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Abstract

We examine memory models for multisite capture–recapture data. This is an

important topic, as animals may exhibit behavior that is more complex than

simple first-order Markov movement between sites, when it is necessary to

devise and fit appropriate models to data. We consider the Arnason–Schwarz
model for multisite capture–recapture data, which incorporates just first-order

Markov movement, and also two alternative models that allow for memory, the

Brownie model and the Pradel model. We use simulation to compare two alter-

native tests which may be undertaken to determine whether models for multisite

capture–recapture data need to incorporate memory. Increasing the complexity

of models runs the risk of introducing parameters that cannot be estimated, irre-

spective of how much data are collected, a feature which is known as parameter

redundancy. Rouan et al. (JABES, 2009, pp 338–355) suggest a constraint that

may be applied to overcome parameter redundancy when it is present in multi-

site memory models. For this case, we apply symbolic methods to derive a sim-

pler constraint, which allows more parameters to be estimated, and give general

results not limited to a particular configuration. We also consider the effect

sparse data can have on parameter redundancy and recommend minimum sam-

ple sizes. Memory models for multisite capture–recapture data can be highly

complex and difficult to fit to data. We emphasize the importance of a struc-

tured approach to modeling such data, by considering a priori which parameters

can be estimated, which constraints are needed in order for estimation to take

place, and how much data need to be collected. We also give guidance on the

amount of data needed to use two alternative families of tests for whether mod-

els for multisite capture–recapture data need to incorporate memory.

Introduction

Multisite capture–recapture studies record encounters

with marked animals over several different sites. Gener-

ally, animals will return to the previously visited sites

rather than randomly selecting a site. If this is the case,

transitions will not be Markovian, so that the transition

depends on where the animal was at the previous occa-

sion, rather than just where the animal is at the present

occasion. Such models are termed "memory models", see

for example Brownie et al. (1993) and Rouan et al.

(2009), and we also use this terminology here to represent

multisite capture–recapture models where transitions are

non-Markovian.

The multisite data set on the Canada Goose, Branta

canadensis, from Hestbeck et al. (1991) has been used by

a variety of authors to demonstrate the use of memory

models (see for example Pradel et al. 2005). The Canada

Goose data set is an example of a large multisite data set,

having an average of around 1200 animals marked per

year per site. In this article, we consider whether the

memory model can be fitted to smaller data sets and

whether diagnostic memory tests and score tests are able

to detect memory when sample sizes are considerably

smaller. The parameter redundancy of memory models

has not previously been formally evaluated. However,

Rouan et al. (2009) imposed a restriction to ensure that

parameters could be estimated, but that was carried out in
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an arbitrary fashion and, as we show later in this article, a

simpler, more effective constraint can be derived using for-

mal procedures. Similarly, McCrea and Morgan (2011),

who used score tests for model selection, while aware of

parameter redundancy issues, did not provide checks using

symbolic methods. The score tests that they used did not

include the Pradel parameterization in the model set.

This study presents and extends various model diag-

nostics for memory models. Firstly, we consider which

parameters can be estimated in these memory models.

This involves examining whether or not models are

parameter redundant (Cole et al. 2010). We can then

examine, for a particular study, whether a species exhibits

memory. This can be carried out through diagnostic

goodness-of-fit tests (Pradel et al. 2005) or score tests

(McCrea and Morgan 2011).

Parameter redundancy

If two parameters are confounded, so that they only ever

appear as a product in a model specification, then it will

never be possible to estimate the two parameters individ-

ually; it will only be possible to estimate the product. A

common example of this occurring in capture–recapture
models is when survival and recapture probabilities are

both time dependent. In that case, the survival and recap-

ture probabilities for the last time-point are only ever

seen as a product (see for example Cole et al. 2010). This

problem is known as parameter redundancy. A parame-

ter-redundant model will have at least one non-identifi-

able parameter. In practice, a model that is parameter

redundant will cause problems with the estimation of

parameters, because the likelihood surface will not posses

a unique maximum and standard errors will not exist.

While parameter redundancy is obvious in some models,

it is frequently not in others. There are several methods for

investigating whether or not a model is parameter redun-

dant, which include numerical methods (for example Vial-

lefont et al. 1998), symbolic differentiation methods (for

example Catchpole and Morgan 1997 and Cole et al. 2010),

and hybrids of numeric and symbolic methods (Choquet

and Cole 2012). Numeric methods alone can lead to incor-

rect conclusions regarding parameter redundancy (see for

example Cole and Morgan 2010). Therefore, the use of

symbolic or hybrids of numeric and symbolic methods is

recommended as the most reliable methods for detecting

parameter redundancy. More recently, the symbolic

method has been extended to allow the use of symbolic

methods in a wide range of complex models (Cole et al.

