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a b s t r a c t

Surface integrity, dynamic properties and mechanical characteristics of belt finished surfaces strongly
depend on the achieved surface roughness produced by the abrasion process. A new approach based
on the scaling analysis of the roughness characterization is introduced on a surface obtained by a set
of roughness process parameters. Experimental results show that range roughness amplitude depends
on the scan size and that roughness amplitude follows two stages. Stage I presents a linear power-law
roughness distribution—a linear relation. Stage II presents a non-linear power-law roughness distribution.
The latter is divided into two sub-stages: the first sub-stage (sub-stage II.a) characterizes the fractal
behaviour of the surface until a critical length where the second sub-stage (sub-stage II.b) starts and
characterize roughness by extreme values statistics. Fractal parameters, extreme values estimators and
transition scale threshold between stages II.a and II.b are shown to be related to the abrasion process.
As a result, an original probabilistic model based on the generalized lambda distribution is proposed to

estimate the extreme range amplitude roughness values in stage II, depending on the observation scale.
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. Introduction

Techniques of high precision machining have made important
rogresses in the last thirty years. Surface topography obtained by
igh precision machining plays a major role in term of surface func-
ionality. To characterize the surface roughness, a high number of
oughness parameters may be used (Whitehouse, 1994; Najjar et
l., 2003). One of the most common parameter is the Ra parame-
er which represents the average roughness amplitude. Although
his parameter is highly robust from a statistical point of view, it
ails to represent the extreme values of the surface topography.
igh peaks or deep valleys are not sufficiently characterized by this
arameter. However, in a high number of surface functionalities and

ntegrities, the maximal roughness amplitude is of major interest
called Rt, PV or Rz roughness parameter). The transient behaviour
f super-finished surfaces has been examined by Malkin and co-
orkers (Puthanangady and Malkin, 1995; Varghese and Malkin,

995). They found that the radial stock removal during the tran-
ient stage is approximately equal to the average peak-to-valley (PV

s another definition of the Rt parameter) surface roughness of the
nitial ground surface. Chang et al. (2008) have used the Rt param-
ter to investigate effect of process parameters on evolution of
uper-finished surfaces texture obtained by stone super-finishing of
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s amplitude PDF is estimated, at a scale higher than the scanning length
tocol coupled with a Monte-Carlo simulation.
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hardened AISI 8119 steel. The maximal amplitude is of major inter-
est to characterize the surface defects in the case of optical elements
obtained by grinding and lapping processes. All these defects have
an effect on the stresses that induce fractures, scratches and micro-
cracks that influence operational life, secular stability operational
life, secular stability, coating quality and transmission performance
(Shen et al., 2005; Fine et al., 2005; Stolz et al., 2005; Retherford
et al., 2001; Campbell et al., 2004). Experimental results suggest
a linear correlation between SSD (sub surface damage) depth and
Rt with a proportionality constant. Values of the proportionality
constant have been documented by researchers for various materi-
als: glass (Hed and Edwards, 1987), marble crystal and ruby (Randi
et al., 2005), fused silica (Miller et al., 2005). This linear relation
was explained and modelled by Miller et al. (2005) by applying
micro-indentation mechanics and built models for the SSD/surface
roughness ratio based on the indentation of sharp and spherical
indenters, with respect to material mechanical properties, shape
and load of abrasive grains. However, a new model was created by
Li et al. (2008), investigating median and lateral crack systems in
brittle surface induced by a sharp indenter, and the contribution
of the elastic stress field to the median crack propagation. Finally,
subsurface damage depth can be predicted accurately by measuring

surface roughness of grinded or lapped optical elements: it exists
a non-linear monotone increasing correlation between subsurface
damage depth and surface roughness (Rt value). When surface
micro-geometry has a significant effect on the local fluctuations
in film thickness and pressure, the Rt parameter is important to

hts reserved.
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a least mean square third degree polynomial function to remove
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haracterize the mixed regime of micro-elastohydrodynamic and
oundary lubrication. These mechanisms are believed to govern
ost surface failures, such as excessive wear, pitting and scuffing

Spikes and Olver, 2002; Chang, 1995; Cheng, 2002). Krupka et al.
2008) show that changes in the film thickness profiles are more
omplex in comparison with the case of the isolated artificially pro-
uced roughness features (like grooves of various depths, larger
r smaller pits and peaks that are located within a concentrated
ontact). Conversely, peaks disturb the lubricant flow in the con-
act inlet zone: reduced film thickness area propagates upstream
r downstream depending on the slide-to-roll ratio conditions. In
he case of electrorheological fluid-assisted polishing, the rough-
ess of the polished surface is characterized by Rt as a function of
he applied voltage, the rotational speed of the tool, the rotational
peed of the workpiece, a mixing ratio and machining time (Zhanga
t al., 2005). In fact, the use of the Rt parameter is justified by a
odel proposed by Jha and Jain (Jha and Jain, 2006; Das et al., 2008)

ased on local peaks erosion. This is confirmed by a study made
y Yamaguchi and Shinmura (1999): the observed surface texture
hows that the process is an accumulation of the micro-scratches
rom the abrasive cutting edges, generating a characteristic mag-
etic abrasive finished surface. Moreover, the surface is finished by
emoving the material from not only the peaks but also the valleys
f the surface, as far as the cutting edges of the magnetic abra-
ive are introduced into the valleys. A same class of peak removal
lgorithms is also applied on belt finishing process by Bigerelle et
l. (2008) and to model abrasive flow machining by Wani and Jain
Wani et al., 2007; Jain et al., 1999). A mathematical model is pre-
ented by El-Axira et al. (2008) to predict the Rt parameter caused
y internal ball burnishing process parameters (burnishing speed,
eed, depth of penetration, and number of passes). Considering the
rinding of hard steel to obtain a quality optical surface, Stephenson
t al. (2001) show that the presence of voids is responsible of a rela-
ively high Rt. In the particular case of the abrasive finishing, Grzesik
t al. (2007) show that the SRz (peak-to-valley height in 3D mea-
urement) and its two components SRp (maximum peak height)
nd SRv (maximum valley depth) are relevant to characterize sur-
ace topography and prove that an elastic belt modifies both valleys
nd peaks of the surface, whereas a rigid abrasive stone is only able
o change the configuration of the peaks.

