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Abstract
Age–dependent capture–recapture models and unequal time intervals. Estimates of survival probabilities in 
natural populations can be obtained through capture–mark–recapture (CMR) models. However, when capture 
sessions are unevenly spaced, age–dependent models can lead to erroneous estimates of survival when in-
dividuals change age class during the time interval between two capture occasions. We propose a solution to 
correct for the mismatch between time intervals and age class duration in two age class models. The solution 
can be implemented in different ways. The first consists of adding dummy occasions to the encounter histories 
and fixing the corresponding recapture probabilities at zero. The second  makes use of the log–link function 
available in some CMR software (e.g. program MARK). We used simulated and real data to show that the 
proposed solution delivers unbiased estimates of age–dependent survival probabilities. 
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Resumen
Modelos de captura y recaptura dependientes de la edad e intervalos de tiempo desiguales. A través de mod-
elos de captura, marcaje y recaptura (CMR) se puede estimar la probabilidad de supervivencia en poblaciones 
naturales. Sin embargo, cuando las sesiones de captura están espaciadas de manera desigual, los modelos 
dependientes de la edad pueden producir estimaciones erróneas de la supervivencia si los individuos cambian 
de clase de edad durante el intervalo entre dos sesiones de captura. Proponemos una solución para corregir 
el desajuste entre los intervalos de tiempo y la duración de las clases de edad en modelos con dos clases 
de edad. La solución puede aplicarse de diferentes formas. Una consiste en añadir muestreos ficticios en las 
historias de captura y fijar las probabilidades de recaptura correspondientes a cero. Una segunda aplicación 
usa la función log–link disponible en algunos programas informáticos de CMR (p. ej., el programa MARK). 
Usamos datos simulados y reales para mostrar que la solución propuesta produce estimaciones no sesgadas 
de las probabilidades de supervivencia dependientes de la edad. 

Palabras clave: Modelos dependientes de la edad, Captura, marcaje y recaptura, Datos incompletos, Probabilidad 
de supervivencia
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Introduction

Capture–mark–recapture methods (CMR) are widely 
used for diagnosis of natural populations because they 
can be applied to obtain robust estimates of demo-
graphic parameters accounting for imperfect detection 
of individuals (Lebreton et al., 1992; Williams et al., 
2002; Sanz–Aguilar et al., 2016). Cormack–Jolly–Se-
ber models for the estimates of survival probability 
in natural populations are based on the important 
assumption that animals share the same parameters 
regardless of their past or present history (Pradel et 
al., 2005). When animals are marked as young this 
assumption does not hold because newly marked indi-
viduals typically have a lower survival probability than 
already marked individuals (adults). This difference 
can be accommodated by including age–dependent 
parameters into the CMR model (Pollock, 1981; Leb-
reton et al., 1992). In a simple two–age–class model, 
one parameter, noted ϕ', would apply to the survival 
probability of young individuals and a second, noted 
ϕ', would apply to the survival of adults (see exam-
ples in Hiraldo et al., 1996; Prugnolle et al., 2003). 
Age–dependent parameterizations have also been 
considered when only adults are marked to correct 
for an excess of animals seen only at marking, i.e. 
transients (Pradel et al., 1997), for example, when 
tags are potentially harmful (Saraux et al., 2011) or to 
model an effect of breeding experience (Sanz–Aguilar 
et al., 2008, 2012). Age–dependent survival prob-
abilities are parameters of interest in many ecological 
studies (e.g. Clobert et al., 1988; Loison et al., 1999; 
Tavecchia et al., 2001; Bonenfant et al., 2002; Perret 
et al., 2003; Catchpole et al., 2004; Sanz–Aguilar et 
al., 2015). However, while age–classes are equally 
spaced, intervals between capture–recapture occa-
sions may not be equally spaced on the same scale, 
leading to erroneous estimates (see the problem in, 
for example, Covas et al., 2002; Zabala et al., 2011; 
Zuberogoitia et al., 2016). This is because individu-
als would change their age class within the interval 
between two sampling occasions rather than at the 
end as assumed by CMR models. We briefly introduce 
the problem and illustrate how it can be solved by 
taking advantage of the flexibility of CMR models. 