2010). Such theory has been used to investigate parameter

redundancy in many ecological models, including

ring-recovery models (Catchpole and Morgan 1997; Cole

et al. 2010; Cole et al. 2012), capture–recapture models

(Catchpole and Morgan 1997; Catchpole et al. 1998; Gime-

nez et al. 2004; Cole et al. 2010; Hubbard et al. 2014), cap-

ture–recapture-recovery models (Hubbard et al. 2014), and

multistate models (Gimenez et al. 2003; Cole 2012).

A diagnostic goodness-of-fit test for
detecting memory

A diagnostic test, WBWA, was developed, by Pradel et al.

(2003), to test for memory within multisite capture–
recapture data. A series of contingency tables are con-

structed from the encounter information for each time ti,

so that the number of individuals encountered in site k at

time ti�1 and in site r at time ti+1 forms element (k, r) of

the contingency table for occasion ti. Test WBWA (which

stands for Where Before Where After) is then a standard

test of homogeneity, as if no memory exists within the

study (i.e., site at time ti�1 does not affect site at ti+1),

then the test will be nonsignificant). We note that if large

numbers of individuals do exhibit memory, they will tend

to visit the same sites repeatedly, and then large observed

numbers are expected on the diagonals of the contingency

tables. This test is implemented in the computer package

U-CARE (Choquet et al. 2009b), and we demonstrate

how this is carried out in Supporting Information Data

S1. Note that, this test is applied before model fitting,

and therefore, it does not matter whether or not potential

models are parameter redundant.

Score tests

Score tests were first suggested by Rao (1948), and they

provide a convenient alternative to likelihood-ratio tests for

comparing nested models for a data set. Suppose model M1

is a simpler version of the more complex model M2. In

order to compare the models using a likelihood-ratio test, it

is necessary to fit both of the models to the data, in order to

compare them using the values taken by the corresponding

maximized log-likelihood values. By contrast, the same

comparison made using score tests only requires the simpler

of the two models to be fitted (M1), as the means of com-

parison involves derivatives of the log-likelihood which are

zero at the maximum corresponding to model M2. If model

M2 is inappropriate for the data, then it may be difficult to

fit and that difficulty is typically avoided using score tests.

A range of statistical tests have been shown to be score

tests, and, in particular, this is also true of certain diag-

nostic tests in capture–recapture (McCrea et al. 2014).

The potential use of score tests in capture–recapture
modeling in general was suggested by Morgan (1989),

and examples were considered in detail by Catchpole and

Morgan (1996). They advocated using score tests for

model selection in a structured, step-up fashion, starting
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from simple models. The approach was shown to com-

pare well with likelihood-ratio tests on a number of real

ring-recovery data sets. The approach of using score tests

in this way is particularly useful when the model set is

large due to model complexity, as for instance arises with

multisite models. This is demonstrated by McCrea and

Morgan (2011) through the use of score tests for multisite

mark–recapture model selection. They included a simula-

tion study of performance, as well as an application to a

real data set; they also included discussion of issues of

multiple testing and also the use of step-down checks of

the approach. See also McCrea et al. (2012), for multisite

capture–recapture–recovery model selection, and Catch-

pole et al. (1999) who used score tests for variable selec-

tion in ring-recovery modeling.

Score test statistics require the computation of the

expected information matrix, and Morgan et al. (2007)

provide a simple illustration of the possible dangers of

instead using an observed information matrix.

Methods

Models

We consider a general multisite capture–recapture study

with N sites and T capture occasions and examine three

different models, which are listed below, using the same

notation as Rouan et al. (2009). The models have three

different types of parameters: transition probabilities, ini-

tial state probabilities, and recapture probabilities. Transi-

tion probabilities incorporate both the probability of

moving between sites and the probability of surviving

from one occasion to the next.

● Model AS: This is the Arnason–Schwarz model (Arna-

son 1973; Schwarz et al. 1993), where transitions are

Markovian; that is, the transition probabilities only

depend on the current site and the site at the

next occasion. The initial state probabilities are only

dependent on the site the animal is in at that occasion.

This model has no memory.

● Model B: This is the Brownie model (Brownie et al.

1993), which has non-Markovian transitions; that is,

transition probabilities not only depend on the current

and the site at the next occasion, but also the site the

animal was in at the previous occasion. However, the

initial state probabilities are only dependent on the site

the animal is in at that occasion, resulting in separate

Markovian transition probabilities for the first transi-

tion. This model allows for memory in transition proba-

bilities for all but the first transition.

● Model P: This is the Pradel model (Pradel 2005),

which also has non-Markovian transitions. This model

allows for memory in all the transition probabilities.

