
HAL Id: hal-01911500
https://hal.science/hal-01911500

Submitted on 2 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual Extension of Meta-models with Facet Tools
Pascal Andre, Jonathan Pepin, Christian Attiogbé, Erwan Breton

To cite this version:
Pascal Andre, Jonathan Pepin, Christian Attiogbé, Erwan Breton. Virtual Extension of Meta-models
with Facet Tools. 6th International Conference on Model-Driven Engineering and Software Develop-
ment, Jan 2018, Funchal, Portugal. �10.5220/0006547100590070�. �hal-01911500�

https://hal.science/hal-01911500
https://hal.archives-ouvertes.fr

Virtual Extension of Meta-models with Facet Tools

Jonathan Pepin1,2, Pascal André1, Christian Attiogbé1 and Erwan Breton2

1AeLoS Team LS2N CNRS UMR 6004 - University of Nantes, France
2Mia-Software - Nantes 44324 Nantes cedex 3

{firstname.lastname}@univ-nantes.fr,ebreton@sodifrance.fr

Keywords: Meta-model; Weaving; Mapping; Facet; Transformation Tools

Abstract: In the software industry, Model Driven Engineering (MDE) techniques have proven useful not only for devel-
oping new software applications but for re-engineering legacy systems. However the stakeholders face costly
maintenance operations due to frequent new standards and upgraded releases. Therefore, solutions ensuring a
better adaptability and flexibility of modelling tools are needed. We propose an improved technique of virtual
extension of meta-models with Facets that enables one to modify meta-models already in use without re-
building completely the software product. This technique has been implemented and experimented for model
alignment and evolution.

1 Introduction

The importance of modelling in software engi-
neering and the popularity of the UML notation re-
sult in the dissemination of model-based tools and the
emergence of a modelling language industry based
on the model-driven approach (MDA). The Meta-
Object Facility (MOF) language is then the foun-
dation for an ecosystem of Domain Specific Lan-
guages (DSL) (Brambilla et al., 2012). Some of them
are standards like BPMN, BMM, SoaML, SysML,
UPDM while others are specific. Model Driven En-
gineering (MDE) emphasizes the use of models and
meta-models to improve the software productivity
and some aspects of the software quality such as
maintainability or interoperability. MDE techniques
have proven useful not only for developing new
software applications but for re-engineering legacy
systems and dynamically configuring running sys-
tems (Cuadrado et al., 2014). Meta-models are es-
sential in MDE since many model processing are de-
scribed at the meta-model level through transforma-
tion rules or operations. However this is also a pitfall
since both model and meta-models evolve separately.

This is even more complex when models (includ-
ing metamodels) are parts of larger models. As men-
tioned by El Kouhen in (El Kouhen, 2016), MDE pro-
motes the separation of concerns to deal with the de-
sign’s complexity and maintainability. This practice
implies the creation of several heterogeneous models
using different notations. Since the semantics of each

individual model is limited, the model’s consistency
and completeness are easier to prove. Model com-
position is the symmetric paradigm of separation of
concerns. It is then necessary to compose models to
reason on the overall designed system for many pur-
poses such as: checking the global consistency of the
models, understanding the interactions between mod-
els, generating code, etc.

In the context of software maintenance, includ-
ing model-driven reverse engineering of a legacy sys-
tem, it is a primary requirement to have techniques
to build new models without modifying the source
models (to preserve source property), this is a non-
intrusive model composition. A typical scenario for
a software provider is to deliver customised release
to some clients but customisation leads to a tricky
maintenance problem when models and meta-models
evolve. This includes the case of (old) legacy code
built using various DSL with various development
methods at different level of abstract (from imple-
mentation code up to business processes). In order to
represent specific (or customised) aspects we extend
meta-models with new concepts, attributes and rela-
tions. It is always possible to create the new meta-
model with references to the initial meta-model but
any modification requires to rebuild the delivery prod-
uct. This is also the case when the modelling language
evolves; the new release requiring tool adaptation.

