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Abstract

The DOK1 tumor suppressor gene encodes an adapter protein that acts as a negative regulator of several signaling
pathways. We have previously reported that DOK1 expression is up-regulated upon cellular stress, via the transcription
factor E2F1, and down-regulated in a variety of human malignancies due to aberrant hypermethylation of its promoter.
Here we show that Epstein Barr virus (EBV) infection of primary human B-cells leads to the down-regulation of DOK1 gene
expression via the viral oncoprotein LMP1. LMP1 alone induces recruitment to the DOK1 promoter of at least two
independent inhibitory complexes, one containing E2F1/pRB/DNMT1 and another containing at least EZH2. These events
result in tri-methylation of histone H3 at lysine 27 (H3K27me3) of the DOK1 promoter and gene expression silencing. We
also present evidence that the presence of additional EBV proteins leads to further repression of DOK1 expression with an
additional mechanism. Indeed, EBV infection of B-cells induces DNA methylation at the DOK1 promoter region including the
E2F1 responsive elements that, in turn, lose the ability to interact with E2F complexes. Treatment of EBV-infected B-cell-lines
with the methyl-transferase inhibitor 5-aza-29-deoxycytidine rescues DOK1 expression. In summary, our data show the
deregulation of DOK1 gene expression by EBV and provide novel insights into the regulation of the DOK1 tumor suppressor
in viral-related carcinogenesis.
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Introduction

Cellular transformation induced by oncogenic viruses often

involves the activation of growth-promoting signaling pathways

and the inactivation of tumor suppressor genes. The downstream

of tyrosine kinase 1gene (DOK1) has emerged as a newly identified

tumor suppressor gene that encodes a multi-domain adapter

protein and acts as a negative regulator of signaling pathways

involved in several cellular functions. DOK1 inhibits cell

proliferation, down regulates MAP kinase activity, and has an

opposing role in leukemogenesis and promotes cell spreading,

motility, and apoptosis [1,2]. Functional studies showed that mice

lacking the DOK1 and/or DOK2 genes have a high susceptibility to

the development of lung adenocarcinomas [3] and exhibit

significant defects in their immune responses and immune cell

development, often developing myelo-proliferative and autoim-

mune diseases, e.g. lupus-like renal disease [4,5]. The DOK1 gene

locus is located in the human chromosome 2p13 region, which is

frequently rearranged in a number of human tumors [6].

Oncogenic tyrosine kinases such as p210BCR-ABL, the causative

mutation in chronic myelogenous leukemia (CML), and Src target

DOK1 for ubiquitin-mediated proteasomal degradation [7],

therefore promoting cell proliferation. We have reported a

frameshift mutation of the DOK1 gene in chronic lymphoid

leukemia (CLL) resulting in the expression of truncated DOK1

that is exclusively localized in the nucleus and loses its tumor

suppressive activities, in contrast with the cytoplasmic wild type

protein [8]. We also showed that DOK1 gene expression is

repressed in a large proportion of head and neck cancer (HNC),

lung cancer and Burkitt’s lymphoma [9], as a result of aberrant

hypermethylation of its promoter region. The inactivation of

DOK1 through promoter methylation also occurred in liver and

gastric cancers [10,11]. Thus, DOK1 emerged as a tumor

suppressor frequently altered in a variety of human cancers,

making it a potential marker and therapeutic target in cancer

control.

Epstein-Barr virus (EBV) is a c-herpes-virus that is widespread

in 90% of human populations. In the majority of individuals, EBV

persists as a permanent, asymptomatic infection of the lympho-

cytes B-lymphocyte pool [12]. EBV occasionally causes infectious

mononucleosis in adolescents [13] and is considered a human

carcinogenic infectious agent. Indeed, EBV is associated with the

development of different types of B-cell lymphoma such as

Burkitt’s lymphoma (BL), Hodgkin disease, lympho-proliferative
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disorders in immuno-deficient individuals, and nasopharyngeal

carcinoma [14,15,16]. EBV is also associated with gastric cancer

[17]. The oncogenic potential of EBV has been further

demonstrated by its ability to immortalize efficiently the primary

human B-cells in vitro in lymphoblastoid cell lines (LCLs) [18].