To allow the first transition to be non-Markovian, the

initial state probabilities need to include where the ani-

mal would have been at the previous occasion as well

as where the animal is at that occasion.

For all three models, the capture probabilities are only

dependent on the site the animal is in at any occasion.

The three types of parameters for each of the three mod-

els are summarized in Table 1. We note that Hestbeck

et al. (1991) were the first to investigate the idea of mem-

ory and their model is a special case of Model B.

We use standard notation for the recapture history of

an animal, h, where 0 represents not encountered and

i = 1,. . .,N represents encountered at site i. For example,

the history

h ¼ 001102

corresponds to a study over T = 6 occasions. The animal

was first encountered at occasion t = 3 in site 1. It was then

also encountered in site 1 at occasion t = 4. It was not

encountered at occasion t = 5. Then, it was encountered at

site 2 at occasion t = 6. We use e to denote the occasion the

animal was first encountered; in this example, e = 3. To

determine the probability of history h, we follow the matrix

Table 1. Parameters for the Arnason–Schwarz model (model AS), Brownie model (model B), and Pradel model (model P). Note that, transition

probabilities include both movement between sites and survival from one year to the next. All parameters are probabilities, and i, j, and k refer to

the site and range from 1 to N. The symbol † could also be used to replace k to indicate the animal is dead. The superscript t refers to the occasion.

Note that, in models AS and B,
PN

j¼ 1 p
ðtÞ
j ¼ 1 and in model P,

PN
i¼ 1

PN
j¼ 1 p

ðtÞ
ij ¼ 1. In model B, there are two options for transition probability:

the /ðtÞ
Hjk refers to the first capture when information is not known about the animal’s previous location and the /ðtÞ

ijk refers to subsequent ocassions.

Model Transition probability Initial state probability Recapture probability

AS /ðtÞ
jk present at site k at t + 1 and at site j at t pðtÞj at site j when first captured at t p

ðtÞ
j encountered alive at site j at t

B /ðtÞ
Hjk present at site k at t + 1 and at site j at t when

first captured

/ðtÞ
ijk present at site k at t + 1 and at site j at t and i at t�1

pðtÞj at site j when first captured at t p
ðtÞ
j encountered alive at site j at t

P /ðtÞ
ijk present at site k at t + 1 and at site j at t and i at t�1 pðtÞij at site j when first captured at

t and site i at t�1

p
ðtÞ
j encountered alive at site j at t
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notation of Rouan et al. (2009). Here, the matrices repre-

sent the following N + 1 options: either an animal is in one

of the N sites or the animal dies or permanently emigrates

and moves to the "dead" state, denoted by †. There are

three types of matrices: Πt, the initial state matrix; Φt, the

transition matrix; and Bt, the event matrix. There is also an

initial event matrix B0
t for the first encounter. The matrices

for N = 2 sites are given in Table 2, and matrices for a gen-

eral N are given in Supporting Information Data S1. The

probability of any encounter history h starting at time e can

then be written as

ProbðhÞ ¼ Pediag B0
eðme; :Þ

� � YT
t¼eþ1

Ut�1diag Btðmt ; :Þf g
" #

1N ;

where mt is the event observed at time t, Bt(mt,.) is the row

vector of B corresponding to event mt, similarly B0
t ðmt ; :Þ is

the row vector of B0 corresponding to event mt and 1N is a

column vector consisting of N ones. The term diag{V}
refers to creating a diagonal matrix from row vector V. If

there are n independent individual histories, the likelihood

is then

L ¼
Yn
h¼1

ProbðhÞ

(Rouan et al. 2009).

Memory models can be fitted using E-SURGE, which is

a computer package for fitting multievent models (Cho-

quet et al. 2009a). A guide to fitting memory models in

E-SURGE is given in Supporting Information Data S1.

Parameter redundancy

Parameter redundancy can be caused by the structure of

the model, for example when two parameters are con-

founded. In such cases, regardless of the amount of data

collected, all the parameters cannot be estimated. Parame-

ter redundancy can also be due to there not being enough

data (see for example Cole et al. 2012). We use two meth-

ods to investigate parameter redundancy: the symbolic

method and the hybrid symbolic-numeric method. The

former is used to obtain general results about parameter

redundancy caused by the structure of the model itself.

The hybrid symbolic-numeric method is used to investi-

gate parameter redundancy due to the data.

Symbolic method

Memory models provide examples of models that are struc-

turally too complex for use of the symbolic method devel-

oped in Catchpole and Morgan (1997). Instead, we need

first to find a set of parameter combinations, which can be

used to investigate parameter redundancy. Cole (2012)

derived one such set of parameter combinations for multi-

state models using the methods described by Cole et al.