Another processes of super-finishing require Rt to quantify the
urface integrity like lapping (Brinksmeier et al., 2006; Belkhir et al.,
007), surface finishing with flexible abrasive tools (Cho et al., 2002;
ingh et al., 2005), finishing milling of complex surface (Ramos et
l., 2003), ultrasonic vibration assisted polishing machine (Suzuki
t al., 2006), flat end milled surface (Ryua et al., 2006). Some recent
tudies show that abrasion processes create a multi-scale rough-
ess structure, i.e. the value of roughness will depend on the scale
t which it is observed. Bigerelle et al. (2005) show that grinding
urface can be modelled by fractal function that is confirmed exper-
mentally on polishing surfaces (Dalla Costa et al., 2007; Giljean et
l., 2007, 2008). Wang and Hu (2005) used multi-scale analyses
n the inner surface finishing of tubing by magnetic abrasive fin-

shing. They showed that finishing parameters such as polishing
peed, magnetic abrasive supply, abrasive material, magnetic abra-
ive manufacturing process and grain size have critical effects on the
aterial removal rate and the changes of structure of microshape

f the surface during finishing. Takaya et al. (2006) analysed the
urface finishing of a micropart made of single-crystal silicon and
roved that surface roughness gets a spatial wavelength range from
�m to 10 nm.
All theses studies show that the peak-to-valley parameter is of
ajor interest to characterize the super-finishing process. However,

his parameter depends on the evaluation length (Hasegawa et al.,
996; Dubuc et al., 1989) and if we suppose that the scanning area is
ery small compared to the full area of the part then the Rt param-
sing Technology 209 (2009) 6103–6116

eter cannot be evaluated on the whole surface. As a consequence,
a multi-scale modelling has to be constructed to extrapolate data
from the profile length to the whole sample. In this paper, we pro-
pose an original method that allows both predicting maximal range
amplitude versus length of the part and giving confidence inter-
vals of the predicted values. It is shown, thanks to a wavelength
analyse, that the surface obtained by belt finishing process (BFP)
gets a multi-scale structure (Mezghani et al., 2009) and the surface
integrity of these tooled surfaces is of major interest to ensure high
fatigue performances of the polished surfaces. Axinte et al. (2005)
and Novovic et al. (2004) confirmed on a AISI 52100 steel (Rech
et al., 2008), where it is shown that the BFP improves very signifi-
cantly the surface integrity by the induction of strong compressive
residual stresses in the external layer and by a great improvement
of the surface roughness. This process can be modelled by a peak
removal technique (Khellouki et al., 2007) and then it becomes obvi-
ous that surface topography of BFP will be well characterized by the
Rt roughness parameter (Axinte et al., 2009; Jourani et al., 2005).

For these reasons, we will apply our methodology on the sur-
face topography of a AISI 52100 steel machined by BFP. In a first
part, the abrasive process is detailed and the protocol of the rough-
ness measurements is described. After multi-scale analyses of the
surface topography obtained by BFP, a prediction model is proposed
and validated at different scales. A fractal model is then proposed
to confirm the multi-scale aspect of the tooled surface.

2. Grinding belt device

The testing bench is composed of a Bader type grinding belt
device set up on a conventional lathe. Consequently, the system
has a horizontal structure which is currently used for the grinding
belt super-finishing of crankshafts. To be sure of the reproducibil-
ity of the process, five bearings are tooled. Their dimensions are
54.78 mm in diameter and 30 mm in width (Fig. 1). The belt is
20 mm width. The tooling movement is composed of a tangential
relative part displacement due to its rotation with regard to the belt
one and an oscillation of the tooling arm in the axial direction of
the tooled part. Specimens were turned, rectified and tooled with
the following process:

- Hardness of contact wheel (polyurethane): 90 shores
- Belt grit size: 9 �m
- Contact pressure: 1 bar
- Workpiece rotation speed: 100 rpm
- Belt feed: 50 mm/mn
- Cycle time: 3 s
- Axial oscillation frequency: 1.6 Hz
- Axial oscillation amplitude: ±0.5 mm
- Lubrication: CUT MAX H05TM

3. Roughness measurements

27 profiles are recorded perpendicularly to the grooves over a
0.1 �m sampling length, a 8 mm scanning length (80,000 ampli-
tude roughness data per profile) and a 100 �m/s scanning speed.
The surface recorder is a tactile profilometer 3D KLA TENCOR® P10
with a 2 �m stylus radius loaded with 5 mg. The instrument has a
vertical resolution better than 10 nm with a lateral x axis resolution
of 50 nm and y axis resolution of 1 �m. Each profile was fitted by
the form and keep only waves and roughness. Fig. 2 represents a
recorded profile of the tooled surfaces with three spatial zoom (X8,
X35, X200) located at the profile origin. As it can be observed, the
structure of the surface presents deep valleys and honeys due to the
belt finishing process.
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. Multi-scale roughness characterization

The arithmetic average roughness parameters (Ra) and the total
mplitude one (Rt) also called the “peak-to-valley” are very often
sed to characterize the surface roughness. Unfortunately, the effect
f the evaluation length is not always taken into account although
hese parameters depend on the observation scale (Dubuc et al.,
989; Whebi, 1986). The dependence of scale measure is defined

n the fractal formalism introduced by Mandelbrot (1983) and then

as used to characterize the surface roughness (Tricot, 1993).

ig. 2. Recorded profile (whole profile) of the tooled surfaces of AISI 52100 steel
achined by belt finishing process with three spatial zoom (X8, X35, X200) located

t the profile origin.
belt device.

