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Abstract 

In the current context of global change and a biodiversity crisis, there are increasing de-

mands for greater predictive power in ecology, in both the scientific literature and at the 

science–policy interface. The implicit assumption is that this will increase knowledge and, in 

turn lead to better decision-making. However, the justification for this assumption remains 

uncertain, not least because the definition of ‘prediction’ is unclear.  We propose that two 

types of prediction should be distinguished: corroboratory-prediction is linked to the valida-

tion of theories; and anticipatory-prediction is linked to the description of possible futures. 

We then discuss four families of obstacles to prediction, linked to the specific features of eco-

systems: (i) they are historical entities, (ii) they are complex, (iii) their dynamics are stochas-

tic, and (iv) they are influenced by socio-economic drivers. A naïve understanding of ecologi-

cal science suggests that the two types of predictions are simply two phases in a sequence in 

which scientists first improve their knowledge of ecological systems via corroboratory-predic-

tions, and then apply this knowledge in order to forecast future states of ecosystems via anti-

cipatory-predictions in order to help policy makers taking decisions. This sequence is howe-

ver not straightforward, partly because corroboration and anticipation are not affected by the 

obstacles to prediction in the same way. We thus invite to reconsider the role of ecological 

prediction as a tool in a deliberative model of decision-making rather than as external scienti-

fic information aimed at enlightening the political process. Doing so would be beneficial for 

both the policy-relevance of anticipatory-prediction and the theoretical-relevance of corrobo-

ratory-prediction.  

!2



1. Introduction 

For the past two decades, ecologists have emphasized the challenge of making predictions 

in biodiversity sciences, calling explicitly for a more “predictive ecology” (Clark et al. 2001, 

Evans et al. 2012, Sutherland and Freckleton 2012, Petchey et al. 2015, Mouquet et al. 2015, 

Houlahan 2017). This search for increased predictive power can be linked to at least two fac-

tors. 

First, recent technical and methodological advances have raised hope regarding potential 

progress in ecological knowledge. These include the increased amount of data provided by 

observational and experimental networks, greater computational power, new ecological mod-

els, and related statistical and optimization methodologies (Green et al. 2005, Luo et al. 2011).  

Second, society’s demand for ecological predictions has grown alongside increasing awa-

reness of the environmental crisis. In a world that is undergoing rapid changes, the scientific 

knowledge provided by ecological sciences is often thought of as a prerequisite to assess the 

possible impacts of human activities on ecosystems (e.g. climate change, land-use change, 

over-exploitation of natural resources, pollution), and to help policymakers and practitioners 

design environmental policies (Palmer et al. 2005).  

However, the call for delivering predictions that could help defining and implementing 

public policies in conservation and climate change mitigation becomes controversial when it 

comes to the ways we should proceed. Some scientists seem to favor prediction as something 

that could be derived from the huge datasets we can now gather, and the biocomputing and 

statistical tool likely to exploit them, therefore announcing ‘the end of theory’ (Anderson 

2008). Similarly, public policies and conservation measures could be handled in an evidence-

based framework, analogous to strategies used in medicine: evaluating what works or does 

not work among environmental policies would allow to incrementally improve our action 
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(Sutherland et al. 2004). In these views, we should not spend too much time trying to devise 

an explanatory theory of what’s going on in order to eventually predict successes and failures 

of various courses of action. Yet, many ecologists remain skeptical regarding the idea that bet-

ter and more useful predictions could be attained without improving available theoretical 

frameworks or designing testable theories (Houlahan et al. 2017). As argued by Marquet et al. 

(2014), only better theories could allow to discriminate between correct and spurious predic-

tions based on mere data gathering and mining (for analogous arguments in evolutionary bi-

ology, see (Servedio et al. 2014)). 

In this paper, we contribute to frame this debate by arguing that ‘prediction’ may mean dif-

ferent things, and that those meanings are used indifferently, thus creating confusion. Al-

though the term prediction is common to both conventional scientific discourse and everyday 

language, two senses can indeed be distinguished. First, it can refer to a step in the scientific 

process of understanding: hypotheses, models or theories are tested by comparing what is ex-

pected to occur (i.e. predicted) with what actually occurs. When expectations coincide with 

actual events, this lends support to the scientific understanding of how things work (Popper 

1959). This support can be understood in various terms, for instance in Popperian terms of 

corroboration, in the context of inductive logics, or in probabilistic (e.g. Bayesian) frame-

work. Second, it can refer to a description of a possible future: we seek to anticipate possible 

futures believing that such knowledge can stimulate beneficial action in the present, or help 

taking good decisions for the future (Bell 2010). The coexistence of – and confusions created 

by - these two meanings in biological science were early emphasized by Ernst Mayr: “The 

word prediction is being used in two entirely different senses. When the philosopher of 

science speaks of prediction, he means logical prediction, that is, conformance of individual 

observations with a theory or a scientific law. […]. Theories are tested by the predictions 
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which they permit. Prediction, in daily usage, is an inference from the present to the future, it 

deals with a sequence of events, it is temporal prediction (Mayr 1982, p. 57).  

These very distinct meanings, however, are not made explicit in the current rush to make 

predictions in ecological science, and this generates several sources of confusion. While it is 

likely that they closely interact, here we argue that predictions used to anticipate future events 

are unlike those used to validate theoretical hypotheses.  

In the first section, we investigate the role of prediction in the history of ecology, and dis-

tinguish the two epistemological dimensions of prediction that underlie research, namely cor-

roboratory-prediction and anticipatory-prediction. The second section examines obstacles to 

prediction in ecology, and how they affect the two types of prediction. In the third section, we 

describe the interactions between them and their articulation with environmental action.  

2. Two epistemological dimensions of prediction 

While the recent emphasis on predictive ecology may suggest that we are experiencing a 

new era in ecological research, the question of predictive power has been a theme that has run 

through the discipline since its early development. 

2.1. Historical background  

In his book that retraces the history of ecology, Robert P. McIntosh (1986) describes a turn-

ing point in the 1960s and 1970s. At this time, the development of theoretical ecology and 

model building led many ecologists to believe that the discipline would become a hard sci-

ence, with a general theory and strong predictive power. McIntosh summarized this period as 

follows: “Hope was expressed for a unifying general theory that would allow ecologists to 

penetrate the veil of complexity which had traditionally obscured ecological communities and 

ecosystems. It might eliminate the descriptive, particularized ecology that, it was said, defied 

generalization, had low predictive capacity, and damned ecology, as a ‘soft’ science, to suffer 
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‘physics envy’” (McIntosh 1986). Many ecologists were inspired by the goal of building a 

general theory, mainly based on the idea of competition for limited resources that was thought 

to be able to explain and predict species distribution and community structure, a goal first 

proposed by G. Evelyn Hutchinson (1959), then significantly extended by Robert MacArthur 

and Richard Levins (MacArthur and Levins 1967), Edward O. Wilson (MacArthur and Wil-

son 1967), and Robert May (May 1973).  