(2010). In Supporting Information Data S1, a suitable set

of parameter combinations is derived for multisite models.

The parameter combinations for model B are given in

equation (1) below; the combinations for model AS and

model P are given in Supporting Information Data S1.

Table 2. Matrices of probabilities used in the matrix notation for defining models AS, B, and P for N=2 site model. The symbol † refers to the

dead state. In model AS, /ðtÞ
jy ¼ 1� /ðtÞ

j1 � /ðtÞ
j2 . In model B /ðtÞ

Hjy ¼ 1� /ðtÞ
Hj1 � /ðtÞ

Hj2. In models B and P, /ðtÞ
ijy ¼ 1� /ðtÞ

ij1 � /ðtÞ
ij2 . In addition,

�p ¼ 1� p and Π
0
represent the transpose of Π.

Model Initial state Transition Event

AS P0
t ¼

pðtÞ1

pðtÞ2

0

2
64

3
75 Ut ¼

/ðtÞ
11 /ðtÞ

12 /ðtÞ
1y

/ðtÞ
21 /ðtÞ

22 /ðtÞ
2y

0 0 1

2
64

3
75 B0

t ¼
0 0 1
1 0 0
0 1 0

2
4

3
5

Bt ¼
�p
ðtÞ
1

�p
ðtÞ
2 1

p
ðtÞ
1 0 0

0 p
ðtÞ
2 0

2
64

3
75

B P0
t ¼

pðtÞ1

pðtÞ2

0

2
64

3
75

U0
t ¼

/ðtÞ
H11 /ðtÞ

H12 0 0 /ðtÞ
H1y

0 0 /ðtÞ
H21 /ðtÞ

H22 /ðtÞ
H2y

0 0 0 0 1

2
64

3
75

Ut ¼

/ðtÞ
111 /ðtÞ

112 0 0 /ðtÞ
11y

0 0 /ðtÞ
121 /ðtÞ

122 /ðtÞ
12y

/ðtÞ
211 /ðtÞ

212 0 0 /ðtÞ
21y

0 0 /ðtÞ
221 /ðtÞ

222 /ðtÞ
22y

0 0 0 0 1

2
66666664

3
77777775

B0
t ¼

0 0 1
1 0 0
0 1 0

2
4

3
5

Bt ¼
�p
ðtÞ
1

�p
ðtÞ
2

�p
ðtÞ
1

�p
ðtÞ
2 1

p
ðtÞ
1 0 p

ðtÞ
1 0 0

0 p
ðtÞ
2 0 p

ðtÞ
2 0

2
64

3
75

P P0
t ¼

pðtÞ11

pðtÞ12

pðtÞ21

pðtÞ22

0

2
666664

3
777775 Ut ¼

/ðtÞ
111 /ðtÞ

112 0 0 /ðtÞ
11y

0 0 /ðtÞ
121 /ðtÞ

122 /ðtÞ
12y

/ðtÞ
211 /ðtÞ

212 0 0 /ðtÞ
21y

0 0 /ðtÞ
221 /ðtÞ

222 /ðtÞ
22y

0 0 0 0 1

2
6666664

3
7777775

B0
t ¼

0 0 0 0 1
1 0 1 0 0
0 1 0 1 0

2
4

3
5

Bt ¼
�p
ðtÞ
1

�p
ðtÞ
2

�p
ðtÞ
1

�p
ðtÞ
2 1

p
ðtÞ
1 0 p

ðtÞ
1 0 0

0 p
ðtÞ
2 0 p

ðtÞ
2 0

2
64

3
75
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MAPLE code is given in Supporting Information Data

S2 or S3 for automatically creating these sets of parameter

combinations.

We demonstrate how to use equation (1) to investigate

parameter redundancy by means of an example. Suppose

that there are N = 2 sites, and none of the parameters are

dependent on the capture occasion. For T = 3 occasions,

the probability combinations are

j ¼

p1
p1/H11p1
p1/H12p2

ð1� p1Þ/H21p1
ð1� p1Þ/H22p2

/111p1
/112p2
/121p1
/122p2
/211p1
/212p2
/221p1
/222p2
p1
p2

2
6666666666666666666666664

3
7777777777777777777777775

;

(where any repeated terms have been removed). We then

form a derivative matrix, D, by differentiating each entry

in j in turn with respect to each of the parameters in the

parameters vector

h ¼ ½p1;/H11;/H12;/H21;/H22;/111;/112;/121;

/122;/211;/212;/221;/222; p1; p2�:
Note the order of differentiation is not important. This

first terms of this derivative matrix are presented below

D ¼ @j

@h
¼

@
@p1

p1ð Þ @
@p1

p1/H11p1ð Þ @
@p1

p1/H12p2ð Þ . . .