4.1. Basic concept

The multi-scale analysis tools are described. The goal of the data
management was to compute the roughness amplitude parame-
ter Rt = Ymax − Ymin as a function of the evaluation length. As far as
Rt is concerned, it can be expected that the probability to record
high peaks (i.e. high value of Ymax) or deep valleys (i.e. small value
of Ymin) increases with the evaluation length l. Although the Ra =
1
l

∫ l

0
|y(x)|dx depends on the evaluation length l ≤ l0, it becomes con-

stant (result not shown) on the whole profile length L (L > l0) and is
equal to Ra = 0.32 �m. Other roughness parameters are computed
(Table 1). In our algorithm, the values of Ymax and Ymin are computed
to calculate a local value of Rt noticed Rt(x, l) = Ymax(x, l) − Ymin(x, l)
for a given evaluation length l beginning at the x position of the
profile length (x and l varying from 0 to L = 2 mm) on the residual
profile. Then, the evaluation window of length l is shifted by a quan-
tity d (d ∈ [�x, L/2]) to estimate new local values Y1

max(d, l) Y1
min(d, l)

and R1
t (d, l) noted respectively Yd

max(l), Yd
min(l) and Rd

t (l). This oper-
ation is repeated until the end of the residual profile i is reached
giving three sets of local values (Yd

max(l), Y2d
max(l), Y3d

max(l), . . .),
(Yd

min(l), Y2d
min(l), Y3d

min(l), . . .), (Rd
t (l), R2d

t (l), R3d
t (l), . . .). Then an

average is computed on the three sets giving three scalars noted
Ymax(l), Ymin(l) and Rt(l) corresponding to an observation scale l for
the residual profile.

4.2. Preliminary result

Fig. 3 represents the multi-scale roughness values of Ymax(l),
Ymin(l) and at different observation scales l for the 27 recorded pro-
files. The following primary comments can be declared from these

graphics:

• The three roughness parameters Ymax(l), −Ymin(l) and Rt(l)
increases logarithmically with the evaluation length l meaning

Table 1
Descriptive statistics of roughness parameters of recorded profile of the tooled sur-
faces of AISI 52100 steel machined by belt finishing process.

Mean Minimum Maximum S.D.

Ra 0.32 0.27 0.37 0.03
Rq 0.40 0.36 0.53 0.05
Sk −1.4 −2.1 −0.8 0.3
Ek 8.2 4.5 14.1 2.3
Rt 4.8 3.0 7.0 1.0
Lac 12.6 10.1 15.5 1.6
Peaks 1315 1205 1475 69
Sm 19.2 17.1 20.9 0.9
Rpk 0.6 0.3 1.5 0.3
Rk 0.9 0.7 1.0 0.08
Rvk 3.3 1.6 5.4 0.9
Fractal dimension 1.141 1.129 1.151 0.006
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ig. 3. Multi-scale roughness values of Ymax(l), Ymin(l) and Rt(l) versus the evaluation
cales l for 27 recorded profiles of AISI 52100 steel with belt finishing process.

that amplitude of peaks and valleys decreases with the scale (see
Fig. 2).
−Ymin(l) � Ymax(l) whatever the value of the evaluation length
(see Fig. 4). For example Ymax(2 �m) = 0.086 �m increases to
Ymax(2000 �m) = 0.1 �m and −Ymin(2 �m) = 0.91 �m increases to

−Ymin(2000 �m) = 2.77 �m. This roughness signature was not
met in the case of micro-machined surfaces (Bigerelle et al.,
2008). This multi-scale difference characterizes the BFP that can
be seen as peek removal process that decreases more the peaks
amplitude than the valleys amplitude as discussed in the intro-

ig. 4. Multi-scale mean roughness values of Ymax(l) − Ymin(l) at different evaluation
cales l obtained by averaging the Ymax(l) − Ymin(l) on the 27 recorded profiles as
hown in Fig. 1.
Fig. 5. Multi-scale mean roughness values of Rt(l) at different evaluation scales l
obtained by averaging Rt(l) on the 27 recorded profiles as shown in Fig. 1.

duction. An original result given by this analysis is that the
difference Ymax(l) − Ymin(l) is always negative whatever the eval-
uation length l meaning that local small peaks are also removed
and not limited to the higher global peaks. Thanks to this multi-
scale analysis, this relationship can be explained by the fact that
the contact area between abrasive grains and part is small due
to the circular shape of the contact wheel leading to local peaks
erosion in this contact area.

• Dispersion of the roughness parameters estimations increases
with the evaluation length l. As it can be observed, curves are
more and more scattered as the evaluation length increases. This
second scale effect constitutes the basic concept of this paper and
will be discussed later. However, its clearly means that the accu-
racy to predict a maximal or minimal values depends drastically
of the evaluation length and will be less and less precise as the
evaluation length increases.