LCLs carry the EBV genome in an extra-chromosomal episome

state and express nine latent viral proteins: three trans-membrane

proteins (LMP1, LMP2A and 2B) and six nuclear antigens

(EBNAs 1, 2, 3A, 3B, 3C and LP), along with other non-translated

RNA products [12]. These viral products enhance the prolifera-

tion of quiescent B-cells and maintain the viral genome in its

episomal form. However, only EBNA1, 2, 3A, 3C, LP, and LMP1

are essential for the transformation of primary B-cells into LCLs

[19]. The latent membrane protein 1 (LMP1) is crucial for EBV-

induced B-cell immortalization. It is the only EBV latent protein

that displays transforming properties in vitro [20].

LMP1 protein is thought to alter cell growth transformation by

mimicking the activated forms of tumor necrosis factor receptor

(TNFR), CD40 and CD30 receptors [21,22,23]. Through its long

C-terminal cytosolic domain, LMP1 has the ability to induce

several signaling pathways, including the MAP kinase (both ERK/

MAPK and p38/MAPK), nuclear factor kappa B (NF-kB) and c-

Jun N-terminal kinase (JNK) [24,25,26,27]. The alteration of these

signaling pathways by LMP1 is essential for the oncogenicity of

EBV.

The presence of the EBV genome in several lymphomas, and its

ability to induce B-cell immortalization, and alter host-cell

expression profiles and epigenome (i.e. DNA methylation patterns)

strongly support an etiological role for EBV in these cancers. We

recently reported that the expression of DOK1 gene is repressed

through DNA hypermethylation in BL cell lines, it became of

interest to investigate the possible role of EBV in the inhibition of

DOK1 expression in infected B-cells. To date, very little is known

about the regulation of DOK1 expression by oncogenic viruses.

In the present study, we demonstrate a strong association

between EBV infection and DOK1 gene silencing via hypermethy-

lation of its promoter in EBV-infected cell lines. We show that

EBV infection in B-cells leads to epigenetic repression and CpG

methylation of the DOK1 gene and that LMP1 expression inhibits

DOK1 promoter activity via the recruitment of inhibitory

complexes including E2F1, pRB, DNMT1 and EZH2.

Results

EBV infection of primary human B-cells in vitro leads to
down-regulation of DOK1 expression

Based on our previous results that showed the down-regulation

of DOK1 expression in BL cell-lines [9], we evaluate whether this

event was linked to infection with EBV, a key risk factor for this

malignancy. Primary human B-cells, isolated from different

healthy donors, were infected in independent experiments with

recombinant EBV virus expressing the green fluorescent protein

(GFP-EBV). The infection efficiency was evaluated by flow

cytometry to monitor GFP expression (data not shown). The

expression of EBV genes EBNA1 and LMP1, as well as DOK1 was

determined by real-time PCR and western blot at different time

points post-infection (Figure 1A and B). EBV infection resulted

in a strong reduction of DOK1 mRNA and protein levels, which

was evident at 16 hours post-infection (Figure 1A). Similarly,

DOK1 mRNA and protein levels were strongly down-regulated by

EBV in three cancers B-cell lines (RPMI, BJAB and Louckes)

infected by EBV, as well as in EBV-immortalized lymphoblastoid

cells lines (LCLs) (Figure 1C and D). Together, these findings

highlight a role for EBV in down-regulating DOK1 gene

expression.