At the same time, there were calls for the development of applied ecology that would for-

mulate recommendations for policymakers. This required a way to anticipate the dynamics of 

ecosystems, or the effects of a specific policy on them. Ecology was, in the 1960s, thrust into 

the limelight by the widespread perception of an environmental crisis. Biodiversity decline 

was dramatically brought home to the general public and policymakers (Carson 1962, Das-

mann 1968, Ehrenfeld 1973) and ecology was seized on as an established discipline with the 

ability to address environmental concerns. The initiation of the International Biological Pro-

gram in 1966 is one example of the call for ecology to deliver applicable knowledge to tackle 

environmental issues (Hagen 1992).  

The aim to design ecological science as a hard science and to deliver robust evaluations of 

the future state of nature both inherit from this historical background and are  embodied in 

two facets of ecological predictions. 

2. 2. Prediction as a step towards explanation: corroboratory-prediction 

Scientific theories contain universal or general propositions regarding the system in ques-

tion; they generally encompass a set of models, or rules to build models, as representations of 

the properties and dynamics of target systems. Models can then be expressed as hypotheses 

within a formal framework (van Fraassen 1980, Giere 2004). All models imply predictions 

that, in turn, can be corroborated by observations. We name this kind of prediction corrobora-
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tory-prediction, meaning that, by matching hypothesis-derived predictions, observations cor-

roborate hypotheses. 

This use of prediction is not necessarily deterministic. For instance, hypotheses that are 

based on probabilities are often framed in terms of probability distributions. In this case, the 

frequency of observations found in datasets can be compared to predictions, in order to cor-

roborate (or not) hypotheses. This approach is found in many areas of ecology, where mathe-

matical models are developed in order to make predictions, and data (observations) are com-

pared with these predictions. Even approaches to hypothesis testing much more distant from 

the Popperian falsificationism, such as Bayesian frameworks, rely upon the basic strategy of 

deriving predictions, comparing them to the data, and then making claims about the validity, 

power, or reliability of the theory. 

Predictions in this sense are not only about assessing a theory as a set of claims, but also 

about finding the best theories among several of them. Recently reflecting on the indispens-

able role of theory in ecology, Marquet and colleagues (2014) characterized the key role of 

predictions in theory testing as follows: “The best theories are those that explain or unify the 

greatest number of phenomena and generate the most predictions on the basis of the fewest 

assumptions and free parameters.” Hence, the efficiency of a theory is a trade-off between the 

small number of free parameters and assumptions, and the richness of predictions. 

Three features of corroboratory-predictions deserve attention: namely their relation to time, 

observations and validity (Table 1). First, it should be noted that this meaning of prediction is 

time-neutral. More precisely, predictions often specify what is expected if we do such-and-

such a thing, or if we observe certain phenomenon. They state what would happen as a conse-

quence of either observations or experiments; however, they do not specify the timing, rela-

tive to the present, of these consequences. For instance, when it comes to assessing the value 
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of two models, one generally favors - e.g. in accordance with Akaike Information Criterion - 

the best trade-off between goodness of fit and simplicity (namely, the fewest parameters pos-

sible), since too many parameters make the model oversensitive to noise (Foster and Sober 

1994). Hence, the capacity of predicting the next data point is taken into account while assess-

ing models; but whether this data point is closer or further in time does not play any epistemo-

logical role. More generally, whether the prediction concerns the result of a future experiment, 

such as the increase in bacteria strains after thousands of rounds of controlled evolution 

(Lenski and Travisano 1994), or past observations - e.g. when we compare two models of pa-

leontological data such as the diversification of invertebrates marine clades (e.g. Huang et al. 

2015) - makes no difference to the value of the prediction as a corroboratory tool. According 

to Mayr “Darwin's theory of common descent, for instance, permitted Haeckel the prediction 

that "missing links" between apes and humans would be found in the fossil record” (Mayr, 

1982).  

Second, corroboratory-predictions are inseparable from observations. The quality of the 

prediction depends on being able to observe whether what is predicted actually happens or 

not. Consequently, predictions that cannot be empirically attested in any manner (for instance 

because humans change their behavior to avoid predicted outcome) cannot be considered as 

appropriate corroboratory-prediction. While in the experimental sciences observations related 

to predictions often require experiments, this is not necessarily the case. Sometimes, predic-

tion testing can rely upon the observation of existing data so that there is no need for any fur-

ther field observations or experimental results, instead the analysis draws upon a database. 

For instance, the French Breeding Bird Survey is a long-term campaign to monitor common 

bird populations. This exercise has made it possible to test many hypotheses about the res-
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ponse of bird communities to climate change (Devictor et al. 2008) or the relation between 

functional and phylogenetic diversity (Calba et al. 2014).  

Third, as mentioned earlier, the raison-d’être of corroboratory-prediction is to assess the 

validity of a model, in order to increase confidence in a hypothesis or general theory. When 

predictions match observations, the hypothesis or theory is corroborated. This, in turn, sug-

gests that the model is accurate. On the other hand, when observations differ from predictions, 

hypotheses must be reformulated, theories revised, or models modified (Popper 1959).  

Overall, corroboratory-prediction has mostly an epistemological role, and can be under-

stood as a necessary component of knowledge building. The central goal of corroboration is 

to comfort or to improve our understanding of the world and its critical feature is repro-

ducibility (Houlahan et al. 2017).  

2. 3. Prediction as a step towards anticipation: anticipatory-prediction 

Predictions may be made about what the world could look like in the future, either given 

present conditions or if different courses of action are followed. For instance, the models de-

veloped by the Intergovernmental Panel on Climate Change (IPCC) are not designed to cor-

roborate a specific hypothesis or theory of climate sciences, instead they forecast what could 

occur in the future given certain assumptions.  