4.3. The different stages of the multi-scale analysis

For each experimental profile under consideration, the averaged
local values Rt(l) of the 27 related residual profiles are all averaged to
obtain a final Rt value at an evaluation length l. Fig. 5 shows the vari-
ation of Rt(l) versus the evaluation length in log–log coordinates.
From this graphics, it can be observed that two different stages
emerge: a linear stage and a logarithmic one. With appropriate sta-
tistical techniques developed earlier to describe the different stages
in fatigue crack growth propagation (Bigerelle and Iost, 1999), it can
be stated that these two stages limits are:

Stage 1: l ≤ 4 �m (log–log linear stage),
Stage 2: l > 4 �m (log–log logarithmic stage).

Here, this analysis is purely visual. Basically as met in the bib-
liography, one could think that we are in presence of a bi-fractal
structure (Wu, 2000; He and Zhu, 1997; Thomas et al., 1999;
Bhushan and Majumdar, 1992; Wu, 2001). The linear part rep-
resents the fractal part (stage 1) and the second one, a pseudo
asymptotical stage. In our case, this bifractal structure does not hold.

We will prove that in fact the linear part is a measure artifact due
to the stylus radius of the profilometer and that the second stage is
composed of two sub-stages: a non-linear fractal stage (sub-stage
II.a) and an “extreme values stage” (sub-stage II.b). For reason of
simplicity, we voluntary introduce first the fractal stage to analyse
these three stages.
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if the number of points used to estimate Rt increases proportion-
ally with respect to the evaluation length, the slope will be higher
than the true value (Hölder exponent) leading to diminish the com-
puted fractal dimension. To visualize this artifact, fractal dimension
M. Bigerelle et al. / Journal of Materials

.4. Stage II.a: the fractal stage

The fractal concept with the Rt value was introduced by Dubuc
t al. (1989) that has developed a method to calculate the fractal
imension of profiles called “the oscillation method”. This method

ntroduces the �-oscillation of the function f in x defined as

: [a, b] → IR

SC�(f, x) =
∣∣∣∣max(f (t))−

|x−t|<�
min(f (t))

|x−t|<�

∣∣∣∣ (1)

y taking the average of OSC�(f, x) within the interval [a, b], one
btains:

AR�(f, a, b) = 1
b − a

∫ b

a

OSC�(f, x) dx (2)

So that the fractal dimension is written as

(f, a, b) = lim
�→0

(
2 − log VAR�(f, a, b)

log �

)
(3)

By roughness analogy one has:

x
t (l) = OSCl(f, x) (4)

here function f is given by our experimental profile fe and under
his consideration, from Eq. (2):

t(l) = VARl(f, 0, l) (5)

From Eq. (3), the fractal dimension �(fe, 0, l) of the fe profile is
qual to 2 minus the slope called the Hölder exponent.

However, except in the stage I, no linear relation is found (Fig. 5).
t must be also noticed that in a large number of papers, a perfect
inear stage is never met. Why does the linearity not perfectly hold?

e search if this non-linearity could not be due to a sampling prob-
em. By analyzing Fig. 5, it become obvious that above the value of
�m, the Rt values less and less increase with respect to the profile

ength, meaning that if the fractal concept holds (i.e. linearity in
he log–log scale), the Rt values are less and less underestimate as
he evaluation length increases. An explanation of this bias can be
tated: the number of data points is imposed by the profilometer
80,000 in this study) meaning that for small evaluation lengths,
he Rt value is computed with a finite number of points and this
umber increases with the evaluation length. If one gets an infinity
f points to evaluate the Rt value then the Rt estimation will con-
erge to the true value of the Rt parameter. Unfortunately, as the
umber of points is limited, the probability to obtain the true max-

mal range amplitude on a fixed interval length diminishes with
he number of points. This leads that the Rt value will be more
nd more underestimate when the evaluation length diminishes.
o validate this hypothesis, a simulation will be proposed. A per-
ect Brownian profile (� = 1.5) will be simulated by an algorithm
rocess (Spitzer, 1976) (Fig. 6). This choice is justified by the fact
hat no artifact is introduced by this simulation to the opposite of
imulations with partial Brownian motion (Zhou and Lam, 2005).
he implanted algorithm consists of 6 steps:

Step 1: a Brownian motion is simulated with a high number of
points (5 × 105).
Step 2: a windows size l is chosen.
Step 3: a set of k uniformly distributed points are taken into this

windows to estimate the Rt noted Rtk(l).
Step 4: another k value is taken and step 3 is repeated.
Step 5: another length of windows size is taken and step 2 to step
4 is repeated.
Step 6: goto step 1 to average values of Rtk(l).
Fig. 6. Simulated profile corresponding to a trace of a perfect Brownian motion.

Fig. 7 represents the values of Rtk(l) versus the number of points
k used to estimate Rt for different window sizes (l). For a given
interval length, the Rt values increase with the number of points
but this increase is less and less significant. This clearly confirms
our basic hypothesis: Rt values are more and more underestimated
as the number of points used to estimated Rt decreases. As the win-
dows size l decreases, the Rt values also decreases because of the
fractal aspect of Brownian motion. This sampling effect introduces
an artifact leading to a non-linear stage. To represent this artifact,
Rt values are plotted (in log-log scale) versus the evaluation length
with a fixed number of points used to estimate the Rt value for all
the evaluation length (Fig. 8). Two remarks have to be made:

- If the number of points is constant to estimate the Rt value for all
evaluation length then a perfect linear relation hold.

- The intercept decreases with the number of points used to esti-
mate the Rt value.

