSM. The most important PFT packet in this work is the
I-Sync packet as it contains the instrumented data. The global state machine detects packet type and
enables the corresponding packet FSM by setting start signal.

Figure 3 shows the FSM diagram of I-Sync packet. The FSM is in wait state by default. When the
start signal is set by the global FSM, I-Sync packet FSM goes into i sync state and starts counting trace
samples. The received four samples contain the current PC (Program Counter) value of ARM CPU. Once
four samples are received, the state machine goes into i sync ib state. If context id tracing is enabled,
it can send one, two or four bytes.

5

Depending on the generic ctxtid value, the context id packet is decoded. For instance, if the generic
ctxtid is equal to “11”, then the FSM starts a counter that counts the number of received trace samples.
When this number is equal to 4, then the instrumented data bytes are correctly received. When the packet
FSM finishes decoding packet, it goes back to wait state and sends the stop signal to global FSM which
then looks for the next packet type. The other packet FSMs use similar mechanism to communicate with
global FSM and have similar state machines.

wait_
state

i-sync

start = ‘0’

start = ‘1’

count /= 4

i_sync_ib

count = 4

ctxtid = "00"

ctxtid_1

ctxtid_2

ctxtid_3

count = 1

count /= 2

count /= 4

ctxtid = "10"
ctxtid = "01"

ctxtid = "11"

count = 4

count = 2

Figure 3: Finite State Machine diagram for the I-Sync packet decoder

Figure 4 is a timing diagram showing how the PFT decoder works at each clock cycle.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

clk

data[31:0] 80 08 c8 14 10 00 21 cd ab 34 12 73 86

data_reg[31:0] 80 08 c8 14 10 00 21 cd ab 34 12 73

global_state_next a-sync i-sync wait_state_i-sync bap

global_state_reg a-sync i-sync wait_state_i-sync

Start_i

i_sync_state_next wait_s i_sync i_sync_ib ctxtid_3 wait_s

i_sync_state_reg wait_s i_sync i_sync_ib ctxtid_3 wait_s

i_sync_address 0x0000 0000 0x000000c8 0x000014c8 0x001014c8 0x001014c8 0x001014c8

trace_en

instrumented_data 0x0000 0000 0x000000cd 0x0000abcd 0x0034abcd 0x1234abcd

instrument_enable

Stop_i

Figure 4: Timing diagram of global FSM and I-Sync FSM of PFT decoder (Figure 2)

All inputs are registered: for instance, input data is registered to obtain data reg signal. All
FSMs work with data reg registered signal. When the global FSM detects an I-Sync packet, it en-
ables a start i signal (e.g. this is the case at the third clock cycle) to enable the corresponding

6

slave FSM. The I-Sync packet FSM then decodes the packet according to the PFT architecture as
shown by i sync state reg, i sync state next, i sync address, instrumented data and
instrument en signals. The instrumented data signal contains the value instrumented by soft-
ware. In the meantime, the global FSM waits for a stop signal which is enabled by the packet FSM when
the packet is decoded. Enabling stop i signal at the thirteenth clock cycle changes the global FSM state
according to data reg signal. This allows to decode the received trace on-the-fly. The trace en signal
allows to determine when valid decoded trace is available while the instrument enable signal allows
to determine when valid instrumented data is available. Outputs of the PFT decoder are also registered
to avoid timing failures due to longer critical paths.

Listing 5: Raw trace

root@zedboard-hardblare:˜/tests_appli#./trace_etb
00000000 00 00 00 00 00 80 08 78 04 01 00 21 f4 ee 03 00
00000010 8b 03 08 8c 04 01 00 21 f4 ee 03 00 9d 03 08 98
00000020 04 01 00 21 ff ff ff ff 9d 03 08 a8 04 01 00 21
00000030 dd dd dd dd 85 03 08 b4 04 01 00 21 dd dd dd dd
00000040 9d 03 08 c4 04 01 00 21 aa aa aa aa 9d 03 08 d4
00000050 04 01 00 21 11 11 11 11 fd bc cf db 0d 01 00 00

PFT packets a-sync packet i-sync packet branch address packet

Listing 5 shows the trace at the input of PFT decoder. It contains different packets detailed in a
Technical Reference Manual provided by ARM [18].

Listing 6: Instrumented data from decoded raw trace

0003eef4 0003eef4 ffffffff
dddddddd aaaaaaaa 11111111

Listing 6 shows the content of the instrumented data memory. The values obtained correspond to the
values inserted in the program source code.

3.3 Optimization

Rather than creating a new syscall as proposed earlier, this work proposes to modify an existing syscall
called in the instrumented application. For example, if a malloc call is done in the instrumented pro-
gram and its behavior needs to be monitored, the associated syscall , which is either mmap or brk, can be
modified in order to add the proposed code inside the existing syscall. This way, a specific syscall is not
required while reducing the runtime overhead.