The problem

Logistic, financial or weather–dependent constraints 
can interrupt monitoring or modify the temporal fre-
quency of sampling occasions, leading to different 
time length between capture–mark–recapture ses-
sions. Unequal time intervals, alone, do not present 
a major problem in CMR models (Bears et al., 2009; 
Cooch, 2009; Schmidt et al., 2007). Consider a study 
with k sampling occasions with intervals between the 
occasions j = 1, 2, …, k–1.  The length of the intervals 
between the sampling occasions is lj. The l value is 
taken as the exponent of the survival parameters 
expressed in some common time unit for the interval 
j, j + 1, as ϕlj. For example, the survival parameter 
over a unit interval (l = 1) would be ϕ1, for a two–unit 
interval (l = 2) it would be ϕ2, and so on. Values in 

the vector l are commonly integers, e.g., years or 
months, but can also be decimal numbers; for exam-
ple, the survival parameter over an eighteen–month 
interval can be written in terms of yearly survival as 
ϕ1.5 (l = 1.5). The freely available software for CMR 
analyses, such as MARK (White and Burnham, 1999), 
RMARK (Laake, 2013) or ESURGE (Choquet et al., 
2009), allows users to specify the vector of lj values. 
However, unequal time intervals pose a problem in 
age–dependent models because, contrarily to intervals 
between occasions, the age classes always retain 
the same length. As a consequence, an individual 
may 'move' through age classes during an interval 
of length lj and the survival parameter can no longer 
be written as ϕlj because the instantaneous survival 
probability changes with the age classes spanned 
by the interval of length lj. The mismatch between 
the duration of an age class and the time interval 
would, for instance, lead to an overestimation of the 
first–year survival probability if the sampling inter-
val were  greater than one year. The fundamental 
problem is that a given age–dependent parameter 
applies to only a part of the time interval. This can 
be solved by specifying the length of the interval for 
each parameter considered. We outline the solution 
and provide a step–by–step illustration of how this 
can be implemented in freely available software for 
CMR analysis (e.g. MARK, RMark or E–SURGE, see 
details in the Supplemental Information S1, S2 and 
S3). Note that the two implementations below are 
simply two practical approaches to solve the problem 
(see supplementary material S1, S2 and S3). 

Methods

Implementation 1: adding dummy encounter occasions 

When intervals are of unequal lengths, a possible 
solution is to add dummy encounter occasions in the 
encounter histories to 'fill' the temporal gaps between 
occasions, which means, in practice, adding columns 
of 0s (e.g. Grosbois and Tavecchia, 2003; Sanz–Agui-
lar et al., 2010): the recapture probabilities correspond-
ing to these dummy occasions should be fixed at 0. 
For example, let us consider a 7–year study with five 
capture–mark–recapture occasions in years 1, 2, 5, 6 
and 7. The interval between the second and third oc-
casions lasts three years instead of one. The l–vector 
of interval lengths would be 1, 3, 1, 1. The encounter 
history of animals released at the beginning of the 
study and always seen would be '1 1 1 1 1'. When 
columns of '0' are added to fill the temporal gaps, 
the encounter history above becomes '1100111' and 
all six elements of the l–vector are now equal to 1. 
The encounter probabilities at dummy occasions (3 
and 4) should be fixed at 0 (figs. S2.1 and S2.3 sup-
plementary material S2). The survival parameter of 
the first age class, ϕ', now always refers to an initial 
one–year interval. This approach can be implemented 
in programs MARK and E–SURGE. Adding dummy 
occasions permits to manipulate the correct survival 
parameters, but the dummy occasions come with no 



Animal Biodiversity and Conservation 42.1 (2019) 93

additional information and identifiability issues in full 
time–dependent models (tables 1, 2). If the param-
eters that appears in the gap are unrelated to known 
parameters from other intervals they will not be sepa-
rately identifiable, e.g. if all survival parameters are 
time– and age–dependent, the first age–class survival 
probabilities ϕ' at the beginning of a gap occasion and 
the second age–class survival probabilities ϕ  that fol-
low them are not separately identifiable (tables 1, 2). 
However, the approach works well as long as one of 
the two types of survival parameters is kept constant 
or modelled as a function of environmental covariates 
(see simulated data results below, tables 1, 2).