When exploring possible futures, prediction encompasses several other concepts that in-

clude forecasting, projections, foresight or scenarios (Coreau et al., 2009). Very few anticipa-

tory-predictions aim at describing what will necessarily happen; rather they try to imagine 

possible futures, acknowledging the great uncertainties inherent in the exercise (Thuiller 

2004). Most anticipatory-predictions are either projections of past trends (regardless of the 

probability that they will continue into the future), forecasts (i.e. the best projection or predic-

tion based on a particular model, the typical example being weather forecasts), or an explora-
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tion of possible futures given certain parameters we can call a scenarios set (i.e. analyses of 

the consequences of different climate trajectories on biodiversity). Scenarios are indeed plau-

sible descriptions of alternative futures, based on a coherent and consistent set of assumptions 

about key relationships and driving forces. They are increasingly found in the ecological lite-

rature, notably since the publication of the Millennium Ecosystem Assessment (2005). 

The fundamental differences between corroboratory-prediction and anticipatory-prediction 

are based on the three features mentioned above: time, observations and validity (Table 1). 

Anticipatory-predictions have an explicit relationship to time: they are mostly future-ori-

ented. What characterizes them is the fact that they cannot be compared with tangible, present 

or past, facts. They address possible events and objects in the future, and may have the status 

of counterfactuals such as: “If we were maintaining the same level of greenhouse gases emis-

sion for the coming 30 years, then the climate would be such and such”. This is manifest with 

many anticipatory predictions concerning climate change or biodiversity loss: once they are 

formulated, they often trigger a set of actions and decisions intended to avoid their outcome. 

Moreover, unlike corroboratory predictions they are not governed by a requisite of repro-

ducibility, since they often concern a single future result of a specific state of the world and 

human activity, which will not be reiterated twice. 

Anticipatory-predictions also differ from corroboratory-predictions in their much looser 

link to observations. They are not constrained by currently-available data, and their quality 

does not necessarily depend on what actually happens – in fact many anticipatory-predictions 

cannot be verified in the short-term. They can define an unwanted state of the world, such as  

the worst-case scenarios discussed by the IPCC or the report Limits to Growth from the Club 

of Rome. They can also define a desirable state of the world as some of the “branch point sce-

narios” (Gallopin et al., 1997). In this case, far from describing what would occur with the 
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highest probability according to the current state of knowledge,  the theory underlying the 

prediction can be used to change the forecasted trajectory of the system. Necessarily, such 

predictions are unlikely to be confirmed. More, they are not designed to be confirmed and the 

fact that they actually happen or not in the future has in most cases no importance what so 

ever. That makes their logical status different from the status of corroboratory predictions. 

Finally, anticipatory-predictions use established theory to develop robust expectations. 

Consequently, they are often a second step in a modeling process where the aim is to extend 

to more distant futures what has been corroborated by past or present observations (corrobora-

tory-predictions). If there is no theory or causal relationship that can explain a phenomenon, 

anticipatory-predictions can make explicit assumptions about missing knowledge, provided 

that they do not contradict established knowledge. Hence they use and apply rather than test 

and challenge existing theories and models. 

The fact that a given anticipatory-prediction does not match subsequent observations does 

not necessarily invalidate a theory or model, since the conditions in which the data are ob-

served may be very different to hypothetical assumptions. The aim of an anticipatory-predic-

tion is often to guide action in the present, and therefore to influence the future itself. Ulti-

mately, the quality of an anticipatory-prediction does not rely on its ability to corroborate a 

hypothesis or test a particular model, but on its usefulness for decision-making. For instance, 

Tittensor et al. (2014) have proposed a baseline built upon scenario analysis against which to 

measure progress toward international biodiversity targets. In doing so, they acknowledged 

that such a framework is necessarily incomplete (e.g. in terms of data, scale and taxonomic 

coverage) and rests on strong and unchecked assumptions (e.g. ecological processes remain-

ing constant into the future). 
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Overall, anticipatory-prediction has mostly a pragmatic role, and can be understood as a 

necessary component to decision-making, rather than an epistemic tool. It is indeed not meant 

to be testable. The central goal of anticipation is not to understand the world, but to inform 

policy and management, that is to say, to help changing the world by undertaking the appro-

priate actions regarding specific goals. Hence, its key feature is relevance for policy-making 

(Sutherland 2006). 

As a consequence of this distinction between corroboratory and anticipatory prediction, 

one must keep in mind that the call for more predictive ecology can mean two very different 

things: we may want more predictions, so that we will be in better position to forge ‘efficient 

theories’ (Houlahan et al. 2017, Marquet et al. 2014); or we may want more predictions in or-

der to make more educated decisions regarding environment and climate change (Sutherland 

and Freckleton 2012). The kinds of predictions that are wanted in those two contexts are dif-

ferent as well as their ling with ecological knowledge. 

3. Obstacles to predictions in ecology 

Despite the numerous calls for a more predictive ecology, it is widely admitted that formu-

lating ecological predictions is a difficult task. Michael Dietze (2007) developed a formal 

framework to quantify and to weight diverse sources of uncertainty on predictability . Here, 1

even before taking for granted the predictability of dynamic ecological systems, we qualita-

tively explore four families of obstacles to prediction, linked to the specific features of 

ecosystems: (i) they are historical entities, (ii) they are complex, (iii) their dynamics are sto-

chastic, and (iv) they are influenced by socio-economic drivers. In the following, we show 

 Dietze(2017) was published while the first version of the present paper was completed. While both papers 1

concur on certain characteristic features of predictive ecology, its focus is the uncertainties of prediction, whe-
reas our paper first and foremost addresses the dual nature of ecological prediction, and only then considers the 
obstacles and uncertainties of predictions in the perspective of this duality.
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how these four features affect corroboratory-predictions and anticipatory-predictions differ-

ently. 

3.1 Ecosystems as historical entities: contingency and evolution 

In the 1960s and 1970s, Robert MacArthur and his supporters put forward the idea that 

ecologists should develop theories that eliminate historical details, and instead focus on the 

study of the equilibrium through the use of mathematical tools (McIntosh 1986, Kingsland 

1995). They emphasized the difference between ‘science’ and ‘natural history’, arguing that 

natural history involved little more than endless fact collecting. This desire to increase the ro-

bustness of theoretical ecology by eliminating its historical dimension was described as an 

“eclipse of history” by Sharon Kingsland (Kingsland 1995). However, this approach down-

plays two central features of ecological processes: the importance of contingent events, and 

the evolutionary history of organisms.  