To conclude, Rt is uniformly underestimated (in log–log coordi-
nates) as the number of points used to estimate the Rt decreases
but the linear part stay unchanged (in log–log scale). More drastic,
Fig. 7. Values of Rtk(l) versus the number of points k used to estimate Rt for different
window sizes (l) corresponding to the profile shown in Fig. 6.
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ig. 8. Values of Rtk(l) evaluated on a perfect Brownian motion (Fig. 6) versus the
valuation length when Rtk(l) is evaluated with k points on all window of sizes (l)
orresponding to the profile shown in Fig. 6.

s computed versus the number of points used to estimate Rt. More
8
han 10 points are required to obtain an error less than 1% (Fig. 9a).

f the number of point stays unchanged on all windows whatever
heir lengths, no error occurs on the evaluation of the fractal dimen-
ion, and thus whatever the maximal windows size and the total
umber of points of the discretized profile (Fig. 9b). To the knowl-

ig. 9. Values of fractal dimension of a perfect Brownian motion of theoretical value
f 1.5 calculated by the Oscillation method (Eq. (3)) when Rtk(l) is evaluated on with
ifferent k points on all window of sizes (l) with l = p × k, p a scale independent
onstant (usual method (a)) and with a constant number of points for all windows
f size l (original method (b)).
Fig. 10. Average autocorrelation functions of the 27 recorded profiles of for 27
recorded profiles of AISI 52100 steel with belt finishing process.

edge of the authors, this statistical artifact was never commented
in the bibliography and this statistical bias leads some authors to
oversample signals to diminish this artifact effect and then esti-
mate more precisely the fractal dimension by diminishing the bias
amplitude. A new algorithm of computation of the fractal dimen-
sion, without sampling artifact, applied on real experimental profile
may emerge from these results and authors work on this: results
will be deferred in another paper (Fig. 10).

4.5. Stage I: the stylus radius tip stage

Profiles appear smoother when l < 4 �m and this value l is
exactly the diameter of the tip of the profilometer. The stylus cur-
vature radius makes a smoothing effect of the surface. The stylus
cannot record any information into crevices which are narrower
than the stylus width (Poon and Bhusham, 1995; Mc Cool, 1986;
Radhakrishnan, 1970; Whitehouse, 1974; Nakamura, 1966; Ohlsson
et al., 2001; Sheiko et al., 1994; Mazeran et al., 2005). To analyse the
stylus effect on surface integration, an algorithm is developed to
simulate the stylus effect on profile. However, our recorded surfaces
present the stylus effect and as a consequence surfaces without
stylus integration effect have to be re-created. To create these sur-
faces, a model that simulates the BFP effect on surface topography
(Bigerelle et al., 2008) is used. This model is based on fractal func-

tion that represents initial profile before belt finishing processing
(Fig. 11) and two “wear” parameters that characterize wear inten-
sity and material hardness. Fig. 12 represents surface simulated
after belt finishing processing corresponding to the experimental
profiles used in this study. An algorithm simulating the scan-

Fig. 11. Fractal modelling of initial grinded surfaces before applied belt finishing
surface.
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ig. 12. Simulated profile (whole profile) of the tooled surfaces of AISI 52100 steel m
rofile origin simulated by Bigerelle et al.’ model (Bigerelle et al., 2008) without low

ing effect on the profile is written without using mathematical
ssumption because of the non-derivability of fractal curves. Sty-
us scanning effect was simulated with radii curvatures from 1 �m
o 5 �m. From Fig. 13 the threshold Stage I and Stage II, appear
round 4 �m for a tip diameter of 4 �m and increases with the
tylus tip radius. This simulation confirms the fact that this linear
tage is due to the effect of smoothing surfaces caused by the tactile
overing.

As it is observed, modelling the BFP is very relevant to model

igh finished surfaces at all scales because multi-scale measures of
t on experimental (Fig. 5) and simulated surfaces (Fig. 17) are quite
imilar, and thus, whatever the scales of observation.

ig. 13. Multi-scale roughness values of Rt(l) at different observation scales l com-
uted from simulated profile with stylus integration processed at different radii.
ed by belt finishing process with three spatial zoom (X8, X35, X200) located at the
ency wave forms with stylus integration of r = 2 �m.

5. The macroscopic multi-scale analysis of the amplitude
roughness

As shown, a fractal stage can be non-linear due to sampling prob-
lems. However, it becomes obvious that the fractal formalism on
tooled surface cannot be applied for high evaluation length. Intu-
itively, we may admit that above a critical length, the fractal concept
fails, meaning that physical processes that create the fractal aspect
do not affect the surface morphology. In mathematical terms, above
this critical length, profiles have lost the memory of the topography.
This loss of memory can be quantified by the autocorrelation func-
tion. It is reported in the bibliography that autocorrelation function
can be used to determine fractal properties of profiles (Lopez et al.,
1994; Mandelbrot and Van Ness, 1968). The average autocorrelation
function of all profiles is plotted in Fig. 10. As it can be observed,
the autocorrelation decreases until it reaches a null value (in aver-
age) for l > 350 �m. After the stage II, no “memory” occurs in the
profile that becomes a pure random process and must be analysed
with appropriate tools. This Stage II.b but more especially the length
value of the threshold Stage II.a and Stage II.b is of major interest
in finishing processes because it quantifies the scale above which
the process parameters will not influence the topography and any
modification of the process that can decrease the Rt value. This
result is fundamental in the dimensional tolerance of tooled parts.
To check the assertion that above the fractal stage, the increase of
the maximal roughness amplitude is due only to a pure random pro-
cess (independent of the processing conditions), a mathematical
formalism is described in the next paragraph.
5.1. A new stage: the extreme values stage (sub-stage II.b)

Does the recorded signal exhibits a pure stochastic process above
l > 350 �m? In fact, a new concept was introduced and applied
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Fig. 14. Empirical distributions of: minimal Ymin(l), maximal Ymax(l

ccurately on milling surfaces tooled by single diamond turning
Bigerelle et al., 2007). Above the fractal stage, the surface becomes
tationary in a statistical sense (ergodicity) meaning that the mean
mplitude of the surface stays constant but the mean is calculated
n term of mathematical integration without including sampling
ffect as described previously in stage II.a. However, including
ampling effect, the fluctuation occurs due to inherent stochastic
rocess and the magnitude of the extreme values increases with
he number of sampling points. The most successful method of
afety or reliability was found in the application of the statisti-
al extreme-value analysis using the Gumbel distribution (Gumbel,
954) to predict the maximum value of pits on a surface. Because
f some limitations (i.e. no confidence intervals for extreme value
redictions, properties of the parent distribution are imposed), an
lternative methodology to the Gumbel distribution is proposed.