Implementation 2: using a log–link function 

An alternative to the above implementation and es-
pecially useful when the lj are not commensurate (or 
when too many dummy occasions are required) relies 
on the use of a logarithm transformation (this imple-
mentation is not available in program E–SURGE). 
The survival probability over the initial interval of a 
young individual can be decomposed into its initial 
survival as a young for a duration r with a survival 
probability per time unit of ϕ' followed by the survival 
as an adult for a duration s with a survival probability 
per time unit of ϕ. The survival probability over the 

Table 1. Not separately identifiable parameters in presence of missing occasions: ϕ' juvenile survival; 
ϕ adult survival; p, recapture; 't' time effect; 'cov' covariate effect; '.' constant parameter; Np,  number of 
separately identifiable parameters. Note that no individuals were marked during missing occasions and 
consequently juvenile survival parameters do not exist in the model for cohorts without released juveniles 
(i.e. ϕ'3, ϕ'4 for dataset 1 and ϕ'3 for dataset 2). Similarly, adults were not marked on the first occasion 
and, consequently, ϕ1 do not exist in the model.

Tabla 1 . Parámetros no identificables por separado en presencia de ocasiones sin muestreo: ϕ' supervivencia 
juvenil; ϕ supervivencia en adultos; p, recaptura; 't' efecto del tiempo; 'cov' efecto de una covariable; 
'.' parámetro constante; N, número de parámetros identificables por separado. Durante las ocasiones 
sin muestreo no se marcó ningún individuo y, en consecuencia, no existen parámetros de supervivencia 
juvenil para los grupos sin juveniles liberados en el modelo (ϕ'3, ϕ'4 para el conjunto de datos 1 y ϕ'3, para 
el conjunto de datos 2). De igual forma, en el primer muestreo no se marcó ningún adulto y, por lo tanto, 
ϕ1 no existe en el modelo.

                                          Dataset 1                                  Dataset 2

                                              Two missing occasions [3, 4]         One missing occasion [3]

Model Np Not identifiable Np Not identifiable

ϕ't ϕt pt 10 ϕ'2; ϕ'6; ϕ2; ϕ3; ϕ4; ϕ6; p6 13 ϕ'2; ϕ'6; ϕ2; ϕ3; ϕ6; p6

ϕ't ϕt p. 8 ϕ'2; ϕ2; ϕ3; ϕ4 10 ϕ'2 ; ϕ2 ; ϕ3

ϕ't ϕ. pt 9  11 

ϕ't ϕ. p. 6  7 

ϕ'. ϕt pt 9 ϕ3; ϕ4 11 

ϕ'. ϕt p. 6 ϕ3; ϕ4 7 

ϕ'cov ϕcov pt 8  9 

ϕ'cov ϕcov p. 5  5 

ϕ'cov ϕt pt 10 ϕ3; ϕ4 12 

ϕ'cov ϕt p. 7 ϕ3; ϕ4 8 

ϕ't ϕcov pt 10  12 

ϕ't ϕcov p. 7  8 

ϕ'cov ϕ. pt 7  8 

ϕ'cov ϕ. p. 4  4 

ϕ'. ϕcov pt 7  8 

ϕ'. ϕcov p. 4  4 

ϕ'. ϕ. pt 6  7 

ϕ'. ϕ. p. 3  3
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whole interval of length r + s is then ϕ'r ϕs (for year 
based sampling r = 1). Applying a log–link function 
the product ϕ'r ϕs is replaced with a linear combination 
of survival related quantities, log(ϕ'r ϕs) = rlog(ϕ') + 
slog(ϕ), to be estimated. The known quantities, r and 
s, can be used as covariates of the survival probability 
pertaining to the interval (fig. S2.2 supplementary 
material S2). This approach does not require changing 
the encounter histories contrary to implementation 1. 
A similar solution was used by Tavecchia et al. (2001, 
2002) to estimate monthly survival of game species 
when marking occurred at different moments during 
the hunting season. 