@
@/H11

p1ð Þ @
@/H11

p1/H11p1ð Þ @
@/H11

p1/H12p2ð Þ . . .

@
@/H12

p1ð Þ @
@/H12

p1/H11p1ð Þ @
@/H12

p1/H12p2ð Þ . . .

..

.

2
666666664

3
777777775

¼

1 /H11p1 /H12p2 . . .

0 p1p1 0 . . .

0 0 p1p2

..

. . .
.

2
66666664

3
77777775
:

Next, we find the rank of the derivative matrix. The

rank gives the number of parameters that can be esti-

mated (Cole et al. 2010). In this case, the rank is 15

and there are 15 parameters in the model, so in this

case, the model is not parameter redundant. We define

the deficiency of the model as the number of parame-

ters minus the rank, so in this case, the model has defi-

ciency d = 0. Generally, a deficiency of d = 0 indicates

that the model is not parameter redundant, whereas a

deficiency of d > 0 indicates that a model is parameter

redundant. For a parameter-redundant model, further

symbolic algebra, involving solving a set of partial dif-

ferential equations derived from the derivative matrix,

will identify the parameters and combinations of param-

eters that can be estimated. These can form constraints

that result in a model that is no longer parameter

redundant. An example is provided in Supporting Infor-

mation Data S1.

We can also use a result from Catchpole and Morgan

(1997) to generalize these results to any number of years

of data. Cole (2012) shows how this method of general-

ization can also be used to extend to any number of

states, and we can similarly extend to number of sites. In

the example above for N ≥ 2 sites and T ≥ N occasions,

the rank of the derivative matrix is N3 + N2 + 2N�1,

which is also the number of parameters, so the model will

always have deficiency d = 0. The symbolic algebra

involved can be carried out using a symbolic algebra

package such as MAPLE (see for example Catchpole et al.

2002; Cole et al. 2010).

Note that any alternative parameterization of the mod-

els may be used. One such alternative, involving a repa-

rameterization of the transition matrix to separate

survival probability and movement probabilities between

sites, is given in Supporting Information Data S1.

Hybrid symbolic-numeric method

The hybrid symbolic-numeric method (Choquet and Cole

2012) is similar to the symbolic method. However, rather

than differentiating the elements of j in equation (1), we

differentiate the probabilities for each different encounter

history present in a given data set. This allows the investi-

gation of parameter redundancy for any particular data

j ¼

pðtÞi t ¼ 1; . . .;T; i ¼ 1; . . .;N � 1

pðtÞi /ðtÞ
Hijp

ðtþ1Þ
j t ¼ 1; . . .;T � 2; i ¼ 1; . . .;N � 1; j ¼ 1; . . .;N

1�PN�1
k¼1 pðtÞk

� �
/ðtÞ
Hijp

ðtþ1Þ
j t ¼ 1; . . .;T � 1; i ¼ N; j ¼ 1; . . .;N

/ðtÞ
ijk p

ðtþ1Þ
k t ¼ 2; . . .;T � 1; i; j; k ¼ 1; . . .;N

p
ðtÞ
i t ¼ 2; . . .;T � 1; i ¼ 1; . . .;N:

2
66666664

3
77777775
: (1)
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set. To find the rank of the resulting derivative matrix, it

is evaluated numerically at a random point in the param-

eter space. Choquet and Cole (2012) recommend that this

is carried out five times, at five different random points.

The maximum of the five numerical ranks is taken as the

number of estimable parameters. By considering all possi-

ble capture-histories, and not just those present in a data

set, the hybrid symbolic-numeric method can also be

used to investigate parameter redundancy caused by the

model structure above.

The hybrid symbolic-numerical method can be imple-

mented in E-SURGE or MAPLE. In Supporting Informa-

tion Data S1, we provide a guide to how the hybrid

method can be implemented in E-SURGE, and we also

provide a MAPLE program that can be used to test

whether a specific data set is parameter redundant or not

using the hybrid symbolic-numeric method.

In this article, the symbolic method is used to find

general results about a model. For example, the general

result for the example above is that the deficiency of

model B is always d = 0. The general result will be the

smallest possible deficiency, as it is based on the assump-

tion that all possible histories are observed. Of course, in

many real data sets, all the possible histories are not

observed, and we shall use the hybrid symbolic-numeric

method to investigate the size of a data set that is

required for the general parameter redundancy result to

still hold.

