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Abstract. Detecting community structure discloses tremendous infor-
mation about complex networks and unlock promising applied perspec-
tives. Accordingly, a numerous number of community detection methods
have been proposed in the last two decades with many rewarding discov-
eries. Notwithstanding, it is still very challenging to determine a suitable
method in order to get more insights into the mesoscopic structure of
a network given an expected quality, especially on large scale networks.
Many recent efforts have also been devoted to investigating various qual-
ities of community structure associated with detection methods, but the
answer to this question is still very far from being straightforward. In
this paper, we propose a novel approach to estimate the similarity be-
tween community detection methods using the size density distributions
of communities that they detect. We verify our solution on a very large
corpus of networks consisting in more than a hundred networks of five
different categories and deliver pairwise similarities of 16 state-of-the-art
and well-known methods. Interestingly, our result shows that there is
a very clear distinction between the partitioning strategies of different
community detection methods. This distinction plays an important role
in assisting network analysts to identify their rule-of-thumb solutions.

Keywords: community detection, similarity metric, community size,
comparative analysis

1 Introduction

Community detection discloses interesting information about the heterogeneous
structure of complex networks and opens promising perspective in many theo-
retical as well as applied domains [8,23,24]. Although showing a high similarity
with traditional unsupervised data clustering, community detection techniques
have just been becoming prosperous in the last two decades remarked by the in-
vention of modularity [14] and the availability of a large volume of networks from
small scale to very large scale thanks to the development of Internet and notably
social platforms. Since then, a numerous number of detection techniques with
various approaches have been proposed [3,5] to solve this network decomposition
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problem. Even though communities are widely assumed to be sub-graphs where
nodes are more densely connected relatively to the rest of the network, there is
no commonly accepted standard process to evaluate the accuracy of detection
methods. Indeed, the notion of goodness varies according to contextual objective
and also the assumption about the underlying network model. By consequence,
there is normally a confusion when one needs to find the most suitable method
among available ones that is presumed to satisfy some specific requirements in
outcome quality.

Meanwhile, the stated issue leaves behind rooms for developing theoretical
and empirical techniques for comparing community detection algorithms. Actu-
ally, new methods are usually introduced in accompany with quality evaluation
based on many variants of Mutual Information [27] or modularity. These two
approaches work well to validate the functionality of proposed methods in ad-
hoc networks but are not directly interpretable in a comparative evaluation of
clustering quality. Actually, the former ones do not provide structural informa-
tion of detected communities and the latter ones are dependent on hypotheses
about null models. In other words, equivalent scores do not directly ensure an
equivalence of partition quality.

In this paper, we are interested in estimating pairwise similarity of commu-
nity detection methods based on expected community size. These estimates also
reveal information about the closeness in terms of number of communities - a
very important and intuitive characteristic of clustering algorithms - which is
considered as an essential perspective in community detection literature [5] and
recently addressed by many in-depth researches [7,19]. Specifically, we conduct
an empirical experiment to inspect a large number of state-of-the-art and widely
used community detection methods and estimate their similarity using size dis-
tribution of communities that they discover on a large dataset of networks across
several domains. The result of our analysis implicates that community detection
methods can be classified in three well discernible groups exhibiting three es-
sential strategies of node partition. These strategies produce a great impact on
the outcome of community detection methods, making them very distinctive.
We will show that this taxonomy exposes very useful information for proposing
appropriate methods according to expected analysis strategy.

2 Estimating the similarity of community detection
methods

We present a novel approach to determine the similarity of community detection
methods using the size distribution of communities that they discover. Certainly,
this is only one among interesting quality aspects that differentiate one method
from the others. Nonetheless, it allows to get more insight into the difference in
terms of partitioning strategy.

Specifically, a very naive but efficient approach to evaluate the similarity of
two methods is to inquire into the “closeness” of the two corresponding com-
munity size distributions. As such, two methods could be supposed to be similar
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Fig. 1. The size distributions of communities detected by two different methods.

if their corresponding density distributions expose a large intersection area as
shown in Fig. 1(a). From this notice, we can define our new similarity function
as follows.