LMP1 plays a key role in the inhibition of DOK1
expression

The EBV oncoprotein LMP1 is essential for EBV-induced B-

cell immortalization by altering cellular gene expression via the

activation of several signaling pathways [28]. To determine

whether LMP1 can affect the expression of DOK1, we infected

the RPMI cells with wild-type GFP-EBV or GFP-EBV lacking the

LMP1 gene (EBVDLMP1). The infection efficiency was monitored

using flow cytometry for GFP expression (Figure 2A). In contrast

to wild-type GFP-EBV, EBVDLMP1 infection in primary B cells

and in RPMI cells did not significantly decrease DOK1 mRNA or

protein levels (Figure 2B and C). Re-expression of LMP1 in

EBVDLMP1 RPMI cells by retroviral transduction restored the

ability of EBV to down-regulate DOK1 expression, while

transduction of the same cells with empty retrovirus (pLXSN)

did not affect DOK1 mRNA or protein levels (Figure 2D and E),

highlighting the key role of LMP1 in this event. Accordingly,

expression of LMP1 alone in RPMI cells was sufficient to reduce

DOK1 mRNA and protein expression (Figure 2D and E),

whereas expression of other viral proteins, such as EBNA1, 2, 3A,

3B, and 3C, did not lead to down-regulation of DOK1 protein

levels (supplementary Figure S1A–C) In addition, transient

transfection of RPMI with increasing concentrations of LMP1

expressing vector resulted in the decrease of DOK1 expression is a

dose dependent manner (Figure 2F and G). Together, these data

underline the key role of LMP1 in EBV-mediated DOK1 down-

regulation in infected B-cells.

LMP1 down-regulates DOK1 expression by altering the
composition of the E2F transcription complex

We recently showed that the E2F1 transcription factor has a key

role in activation of DOK1 transcription [29]. The 500 nucleotide

upstream of the start site of the DOK1 promoter contains three

E2F1 responsive elements (RE) which appear to have a role in

Author Summary

Many oncogenic viruses exhibit cellular transforming
properties, often involving oncogenes activation and
tumor suppressor genes inactivation. The DOK1 gene is a
newly identified tumor suppressor gene with altered
expression via hypermethylation of its promoter in a
variety of human cancers, including head and neck, lung,
gastric and others. In addition, a correlation has been
reported between DOK1 aberrant hypermethylation and
the presence of oncogenic viruses such as hepatitis B virus
(HBV) in hepatocellular carcinoma (HCC) and Epstein-Barr
virus (EBV) in Burkitt’s lymphoma-derived cell lines. Here
we demonstrate for the first time that EBV is directly
involved in the inhibition of DOK1 expression in B-cells. We
show that EBV leads to epigenetic repression of DOK1
through increased DNA methylation of its promoter and
H3K27 tri-methylation. The LMP1 oncoprotein plays a key
role in the repression of DOK1 expression. It promotes the
formation and the recruitment to the DOK1 promoter of
transcriptionally inhibitory complexes composed of E2F1/
pRB/DNMT1 and of EZH2 which is part of the polycomb
repressive complex 2. Interestingly, one or more additional
EBV protein(s) cooperate(s) with LMP1 in inducing massive
DNA methylation at the DOK1 promoter, leading to the
loss of E2F1 complexes recruitment and even stronger
repression of DOK1 expression.

EBV Latency Leads to Epigenetic Repression of DOK1
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transcription activation; in particular the one at position 2498/2

486 (ERE1) [29]. Transient transfection experiments showed that

LMP1 was able to efficiently inhibit the activity of 2500/+33

DOK1 promoter cloned in front of the luciferase reporter gene

(Figure 3A). The addition of upstream regions (21000/2500 or

22000/2500) did not modify the pattern of LMP1 inhibition

(Figure 3A). In addition, LMP1 was not able to further decrease

the activity of DOK1 promoter harboring point mutations in ERE1

(Figure 3A). Together, these results suggest that LMP1 may exert

its inhibitory activity targeting the regulatory complexes able to

bind ERE1 within the 2500/+33 region of the DOK1 promoter.