This optimization is not possible if the program does not use any syscall which is rather rare as most
programs require kernel services which are only accessible through syscalls. Another optimization could
be to send multiple instrumented data values at each syscall rather than sending one value. However,
this is not possible due to the fact that the PTM sends only the last instrumented value rather than all
instrumented values during a syscall.

4 Case studies

4.1 Double Free

Listing 7 shows a straightforward double-free attack. There are three allocated memory areas: A, B and
C. First, A and C are allocated. Then, A is freed. Later, B is allocated and A is freed again. This is the

7

line where the attack happens. However, when this code is compiled and executed, the Linux kernel does
not detect any error. This type of attack can lead to heap overflow, attack code execution or illegitimate
privilege elevation.

Listing 7: Double free vulnerability example code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define WORD_SIZE (size_t)-1>0xFFFFFFFFUL?8:4
#define SIZEOFNORMALCHUNK 0x100-WORD_SIZE
#define SIZEOFFASTCHUNK 0x60-WORD_SIZE

int main(){
char *A, *B, *C;
A = malloc(SIZEOFNORMALCHUNK);
C = malloc(SIZEOFNORMALCHUNK);
free(A);
// same location as A
B = malloc(SIZEOFNORMALCHUNK);
if (B)

// Double Free!
free(A);

return 0;
}

Listing 8 shows the instrumented code in order to detect the double free attack. Each time a malloc
or free function is called, another instruction is added in order to send the information about the library
function. In order to distinguish a malloc call from a free call, an example value of 12 MSB bits
(0xfff) is added to the malloc call whereas (0xffe) is added to the free library call. Then, the
lower 20 bits are used to specify the region allocated or freed. As an example, numbers are shown in
instrumented value but static analysis can provide generic variables, containing numerical values, that can
be easily inserted instead of numbers.

Listing 8: Instrumented code for double free detection

A = malloc(SIZEOFNORMALCHUNK);
// instrumented code
syscall(397,0xfff00001);
C = malloc(SIZEOFNORMALCHUNK);
// instrumented code
syscall(397,0xfff00002);
free(A);
// instrumented code
syscall(397,0xffe00001);
// same location as A
B = malloc(SIZEOFNORMALCHUNK);
// instrumented code
syscall(397,0xfff00003);
if (B){

free(A);
// instrumented code
syscall(397,0xffe00001);

}

Then, the program is compiled and executed after configuring CS components as explained in subsec-
tion 3.1.1. An example output of the program execution and the content of memories is shown in Listing

8

9. After the configuration of CS components, the program is launched and the content of the decoded
trace memory is recovered using AXI BRAM controller (not shown in Figure 1 as it is not required for the
proposed design but is added for debug purposes).

The first value obtained in the decoded trace is 0x106a0 which is the address where tracing is started
as configured in CS components (Table 1). Then, next values show the control flow changes in the program.
In this case study, the decoded trace is not used. Then, the content of the instrumented data memory is
displayed (containing the values inserted into the program). It can be noticed that the value 0xffe00001
is present twice while 0xfff00001 is present only once which means that the first region is freed twice
and allocated once. This example shows that the instrumented data can be successfully recovered on the
FPGA part and with a simple static analysis, the double free attack can be detected.

Listing 9: Execution output for double free example code

root@zedboard: /tests-appli#./trace-tpiu-topleaks

coresight-tpiu f8803000.tpiu: TPIU enabled
coresight-replicator amba:replicator: REPLICATOR enabled
coresight-funnel f8804000.funnel: FUNNEL inport 0 enabled
coresight-etm3x f889c000.ptm0: ETM tracing enabled

DECODE TRACE
00 106a0 10358 106c0 104d4 106ec b6e3ec88 1057c
10378 10598 1039c 105a0 103c0 105b8 1039c 105c0
103c0 105d8 10384 105e0 103c0 105f0 10378 10600
1039c 10608 103c0 10620 10384 10628 103c0 10638
10390 10644 10378 10654 10378 10660 1050c 1066c
10390 10678 10378 10690 b6e3ecf8 b6e3ec00 00 00

root@zedboard: /tests-appli#
./get-instrumented-data.elf
/dev/mem opened.
Memory mapped at address 0xb6fba000.
fff00001 fff00002 ffe00001 fff00003
ffe00001 00 00 00 00 00 00 00 00 00

4.2 Other use cases

This method allows reconstructing the CFG on the FPGA side using a decoded trace [2]. Therefore,
using decoded trace, a control flow checker unit can be implemented on the FPGA to make sure that no
control-flow variations occur during program execution. This information is very important as it cannot
be determined statically. Moreover, it can be recovered without adding syscall by correctly configuring
CS components and avoiding important runtime overhead in existing control-flow checker solutions.