Paige et al. mentioned several challenges of evolv-
ing models in MDE (Paige et al., 2016). The work
presented in this paper is a practical contribution to

the dependency heterogeneity challenge. We focus on
model mappings that support several semantic links,
models (or meta-models) evolution and persistence,
while staying non-intrusive by preserving their parts.

A mapping model We propose an improved version
of virtual extension of meta-models that uses Facets
and enables one to modify meta-models already in
use without rebuilding the software product. The ex-
tension is called virtual because it does not directly
impact the initial meta-models.

A mapping technique Taking this industrial point
of view, the question is not only to find a mapping
meta-model, which is usually depending on the con-
text (the models we work with), but also to implement
mapping techniques which are compliant with the ex-
isting MDA tools (e.g. tools based on the Eclipse
EMF Frameworks) and efficient for large-scale appli-
cations. EMF enables to define meta-models, load,
persist and manipulate the compliant models. The
EMF Facet tool is based on EMF to extend virtually a
meta-model. This solution is non intrusive, it supports
link semantics but it does not have a mechanism for
persistence (the values are calculated by queries) and
an adequate technique and tools for mapping models.

A mapping tool We contribute here to this limitation
by improving the EMF Facet technique by modifying
the meta-model and implement several tools to man-
age model mapping in practice. At the implementa-
tion level, maintaining a link between model elements
can also be seen as an object relation mapping (ORM)
problem (Ambler, 1997) preserving the link multi-
plicities and a bi-directional navigation. This prob-
lem needs a robust algorithm engine to maintain the
constraints imposed by the multiplicities.

The paper mainly targets a tool set; it is struc-
tured as follows. In Section 2 we review model map-
ping techniques and motivate our choices. Section 3
overviews EMF Facet and introduces our improve-
ments. Persistence, navigation and testing issues are
discussed in Section 4. New user interface facilities
are presented on the illustrating example in Section 5
while larger case studies are reported in Section 6.
Finally, Section 7 summarises the contribution and
draws perspectives.

2 Background and Requirements

Model mapping is one of the "Model manipulation
and management challenges" of (France and Rumpe,
2007) and in particular to the points (2) and (3) men-
tioned by its authors: (2) maintaining traceability

links among model elements to support model evolu-
tion and round trip engineering and (3) maintaining
consistency among viewpoints. Model mapping tech-
niques are useful for model composition, decomposi-
tion or synchronization. Model composition is usu-
ally applied at the meta-model level.

Non-intrusive Model Mapping (NI-MM for
short), a composition that preserves the compo-
nents, is called the "model-based correspondence" by
Clavreul who identified 88 techniques for different
purposes in his systematic review of models compo-
sition (Clavreul, 2011). Clavreul’s mapping language
is a merging approach and the architects must learn
a DSL. We opted for a mechanized approach by pro-
viding a simple tool which applies at both compile
and run time. A mapping tool is proposed by Limyr
et al. (Limyr et al., 2006) but the goal is to prepare
patterns for model transformation, not to map het-
erogeneous models. El Kouhen (El Kouhen, 2016)
proposed an unified methodology to compose models
based on meta-model extensions. The composition
operators are symmetric (commutative e.g. merge,
parallel) or asymmetric (weaving in the meaning of
AOP, sequential integration). His work is largely in-
spired by (Marchand et al., 2012) who gave a for-
mal semantics for weaving and merging through mor-
phisms of a category theory. NI-MM can be seen as an
ad hoc model composition in their classification since
the mapping uses semantic information of the source
models. Their mapping approaches enable the sepa-
ration of concerns, but the merging and weaving do
not preserve the legacy models but also tool support
because their result is a new model.