We now outline an heuristic approach to indicate the

likely sample sizes needed in order for the symbolic

results to hold. For specific parameter values, we can find

the probability of any history h occurring, P(h). If m ani-

mals are marked each year, at each of the N sites, then

we expect to see E(h) = m 9 N 9 P(h) animals with his-

tory h. For example, consider model B with T = 3 years

and N = 2 sites and parameter values p1 = 0.1, pi = 0.2,

/⋆ij = 0.3, and /ijk = 0.3 for i,j,k=1,2. The probability of

the history h = 001 is P(001) = p1 = 0.1, and if there were

m = 10 animals marked per year per site, we would expect

to see the history h = 001 twice as E(001) = 10 9 2 9 0.1 =
2. Whereas the probability of the history h = 101 is P(101) =
p1/*11(1�p1)/111p1+p1/*12(1�p2)/121p1 = 0.00288, and if

there were m = 10 animals marked per year per site, we

would not expect to see the history h = 101 as E

(101) = 10 9 2 9 0.00288 = 0.0576. Using these expected

values, we can create an "expected data set". To explore

parameter redundancy caused by the data, we only need to

consider whether a history is present or absent from a data

set. When E(h) is greater than or equal to 1, we suppose the

history is present in our "expected data set". When E(h) is less

than 1, we suppose the history is not in our expected data

set. In this example, the "expected data set" is h1 = 100,

h2 = 200, h3 = 010, h4 = 020, h5 = 001, h6 = 021, h7 = 002,

and h8 = 022. In this case, the deficiency is d = 9,

whereas the general result when all histories are present is

d = 0.

It is then possible for specific parameter values to

determine the smallest value of m required for the

"expected data set" to result in the same deficiency as

the general result. To provide recommendations on the

amount of data needed to obtain the smallest deficiency

possible, we create multiple "expected data sets" for differ-

ent numbers N and T and for different parameter values.

For each "expected data set", we determine the smallest

value of m for the general result to apply.

Investigating tests for memory

In this article, we consider two different tests for deciding

if there is memory or not: the WBWA test and score

tests. The WBWA test requires no model fitting. The

score tests only require fitting the model without

memory.

We investigate how large a data set is required for the

WBWA and score tests to detect memory in a data set

using simulation. There are two alternatives for the score

tests. In both cases, the null hypothesis is that the data

are adequately modeled by model AS. The alternative

hypothesis can either be model B or model P.

We consider two instances of a two-site model: when

there is memory (M) and when there is not memory

( �M). The simulated data sets with memory have transi-

tion matrix

Ut ¼

/ðtÞ
111 /ðtÞ

112 0 0 /ðtÞ
11y

0 0 /ðtÞ
121 /ðtÞ

122 /ðtÞ
12y

/ðtÞ
211 /ðtÞ

212 0 0 /ðtÞ
21y

0 0 /ðtÞ
221 /ðtÞ

222 /ðtÞ
22y

0 0 0 0 1

2
6666664

3
7777775

¼

sw111 sð1� w111Þ 0 0 1� s
0 0 sð1� w122Þ sw122 1� s

sw211 sð1� w211Þ 0 0 1� s
0 0 sð1� w222Þ sw222 1� s
0 0 0 0 1

2
66664

3
77775;

(2)

where s is the probability of surviving from one occasion

to the next and wijj is the probability an animal stays at

the same site j given that it was at site i on the previous

occasion. For the simulation, we set the parameters to

p11 = p12 = p21 = 0.25, s = 0.9, w111 = 0.7, w211 = 0.3,

w222 = 0.6, w122 = 0.4, p1 = 0.5 and p2 = 0.3, so that

there is a higher probability of staying at a site if the ani-

mal was at that site at the previous occasion compared

with the alternative. For the simulated data sets without

memory, the transition matrix is
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Ut ¼
/ðtÞ
11 /ðtÞ

12 /ðtÞ
1y

/ðtÞ
21 /ðtÞ

22 /ðtÞ
2y

0 0 1

2
64

3
75

¼
sw11 sð1� w11Þ 1� s

sð1� w22Þ sw22 1� s
0 0 1

2
4

3
5; (3)

and the parameter values used are p1 = 0.5, s = 0.9,

w11 = 0.8, w22 = 0.6, p1 = 0.5 and p2 = 0.3. We suppose

that there are T = 10 years of data and that

m = 25, 50, 75, 100, 125, 150 new animals are marked

each year at each site, so that total sample sizes are 500,

1000, 1500, 2000, 2500, and 3000, respectively. For each

value of m, 100 data sets are simulated. In Supporting

Information Data S1, we describe a similar simulation

study for N = 3 sites. Note that, the parameters here have

been chosen for illustration, and different results would

be obtained with different parameter values.

Results

Parameter redundancy

Using the symbolic method, we can obtain general results

about parameter redundancy for particular models. Illus-

trative general results are given in Table 3. We consider

allowing each of the transition, initial state and recapture

probabilities to be constant over each occasion or time

dependent.