First, we denote two 2-tuples (A, na) and (B, nb) being the multisets repre-
senting all communities detected on a set of networks G = {G} by method A
and method B respectively, where A = {xa1 , xa2 , ..., xar} and B = {xb1, xb2, ..., xbs}
being the ascending ordered sets of sizes of communities: 1 ≤ xa1 < xa2 < ... < xar
and 1 ≤ xb1 < xb2 < ... < xbs. The multiplicity functions na : A → N≥1 and
nb : B → N≥1 measure the number of communities of sizes xai and xbi respec-
tively. Let Na =

∑r
i=1 n

a(xai ) and N b =
∑s

i=1 n
b(xbi ) being the total number of

communities of all sizes detected by each method, we define a similarity function
describing the closeness of A and B on G as:

SG(A,B) =
1

2

r∑
i=1

s∑
j=1

min

{
na(xai )

Na
,
nb(xbj)

N b

}
δ(xai , x

b
j), (1)

where δ(xai , x
b
j) = 1 if xai = xbj and 0 otherwise. Equation (1) is simply the

common fraction of same-size communities detected on G by both A and B:
0 ≤ SG(A,B) ≤ 1. This definition seems to be intuitive but does not work well
in practice. As illustrated in Fig. 1(b), when the sizes interlace each other, a low
score will be produced although the similarity in this case is as much as that of
the case of Fig. 1(a). Choosing an appropriate binning interval would mitigate
the problem. This solution is, however very inflexible, sensible to the characteris-
tic of data as well as to the functionality of the methods in use. A straightforward
alternative can be envisioned by using a kernel density estimator to uncover the
probability density functions as shown by the solid lines in Fig. 1(b). In this
way, we approximate the common fraction of same-size communities of Equa-
tion (1) by the overlapping area of two corresponding continuous distributions.
The premise behind this estimation is that two similar methods must not com-
pulsorily produce a large portion of exactly same-size communities, but a large
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portion of comparable-size ones. Hence, we consider the following estimator to
take in local information of community size x0:

f̂(x0) =
1

hn

∑
i

K

(
xi − x0
h

)
, (2)

where h is the bandwidth controlling the neighborhood interval around x0 and
K is the kernel function controlling the weight given to the observations {xi}
chosen as Gaussian in our analysis. Using this estimator, we rewrite the similarity
function defined in Equation (1) as follows:

SG(A,B) =

∫
min{f̂ (a)(x), f̂ (b)(x)}dx, (3)

where

f̂ (u)(x) =
1

hNu

Nu∑
i

[
nu(xui )K

(
xui − x
h

)]
, (4)

with u ∈ {a, b}. In the estimations of this paper, the bandwidth h is selected
based on the normal reference rule [26] to minimize the mean integrated squared
error. The only exception is the cases illustrated Fig. 3 where a higher value has
been chosen to get a higher smoothing quality for a better illustration.

Using Equations (3) and (4) to estimate the similarity between pairs of de-
tection methods on a large dataset will help us discovering different behaviors of
community detection methods. Since the accuracy of the estimator depends on
the networks of the dataset that we analyze, the result will obviously relativized.
However, a large and representative corpus would help to reduce the dependency
impact.

3 Community detection methods

A community is roughly described as a group of nodes in a graph where there
must be many edges connecting them together than edges connecting the com-
munity with the rest of the graph [5]. However, in practice, this concept is math-
ematically or algorithmically formulated in different ways engendering various
discovery approaches. In this paper, we select a representative set of state-of-the-
art and widely studied detection methods whose approaches spread out over the
most commonly used in the literature. These methods are summarized in Table 1
with corresponding information. Their approaches could be briefly summarized
as follows:

– Edge removal: In this approach, inter-community edges in a network are
gradually removed in order to disconnect densely connected groups. The
problem of community detection is translated to identifying candidates for
inter-community edges based on their topological positions. Popular tech-
niques include using edge betweenness centrality (GN in Table 1) or edge
clustering coefficient, which could be based on triangular (RCCLP-3) or
quadrangular (RCCLP-4) patterns.
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Table 1. Community detection methods and associated implementations involved in
our analyses grouped by different methodological approach. The label column denotes
the corresponding abbreviations used in our paper.