.2. Extreme amplitude roughness modelling

The surface roughness parameters Ymax(l) and Ymin(l) are

easured at a given observation scale l and it raises the following

ssue: “what will be the values of these parameters at a higher
cale that was not measured and what will be the error in the
rediction?” The answer to this question is of major interest for
he control of high finished surfaces because surface roughness
range roughness amplitude Rt(l) at the evaluation scale l = 350 �m.

is seldom measured on the whole part (high time consuming,
limitation of scanning length of profilometers, etc.). To predict
roughness amplitude at higher scales, we suppose that the eval-
uation length is above the fractal stage (l > 350 �m) and then
the Stage II.b has to be modelled. Our methodology is based on
the generalized lambda distribution formalism (GLD) (Karian
and Dudewicz, 2000) and the use of a Monte-Carlo method.
The histograms of all sets (Yd

max(350 �m), Y2d
max(350 �m), . . .),

(Yd
min(350 �m), Y2d

min(350 �m), . . .), (Rd
t (350 �m), R2d

t (350 �m), . .
are presented in Fig. 14. The first phase consists in modelling these
histograms thanks to the use of the lambda distribution. The
generalized lambda distribution (GLD) family is specified in terms
of its percentile function (called also the inverse distribution
function) with four parameters (�1, �2, �3 and �4):

QX (y; �1, �2, �3, �4) = �1 + (y�3 − (1 − y)�4 )/�2 (6)

The parameters �1 and �2 are, respectively, the location and scale
parameters, while �3 and �4 determine respectively the skewness
and the kurtosis of the GLD. The probability density function fx(x)

can then be easily expressed from the percentile function of the
GLD:

fX (x) = �2

(�3y�3−1 + �4(1 − y)�4−1)
(7)
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ig. 15. 3D view of the values of the function � (�3, �4) for the lambda distribut
Yx

min
(350 �m) lambda distribution obtained after minimization on � (�3, �4).

Obviously, the main problem is to estimate the parameters �1,
2, �3 and �4 in order to have the best fitting of the GLD with the
xperimental frequency distribution (of extreme roughness values
n this study). In a first step, empirical moments are calculated from

experimental data xi, i ∈ {1, 2, . . ., n}:

ˆ 1 =
n∑

i=1

xi

n
(8)

ˆ 2 =
n∑

i=1

(xi − ˆ̨ 1)2

n
(9)

ˆ 3 =
n∑

i=1

(xi − ˆ̨ 1)3

n ˆ̨ 3/2
2

(10)
ˆ 4 =
n∑

i=1

(xi − ˆ̨ 1)4

n ˆ̨ 2
2

(11)

able 2
oments of Yx

max(350 �m) and Yx
min

(350 �m) distributions.

ˆ̨ 1 ˆ̨ 2 ˆ̨ 3 ˆ̨ 4

x
max(350 �m) 0.663 0.193 1.492 10.69
x
min

(350 �m) 1.791 0.790 1.423 5.797

able 3
alues of the four parameters for the both lambda distributions that modelled
x
max(350 �m) and Yx

min
(350 �m).

�1 �2 �3 �4

x
max(350 �m) 0.596 1.085 −0.123 −0.0632
x
min

(350 �m) 1.091 0.0754 0.0060 0.0625

Fig. 16. Ŷ350 �m,k
max and −Ŷ350 �m,k

min
PDF’s functions prediction obtained from 100,000

Monte-Carlo simulation for the 5 magnifications k ∈ {1, 2, 5, 10, 20}. The case k = 1
corresponds to simulation of the original lambda shown in Fig. 15 (on the right).
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ig. 17. Prevision of the mean of the extreme roughness amplitude parameters
Ŷ350 �m,k

min
Ŷ350 �m,k

max R̂350 �m,k
t and R̂350 �m,k

t2 = Ŷ350 �m,k
max − Ŷ350 �m,k

min
(lines) versus the

valuation length and the means experimental values Ymax(l), Ymin(l) and Rt(l).

ig. 18. Multi-scale prediction of extreme roughness amplitudes parameters Ŷ x,k
min

, Ŷ x,k
min

, R
dashed line) Ymax(l), Ymin(l) and Rt(l).
sing Technology 209 (2009) 6103–6116

It is shown (Karian and Dudewicz, 2000) that �3 > −1/4 and
�4 > −1/4 then:

˛1 = �1 + A

�2
(12)

˛2 = �2 = B − A2

�2
2

(13)

˛3 = C − 3AB + 2A3

�3
2˛3/2

2

(14)

˛4 = D − 4AC + 6A2B + 3A4

�4
2˛2

2

(15)
A =
1 + �3

−
1 + �4

(16)

B = 1
1 + 2�3

+ 1
1 + 2�4

− 2ˇ(1 + �3, 1 + �4) (17)