NIP-MM is close to model weaving as defined
by (Jouault et al., 2010) which was inspired by As-
pect Oriented Modelling. "Model weaving oper-
ations are performed between two or more meta-
models, or between models. They aim to specify the
links, and their associated semantics, between ele-
ments of source and target models" (Jouault et al.,
2010). Models are woven by establishing different
kinds of links that contains the semantics of weaving:
merge operations, traceability links, data translation
mappings, text to graphical representation, etc. At-
las Model Weaver (AMW) includes a transformation
mechanism with ATL1 to create an automatic weav-
ing. Virtual EMF (Brunelière and Dupé, 2011) pro-
vides a visual assistant to edit two models from dif-
ferent meta-models and to create links between con-
cepts with drag and drop. Unfortunately, editors are
no longer updated and no more supported for the re-
cent Eclipse 4.x versions. The existing tools did not

1http://eclipse.org/atl/

suit to our requirements but we got inspired by them
to create our own weaving assistant, including some
improvements and new features (see Section 5). Di-
donet et al. (Del Fabro and Valduriez, 2007) propose
an approach that uses matching transformations and
weaving models to semi-automate the development of
transformations, which is not our goal.

NI-MM has also been explored in the context
of Domain Specific Languages (DSL) to define new
languages from existing ones in a non-invasive way
without re-creating the tool support. Bruneliere et
al. (Brunelière et al., 2015) define a textual DSL
with extension operators to extend metamodel se-
mantics. It is independent from modelling tooling.
Similarly, Greifenberg et al. propose DSL-specific
tag language (Greifenberg et al., 2016). Kolovos et
al. (Kolovos et al., 2010) propose decorator extrac-
tion and injection operators based on GMF notes to
ensure the non-invasive property but requires manual
transformations. Also conflicting specializations of
GMF notes may appear. Langer et al. (Langer et al.,
2012) propose EMF profiles, a lightweight adaptation
of UML profiles to extend meta-models with anno-
tations, constraints and stereotypes. An advantage is
to add new information. These DSL extension ap-
proaches have in common to work on the (binary) in-
heritance relation (one model is more specialised than
another) while we target any kind of n-ary relations
between models such as aggregation, composition, in-
heritance, dependency e.g. traceability... However
they are complementary.

As mentioned in a previous work (Pepin et al.,
2016), mapping approaches such as merging, weav-
ing or annotation do not support properly manda-
tory properties for model maintenance and evolution.
These properties issue from lessons learned during
model maintenance activities. A software system sus-
tains several releases that can even co-exist for dif-
ferent users with different hardware. The semantics
of models needs enhancements: new attributes, new
entities, new classification, and new links....
• Mapping meta-models in a unique meta-model

usually breaks the evolution lifecycle: when the
individual models (or meta-models) change, the
mapping become inconsistent and the associated
tools are obsolete. Model merging or exten-
sion are such intrusive techniques since the initial
model disappears in the resulting model. We need
a technique to map meta-models without intru-
sion and without version dependency.

• The weaving and annotation techniques are non-
intrusive but they use only generic links while the
end-user model transformation tools require spe-
cific information to proceed adequate transforma-

tions according to the meta-model relations and
cardinalities. The mapping technique must in-
clude semantic information for these relations.

• Last, the technique must serialize the mapping
links to support persistence in a way that loading
model mappings enables the navigation between
the original model elements and the new one with-
out disturbing the user-end experience. Behind
these properties we find the ascending compati-
bility and the version preservation of existing tool
suites which are industrial concerns. Only the
Facet approach covered this requirements, except
persistence and navigation facilities are not sup-
ported.

In summary, we require an equipped NI-MM tech-
nique supporting semantic links and persistence.

3 Revisiting the Facet Approach

Eclipse EMF Facet is a runtime meta-model ex-
tension framework composed of four parts: Facet,
Customization, Widgets and Query. The Facet part
offers the possibility to virtually extend (at runtime)
existing meta-models and models. The Customization
part adds UI enhancements on a meta-model. The
Widgets part can be used to apply your own cus-
tomization to model editors. The Query part enables
to compute attribute, reference and operation value.
The query can be written in Java or OCL. With Facet
one can extend models by adding virtual features to
existing models and also weave models by linking
their concepts (Figure 1).