In a notorious paper entitled “Are there general laws in ecology?”, John H. Lawton argues 

that at the scale of the community, contingency is pervasive and, therefore, ecology is a 

“mess” characterized by “a large number of case histories and very little other than weak, fuz-

zy generalizations” (Lawton 1999). The paper sparked controversies, and indeed there are 

many ways to argue that ecology gives rise to laws (Mikkelson 2003, Weber 1999), for ins-

tance. Moreover, even hypothetico-deducive view of science might lead to less skepticism 

with respect to ecology since many mechanisms have already been identified and we are 

struggling to even better understand their proper combined effects (McGill and Nekola 2010). 

Vellend (2016) intended to construe ecology in a way parallel to the modern synthesis of evo-

lution, by identifying key basic processes (competition, speciation immigration and drift, pa-

rallel to selection, mutation, migration and drift) whose combinations yield distinct models 

likely to make testable predictions and account for communities dynamics. 
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 More generally, Marquet et al. (2014) or Servedio et al. (2015) argued that varieties of hy-

pothetico-deductive methods, which rely on general hypotheses corroborating predictions, are 

likely to capture counterfactual-supporting generalities in ecosystems, and therefore actually 

operate a distinction between the ‘noise’ constituted by the idiosyncratic cases and the ‘signal’ 

constituted by the regular effect of the variables correctly captured and properly parameter-

ized in the model. But even if the argument of Lawton was overstretched, the claim that cor-

roboratory-predictions and the possibility to capture either laws or wide-ranging generalities 

are challenged by the degree of contingency in ecosystems remains valid. 

It must be noted that in our context, contingency does not negate causal determinism, but it 

can mean two things: (a) Sometimes an event is said to be contingent because it lies at the in-

tersection of multiple, independent causal chains. Here, ‘independent’ indicates that events are 

remote enough in the system to be studied by independent theories. In turn, theories are said 

to be independent when the variations studied by one theory can, in principle, be modeled wi-

thout considering variations modeled by another. An example of such contingent event is the 

asteroid collision that contributed significantly to the K–T extinction: this mass extinction was 

caused by an event that had nothing to do with the ecology of dinosaurs; and, reciprocally, 

asteroid cycles are independent of the biosphere ecology.  

(b) ‘Contingent’ is often used in the sense of ‘contingent upon’; and ‘A is contingent upon 

B’ often means A causally depends upon B. However this meaning is very wide, since every-

thing is contingent in a world ruled by causal laws or relations. Talking of contingence here 

becomes interesting in the case of some specific ways for A to depend upon B, namely, when 

A is highly dependent on a fine-grained specification of the initial conditions B - because we 

have only a coarse-grained knowledge of B, the determination of A appears as random. An 

example is community assembly, which is contingent when the immigration history is a de-
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terminant of the present composition (Fukami 2010). Here, the species composition of the 

community is a function of the order in which species arrived. Several studies (e.g. Almany 

2004) of coral reef fish communities have shown that the present structure of the community 

depends on ‘priority effects’, in which early-arriving species affect, either negatively or posi-

tively, the population growth of later arrivals.  

In the first sense (a), predictions (either for corroboration or anticipation) are not in princi-

ple difficult to state, but this contingency means that incorrect predictions are due to events 

and forces not included in the field of the theory one is aiming to test. Those contingent 

events are by definition rare, otherwise the independence between causal chains would not 

make sense; hence it means that predictions are still possible for a significant lapse of time, as 

in the case of Gould’s example (Gould, 1989), for which the only inaccurate predictions are 

very long term predictions, articulated at the geological scale. This may precisely raise an is-

sue for anticipatory predictions. Granted time is not a relevant feature of corroboratory predic-

tions; thereby they can still be formulated and used to corroborate theories, even though con-

tingency precludes prediction in the long run. However, long run is often what matters for 

forecasting; therefore such contingency would preclude anticipatory predictions while allow-

ing corroboratory predictions. 

The second sense (b), akin to high sensitivity to initial conditions, is more opposed to the 

very possibility of making corroboratory predictions. Suppose for instance that hypothesis H1 

predicts the value A1 for variable A on the basis of the value B1 of variable B, but that we 

cannot access to fine-grain enough determination of B in observations: then the fact that A1 is 

not observed is not exclusive of H1 being correct, since it could be the case that the state of B 

was not exactly B1 but B'1. One may instead in such cases design qualitative predictions, as it 

can be the case in some areas of physics: a model predicts few distinct varieties of behaviors - 
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simulations being often the only way to design those predictions - , and one tests whether 

those happen and in which range of values of the variables. 

For anticipatory predictions, the situation is different since we assume a hypothesis or a 

model or model set according to which H is correct. Then, if the states of the world as we 

know them are not enough finely discriminated to allow us to implement the two scenarios S1 

and S2, based on H, that predict very distinct future states B1 and B2, the anticipatory predic-

tion cannot provide a benchmark to adjust our action.  

Ecology also has to address evolutionary history. Although researchers work within the 

general framework of evolutionary theory, it is often assumed for modeling purpose that the 

slow rate of macroevolutionary change renders an evolutionary perspective irrelevant when 

studying processes at the community or ecosystem scales. Nevertheless, evolutionary biology 

has produced compelling evidence that strong selection pressures and fast evolution are com-

monplace (Agrawal et al. 2007, Carroll et al. 2007, Cavender-Bares et al. 2009). The idea of 

an “eco-evolutionary feedback loop” (Kokko and López-Sepulcre 2007) is pervasive; it links 

macroevolutionary change to ecosystem succession, while at the same time it affects 

macroevolutionary change by shaping the organism’s environment. Although modeling of this 

feedback is in its early stages (Hendry 2016), its existence attests to the fact that ecology can-

not understate the historical character of its systems. 

According to MacArthur and his followers, ecology should be able to overlook historicity 

in order to formulate appropriate corroboratory-predictions. The typical controlled experiment 

isolates one or two causal mechanisms that contribute to unknown contingent events (Hobbie 

et al. 2006). Evolutionary hypotheses can even be tested using models of micro-evolutionary 

history tested against historical data, as has been done for the neutral theory of evolution 

(Kreitman 2000). At larger scale, some ecological patterns or processes such as species-areas 
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relationships can be explained by generalizations focusing on the structural and functional 

dimensions of ecological entities rather than their historicity (Mikkelson 2003).Therefore, 

even if it may be difficult to find support for corroboratory-predictions using evolutionary 

systems, it is possible to disentangle causal chains or formulate ex post explanations. From the 

anticipatory-prediction perspective, the historical character of ecological systems represents a 

different kind of obstacle. True contingency – in the senses of (a) or (b) – directly impairs the 

ability to formulate reliable predictions of future states of ecological systems. However, if the 

main objective is to inform decision-making, anticipatory-predictions may, to some extent, 

overcome the problem of contingency by examining different events in different scenarios 

and comparing the results. Rather than one prediction of a probable future, we obtain a set of 

possible scenarios, given the uncertainty they will occur and the desirability of the outcome.  