ˆ x,k
t at different origin evaluations x ∈ {0.2, 0.5, 1,2 50, 360} and experimental ones
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At this stage, analytical probability density functions (PDF) of
Yx

max(350 �m) and Yx
min(350 �m) of the maximal and minimal local

roughness amplitude (and thus estimated at the scale l = 350 �m)
are formulated. Now suppose that the evaluation length is twice the
Fig. A.1. Simulated surfaces with modified Weierstrass function obtained w

= 1
1 + 3�3

+ 1
1 + 3�4

− 3ˇ(1 + 2�3, 1 + �4) + 3ˇ(1 + �3, 1 + 2�4)

(18)

= 1
1+4�3

+ 1
1+4�4

−4ˇ(1+3�3, 1 + �4) + 6ˇ(1 + 2�3, 1 + 2�4)

−4ˇ(1 + �3, 1 + 3�4) (19)

here

(a, b) =
∫ 1

0

xa−1(1 − x)b−1dx. (20)

The moments of Yx
max(350 �m) and Yx

min(350 �m) are reported
n Table 2. To calculate �1, �2, �3 and �4, ˛1 is estimated by ˆ̨ i (Eqs.
8)–(11)) and it is necessary to solve a system of four equations
ighly non-linear (Eqs. (12), (13), (18) and (19)). As Eqs. (18) and

19) depend only on �3 and �4 and as �3
2�3 = (B − A2)

3/2
and �4

2�4 =
B − A2)

2
, the four equations system become a two equations sys-

em with more stable numerical convergence (less numerous local
xtrema). The solutions amounts to find �3 and �4 by a steepest
radient method on the functional

′(�3, �4) =
4∑

i=3

( ˆ̨ i − ˛i)
2 (21)

nd then �2 is calculated from Eq. (13) and finally �1 from Eq.
12). An algorithm was written and computed using the statisti-
al analyses system language to determine the GLD and its related
robability density function from the experimental dataset. The
umerical results of the minimization process obtained with our
omputer algorithm are illustrated in Fig. 15 (left). Theses figures
resent a 3D view of the values of the function � (�3, �4) on which
he optimization algorithm is applied for the lambda distribution

ssociated with Yx

max(350 �m) and Yx
min(350 �m) (−2 < �3 < 1 and

2 < �4 < 2). After minimization, the values of the four parame-
ers for both lambda distributions that modelled Yx

max(350 �m) and
x
min(350 �m) are obtained (Table 3). Then the Yx

max(350 �m) and
x
min(350 �m) lambda distribution are plotted in Fig. 15 (right). As it
ifferent low frequencies truncation d = 0 (no truncation), and d ∈ {4, 8, 10}.

can be observed, the lambda distributions fit well the Yx
max(350 �m)

and Yx
min(350 �m) empirical distributions. To appreciate the accu-

racy of lambda distribution to model extreme data roughness,
a Chi2 criterion is computed. For both data Yx

max(350 �m) and
Yx

min(350 �m), the Chi2 criterion does not reject the appropriate-
ness between experimental and model data for usual critical values
˛ = 0.05 (respectively Chi27df = 15.99; p = 0.07 and Chi27df = 5.79;
p = 0.56). This means that Yx

max(350 �m) and Yx
min(350 �m) both

obey a lambda distribution and these models may be used to predict
some probabilistic features (Table 3).

5.3. Multi-scale prediction of the maximal, minimal and range
amplitude roughness
Fig. A.2. Autocorrelation functions of simulated surfaces with modified Weierstrass
function obtained with different low frequencies truncation d = 0 (no truncation),
and d ∈ {4, 8, 10} presented in Fig. A.1.
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ig. A.3. Values of autocorrelation lengths of autocorrelation functions presented
n Fig. A.2 with their 95% associated confidence intervals.

nitial one, i.e. one wants to estimate Yx
max(700 �m). By supposing

hat at this scale data are independent, then the maximal amplitude
x,x′
max(700 �m) is given by:

x,x′
max(700 �m) = max(Yx

max(350 �m), Yx′
max(350�m)) (22)

or two possible values of x and x′.
In an algorithmic point of view, to obtain Yx

max(700 �m), two
alues that follow Yx

max(350 �m) lambda distribution are gener-
ted (using an appropriate random data generator) and a value of
x
max(700 �m) is then obtained by taking the maximal values of
hese two generated values. By repeating a high number of times
his procedure, the probability density function of Ymax(700 �m)
an be obtained. This method can be applied at higher scales l:
= k × 350 �m, k ∈ {2,3,4,. . .}) and the values of Yx

max(k × 350 �m)
re obtained by taking the maximal value from k values generated
rom the Yx

max(350 �m) lambda distribution. To simulate a random
umber that follows a lambda distribution of parameters (�1, �2,
3, �4), the following equation is used:

�3 �4
(u) = �1 + (u − (1 − u) )
�2

(23)

here u is a uniform random number between 0 and 1 and p(u) is
generated random value.

ig. A.4. Error on Rt prevision at 8000 �m versus the windows length (in %) on which
xtreme values are computed and thus for different d values, i.e. different correlation
engths.
Fig. A.5. Plot of the autocorrelation length versus this critical value (Fig. A.4) repre-
senting an error on Rt prevision at 8000 �m less than 10%.