Chromatin immuno-precipitation (ChIP) experiments using an

anti-E2F1 antibody showed that infection with wild-type GFP-

EBV significantly decreases the recruitment of E2F1 to ERE1 in

Figure 1. EBV infection in vitro inhibits DOK1 gene expression. Primary B-cells were isolated from healthy donor blood using negative
selection, and then infected with GFP-EBV recombinant virus. (A) mRNA levels of EBNA1, LMP1, and DOK1 were measured using real time PCR at
different time points 12, 16, 24, 36, and 48 hours post infection and normalized to GAPDH expression. The isolated primary B-cells were used as a
control (time point 0). Data are average of three independent experiments. (B) DOK1, LMP1, EBNA1, and b-actin protein levels were determined by
western blotting. (C) Total mRNA was extracted from RPMI, BJAB and Louckes cells two weeks after infection with GFP-EBV recombinant virus. The
respective non-infected cells were used as control. Similarly, mRNA was extracted from two LCLs and their original primary B-cells. The expression
levels of EBNA1, LMP1, and DOK1 were measured by real time PCR and normalized to GAPDH expression. (D) DOK1, LMP1 and b-actin protein levels
were determined by western blotting. DOK1 protein levels were quantified from two independent immunoblots and normalized to the
corresponding b-actin level (bottom of B and D).
doi:10.1371/journal.ppat.1004125.g001
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Figure 2. LMP1 plays a key role in EBV-mediated DOK1 silencing. RPMI cells were infected with GFP recombinant EBV wild type (GFP-EBV) or
lacking LMP1 (EBVDLMP1). (A) The infection was monitored using flow cytometry for GFP expression. (B and C) mRNA levels of EBNA1, LMP1, GAPDH
and DOK1 in these cells were determined using real time PCR and the indicated proteins expression were analyzed using western blotting. Both RPMI

EBV Latency Leads to Epigenetic Repression of DOK1
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RPMI and two independent LCLs (Figure 3B), while

EBVDLMP1 did not have any impact on this event in RPMI

(Figure 3B). Interestingly, LMP1 alone did not prevent the

recruitment of E2F1 to the DOK1 promoter in RPMI cells

(Figure 3B), although it is able to efficiently down-regulate DOK1

expression (Figures 2D, 2E, and 3A).

We next analyzed the chromatin organization within the DOK1

promoter in the same cells by monitoring the tri-methylation of

histone H3 at lysine 4 (H3K4me3) or at lysine 27 (H3K27me3)

which are events associated with transcriptionally active or inactive

chromatin, respectively. According to their ability to repress DOK1

expression, wild-type GFP-EBV or LMP1 alone induced an

increase of H3K27me3 and a decrease of H3K4me3 within the

DOK1 promoter compared with mock cells (Figure 3C). How-

ever, LMP1 was less efficient than the entire virus in promoting

these epigenetic changes (Figure 3C). In summary, although

LMP1 alone is not able to prevent the recruitment of E2F1 to the

DOK1 promoter, it is capable of inducing epigenetic changes and

inhibition of DOK1 transcription.

Based on these findings, we hypothesized that LMP1 mediates

DOK1 down-regulation by altering the composition of the E2F1

complex. To explore this possibility, we performed oligo pull-down

experiments using biotinylated DNA probes which contain a

region of the DOK1 promoter encompassing the wild-type or

mutated ERE1. Biotinylated DNA probes were incubated with

protein extracts from RPMI cells transduced with empty retrovirus

or with retrovirus expressing LMP1. In both extracts and as

expected, E2F1 was found associated with the DNA, while only in

the presence of LMP1 were three additional cellular proteins,

which are usually part of negative regulatory complexes of

transcription found associated with the DOK1 promoter fragment:

(i) the E2F1 inhibitor retinoblastoma (pRB), (ii) the DNA methyl-

transferase DNMT1 and (iii) the polycomb-group (PcG) 2 member

EZH2 (Figure 3D). Deletion of ERE1 prevented the association

of E2F1 in both cellular extracts. In addition, in LMP1-containing

extracts, mutation of ERE1 also significantly decreased the pRB

and DNMT1 protein levels precipitated with DNA (Figure 3D),

suggesting that both proteins are recruited in the same complex as

E2F1. With regard to EZH2, its binding to the DOK1 promoter

was less affected by the ERE1 mutation, indicating that it is

recruited by a different complex. Although LMP1 is able to

activate the NF-kB pathway, no binding of the p65 transcription

factor was found in both cellular extracts (Figure 3D). ChIP Re-

ChIP experiments in mock and LMP1-expressing cells confirmed

the data obtained in the pull-down assay. Indeed, Re-ChIP

showed that a significant proportion of E2F1 complexes recruited

to the DOK1 promoter contains pRB and DNMT1 proteins (80%

and 40% respectively), but not EZH2 (Figure 3E), which appears

to be associated with an independent complex.

Finally, the events occurring at DOK1 promoter were deter-

mined at early stages post-infection with EBV. We observed a

significant enrichment of pRB, DNMT1 and EZH2 recruitment to

DOK1 promoter in primary naive B cells infected with recombi-

nant GFP-EBV virus for 48 hours. Consequently, an increase of

H3K27 trimethylation (,5 folds) and CpG methylation (,10%)

was detected (Supplementary Figure S3). Thus, early stage of

EBV infection mimics the scenario observed in LMP1-expressing

cells.

In summary, these data show that LMP1 initiates the repression

of DOK1 expression by inducing the formation of transcriptional

inhibitory complexes.

LMP1-mediated NF-kB activation is required for DOK1
down-regulation

LMP1 has the ability to activate different signaling pathways,

such as NF-kB, MAPK p38, JNK, and MAPK/ERK [28]. To

explore the potential role of these pathways in DOK1 down-

regulation, RPMI cells infected with recombinant GFP-EBV were

treated with different chemical inhibitors specific for these

signaling pathways. No change was observed in mock or GFP-

EBV cells treated with the chemical inhibitors of the MAPK p38,

JNK, and MAPK/ERK pathways (SB203580, S600125 and

PD98059, respectively) (data not shown). However, DOK1 mRNA

and protein levels were found to be considerably increased in

GFP-EBV-infected cells treated with a specific inhibitor of NF-kB

(Bay11), but not in mock cells (Figure 4A and B). Similarly,

Bay11 treatment of LMP1-expressing cells increased the DOK1

mRNA and protein levels (Figure 4A and B). To further

demonstrate the role of NF-kB signaling in EBV-mediated DOK1

down-regulation, we inhibited the NF-kB canonical pathway by

expressing a non-degradable deletion mutant of IkBa (D-IkBa)

that lacks the first 36 amino acids at the N-terminus containing the

IKK-phosphorylated amino acid. Similarly to Bay 11, D-IkBa
expression in GFP-EBV RPMI cells led to an increase of transcript

and protein levels of DOK1 (Figure 4C and D). Accordingly,

transient transfection experiments using a plasmid containing the

DOK1 promoter cloned upstream of the luciferase gene showed

that D-IkBa antagonized LMP1 in inhibiting the DOK1 promoter

(Supplementary Figure S2).

The LMP1 protein has two important C-terminal cytosolic

domains named C-terminal activation region 1 (CTAR-1)