Some ecologists have suggested that if history matters, then ecologists should provide his-

torical narratives rather than mathematical models (Mayr 1982, Cronon 1992), or that ecology 

should follow a case study method (Shrader-Frechette and McCoy 1993). By compiling hete-

rogeneous elements from various perspectives into one coherent, plausible narrative, scena-

rios can capture some of the contingency of ecological systems (Allen et al. 2005). They have 

proven useful in attempts to address contingency in complex systems, and in assessing the 

coherence and quality of futures studies (Zellmer et al. 2006). Therefore, the main challenge 

of historicity arises when the aim of anticipatory-prediction is to describe what the future will 

be, based on formalized, quantitative projections. On the other hand, when the aim is to in-

form decision by providing a range of possible future scenarios, narratives can be developed 

that can overcome those challenges. 

In short, the impacts of contingency on corroboratory and anticipatory predictions are dif-

ferent. Corroboratory-predictions can overcome contingency when predictions are formulated 
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based on one or a few dependent causal chains in a system in which all other parameters are 

controlled. Anticipatory-predictions have to address the numerous surprises that can change 

the expected dynamics of ecological systems (Doak et al. 2008). Nonetheless, the issue can 

sometimes be overcome, for instance by switching from the search for a description of what 

the future should be (or even the probability that it will occur), to a search for a set of possible 

scenarios based on an understanding of the diversity and unpredictability of ecological fu-

tures. 

3.2. Ecosystem complexity: emergent properties and interactions between scales 

Ecologists often characterize the phenomena they study as immensely complex (Levin 

2005). However, this adjective encompasses two properties: complexity as complicatedness 

and complexity per se. Complicatedness is a matter of degree, and is a function of the number 

of relationships between ecological entities (see also Allen et al. 2017 on complicatedness and 

complexity). On the other hand, complexity per se relates to the nature of such relationships. 

A system is complicated when it is a tangle of many causal relationships. A system is complex 

when new features emerge from the combination of its sub-components that cannot be expec-

ted based on knowledge of these components (Simon 1962). 

The complicatedness of ecological systems is an obstacle to prediction. Darwin’s metaphor 

of an “entangled bank” is often used to describe the multiple and various interactions between 

species (Montoya et al. 2006, Barker et al. 2014). Variation exists at every level of organiza-

tion, and ecological entities can interact with each other via several processes (e.g. predation, 

competition, mutualism, facilitation, and parasitism) and their environment (e.g. abiotic fluc-

tuation or disturbance). Ecological networks are one attempt at a tractable simplification of 

this complicatedness (Pimm 1984). It is evaluated by a diversity of indicators, such as species 

richness (i.e. number of species); connectance (i.e. the ratio between actual and possible inter-
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species interactions); interaction strength (i.e. the effect of one species’ density on the growth 

rate of another species), and evenness (i.e. variance in species’ abundance distribution) (Pimm 

1984, Montoya et al. 2006).  

The second aspect of complexity is related to the hierarchical organization of ecological 

systems. Simon (1962) defined complex systems as those in which “the whole is more than 

the sum of the parts, not in an ultimate, metaphysical sense but in the important pragmatic 

sense that, given the properties of the parts and the laws of their interaction, it is not a trivial 

matter to infer the properties of the whole.” Simon claimed that systems where quasi-inde-

pendence is found (hence called modules) – in other words, where some subparts or levels 

encompass far more internal than external interactions – are much more mathematically trac-

table than others. This is because we could model the system by characterizing a single mo-

dule as one entity instead of a large set of interactions, so that the complexity of the system 

(as measured by the number of interacting entities) significantly decreases. Fewer equations 

are therefore required to capture the behavior of the system, which generally makes the ma-

thematics more tractable. 

In a quasi-independent system, there are at least several modules; those can also hierarchi-

cally be organized, which determines a higher degree of complexity. Actually, ecologists must 

deal with levels of organization that range from the gene to the whole biosphere. An important 

consequence of hierarchical complexity is that as components or subsets are combined to pro-

duce larger wholes, new properties emerge that were not observable at the lower level. Ac-

cordingly, an emergent property of an ecological level or unit cannot be trivially deduced 

from the study of the components of another level or unit (Anderson 1972). In the case of eco-

logical communities, limits on the similarity of competing species (MacArthur and Levins 
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1967), or the stability of a food web faced with a disturbance (Worm and Duffy 2003) are ex-

amples of emergent properties. 

However, while emergent properties may impede predictions because emergence per se 

means a certain kind of unpredictability, it may happen that the emergent level is in itself eas-

ier to mathematically describe and then support predictions, than the basic level. ‘Computa-

tional emergence’ as characterized by Bedau (2007) constitutes a concept of emergence sup-

posed to be observer-independent, and formally identifiable; it is defined by “the incompress-

ibility of the computation of a final state (macrolevel) from an initial state (microlevel)”, en-

tailing that the latter is reachable only by simulation. This concept has been applied by 

Grantham (2007) to biogeographical ranges. It answers the strong objections that have been 

addressed by philosophers, since Kim (1999), to the usual combinatorial concept of mergence 

(according to which emergence means that the whole's properties differ from the sum of the 

parts’ properties); however, it makes many things emergent and faces a risk of triviality. But 

among computationally emergent properties or states, some of them include the occurring of 

regular dependences between macrostates, and those dependences in turn allow predictions, 

notwithstanding the unpredictability of the final states in terms of the theory of the mi-

crostates (Huneman 2008). Hence, among systems that meet the criteria of computational 

emergence understood as a philosophically satisfying concept of emergence, many impede 

predictive capacity but some of them foster it.  