Simulated cases 

To demonstrate the problem generated by unequal 
time interval in combination with age–dependent 
models, we considered a simple scenario with a 
model assuming two age classes and constant sur-
vival and recapture parameters. Note that this simple 
scenario is only for illustrative purposes. We simulated 
100 datasets with five sampling occasions during 
a 7–years period (k = 7). A hundred new juvenile 
animals were released at each occasion. The time 
span elapsed between occasions was as l = 1, 3, 
1, 1. We assumed constant yearly survival of newly 
marked juvenile individuals (ϕ' = 0.4) and constant 
yearly survival of adult individuals (ϕ = 0.8). We first 
analysed these datasets using unequal time interval 
(the incorrect approach) to illustrate the biases. We 
subsequently analysed them adding dummy columns 
to 'fill' the years without monitoring (implementation 
1) and using the log–link implementation with r (= 1) 
and s (= 2) values for newly marked individuals in the 
second cohort to constrain the corresponding survival 
parameters appropriately (implementation 2). For each 
analysis, maximum likelihood estimates of ϕ' and ϕ 
were obtained using RMark (Laake, 2013). The code 
to simulate the data and run the analysis is provided 

in supplementary material S1. Supplementary material 
on S2 and S3 illustrate how to implement the solution 
in MARK (White and Burnham, 1999) and E–SURGE, 
respectively (Choquet et al., 2009). 

Parameter identifiability in time–dependent models 

In the example above we have assumed constant 
survival and recapture probabilities to illustrate the 
problem and its solution. However, in many cases, 
parameters are time dependent. To show the ap-
plicability of the solution to more complex parameter 
structures and to study parameter identifiability, we 
simulated two different datasets with seven intervals 
(k = 7, supplementary material S4). Both datasets 
considered temporal variation on juvenile and adult 
survival parameters as a function of a hypothetical 
temporal covariate D (adult survival was modelled as 
1/(1 + exp(– (1.386 + 0.55 * D))) and juvenile survival 
as one half of adult survival at each occasion) and a 
constant recapture probability of 0.7. Datasets differed 
in the length of the period with no CMR information: 
dataset 1 considered a gap of two years (data from 
sessions 3 and 4 are missing), while dataset 2 con-
sidered a gap of one year only (data from session 3 
are missing) so that l = 1, 3, 1, 1 and l = 1, 2, 1, 1, 1, 
respectively. To avoid identifiability problems associ-
ated with sample size (which is not within the scope 
of this note) a thousand new juvenile animals were 
released on each occasion. To explore parameter 
identifiability, we implemented 18 models to each 
simulated dataset, considering different combinations 
of temporal, covariate and constant effects on juve-
nile and adult survival probabilities, and temporal vs. 
constant effect on recapture probability. Datasets were 
analysed using program E–SURGE (Choquet et al., 
2009), which provides detailed results on parameter 
identifiability using the explicit method proposed by 
Catchpole and Morgan (1997) to detect parameter 
redundancy (supplementary material S4). 

Table 2. Identifiable quantities (i.e. * products of parameters) in the presence of missing occasions. 
Only models with redundant parameters are presented; see table 1. (Notation as in table 1).

Tabla 2. Cantidades identificables (* productos de parámetros) en presencia de ocasiones sin muestreo. Solo 
se presentan los modelos con parámetros redundantes; véase la tabla 1. (Notación como en la tabla 1).