There are other attacks that can be detected using this instrumentation strategy (for instance, event
checking): static analysis can detect events that are sent towards the FPGA part in order to verify some
properties. Therefore, this work suits the LTL (Linear Temporal Logic) hardware-assisted verification
solutions.

5 Implementation Results

Xilinx tools 2017.1 are used on a Xilinx Zedboard with a Z-7020 SoC (dual-core Cortex-A9 running at
667 MHz and an Artix-7 FPGA) to implement the architecture shown in Figure 1. The PFT decoder and

9

memory controllers are working at the frequency of 250 MHz. Following subsections present an evaluation
of this work in terms of runtime and area overheads.

5.1 Time overhead analysis

CS components do not add any execution time overhead as shown by Wahab et al. [2]. Even though this
work uses a different configuration of CS components (context ID tracing is enabled), CS components still
do not affect the execution time. The time overhead is measured by using Linux perf command and by
launching MiBench benchmark applications with and without enabling CS components.

The overhead is only due to syscalls. On the target platform, the overhead of added syscall is 30 µs
while being 0.150 µs for the memory-mapped register approach.

This work presents a method which is slower than existing memory-mapped approaches. However,
with the optimization (subsection 3.3), time overhead can be reduced. If additional instructions mcr and
isb() are added to an existing call, the overhead due to the syscall is removed and the global overhead
is only due to the execution of mcr and isb() instructions. The mcr() instruction takes 1+B cycles
(where B is the number of cycles spent in the coprocessor busy-wait loop) and the isb() instruction takes
4 cycles. Therefore, both instructions take 1+B+4 = B+5 cycles at 667MHz. If this value is equal to
ten cycles which is the case if the coprocessor is availble, then the runtime overhead introduced would be
0.014 µs which is more than ten times better than the 0.15 µs required for the memory-mapped register
approach.

5.2 Latency and bandwidth

If n is the number of packets received in a PFT packet, the PFT decoder requires (n+1) clock cycles to
decode a trace. The maximum value of n in this work is 10. In other words, the PFT decoder requires
only one additional cycle to decode a trace and recover instrumented data while the solution based on
memory-mapped register requires on average 30 cycles in average to receive valid instrumented data due
to timing delays introduced by the handshake between different channels. In this work, as 8 bits are sent
at each clock cycle at the frequency of 250 MHz, the trace bandwidth is 250*8 = 2000 Mbits/s. The
maximum bandwidth of the trace port is 250*32 = 8000 Mbits/s. The AXI interface on a Zedboard can
go up to 200 MHz. Therefore, the maximum bandwidth of the AXI port is 200*32 = 6400 Mbits/s.

5.3 Area results

Table 2 shows the area overhead of proposed architecture which only requires 0.34% of slice LUTs, 0.47% of
slice registers and 2.86% of BRAMs on a Zynq Z-7020 device. The memory-mapped solution requires 1684
slice LUTs (3.17%), 1523 slice registers (1.43%) and no BRAM. The memory-mapped register solution
takes more area because the memory required to store data is implemented in FPGA itself rather than in
BRAM as in this work. Furthermore, the memory-mapped register approach requires an AXI interconnect
block which has internal FIFOs making it larger in terms of area occupation.

10

Table 2: Post-implementation area results of overall architecture on Xilinx Zynq Z-7020

IP Name
Slice LUTs

(in %)
Slice registers

(in %)
BRAM tiles

PFT Decoder 126 (0.24%) 240 (0.23%) 0
Mem controller 1 18 (0.03%) 79 (0.08%) 0
Mem controller 2 18 (0.03%) 79 (0.08%) 0

Decoded
trace memory

2
(0.01%)

0
2

(1.43%)
Instrumented
data memory

2
(0.01%)

0
2

(1.43%)
Miscellaneous 16 (0.03%) 97 (0.09%) 0

Total Design 182 (0.34%) 495 (0.47%) 4 (2.86%)
Memory-mapped 1684 (3.17%) 1523 (1.43%) 0 (0%)
Total Available 53200 106400 140

5.4 Comparison with related works

Table 3 compares this work with the usual memory-mapped register solution which is widely used in
existing hardware-assisted instrumentation approaches. This work requires only few minor modifications
of the kernel (addition of mcr and isb() instructions) while memory-mapped register solutions need a
modified kernel ELF loader and relocation units. This work has a lower latency and a higher maximum
bandwidth than the memory-mapped solution. Furthermore, the area overhead is 6 times smaller than
existing works.