Ecological systems are hierarchized into levels, some of them being emergent, and they 

also span across several spatial- and timescales. The diversity of organizational scales is cen-

tral to ecological complexity. While some scales are nested, and interact closely (e.g. popula-

tion and community dynamics), others seem incommensurable both in space and time (e.g. 

gene and biome) and, in practice, are studied separately. However, as Levin (1992) argued in 
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an influential paper: “there is no single natural scale at which ecological phenomena should 

be studied. […] Applied challenges, such as the prediction of the ecological causes and con-

sequences of global climate change, require the interfacing of phenomena that occur on very 

different scales of space, time, and ecological organization.” The significance of this state-

ment is that when scales are decoupled, the causal variables that are relevant to phenomena at 

one scale must only pertain to this scale. For instance, one can see the contingency of the K-T 

extinction due to an asteroid as a sign of the decoupling between astronomical timescales and 

the time scales of evolution: if they were not decoupled, astronomical events would affect 

evolutionary history all the time (not only when extraordinary events such as an asteroid colli-

sion occur), and astronomical forces, entities and phenomena should thereby be integrated 

within evolutionary theory. Or, imagining that macroevolutionary scale and community or 

functional ecology scale were coupled, then the interactions supposed to underlie the commu-

nity structure and the ecosystem functioning change at the same time as those structure and 

functioning are constituted. In order to make predictions, this in turn requires a more sophisti-

cated mathematical apparatus than when macroevolution is timescale decoupled, in a way that 

the extant clades and families can be considered as invariant. But the risk is that those predic-

tions are for this reason intractable, and cannot deliver meaningful information to reliably 

base actions. 

In other words, when restricted to a given ecological level, with delineated spatial and 

temporal scales, ecological corroboratory and anticipatory predictions can be relevant. When 

scales are coupled, however; it becomes very difficult to make any prediction, in any sense of 

the term. 

But this difficulty for prediction in systems with coupled timescales seems to vanish when 

one considers that modeling a system as open means considering the interactions between 
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subsystems at distinct spatial (and possibly temporal) scales. In this respect, Mikkelson (2007) 

described the case of nutrient enriching experiment and showed that, in some cases, it’s pre-

cisely when one sees a system as open, and therefore couples its dynamics with the timescales 

of other dynamics, that the modeling can capture what happens more accurately.  

Along those lines, a very general example of the predictive possibilities opened by scale 

coupling is the coupling between a focal community and a metacommunity: As pointed out by 

Ricklefs (2008), it is by considering the whole system of the community and the metacom-

munity that the dynamics of the community can be explained. The same kinds of interactions 

are occurring at the two scales - call this ‘interaction homogeneity’ -, so that the modeling of 

the coupled system does not require integrating heterogeneous mathematical equations. How-

ever, the above-mentioned cases of coupling that prevent prediction were different, because 

there is no such homogeneity of interactions. 

Summarizing, complexity (in the sense of intertwined levels of organization and trans-level 

causation), and timescale coupling can therefore be two limits to both corroboratory and anti-

cipatory predictions. When conditions of uncoupling and quasi-independence (in the sense of 

Simon (1962)) are met, there is scope for corroboratory-predictability: but predictability may 

also occur thanks to some sort of emergence processes (when regularities are identifiable at 

the emergent level) and scale coupling with interaction homogeneity.. This is confirmed by 

recent attempts to provide a mechanistic approach to scaling-up, and theories that address 

scale transition, self-organization and predictions of catastrophic shifts (Denny and Benedetti-

Cecchi 2012). Similarly, over time, refinements to scenario-based hypotheses have led to 

greater attention being given to complex socio-ecological phenomena. For instance, the Mil-

lennium Ecosystem Assessment integrates demographic and economic parameters into its sce-
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narios in order to couple different scales of interaction, going from biophysical processes to 

social dynamics. 

Anticipatory predictions here face a specific issue. When one intends to formulate anticipa-

tions on the basis of assumed general theories of a set of complex ecosystems, she faces the 

risk of identically handling systems in which predictions are precluded by scale coupling, and 

systems where in the contrary predictions are allowed by scale coupling. Only with a theory 

which explains in which category the system belongs, could she be authorized to design antic-

ipation about this system. Therefore complexity, emergence and scale hierarchy required for 

anticipatory predictions to be grounded on some specific explanatory theory of the system.  

3.3. Ecosystem stochasticity: nonlinear dynamics and chaos 

Throughout most of the discipline’s history, ecologists have been influenced by the as-

sumption that ecological systems can be described as equilibrium states, a notion quickly po-

pularized as “the balance of nature” (Egerton 1973). This term usually implies that undistur-

bed nature is ordered and harmonious, and that deviations from an equilibrium state are cau-

sed by external perturbations, most often human. This led early researchers to study ecologi-

cal systems in the same way as Newtonian mechanics. However, it quickly became apparent 

that ecology had to address problems related to processes, whose rates depended nonlinearly 

on the state of the system and for which “equilibria” could not be clearly defined and was ra-

rely observed in the field (Worster 1990). Moreover, advances in computing power and avai-

lability in the 1970s led to the discovery that such nonlinearities could cause spontaneous os-

cillations. Even the logistic map, one of the simplest ecological models, used to describe den-

sity-dependent population growth with discrete generations, can give rise to remarkably com-

plex dynamics, including cycles and chaos (May 1976).  
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Some ecological mechanisms may lead to nonlinear response to gradual changes in an ex-

ternal parameter: so-called catastrophic shifts (Scheffer et al. 2001). An example is drylands 

where a gradual fall in mean annual rainfall can lead to a gradual decrease in vegetation 

cover. This continues until an annual rainfall threshold is reached, at which point the entire 

ecosystem can suddenly collapses into a desert (Kéfi et al. 2007). A characteristic of catastro-

phic shifts is that they are unannounced and difficult to reverse once they occur: for a desert to 

return to a dryland, mean annual rainfall must increase to levels that are significantly higher 

than those at which the collapse occurred, a phenomenon known as hysteresis. Because of the 

ecological and economic consequences of such shifts, a number of indicators have been pro-

posed that aim to predict their approach. Many of these early warning signals, have been pro-

posed in the theoretical literature (Scheffer et al. 2009, Dakos et al. 2012, Kéfi et al. 2014), 

and they are based on the very general phenomenon of critical slowing down, characterized 

by the slowing down of a system’s response to perturbations as it approaches a catastrophic 

shift.  

The successful detection of these early warning signals in a number of controlled experi-

ments (e.g. Drake and Griffen 2010, Carpenter et al. 2011, Dai et al. 2012) suggests that they 

are a promising research avenue. However, other studies have argued that they may be too 

general to be useful to generate reliable anticipatory predictions in real systems (see e.g. the 

discussion in (Kéfi et al. 2013, Boettiger and Hastings 2013). Until now, all such indicators 

have been identified a posteriori in experimental systems, and it remains to be seen whether 

they can anticipate an upcoming shift in real-world ecosystems. Moreover, although the deve-

lopment of early warning signals may be a way to improve our knowledge about the forthco-

ming trajectories of ecosystems, they say nothing about underlying mechanisms, and there-

fore have little explanatory power. Hence stochasticity contributes to create a gap between 
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corroborative predictions and anticipatory predictions. But an even more intricate source of 

unpredictability lies in the human dimensions of ecological systems. 