Approach Method Label Source

Edge removal
Girvan-Newman [14] GN igraph1

Radicchi et al. [16] RCCLP-3 (for g = 3) Authors2

Radicchi et al. [16] RCCLP-4 (for g = 4) Authors2

Modularity optimization
Clauset et al. [2] CNM igraph1

Blondel et al. [1] Louvain Authors3

Newman [13] SN igraph1

Dynamic process
Pons et al. [15] Walktrap igraph1

Rosvall et al. (2007) [22] Infomod Authors4

Rosvall et al. (2009) [21] Infomap Authors5

Statistical inference
Lancichinetti et al. [10] Oslom Authors6

Riolo et al. [19] (DC)SBM Authors7

Other methods

Reichardt et al. [18] RB igraph1

Raghavan et al. [17] LPA igraph1

Xie-Szymanski [28] SLPA Authors8

Demeo et al. [12] Conclude Authors9

1 http://igraph.org/ (Available in R, Python and C/C++)
2 http://homes.sice.indiana.edu/filiradi/resources.html
3 https://sourceforge.net/projects/louvain/
4 http://www.tp.umu.se/∼rosvall/code.html
5 http://www.mapequation.org/
6 http://www.oslom.org/
7 http://www-personal.umich.edu/∼mejn/
8 https://sites.google.com/site/communitydetectionslpa/
9 http://www.emilio.ferrara.name/code/conclude/

– Modularity optimization: Methods in this approach use a common objec-
tive function called modularity [14], but have different optimization strate-
gies. The modularity function measures the quality of a partition by calcu-
lating the difference between the fraction of intra-community edges of the
partition with the expected of such fraction in the associated partition whose
edges are redistributed randomly following a null model.

– Dynamic process: Methods in this group do not use directly topological
information in order to deduce densely connected subgraphs. Instead, they
exploit stochastic information from various dynamic models regulated by
network structure in order to deduce community structure.

– Statistical inference: This approach takes into consideration the statisti-
cal significance of community structure based on different theoretical net-
work models. Such methods usually optimize likelihood functions to find the
best configuration fitting hypothetical assumptions using different searching
strategies.

– Other methods: Some approaches define implicitly or explicitly require-
ments about community structure or mix different traditional approaches to

http://igraph.org/
http://homes.sice.indiana.edu/filiradi/resources.html
https://sourceforge.net/projects/louvain/
http://www.tp.umu.se/~rosvall/code.html
http://www.mapequation.org/
http://www.oslom.org/
http://www-personal.umich.edu/~mejn/
https://sites.google.com/site/communitydetectionslpa/
http://www.emilio.ferrara.name/code/conclude/
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Table 2. A summary of network used in this analysis where Size is the number of
networks in each category, Nodes and Edges indicates the average number of nodes
and edges of networks respectively. This dataset is collected from [9,11,20].

Category Size Nodes Edges Notable networks

Biological 7 1860 10763 Yeast, brain, protein-protein interactions
Communication 9 39595 195032 Email, forums, message exchanges
Information 25 38358 159812 Amazon, DBLP, citation & education webs
Social 37 6888 49666 Facebook, Youtube, Google plus networks
Technological 19 18431 48494 Internet, AS Caida, Gnutella P2P networks
Miscellaneous 11 4298 49033 Ecology, power-grid, synthetic networks

Total size ∗ 108 1.99M 9.08M
∗The total number of networks, nodes and edges in the whole dataset respectively.

take the advantages of each one. In many cases, they can be classified into
one theoretical family or another. To simplify the theoretical taxonomy, we
present them in a common group.