Figure 1: Facet and Customization

A Facet provides a new viewpoint on a model
which is helpful to categorize model elements with
new classification, to add information on model el-
ement, to navigate between model elements easily
with new derived links. A Facet provides a virtual
mechanism to add more attributes, references or oper-
ations on a model without modifying the initial meta-

model. Several Facets can co-exist and be loaded/un-
loaded on demand without re-opening the model in-
stance. Facet applicability is checked by optional con-
formance rules.

Let us remind here the limitations of the Facet ap-
proach for NIP-MM:

- A new feature of the Facet systematically calls a
query. However the queries cannot access to the
model to map and it is necessary to store the val-
ues. Also queries must be executed during the
model loading; if the model is voluminous, the
calculation times can impact the response time.

- New features cannot be valued manually, as the at-
tributes or references of an ordinary meta-model.

- In independent model composition, the mapping
links must be persistent, consequently the values
of the features is to be serializable.
To fix the above limitations, we first improve the

meta-model, then we modify the existing Facet man-
ager and serialization mechanisms. We improve the
meta-model by allowing dynamic structure instead of
the static one: we add FacetAttribute and FacetRef-
erence getters and setters instead of recomputing sys-
tematically the attached query (Figure 2). Since the
meta-model constraints have an impact on the be-
haviour of the current Facet manager, we upgraded
its implementation to support the new behaviour.

FacetAttributeFacetReference

DerivedTypedElement

EReference EAttribute

Query

[0..1] fOpposite

[0..1] query

Figure 2: EMF Facet meta-model modifications

Technically, enabling the access of values turns
to weakening the multiplicity of FacetAttribute and
FacetReference which extend DerivedTypeElement.
Thus the multiplicity of the eReference query on De-
rivedTypedElement is changed from 1..1 to 0..1.
This feature will permit to get the values of FacetRef-
erence and FacetAttribute without using a query. Fur-
thermore we add a new eReference named fOpposite
to create a reflexive reference mechanism like eOp-
posite on EReference in the Ecore meta-model. The
improved EMF Facet enables now to manually extend
and weave models. As a matter of fact, the serializa-
tion makes the improved Facet be the most effective

approach among all the mapping techniques of Sec-
tion 2. Consequently we submitted it as a contribu-
tion to the open-source Eclipse EMF Facet2 which has
been approved.

After the modification of the meta-model, we turn
to the Java implementation of the new behaviour of
the Facet engine called FacetManager. At first, we
supported the two simplest multiplicities of the bi-
directional references type: one-to-one and many-to-
many. But, this was insufficient to cover all the cases
so we proceeded with all the possible cases. In the
next section, we present the cases and their implemen-
tation in order to obtain a complete weaving engine.

4 Persistence and Navigation

We can now create FacetReference links to map
concepts from different meta-models. In this sec-
tion, we describe the mechanism that supports bi-
directional mappings and a two-way navigation.
Mappings are represented here by UML associations,
which is bi-directional by default.

Similarly to object relation mapping (ORM) or
UML2Code transformations, a (bi-directional) associ-
ation is represented by a pair of uni-directional (one-
way) associations as shown in the Library example
of Figure 3. Thus any (instance) link modification re-
quires a propagation on the opposite link. An associ-
ation between classes is represented by a set of links
at the instance level.

Book Author

l..u
prefacedBy

Book Author{reverse}

prefaces
lb..ub

prefacedBy
lb..ub

l..u
prefaces

transformation

Figure 3: Bi-directionnal link example

We distinguish four cases:
• one to one: an instance is linked to one instance

only,
• one to many: an instance can be linked to several

instances,
• many to one: several instances can be linked to

one instance,
• many to many: several instances can be linked to

several instances.