In this paper, we note this predicted value Ŷ l0,k
max, where l0 is

the length from which extreme roughness is measured and mod-
elled by the lambda distribution, and k is an integer magnification
coefficient to predict the extreme roughness amplitude at an eval-
uation length equal to l0 × k. To illustrate the prediction method,
PDF of Ŷ350 �m,k

max and Ŷ350 �m,k
min are computed for k ∈ {1, 2, 5, 10,

20}. Fig. 16 represents these PDF functions obtained from 100,000
Monte-Carlo simulations. As it can be observed, the PDF mode
increases with magnification k. Fig. 17 represents the means of
Ŷ350 �m,k

max , Ŷ350 �m,k
min and R̂350 �m,k

t PDF versus the evaluation length
l = k × 350 �m. Without any doubt, it is possible to predict the max-
imal and minimal roughness at all scales longer than 2000 �m by
analyzing the roughness at an evaluation length of 350 �m. How-
ever, when the maximal range amplitude R̂350 �m,k

t is computed, a

high inaccuracy appears in our modelling. The R̂350 �m,k
t minimizes

the real value to the peak-to-valley parameter amplitude because
Rt does not follow an extreme value statistic (Bigerelle et al., 2007).
However, to predict its value, it is possible to use the extreme value
theory on the minimal and maximal amplitude and thanks to the
general relation:

R̂350 �m,k
t2 = Ŷ350 �m,k

max − Ŷ350 �m,k
min (24)

The R̂350 �m,k
t2 parameter models the peaks to valley amplitude

from 350 �m until more than 1500 �m (Fig. 17).
In the preceding case, all previsions of maximal roughness

parameters are estimated by taking the origin sampling condition
to l = 350 �m (end of the fractal Stage II.a). Now, the same result is
proceeded by taking the origin in all the stages (Stages I, II.a, II.b)
(l0 ∈ {0.2, 0.5, 1, 2, 50, 360} �m). Fig. 18 shows the evolution of
the three predicted roughness parameters R̂l0,k

t2 , Ŷ l0,k
max and Ŷ l0,k

min for
these different origins l0. As it is observed for all parameters, the
predictions always hold for l = 350 �m, i.e. greater than the auto-
correlation length, with a very good accuracy. This means that the
sub-stage II.b described in our section is an extreme value stage

and that the other stages do not exhibit this structure as we have
claimed in the preceding chapters. Some more cases are tested to
check our results: simulations are then carried out on a Weierstrass
function that we have modified to obtain different autocorrelation
lengths with same fractal dimension (Appendix A). To limit the Rt

prediction error at less than 10%, the threshold value l0 must be
higher than half the autocorrelation length.
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. Conclusion

The multi-scale analysis shows that belt finishing process cre-
tes a fractal structure on tooled surfaces until a critical length that
s related to the profile autocorrelation length. When surfaces are
ecorded by a tactile profilometer, a stage that represents a smooth-
ng effect due to the tip of curvature and less or equal to the tip
adius diameter appears. It has been shown that the fractal stage
oes not present a linear part (in a log–log plot) due to a bias in
ampling. If a fixed number of data is used to compute rough-
ess parameters in the multi-scale windows, then a perfect linear
elation emerges and allows to perfectly calculate the fractal dimen-
ion. We also show that experimental surfaces obtained by BFP can
e modelled by fractal functions and a stochastic model at all scales.
fter the fractal threshold, a stage is characterized by the extreme
alues theory. An alternative methodology to the Gumbel approach
as presented in order to estimate accurately the maximal peaks

nd minimal valleys. Based on the generalized lambda distribution
nd the Monte-Carlo simulation, the distribution of extreme val-
es is predicted on a range greater than the measured one with
onfidence interval of the maximal valleys and peaks and also the
oughness parameters “peak-to-valley”. This methodology is a con-
ribution to estimate control tolerance in the field of high precision
urfaces obtained by abrasion processes and may be applied to
ther tooled surfaces.

cknowledgment

This work was supported by the CETIM (Centre Technique des
ndustries Mécaniques) foundation, located at Senlis (France) in
he Project “Nouvelles méthodes d’analyse des états de surfaces: de
a caractérisation à la recherche de paramètres pertinents”.

ppendix A. Determination of the threshold of the extreme
alues stage

We have shown that the extreme values stage holds if the thresh-
ld from which the extreme values are predicted is greater than
he autocorrelation length. To verify this purpose, the Weierstrass
ractal function is used and extreme value stage is computed. The

eierstrass function is defined as follows:

(x) =
n=+∞∑

n=0

an w−nH(cos(wnx + ϕn))

here � = 2 − H is the fractal dimension, an gaussian random num-
ers and ϕn uniform random numbers belonging to the range 0 and
�.

We modify this function as follows:

(x) = A

n=+∞∑
n=d

an w−nH(cos(wnx + ϕn))

This transformation does not change the fractal dimension but
he function has lost its statistical self-affinity. This function is nor-

alized to unity in amplitude with the A factor. As a consequence,
he higher d is, the lower the low frequencies amplitude is then
he lower the autocorrelation length is. We have selected the value
or the fractal dimension � = 1.5 (Brownian motion). 10 profiles
re simulated for each d value, d varying from 0 to 15. (Fig. A.1).
ig. A.2 represents the mean autocorrelation functions. As it can

e observed, the autocorrelation length decreases logarithmically
ith respect to the d value (Fig. A.3). Then the extreme values are

omputed from a given origin and the error on Rt at 8000 �m is
valuated. Fig. A.4 represents the error on Rt prevision at 8000 �m
ersus the windows length (in %) on which extreme values are
sing Technology 209 (2009) 6103–6116 6115

computed and thus for different d values, i.e. different correlation
lengths. For a given d, error on Rt predicted at 8000 �m decreases
with the values from which extreme values are computed. For
a given initial values from which extreme values are computed,
the error decreases with d value, i.e. the autocorrelation length
decreases. An error less than 10% is fixed on the Rt prediction and
the minimal values from which extreme values must be computed
to guaranty this prediction is evaluated. Finally, the autocorrelation
length is plotted versus this critical value (Fig. A.5) that shows that
the windows from which the extreme value stage holds lies around
50% of the autocorrelation length of the profile.
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