We note that the AS and B models are only parameter

redundant when both / and p are time dependent. It is

then not possible to estimate individually probabilities at

the last time-points but it is possible to estimate their

product. Thus, in model AS, it is not possible to estimate

/ðT�1Þ
ij and p

ðTÞ
j , but it is possible to estimate

bi ¼ /ðT�1Þ
ij p

ðTÞ
j for i = 1,. . .,N. For model B, it is not

possible to estimate /ðT�1Þ
ijk and p

ðTÞ
k , but it is possible

to estimate bi ¼ /ðT�1Þ
ijk p

ðTÞ
k for i,j = 1,. . .,N. Applying

this constraint for all parameter-redundant AS and B

models of Table 3 results in models that are no longer

parameter redundant.

The confounding for model P is more complex. More

of the models that are considered in Table 3 are parame-

ter redundant. As well as the last time-point probabilities,

/(T�1) and p(T) being confounded, there is also confound-

ing in the probabilities of the first time-points for /(1)

and p(1) and last time-point for p(T). To ensure all

parameters can be estimated, Rouan et al. (2009) suggest

constraints on all the p(t) parameters as well as /(1) and

/(T). They showed that these constraints were effective for

N = 2 and 3 and T = 4, 5, and 6. Using the symbolic

methods described in Section 2.2, it can be shown that

their constraints always result in a model with deficiency

zero. By solving an appropriate set of partial differential

equations, we find a simpler variation in the constraint

that does not constrain all the p(t) parameters.

pð1Þij ¼ pð1ÞHj i; j ¼ 1; . . .;N

pðTÞij ¼ pðTÞHj i; j ¼ 1; . . .;N

/ð1Þ
ijk ¼ /ð1Þ

Hjk i; j; k ¼ 1; . . .;N

/ðT�1Þ
ijk p

ðTÞ
k ¼ bðT�1Þ

ijk i; j; k ¼ 1; . . .;N:

These constraints present a substantial gain, compared

with the constraints of Rouan et al. (2009), as they allow

(N2�1)(T�2) more of the original parameters to be esti-

mated. The results are also completely general.

Table 3 also provides a guide to the range of numbers

of animals that need to be marked at each site each year

for the general parameter redundant results to remain

unchanged. If the average number of animals marked per

year per site is greater than the upper limit of the range,

then the deficiency for most examples will remain

unchanged compared with the general result. Then, there

should be no problems with fitting the model, as long as

for the parameter redundant models, the above con-

straints are used. However, this is based on the assump-

tion that the data follow the underlying memory model;

Table 3. (a) Deficiency of various AS, B and P models. A deficiency of

zero means the model is not parameter redundant. A deficiency

greater than 0 mean the model is parameter redundant. C, constant

parameters, T, time-dependent parameters. (b) The range of sample

sizes per site per year needed to achieve the general parameter redun-

dancy results in the first half of the table. N is the number of sites.

p / p Model AS Model B Model P

(a) Deficiency

C C C 0 0 0

C C T 0 0 0

C T C 0 0 N3�N2

C T T N N N3�N2 + N

T C C 0 0 (N�1)2

T C T 0 0 (N�1)2

T T C 0 0 N3 + N2�3N + 1

T T T N N N3 + N2�2N + 1

(b) Recommended sample size

C C C (5, 15) (10, 60) (5, 30)

C C T (5, 25) (10, 70) (10, 30)

C T C (10, 165) (35, 500) (20, 150)

C T T (20, 165) (45, 500) (30, 250)

T C C (5, 30) (10, 75) (10, 50)

T C T (10, 35) (15, 75) (15, 150)

T T C (20, 330) (50, 500) (30, 305)

T T T (25, 330) (55, 610) (45, 305)
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if this is not the case, then an atypical data set could still

be parameter redundant behold the upper limit. If the

average number of animals marked per year per site is

within the range, then the deficiency may change depend-

ing on the underlying parameter values. It is recom-

mended in this case that the MAPLE code in Supporting

Information Data S4 or S5 be used to check the defi-

ciency for the specific data set used. If the average num-

ber of animals marked per year per site is less than the

range, then the data set is very likely to have a lower defi-

ciency compared with the general result.

For the simplest case with no time-dependent parame-

ters, a very small number of an animals can be marked

per site per year and it is still possible to fit a memory

model. For more complex models, larger sample sizes are

needed; however, we do not need as large a sample size

as the Canada Goose data set. Model AS needs the small-

est sample sizes for deficiency to remain unchanged, then

Model P, with model B needing the largest sample sizes.

This corresponds to the number of parameters in the

respective models, models with more parameters need lar-

ger sample sizes, as we might expect. From the results in

Table 3(b), we deduce that for smaller data sets, it may

be preferable to use model P with the above constraints

rather than model B.