2https://bugs.eclipse.org/bugs/show_bug.
cgi?id=463898

Multiplicity is an interval of value represented by a
lower and an upper bound. We precise that one to
many and many to one cases are not symmetric be-
cause the relation is directional. Then, these two cases
have different algorithms to preserve the multiplicity.
The problem is to preserve the symmetry constraint
(prefacedBy.reverse() = prefaces) of the op-
posite association ends. Updating only one side usu-
ally leads to a symmetry constraint violation. Next
we illustrate each case by giving a figure and the al-
gorithm we implemented in FacetManager3.
One to one. In Fig. 4, a book is prefaced by one au-
thor and an author prefaces only one book. To check
the multiplicity consistency, the implementation in
the FacetManager involve to keep only one opposite
link during the set operation.
1 @dele te o l d r e f e r ence@
2 &d e l e t e o l d o p p o s i t e r e f e r e n c e&
3 &c r e a t e new o p p o s i t e r e f e r e n c e&
4 @crea te new re fe r ence@

Book Author

0..1 prefaces
prefacedBy 0..1

1984

2001

Asimov

Barjavel

1984

2001

Asimov

Barjavel

✘+
+set

set

step 1 step 2

Figure 4: One to one relation

One to many. In Fig. 5, a book is prefaced by many
authors and author prefaces one book. To check the
multiplicity consistency, the implementation in the
FacetManager involves to replace the opposite link
during the set operation.
1 @remove o l d r e f e r e n c e from e x i s t i n g s @
2 &d e l e t e o l d o p p o s i t e r e f e r e n c e&
3 &c r e a t e new o p p o s i t e r e f e r e n c e&
4 @add new r e f e r e n c e i n t o e x i s t i n g @

Book Author

0..1 prefaces
prefacedBy 0..*

1984

2001

451

Asimov

Barjavel

Clarke

✘

+

set
set

set

+

+

1984

2001

451

Asimov

Barjavel

Clarke
set

+

+

+

step 1 step 2

Figure 5: One to many relation

Many to one. In Fig. 6, a book is prefaced by one au-
thor and author prefaces many books. To check the
multiplicity consistency, the implementation in the
FacetManager involves to delete the old and to add
the new opposite link during the set operation.
1 @dele te o l d r e f e r ence@
2 &remove o l d o p p o s i t e r e f e r e n c e from e x i s t i n g s&
3 &add new o p p o s i t e r e f e r e n c e i n t o e x i s t i n g&
4 @crea te new re fe r ence@

3https://bugs.eclipse.org/bugs/show_bug.
cgi?id=510039

Book Author

0..* prefaces
prefacedBy 0..1

1984

2001

451

Asimov

Barjavel

Clarke
set

+

+
set

set

+

step 1 step 2

1984

2001

451

Asimov

Barjavel

Clarke

set

+
✘

Figure 6: Many to one relation

Many to many. In Fig. 7, a book is prefaced by
many authors and author prefaces many books. To
check the multiplicity consistency, the implementa-
tion in the FacetManager involves to delete the old
and to add the new opposite link during the set oper-
ation.
1 @remove o l d r e f e r e n c e from e x i s t i n g s @
2 &remove o l d o p p o s i t e r e f e r e n c e from e x i s t i n g s&
3 &add new o p p o s i t e r e f e r e n c e i n t o e x i s t i n g&
4 @add new r e f e r e n c e i n t o e x i s t i n g @

Book Author

0..* prefaces
prefacedBy 0..*

1984

2001

451

Asimov

Barjavel

Clarke
set

+
set

setset

set

+

+
+
+

step 1 step 2

1984

2001

451

Asimov

Barjavel

Clarke✘
+
set

✘

Figure 7: Many to many relation

Thanks to the automatic management of bi-
directional links, the instance mapping is transparent
for users. Our implementation allows one to weave
the instances without a slave-master semantics. The
user can draw a link in any order: from the source to
the target or reverse. Henceforth EMF Facet enables
one to create links between any models following a
definition at meta-model level. Section 5 presents ad-
ditional tools to handle the instance level links.

Checking Link Conformity by Testing

To test and verify code coverage our new implemen-
tation for the mapping added in the FacetManager,
we wrote JUnit tests following the Test-Driven Devel-
opment approach. Let’s illustrate it with two simple
examples of the Library. For each multiplicity case,
we set facetReference between different instances of
books and writers, then we check if the reference set-
ting is conform to the reference and its opposite.