3.4. The cultural dynamics of ecosystems: human causalities and reflexivity 

As the scientific community seeks to predict the behavior of ecological systems, the boun-

daries between natural and social sciences are blurring, or at least overlapping. It is generally 

accepted that the transformation of ecological systems largely depends on socio-economic 

drivers. Ecology is broadening its scope from supposedly ‘natural’, to human-dominated sys-

tems (Vitousek et al. 1997). Currently, most ecosystems are better described as socio-ecosys-

tems, whose properties are directly affected by human activities (both biotic and abiotic com-

ponents), which only partially respect the rules or laws that describe the behavior of natural 

systems. For instance, in the case of global warming, future climate impact scenarios are, in 

part, based on estimates of human population growth and energy consumption. Both of these 

variables are a function of human choices and behaviors that are influenced by a variety of 

needs and goals. This creates a deep layer of uncertainty – not only are there multiple causal 

chains, but also contingencies and complexity have psychological, political, economic, and 

technical origins. Moreover, modeling those eco-social systems requires considering that the 

main drivers are not constant, as shown about land-use change at the landscape level by Oli-

ver et al. (2015). Hence, a simple extrapolation of past trends to the future is often a poor way 

to forecast socio-ecosystem’s dynamics.  

The problem is amplified by the numerous interactions and cross-causalities between so-

cial and ecological phenomena. For instance, the future of the human population depends 

upon the future of ecological systems (Millennium Ecosystem Assessment 2005) as the latter 

determines the availability of vital resources. Reciprocally, human demography has a signifi-

cant impact on the state of ecosystems, as the growth of the human population and the conse-
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quent requirement for more space and resources may accelerate the destruction of natural 

habitats.  

More fundamentally, the focus on human affairs in anticipatory-predictions concerning so-

cio-ecosystems highlights a specific challenge that is due to the retroactive effect of predic-

tions themselves. Human beings are reflexive agents. A stone or a bird will not change its be-

havior following a prediction of its future. However, ecological anticipatory-predictions could 

change the course of human affairs – moreover, their express intention is often to improve 

predicted outcomes. In climate scenarios for instance, catastrophic predictions can be used to 

raise the awareness of individuals and policymakers, in order to make them change their prac-

tices. Depending of the content of scenarios, of the chosen key parameters and of the targeted 

audience, the ability of anticipatory-predictions to have an impact on socio-ecosystems and 

the nature and extent of this impact can vary a lot.. 

The so-called Pressure State Response model makes this interactive loop explicit. The 

model identifies human activities (Pressure) that influence the quality and quantity of natural 

resources in the environment (State). This, in turn, provokes a societal response to these 

changes in the form of environmental, economic and sectorial policies (Response). Human 

reflexivity is therefore embedded in a strategic model of problem solving that is itself built 

upon a network of heterogeneous actors.  

Once addressing socio-ecological systems rather than strictly ecological systems, the call 

for a more predictive ecology is generally associated to anticipation rather than corroboration 

of theories. For environmental policy-making, risk-assessment, biodiversity management, 

some information about the future states of ecosystems is needed. These future states depend 

on the evolution of different drivers of change, such as climate, resource use, land cover, but 

also on the possible existence of new drivers, such a technological innovation or new envi-
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ronmental policies. Whereas already corroborated knowledge can help to anticipate the effect 

of the evolution of certain drivers on the system under study, the interaction between these 

drivers and, even more critically, the possibility that radically new drivers may affect the sys-

tem, cannot hardly rely on already tested and repeatable results. It is thus necessary to inte-

grate qualitative hypothesis, expert knowledge and storyline scenarios to produce a range of 

possible outcomes. As argued by Oliver et al. (2015), the issue then is not to choose between 

reductionist quantitative predictions based on corroborated hypothesis and systemic qualita-

tive predictions that are not testable, but rather to find a compromise between them both in 

order to develop models that will be progressively fine-tuned while time passes and more data 

become available.  

4. Prediction in practice 

A simple way to understand the link between predictions and decision-making would be to 

follow a straightforward sequence running from theory to practice: corroboratory predictions 

improve ecological knowledge about the driving forces and causal relationships in a given 

ecosystem (Dietze 2017). This knowledge is mobilized to formulate simple anticipatory-pre-

dictions about future states, or the consequences of different courses of action. Policymakers 

could then make the best decision.  

However, this framework (scientists propose, policymakers decide) is misleading  for sev-

eral reasons. First, better knowledge does not always lead to better decisions. Public action 

requires that decision-makers are willing to engage into it and that appropriate means and re-

sources are available and well organised. (Guillet and Mermet 2013). A reliance on knowl-

edge alone is therefore insufficient.  

Moreover, the idea that action must be based on corroborated theory is itself questionable. 

For example, Don Driscoll and David Lindenmayer ( 2009) examined the applicability of the-
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ories (assembly rules, metacommunity, metapopulation) and found that they had no or very 

little anticipatory value, even though corroboratory predictions are built-in the theory since 

they were used for its validation. In the same vein, authors have argued that the need for an-

swers to pressing environmental problems cannot wait for the corroboratory-predictive power 

of theories to be improved (Carpenter 2002, Peterson et al. 2003). To conflate the corrobora-

tive part and the anticipative part of scientific activity may delay action in a way that is not 

aligned with the urgency of ecological issues.  

Is it reasonable, then, to argue that policymakers should rely on anticipatory-predictions, 

even when they are not based on strongly corroborated knowledge? For instance, in the do-

main of ecosystem dynamics, the frequency of false positives, questioned the reliability of 

generic early warning signals as forecasting tools (Section 3.3) so that “ecologists should re-

sist the lure of general rules” (Boettiger and Hastings 2013). These authors insist that those 

signals are significant for forecasting only when some theoretical approach to the specific sys-

tem under study is available and backs them up. Hence, they warn against an indiscriminate 

trust in anticipatory predictions that intend to generally bypass the establishment of a strongly 

corroborated theory. An indiscriminate reliance on too conservative signals may indeed weak-

en credibility of science in the future. However in some cases, like this one, only the elabora-

tion of new specific theories will allow robust forecasting, as has been shown in 3.3 regarding 

scale coupling and emergence, and this may take long to be acquired. 