             Dataset 1       Dataset 2

           Two missing occasions [3, 4]     One missing occasion [3]

Model Np Identifiable products Np Identifiable products

ϕ't ϕt pt 10 (ϕ'2 * ϕ3 * ϕ4); (ϕ2 * ϕ3 * ϕ4); (ϕ'6 * p6); (ϕ6 * p6) 13 (ϕ'2 * ϕ3) ; (ϕ2 * ϕ3); (ϕ'6 * p6); (ϕ6 * p6)

ϕ't ϕt p. 8 (ϕ'2 * ϕ3 * ϕ4) ; (ϕ2 * ϕ3 * ϕ4) 10 (ϕ'2 * ϕ3) ; (ϕ2 * ϕ3)

ϕ't ϕt pt 9 (ϕ3 * ϕ4)  

ϕ'. ϕt p. 6 (ϕ3 * ϕ4)  

ϕ'cov ϕt pt 10 (ϕ3 * ϕ4)  

ϕ'cov ϕt p. 7 (ϕ3 * ϕ4)  
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Application to real case

We considered a dataset of capture–mark–recapture 
data of adult Mediterranean storm petrels (Hydrobates 
pelagicus melitensis) from Palomas Island (Eastern 
Spain). Birds were captured using mist–nets from 
1996–2000 and from 2004–2006. The vector lj was 
1,1,1,1,4,1,1 where the '4' stands for the 3–year gap 
between 2000 and 2004. A full analysis of this dataset 
can be found in Sanz–Aguilar et al. (2010). Here we 
report results obtained by using the unequal time 
interval option and the proposed solution for com-
parative purpose. We only present implementation 
1 as results of both implementations are equivalent 
(see results). The goodness of fit test of a model 
assuming all parameters time dependent (Pradel et 
al., 2005) indicated a surplus of animals seen only 
at marking, i.e., transients (ϕ2

6 = 29.96, p < 0.05). 
As a consequence, survival during the first year af-
ter marking, ϕ', was considered separately from the 
subsequent survival, noted ϕ, in 2–age class models 
(Sanz–Aguilar et al., 2010). 

Results

Survival estimates in simple two–age classes constant 
models 

Models in which we specified the unequal time in-
terval in the l–vector delivered average estimates of 
first–year survival probability larger than the true value 
(average ϕ' = 0.52; 95 % CI = 0.46–0.60) instead 
of 0.4; fig. 1; supplementary material S1). This ap-
proach also led to a slightly underestimated recapture 
probability (average p = 0.63 (95 % CI = 0.53–0.72) 

Fig. 1. Maximum likelihood estimates of first–year survival probability from 100 hypothetical datasets (see 
text). Vertical lines indicated the estimated average values (solid) and the true simulated value (dashed). 

Fig. 1. Estimaciones por máxima verosimilitud de la probabilidad de supervivencia en el primer año de 
100 conjuntos de datos hipotéticos (véase el texto para obtener información más detallada). Las líneas verti-
cales continuas indican el promedio de los valores estimados y las discontinuas, el valor simulado verdadero.
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instead of 0.70; supplementary material S1), while 
adult survival was close to the real value of 0.8 (ave-
rage ϕ = 0.79; 95 % CI = 0.71–0.85). In contrast, the 
solution outlined above delivered the true values for 
all parameters regardless of the way the model was 
implemented (ϕ' = 0.40, ϕ = 0.80 and p = 0.70; fig. 1; 
supplementary material S1). 

Parameter identifiability in time–dependent models 

Our results indicate that models with two consecutive 
gaps present more problems of parameter identifia-
bility than models with a single missing occasion 
(table 1). When juvenile and adult survival parameters 
are fully time dependent, survival parameters during 
the occasions without monitoring are not separately 
identifiable (tables 1, 2). Moreover, when the recapture 
probability is also time dependent, the last survival and 
recapture are not separately identifiable (tables 1, 2). 
All parameters became identifiable when juvenile and/
or adult survival is constant or modelled as a function 
of temporal covariates with the exception of models 
in which more than one consecutive occasion without 
monitoring and adult survival was time dependent 
(tables 1, 2). In this case, only the adult survival 
parameter corresponding to the year in which the 
gap begins was separately identifiable (tables 1, 2). 