Example 1 In the many-to-one case, writer1 and
writer2 write the preface of book1. The test case of
Listing 1 assigns the value, establishes the mapping
and checks the reverse link. It succeeds.

Listing 1: Many-to-one: the direct preface reference
f i n a l F a c e t R e f e r e n c e p r e f a c e = g e t F a c e t R e f (

MANY_TO_ONE, WRITER_EXT , PREFACE) ;
f i n a l Book b o o k 1 w r i t e r 1 = t h i s . f a c e t M g r .

g e t O r I n v o k e (w r i t e r 1 , p r e f a c e , Book . c l a s s) ;
A s s e r t . a s s e r t E q u a l s (msg (WRITER1 , BOOK1) , book1 ,

b o o k 1 w r i t e r 1) ;
f i n a l Book b o o k 1 w r i t e r 2 = t h i s . f a c e t M g r .

g e t O r I n v o k e (w r i t e r 2 , p r e f a c e , Book . c l a s s) ;
A s s e r t . a s s e r t E q u a l s (msg (WRITER2 , BOOK1) , book1 ,

b o o k 1 w r i t e r 2) ;

Example 2 The test case of Listing 2 checks the au-
tomatic setting of the opposite reference prefaced:
book1 is prefaced by writer1 and writer2. Its exe-
cution also led to success.

Listing 2: Many-to-one opposite: the prefaced reference
f i n a l F a c e t R e f e r e n c e p r e f a c e d = g e t F a c e t R e f (

MANY_TO_ONE, BOOK_EXT, PREFACED) ;
f i n a l L i s t < Wr i t e r > w r i t e r s 1 a n d 2 = t h i s . f a c e t M g r .

g e t O r I n v o k e M u l t i V a l u e d (book1 , p r e f a c e d , W r i t e r
. c l a s s) ;

A s s e r t . a s s e r t E q u a l s (msg (BOOK1, " w r i t e r 1 and w r i t e r
2 ") , Ar r a y s . a s L i s t (w r i t e r 1 , w r i t e r 2) ,

w r i t e r s 1 a n d 2) ;

The above examples are specific to the Library
case study but generic tests, written at the meta-model
level, can be shared by all applications.

5 End-User Running the Mapping

The mapping framework includes an API, a user
interface and tests. The mapping API and the tests
have been presented in section 3 and 4. In this section,
we illustrate the additional implemented tools with
the Library example. We extend Book and Writer
meta-classes by creating new FacetSet for each link
mapping cases containing all facets which defines the
new virtual references with the specific multiplicity:
prefaces and prefaced. A mapping process includes
the following activities: facet mapping definition, in-
stance valuation, instance linking, mapping naviga-
tion and evaluation.

Mapping Definition

Each facet defines at least a name and the meta-class
type. A facet optionally extends an existing Facet.
The facet refers to the original meta-class by its ab-
solute Universal Resource Identifier (URI). The facet
defines three kinds of features: FacetAttribute, Face-
tReference and FacetOperation. We can create as
many new features as required. A FacetReference

defines at least a name, a multiplicity, a type and an
opposite reference if the association is bidirectional.
The type is a meta-class from any Ecore reachable
meta-model or another predefined FacetReference in
the current FacetSet. A FacetAttribute defines at least
a name, a multiplicity and the meta-class type as in
FacetReference.

Figure 8: FacetSet definition example

Example Assume a Book meta-model describing the
books and a Writer describing authors. In Fig. 8,
we create four FacetSets, one for each mapping
multiplicity: many to many (MToM), many to one
(MToO), one to many (OToM), and one to one
(OToO). For each case, a new reference preface links
’writers to books’ and the opposite reference pref-
aced links ’books to writers’. The multiplicity differs
through the upper and lower bound. In the example of
Fig. 8, ’many’ has 0 lower bound and -1 upper bound.

The purpose of this new definition is to extend the
existing classification of a library of books and au-
thors to obtain an enriched cataloguing.