There does not seem to be a general solution to this problem - namely, whether anticipatory 

predictions (such as early warning signal detection) should elaborate on a proper theory of the 

target system to be reliable. The patience required to elaborate targeted theories backing up 

anticipatory predictions should reasonably be proportionate to the measure of the risk at stake. 

Risk of urgent ecological disaster would for instance justify relying on anticipatory predic-
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tions based on no theories, and the cost of false positives would be highly superseded by the 

cost of an undetected signal (namely an ecological catastrophe). However very often the mea-

sure of the risk itself is an issue: what is the value of the loss of a whole family of birds, for 

instance? Therefore, the reliability of predictions themselves cannot be taken wholly indepen-

dently from political and ethical controversies - e.g. between an ecosystem services approach 

(Colyvan et al. 2010) vs claims for intrinsic value of nature (Vucetich et al. 2015), etc. 

The success of IPCC scenarios at moving climate issues to the top of the international en-

vironmental agenda may be one reason why anticipatory-predictions have become so popular 

among ecologists. They may, however, be less well-suited to the technocratic model of deci-

sion-making because they are more adapted to exploring a set of possible options (i.e. imagin-

ing a plurality of possible future biodiversity scenarios) rather than developing a single scien-

tific solution (i.e. modeling the consequences of a unique policy option on biodiversity). They 

are consistent with a more deliberative model of decision-making, where actions are negotiat-

ed by stakeholders with different opinions, who all draw upon a diversity of anticipatory pre-

dictions.  

5. Conclusion 

Policymakers, science–policy interfaces, funding agencies and scientists themselves are all 

calling for greater predictive power in ecology, in order to help society tackle global chal-

lenges to ecosystem services provisioning and biodiversity conservation. The implicit, under-

lying logic is that better science will mechanically lead to better decisions. However, actual 

action depends on more than just science. 

In the context of ecology, the notion of prediction has two sometimes overlapping but not 

equivalent meanings: one refers to the corroboratory role and the other to the anticipatory of 

predictions. Conflating them leads to cross talk, misunderstandings and misplaced expecta-
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tions as, for instance, the latter does not imply the requirements for testability and repro-

ducibility that characterizes the former, and this paper has shown that there are several obsta-

cles which distinctively affect the two types of predictions.   

A naïve understanding of ecological science suggests that the two types of predictions are 

simply two phases in a sequence in which scientists first improve their knowledge of ecologi-

cal systems via corroboratory-predictions, and then apply this knowledge in order to forecast 

future state of ecosystems via anticipatory-predictions. The reality is more challenging. In the 

case of corroboratory-predictions, the obstacles may be overcome by reducing the complexity 

of the system, for instance by controlling experimental parameters. However, although this 

may improve predictability, it does not really improve decision-making since in real-life con-

texts, conditions cannot be controlled and many parameters remain unknown. So many uncer-

tainties lead to the development of future scenarios and narratives describing a range of nu-

merous possible futures. 

Although such anticipatory predictions remain relevant to policymaking and biodiversity 

management, they do not have the same epistemic status as corroborated knowledge. Their 

reliability cannot be measured only on theoretical grounds, but should also be measured 

against the degree of emergency of the events at stake. For instance, if astronomists predict 

that a meteoritewill hit a specific region in the next 30 days, this knowledge can be considered 

as a fact and action can be taken to evacuate the population. But the anticipatory predictions 

at play in ecological scenarios are different. Not only are there numerous, complex uncertain-

ties, but also they rely upon different kinds of hypotheses. Some of these are very robust, oth-

ers are less substantial, and all can be positively or negatively affected by what is at stake. Al-

though we do not seek to dismiss the scientific validity or relevance of predictive ecology in 

decision-making, it should be viewed in an appropriate context; not so much as an adjunct to 
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the debate, but as an integral part of the deliberation process itself and, where necessary, the 

democratic process.  

Failing to distinguish these two forms of prediction may be problematic and counter effec-

tive for both scientists and policy makers.  

From the decision-making perspective, the confusion between corroboration and anticipa-

tion may lead policy makers to put unrealistic expectations on scientific expertise, waiting for 

corroborated knowledge to inform on the futures like reading in a crystal bowl. Even if scien-

tists are generally aware of the uncertainties of ecological anticipations, they may fail to 

communicate consistently about them or purposely feed these unrealistic expectations, for in-

stance because they fear that uncertain anticipations would discredit their scientific knowl-

edge or preclude or delay action against climate change (Patt and Weber 2013). 

Furthermore, this confusion between the two types of predictions may divert scientists 

from working on the most appropriate tools to help decision making while formulating antici-

patory-predictions (Sutherland and Freckleton 2012): models or scenarios focusing on the 

proper scale (one does not need to know each and every inter-specific interaction to relate 

habitat destruction to biodiversity decline); models or scenarios integrating parameters rele-

vant for action (it is more useful to know the relationship between pollutant discharge and eu-

trophisation than just acidity and eutrophication); models or scenarios that are open to delib-

eration, into the scientific community but also outside the scientific community. Anticipation 

could thus become part of the political deliberative process itself and not only an external in-

put. 

From the purely theoretical perspective, facing the data deluge allowed by new technolo-

gies, ecologists should pursue the advancement of this young science by a continuing effort to 

formulate testable hypothesis and to produce reproducible results in order to develop corrobo-
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rated theories (Marquet et al. 2014). This may need time and means for pure science and ex-

perimentation free from the pressure to deliver applicable outcomes. 

The pressing need for anticipatory predictions should not mean that ecology is doomed to 

be a weak science. It is precisely by recognizing the difference between anticipatory and cor-

roborative predictions that we allow ecologists to work at different time scales and recognize 

the value of slowly acquired corroborated knowledge that may in the future build up into a 

practical science, just as has happened into other areas of knowledge. 
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Table 1: Main differences between corroboratory-prediction and anticipatory-prediction 

Corroboration Anticipation 

What is it ? A step in knowledge building An application of knowledge

What is it for ? To understand the world To transform the world

Key feature Reproducibility Relevance for policy-making

Relation to time Time-neutral Future-oriented

Relation to observation Inseparable from observations. 
The raison-d’être of the pre-
diction is to be corroborated by 
observation.

The prediction does not de-
pend directly of its confirma-
tion by future observations.

Relation to validity The prediction tests the validi-
ty of theories or models. 

The prediction assumes the 
validity of theories or models 
or explicitly assesses uncer-
tainties and lack of knowledge. 

!41