To maintain the controllability of the experiment and to ensure the repro-
ducibility of the analysis, all of the above presented methods are studied with
the default parameters determined by the authors. The following section will
be dedicated to an introduction of the network dataset that will be used in our
experiment.

4 Network dataset

Our experiment requires a large number of networks in order to reduce the
impact of the irregularity which could be presented in a small set of ad-hoc
networks. Hence, presuming that networks in different domains possess vari-
ous structural particularities [4], we collect networks spanning of a variety of
categories which are widely studied in the research community. To ensure that
distribution of community size is allowed to be spread in a wide range, it is
very essential to gather networks from small scale to large scale. We cover net-
works from around 30 vertices up to 320000 vertices and a million edges. Table 2
encapsulates the principle information of networks involved in our experiment.

Fig. 2 exhibits the distribution of network size in each category. As we can
see, the marginal distributions on top imply that inside each category, networks
also span in a relatively wide range of size with some slightly differences from one
category to another. Additionally, the networks in this dataset are quite sparse.
The majority of networks has an average degree of approximately from 10 to 20
connections. Also, the number of edges increase linearly by the number of nodes
with equivalent rates among categories as can be deduced from the gradients of
the linear estimates.
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Fig. 2. Structural information of network employed in the experiment. The solid lines
represent estimated relations between number of nodes and number of edges in each
network category using a linear regression model. Accordingly, the translucent color
backgrounds represent the corresponding 95% confidence intervals.

5 Experimental results

The experimental procedure is simple. We gradually employ each method pre-
sented in Section 3 to discover community structures on the whole set of net-
works summarized in Table 2. When the whole set of communities is identified,
we proceed to measure the volumes of communities detected by each method to
identify the elements of the corresponding 2-tuples. Finally, we use the similarity
function defined by Equation (3) to estimate the closeness between each pair of
methods.

Due to the huge number of necessary experiments, only processes having a
reasonable theoretical estimated time and memory consumption are maintained
(less than a few days and require at most 30 to 40 GBytes of memory). The
outcome distributions are illustrated in Fig. 3.

As we can see, there is a clear difference in the densities of community size,
showing that these methods have various partitioning strategies. Knowing that
methods belonging to the same theoretical group (as shown in Table 1) are
placed next to each other, we can notice some agreements between the theoretical
families with practical outcomes as follows:

Edge removal: GN and RCCLP-3 have very similar distributions where a
large number of communities are very small. This is due to the fact that in
some highly local centralized networks having star-like structures, they have
a tendency to remove edges connecting hub and peripheral nodes, hence
create singletons (single node community). This phenomenon is less distin-
guishable on RCCLP-4 since there are much less quadrangular than trian-
gular connections in networks.
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Fig. 3. The distribution of community size contained in the partitions detected on
the networks of the dataset. The distribution are smoothed using a Gaussian kernel
estimator. The illustrative gradient color is for the ease of view purpose.

Modularity optimization: Modularity is known to suffer from resolution
limit phenomenon [6], which often aggregates small communities in large
scale networks. We can see from Fig. 3 that Louvain and SN found very large
communities as predicted. In the meanwhile, there are also a comparable
number of small communities found on small graphs. The behavior is a little
bit different on CNM method.
Dynamic process: Methods in this family show very discernible distribu-
tions. Although all based on dynamic processes, they have different assump-
tions about community structure and searching mechanisms. Therefore, the
closeness in the concept does not lead to a similarity in practical results.
Statistical inference: the Bayesian SBM and DCSBM uses Monte Carlo
sampling process which is very time demanding in order to sweep the so-
lution space. This makes the method unfeasible if the maximum number of
clusters is not limited. Indeed, in the default version, the maximum number
of communities is limited at 25 making (DC)SBM methods find very large
communities in general. On the other hand, Oslom method use a different
discovery mechanism and identify globally smaller communities.
Other methods: In this group, LPA, SPLA (both based on label propaga-
tion) and Conclude display nearly identical distributions. RB methods, being
based on a very close concept with modularity (with a tuning parameter),
exhibits a similarity with modularity optimization based methods.