Setting links with property value

Property editors set the value of the attributes and ref-
erences that will be used by queries.

Figure 9: Editing multi-valued reference

Example To experiment the different multiplicity
links, we create a library with books and writers. We
apply a specific FacetSet at a time: MToM, MToO,

OToM, or OToO. In Fig. 9 the FacetSet OToM is ap-
plied, the book "2001 Space Odyssey" have two pref-
aced writers "Isaac Asimov" and "Arthur C. Clarke".

Figure 10: Editing mono-
valued references

The property field is
different according to
the multiplicity: one, a
pop-up menu selector ;
many, a two columns
chooser. We can check
the opposite link is cor-
rectly set in Fig. 10:
"Isaac Asimov" preface
"2001 Space Odyssey",
and "Arthur C. Clarke"
preface "2001 Space
Odyssey".

Setting links with model weaver

Setting a lot of links between instances with the prop-
erty values is a fastidious work and editors are really
useless in this case. We developed a specific weaving
editor with multiple views (drag-and-drop).

Figure 11: Model weaver editor

Example In the right part of Fig. 11, an outline dis-
plays the different models to weave i.e. a first model
’library with books’ and a second model ’library with
writer’. On the left, a specific view organizes the
weaving result by facets. The MToM facet is loaded.
This design allows us to drag and drop elements from
right to left to link elements by references corre-
sponding to the FacetSet definition. In this example,
we drag and drop two writers "Ray Bradbury" and
"George Orwell" on reference prefaced of the book
"Fahrenheit 451".

Exploring links with OCL query

Using a model mapping by FacetReferences makes
possible the navigation through the models, from one

FacetReference to another. The TreeEditor is com-
patible with EMF Facet and enables one to browse
hierarchically the models by the FacetReference, but
it is still not very convenient; architects would like to
get some statistics to measure which elements from
models are mapped or not. Since EMF offers OCL ex-
pressions parser on Ecore models, we have produced
an engine extension in order to make Facet virtual fea-
ture compatible and used as property in OCL state-
ments. This extension is also integrated in a plug-in
to EMF Facet project.

Figure 12: OCL Facet Console

Example In Fig. 12,
we use the previous
model weaving result.
We open the model ’li-
brary with books’ and
write an OCL query
on the console to know
all writers who have
prefaced the books:
"self.books.prefaced".
The query writing
is helped with auto-
complete, and result
appear on the console.

Most presented
tools and wizards have
been integrated in
the EMF Facet open-
source project. They
are free available for
installation on Eclipse IDE.

6 Large Scale Experimentations

The Library example is a toy example for illus-
trating this paper. We applied our improved Facet in
the context of the Business-IT alignment in Enterprise
Architecture. The problem was to align models from
different points of view, in the context of Information
System maintenance. It covers a wider field than the
scope of this paper but we will focus only on the map-
ping issue. We briefly report these experimentations
here but the reader will find details in (Pepin et al.,
2016).

In this context, we experimented our Facet ap-
proach with real size case studies provided by in-
surance companies with heterogeneous information
supports: lots java source files, MEGA repositories,
databases,... First, we defined different meta-models
(business process, functional, application) and we im-
plemented reverse-engineering techniques to feed the

corresponding models. The mapping technique has
been implemented to establish the alignment links be-
tween the models. The experiments showed that big
mappings are hardly manageable by humans and tool
assistance is mandatory. Our tool support handled ef-
ficiently big models. Even in bulky case with manual
mapping, our Weaving Editor (cf. figure 11) provides
an optimized user interface with search engine to find
concepts and highlight concepts matching. However
additional tool is needed to visualize big mappings,
to evaluate the mapping properties (consistency, com-
pleteness) and quality (misalignment, evolution). Our
Facet query engine is a first step to reach this goal.

Applications

The improved Facet tooling is available at the open-
source Eclipse EMF Facet https://wiki.eclipse.
org/EMF_Facet.

Application use cases include implementation of
heterogeneous modelling (e.g. static vs dynamic as-
pects), traceability links, evolution links (between
releases), refinement, roundtrip representation (e.g.
code vs models), ...