Application to real case

As in the simulated example, when using vector l as 
exponent of survival parameters, we obtained higher 
estimates for first–year survival probabilities. When 
gap years were not properly considered, models with 
the unequal time interval option delivered survival 
estimates of ϕ' = 0.73 and ϕ = 0.80 (transient pro-
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intervals and age dependence in capture–recapture 
models can lead to erroneous estimates of survival 
and model selection (i.e. biological inference). To 
avoid the problem of unequal time intervals, sampling 
protocols should be properly designed. Here we 
showhow to partially overcome the s problem of un-
even intervals in two age–classes capture–recapture 
models. Adding dummy columns to  the encounter 
history can generally be used when  interval lengths 
are commensurable with  a same unit of time during 
which no change of age class occurs (one month, 
for instance). However, there might be practical limi-
tations because in some cases this solution would 
lead to add a great number of dummy occasions and 
would 'push' estimate of survival probability close to 
the upper boundary value of 1. In these cases, a 
log–link function can be especially useful to accom-
modate heterogeneity in the duration of encounter 
occasions when uneven periods are of small duration 
and too many dummy occasions should otherwise be 
incorporated to account for the unequal time period.  
However, not all problems can be solved using the 
approaches suggested. For example, the log–link 
function works well in rich datasets but might cause 
numerical problems when data are sparse (Tavec-
chia et al., 2001). Moreover, by using the log–link 
function, the effect of temporal covariates cannot be 
modelled. Also, when survival parameters are fully 
time–dependent there are still some parameters that 
cannot be estimated separately, with  only their prod-
ucts being identifiable (tables. 1, 2). The longer  the 
period with missing information the higher the number 
of redundant parameters (tables 1, 2). However, by 
constraining survival using external covariates, most 
parameters become identifiable. Here we focused on 
two age class, single state models, but more complex 
models such as multistate models or models including 
multiple age–classes will present additional parameter 
identifiability problems. Despite these limitations, the 
solution presented here performed well in relatively 
simple situations and we recommend its use when 
age–dependent parameters are incorporated in 
models with uneven intervals between sampling oc-
casions. Finally, the presence of transient animals 
can be accommodated in CMR models by using age–
dependent models (see the real case, Pradel et al., 
1997; Sanz–Aguilar et al., 2010). However, recently 
developed multi–event models (Pradel, 2005) allow 
to model transients as a specific uncertain category 
of individuals with known parameter values (survival 
probability = 0). In this case, age–dependent models 
are no longer necessary and the problem does not 
apply (e.g. Genovart et al., 2012; Santidrián Tomillo 
et al., 2017). 
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Supplementary material S2

The design matrices to implement the analyses in program MARK using implementation 1 (fig. S2.1) 
and implementation 2 (fig. S2.2), respectively. Note that encounter histories must be changed before 
implementing solution 2 to include the dummy occasion to fill–in years without monitoring. The files for 
the full analyses with *.inp, *dbf and *ftp can be found in supplementary material S3. 

Fig. S2.1. Design matrix of a model with constant ϕ', ϕ and p in program MARK for the simulated datasets 
adding dummy occasions: B1 = ϕ', B2 = ϕ, B3 = p (files in supplementary material S3).

Fig. S2.1. Diseño de matriz de un modelo con ϕ' constante, ϕ y p en el programa MARK para los con-
juntos de datos simulados añadiendo ocasiones sin muestreo: B1 = ϕ', B2 = ϕ, B3 = p (archivos en 
material suplementario S3).

Fig. S2.2. Design matrix and run window of a model with constant ϕ', ϕ  and p in program MARK: B1 = ϕ', 
B2 = ϕ, B3 = p (files in supplementary material S3).

Fig. S2.2. Ventana de diseño de matriz y ejecución de un modelo con ϕ' constante, ϕ y p en el programa 
MARK: B1 = ϕ', B2 = ϕ, B3 = p (archivos en material suplementario S3).
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Fig. S2.3. GEMACO and IVFV steps in program E–SURGE to implement the solution to account for 
unequal time intervals by fixing recapture probabilities to zero. 

Fig. S2.3. Pasos GEMACO y IVFV del programa E–SURGE para aplicar la solución con intervalos de 
tiempo desiguales fijando las probabilidades de recaptura a cero.