Table 3: Comparison with previous works

Metric
This
work

Optimized
solution

Existing works
(memory-mapped)

Software
modifications

+ + ++

Latency
(clock cycles)

(n+1) ≤ 10 (n+1) ≤ 10 30

Maximum bandwidth
(Mbits/s)

8000 8000 6400

Runtime
overhead (µs)

30 0.014 0.150

Area
overhead (%)

0.47 0.47 3.17

6 Conclusion

This work proposes to exploit the context ID feature of the CoreSight PTM component in order to
instrument an application. The generated trace, which also contains the instrumented data, is sent to
the FPGA part using the CS TPIU component and EMIO interface. Software modifications required to
instrument are minimal (about 10 lines are changed in the Linux kernel). Furthermore, the hardware
design required to decode traces takes less than 0.5% of the FPGA area on a Zynq SoC. This work takes

11

30 µs for each instruction added in the source code. The optimized version, which consists in removing
context switch time overhead by modifying existing syscall used in the application rather than adding a
new syscall, give a runtime overhead of 0.014 µs: it is 10 times better than 0.15 µs required for a memory-
mapped register solution. In terms of perspectives, the approach presented in this work will be ported to
Intel-based SoCs by taking advantage of the Intel PT (Processor Trace) debug component.

References

[1] I. Heo, M. Kim, Y. Lee, C. Choi, J. Lee, B. B. Kang, and Y. Paek, “Implementing an application-
specific instruction-set processor for system-level dynamic program analysis engines,” ACM Trans.
Des. Autom. Electron. Syst., vol. 20, pp. 53:1–53:32, Sept. 2015.

[2] M. A. Wahab, P. Cotret, M. N. Allah, G. Hiet, V. LapÃ´tre, and G. Gogniat, “Armhex: A hardware
extension for dift on arm-based socs,” in 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–7, Sept. 2017.

[3] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible information flow architecture for soft-
ware security,” in Proceedings of the 34th Annual International Symposium on Computer Architecture,
ISCA ’07, (New York, NY, USA), pp. 482–493, ACM, 2007.

[4] W. Drewry and T. Ormandy, “Flayer: Exposing application internals,” in Proceedings of the First
USENIX Workshop on Offensive Technologies, WOOT ’07, USENIX Association, 2007.

[5] S. S. Shende and A. D. Malony, “The tau parallel performance system,” The International Journal
of High Performance Computing Applications, vol. 20, no. 2, pp. 287–311, 2006.

[6] S. So, Y. Lim, S. D. Cha, and Y. R. Kwon, “An empirical study on software error detection: vot-
ing, instrumentation and fagan inspection,” in Proceedings 1995 Asia Pacific Software Engineering
Conference, pp. 345–351, Dec. 1995.

[7] Sable Research Group of McGill University, “Soot - a framework for analyzing and transforming java
and android applications.”

[8] IBM T.J. Watson Research Center, “T.j. watson libraries for analysis (wala).”

[9] A. Srivastava and A. Eustace, “Atom: A system for building customized program analysis tools,”
SIGPLAN Not., vol. 39, pp. 528–539, Apr. 2004.

[10] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “Pebil: Efficient static binary instru-
mentation for linux,” in 2010 IEEE International Symposium on Performance Analysis of Systems &
Software (ISPASS 2010)(ISPASS), vol. 00, pp. 175–183, Mar. 2010.

[11] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumentation,” in Proceedings of the
10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools, PASTE ’11,
(New York, NY, USA), pp. 9–16, ACM, 2011.

[12] A. Pellegrini, “Hijacker: Efficient static software instrumentation with applications in high perfor-
mance computing: Poster paper,” in 2013 International Conference on High Performance Computing
Simulation (HPCS), pp. 650–655, July 2013.

[13] T. B. Schardl, T. Denniston, D. Doucet, B. C. Kuszmaul, I.-T. A. Lee, and C. E. Leiserson, “The csi
framework for compiler-inserted program instrumentation,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 1, pp. 43:1–43:25, Dec. 2017.

12

[14] University of Illinois, “The llvm compiler infrastructure.”

[15] P. Fogarty, “Minimising the impact of software instrumentation using on-chip debug and a secondary
cpu core,” in Proceedings of the 2012 System, Software, SoC and Silicon Debug Conference, pp. 1–5,
Sept. 2012.

[16] ARM, CoreSight Components Technical Reference Manual.

[17] ARM, ARM Architecture Reference Manual - ARMv7-A and ARMv7-R edition.

[18] ARM, CoreSight Program Flow Trace Architecture Specification.

13

	Introduction
	Related work and assumptions
	Proposed approach
	Software modifications
	Configuring Coresight
	Adding syscall
	Writing C code

	Hardware design
	Overall architecture
	PFT decoder

	Optimization

	Case studies
	Double Free
	Other use cases

	Implementation Results
	Time overhead analysis
	Latency and bandwidth
	Area results
	Comparison with related works

	Conclusion