Tests for memory

Simulations have been run in order to evaluate how well

the WBWA and score tests perform. In Table 4, we pres-

ent the percentage of simulations that gave the wrong

result for a 5% significance level. For simulated data sets

with memory, we present the percentage of simulations

whose P-value is greater than or equal to 0.05, whereas

for simulated data set without memory, we present the

percentage of simulations whose P-value is less than 0.05.

In both cases, percentages of around 5% or less indicate

that the test is performing well. Other statistics from the

simulation studies are given in Supporting Information

Data S1.

It is clear that the WBWA test is not picking up mem-

ory correctly for m = 25, 50, and 75. The test starts to

preform better when m = 100, but is only doing as well

as it would be expected when m = 125 and 150. The

score test however preforms as expected for sample sizes

of m ≥ 50.

The poor power of the WBWA test for small sample

sizes is mostly likely due to the conditioning of data

required for the test to be performed: only individuals

that are encountered on three consecutive occasions con-

tribute to the test statistic and therefore not only is the

power of the test sensitive to small sample sizes, but also

parameter values such as capture probabilities.

Discussion

Before fitting a memory model, it is important to con-

sider exactly what can be estimated in a model. If a

parameter-redundant model is fitted to the data, then 1)

either the model fitting will fail, the standard errors will

not exist or be very large or 2) the model fitting does not

fail but wrong parameter estimates and standard errors

are returned. It is therefore recommended that the

parameter redundancy of a model is examined before

model fitting is considered. Here, we have provided the

tools for examining parameter redundancy in models AS,

Table 4. The percentage of simulations that gave the wrong conclusion under a 5% significance, split by whether the simulation had memory, (a)

or did not have memory (b). In the simulation, m is the number of animals marked per year per site and N is the number of sites. WBWA refers to

the WBWA test. Score B refers a score test comparing model AS with model B. Score P refers to a score test comparing model AS with model P.

m

N = 2 N = 3

WBWA, % Score B, % Score P, % WBWA, % Score B, % Score P, %

(a) Simulation with memory

25 84 8 3 96 25 11

50 60 0 0 43 5 5

75 31 0 0 26 2 0

100 14 0 0 14 4 2

125 7 0 0 3 4 3

150 6 0 0 1 3 2

(b) Simulation without memory

25 0 10 7 1 23 14

50 1 4 5 5 4 6

75 2 9 6 3 4 3

100 3 5 4 6 1 1

125 2 4 6 5 7 1

150 7 8 9 8 6 3
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B, and P. In parameter-redundant models, it is possible

to discover exactly what can be estimated and find suit-

able constraints that result in a model that is no longer

parameter redundant. In Section 3.1, we have also shown

how to obtain general results for any number of occasions

and sites.

We have also considered how many animals need to be

marked per year per site for results to hold. To ensure

whether the memory model, with no time-dependent

parameter, is not parameter redundant, then we would

recommend marking at least 30 animals per year per site

if model P is used, or at least 60 animals per year per site,

if model B is used; however, for the equivalent model

without memory, model AS, we would recommend mark-

ing at least 15 animals per site per year. These numbers

increase when any of the parameters are dependent on

sampling occasion. For smaller sample sizes, model P with

the constraints given in Section 3.1 would be better in

terms of parameter redundancy than model B. What is

clear from this study is that we do not need data sets as

large as the Canada Goose data set to use memory

models.

In terms of general parameter redundancy, model B

has more models with deficiency 0, so would be the pre-

ferred model to fit. However, we have given constraints

that allow model P to still be used. Model P does better

than model B in terms of the sample size needed to

achieve the general results. Therefore, model P with con-

straints may be preferable to model B for smaller sample

sizes.

To use the WBWA test, it is recommended that a sample

size of at least 100 animals marked per site per year is used.

Whereas to use a score test, 50 animals per year per site is

sufficient for the score test to identify memory. The score

test is better than the WBWA test at identifying memory in

smaller data sets. However, the diagnostic test is easy to

apply as it is available in U-CARE. Bespoke MATLAB code

was written for the score test. The two approaches also

employ a different strategy for subsequent model selection,

with diagnostic tests potentially suggesting a range of possi-

ble model extensions relative to the AS model, all of which

then need consideration in a second stage of model fitting

and comparison. By contrast, score tests which start with a

test of memory can then be developed through a succession

of step-up stages, involving model elaboration, each time

only fitting the most significant model (see for example

McCrea and Morgan 2011).

We note finally that our focus in this article has been

on exploring tests for memory and considering the

parameter redundancy of appropriate models. We have

not presented a complete model selection process, which

would involve a combination of the different tools in the

article.
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