Quantitatively, applying the estimator presented in Equation (4) to compute
pairwise similarities between the methods leads us to the results demonstrated in
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Fig. 4. The estimated proximity between detection methods. Similar methods share a
large fraction of same-size communities. Methods are ordered using hierarchical clus-
tering. The dendrogram proposes a hierarchical structure of the fitting closeness. Blue
colors mean high similarity.

Fig. 4. As we can see, according to the community size criterion, these methods
can be classified into different classes of partitioning strategy. The separations are
very shaped showing that the distinction is very clear between groups. Therefore,
we choose to characterize these methods by 3 (possibly 4) principle groups as
follows:

Group 1: RB, DCSBM, SBM, Infomod, SN, Louvain: Methods in this group
discover communities whose size vary in a very large spectrum, from very
small to very large communities. The characterized community size distri-
bution is quite flat, meaning all sizes are nearly equally considered on the
dataset.
Group 2: GN and RCCLP-3: These two methods identify a huge number of
very small communities including singletons regardless of network size. As a
consequence, there are few variations in community volume.
Group 3: the others: These methods produce communities whose sizes ap-
proach bell-shaped distribution. The strategy can be translated as: not left
not right, i.e. not too small and not too big communities.
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Fig. 5. The similarity of partitions average NMI

As we can see, the strategies that these methods partition networks are very
discernible. In fact, some other alternatives have been used to parametrize the
estimator such as regulating the bandwidth h by using cross validation or pilot
estimation of derivatives [25]; adapting other kernel functions K. However, the
only major difference is noticed at GN and RCCLP-3 methods, which are no
more highly similar. This variation is explainable since both GN and RCCLP-3
create a large number of very small communities, there are high spurious peaks
in the distributions making the estimation unfeasible. In the meanwhile, using
the original function of Equation (1) helps us to validate the closeness between
GN and RCCLP-3.

Also, it worth noting that we could not yet conclude whether two methods
are similar in a wide sense if their distributions are close; on the contrary we are
able to deduce that they are not similar if their distributions are too different.

6 Discussion and Conclusion

Our experimental taxonomy discloses a new source of information that some tra-
ditional evaluation methods could not directly expose. For example, we demon-
strate the similarity between partitions detected by these methods in Fig. 5 using
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Normalized Mutual Information (NMI) metric [27]. As we can see, one would
hardly identify and get insight into the differences between detection methods
in an intuitive way. In the meanwhile, using only community size distribution to
deduce the similarity of methods could lead to unexpected results. Specifically,
two methods could produce exactly the same sequence of community size, but
the way that nodes are distributed into the two partitions are totally different. In
this case, combining the two evaluation paradigms discloses complement infor-
mation that helps network practitioners to characterize and deduce appropriate
community detection methods. For instance, taking SBM and DCSBM, the av-
erage NMI score is approximately 0.5, which means that the two partitions are
quite different. However, Fig. 1 divulges that SBM and DCSBM produce com-
munities having quite similar sizes. In the case of LPA and SLPA on the other
hand, the two methods produce quite identical outcomes as there is a consistency
in the average NMI and our similarity index, which are all nearly 1.

Finally, the variation of the similarity according to the changing of input
dataset has not been investigated comprehensively to validate the consistency
of our result. In fact, it seems that the distributions illustrated in Fig. 3 have a
tendency to move to the left hand side if more small scale networks are involved
and inversely, to the right hand side if large scale networks are more implicated.
Also, the (in)consistency of each method to the variation of data would not be
at the same magnitude, i.e. some methods could be more “robust” in controlling
community size than others. A further investigation is deemed necessary and
promising as perspective.
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