7 Conclusion

We proposed an improved technique of virtual ex-
tension of meta-models that uses Facets; it enables
one to modify meta-models already in use by soft-
ware, without rebuilding completely the legacy tool
support. The extension takes account of the multiplic-
ity of associations and considers two-way references
between the involved entities. The proposed tech-
nique has been implemented, then experimented on
various case studies and integrated in the open-source
Eclipse EMF Facet project. We have then contributed
to solve an important model and software evolution
issue.

The next step will provide more assistance to the
user; we target the implementation of heuristics to
propose a list of possible model mappings to the mod-
eller: he can then choose the desired ones. These
heuristics will depend on the nature and the seman-
tics of the mappings. For example, when mapping
two releases of the same model, it is usually easier to
detect equality mapping. In specific cases, one can
detect patterns or naming conventions.

REFERENCES

Ambler, S. W. (1997). Building Object Applications That
Work: Your Step-by-Step Handbook for Developing
Robust Systems with Object Technology.

Brambilla, M., Cabot, J., and Wimmer, M. (2012).
Model-Driven Software Engineering in Practice.

Brunelière, H., García, J., Desfray, P., Khelladi, D. E.,
Hebig, R., Bendraou, R., and Cabot, J. (2015). On
lightweight metamodel extension to support model-
ing tools agility. In Modelling Foundations and
Applications - 11th European Conference, ECMFA.

Brunelière, H. and Dupé, G. (2011). Virtual EMF - trans-
parent composition, weaving and linking of models.
In EclipseCon Europe 2011.

Clavreul, M. (2011). Model and Metamodel Composition:
Separation of Mapping and Interpretation for
Unifying Existing Model Composition Techniques.
PhD thesis, Université Rennes 1.

Cuadrado, J. S., Izquierdo, J. L. C., and Molina, J. G.
(2014). Applying model-driven engineering in small
software enterprises. Sci. Comput. Program.

Del Fabro, M. D. and Valduriez, P. (2007). Semi-automatic
model integration using matching transformations and
weaving models. In Proceedings of the 2007 ACM
symposium on Applied computing.

El Kouhen, A. (2016). Panorama : A Uni-
fied Framework for Model Composition. In
15th International Conference on Modularity,
malaga, Spain. MODULARITY 2016.

France, R. and Rumpe, B. (2007). Model-driven develop-
ment of complex software: A research roadmap. In
2007 Future of Software Engineering, FOSE ’07.

Greifenberg, T., Look, M., Roidl, S., and Rumpe, B. (2016).
Engineering tagging languages for dsls. CoRR.

Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers,
Y., and Bezivin, J. (2010). Inter-DSL Coordina-
tion Support by Combining Megamodeling and Model
Weaving. In Proceedings of the SAC 2010.

Kolovos, D. S., Rose, L. M., Drivalos Matragkas, N.,
Paige, R. F., Polack, F. A. C., and Fernandes, K. J.
(2010). Constructing and Navigating Non-invasive
Model Decorations.

Langer, P., Wieland, K., Wimmer, M., and Cabot, J. (2012).
EMF profiles: A lightweight extension approach for
EMF models. Journal of Object Technology.

Limyr, A., Neple, T., Berre, A.-J., and Elvesæter, B. (2006).
Semaphore – a model-based semantic mapping frame-
work. In Proceedings of BPM’06.

Marchand, J. Y., Combemale, B., and Baudry, B. (2012).
A categorical model of model merging and weaving.
In Proceedings of the 4th International Workshop on
Modeling in Software Engineering, MiSE ’12.

Paige, R. F., Matragkas, N., and Rose, L. M. (2016). Evolv-
ing models in model-driven engineering: State-of-the-
art and future challenges. Journal of Systems and
Software.

Pepin, J., André, P., Attiogbé, C., and Breton, E. (2016). Us-
ing ontologies for enterprise architecture integration
and analysis. CSIMQ, 9.