(residues 194–232) and 2 (CTAR-2) (residues 351–386). Both the

CTAR1 and CTAR2 domains have the ability to activate the NF-

kB pathway through their interactions with tumor necrosis factor

receptor (TNFR)-associated factors (TRAFs) [30], and TNFR-

associated death domain protein (TRADD) [31], respectively. In

particular, the CTAR2 domain is required for the activation of the

canonical NF-kB pathway, while the CTAR1 domain is critical for

the stimulation of the non-canonical NF-kB pathway [32]. The

LMP1 mutants AxAxA (mutated CTAR1), 378 stop (deleted in

CTAR2) and AxAxA/378 stop (mutated CTAR1 and deleted

CTAR2) were expressed in RPMI cells. Both LMP1 378 stop and

AxAxA/378 stop mutants failed to down-regulate the DOK1 gene,

but not the LMP1 AxAxA mutant, which still retained its ability to

suppress DOK1 expression at similar levels of wild-type LMP1

(Figure 4E and F). Therefore, LMP1 down-regulates DOK1

expression through its CTAR2 domain. In addition, we investi-

gated whether the LMP1-mediated NF-kB activation plays a role

in the formation of inhibitory complexes and their recruitment to

the DOK1 promoter. LMP1-expressing RPMI cells were cultured

in the presence of NF-kB inhibitor Bay11. No significant change in

and RPMI-EBVDLMP1 cells were transduced using retroviral vector pLXSN empty (Vector) or expression vector pLXSN-LMP1. The cells were collected
for mRNA and protein analysis. (D and E) The mRNA levels of EBNA1, LMP1, and DOK1 in these cells were determined using real time PCR and
normalized to GAPDH expression, while the indicated proteins expression were analyzed using western blot. RPMI cells were transiently transfected
with increasing amounts of pcDNA3 empty plasmid (Vector) or expression vector pcDNA3-LMP1. (F) Cells were collected for mRNA and protein
analysis. LMP1and DOK1 gene expressions were measured using real time PCR for RNA levels and normalized to GAPDH expression. (G) The indicated
protein levels were detected using western blotting. DOK1 protein levels were quantified from two independent immunoblots and normalized to the
corresponding b-actin level (bottom of C, E and G).
doi:10.1371/journal.ppat.1004125.g002
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Figure 3. LMP1 represses DOK1 promoter activity through the recruitment of E2F1/pRB/DNMT1 inhibitory complex. (A) RPMI cells
were transfected with the indicated firefly luciferase reporter pGL3-DOK1 promoter constructs along with increasing amounts of pcDNA3 LMP1.
Renilla luciferase was used as an internal control for the reporter assay. After 48 hours, cells were collected and processed for luciferase activity
measurement. The data are average of three independent experiments. (B) RPMI cells, RPMI cells infected with GFP-EBV recombinant virus, or GFP-
EBVDLMP1, RPMI cells transduced with empty pLXSN (V) or expression vector pLXSN-LMP1, and LCLs and their original primary B-cells were subjected
to quantitative ChIP assay using anti-E2F1 (KH 95) antibody or IgG. The DOK1 promoter was amplified by real-time PCR using specific primers flanking
the E2F-response element located at (2498/2486). Data were calculated as percentages of enrichment of input. Error bars indicate the standard
deviation from three independent experiments performed in triplicate. (C) The same cells from (B) were subjected to ChIP assay using the anti-H3K27
trimethylation antibody, anti-H3K4 trimethylation antibody or IgG. The DOK1 promoter and GAPDH promoter were amplified by real-time PCR. (D) In
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pRB and DMNT1 intracellular levels was observed, whereas EZH2

levels were slightly decreased (Figure 4H). However, oligo pull-

down experiments clearly showed that inhibition of the NF-kB

signaling affected the binding efficiency of pRB and DNMT1 to

DOK1 promoter, while E2F1 and EZH2 continued to be associated

with the DNA (Figure 4H). ChIP assay confirmed that inhibition

of NF-kB significantly decreased the recruitment of pRB and

DNMT1 to the DOK1 promoter (Figure 4G). Together, the data

show that activation of the canonical NF-kB pathway by LMP1 is

an important event for the down-regulation of DOK1 expression.

DOK1 gene silencing through DNA methylation is
associated with EBV infection in B-cells

In our previous study [9], we reported that DOK1 expression is

repressed in 64% of Burkitt’s lymphoma cell lines through DNA

hypermethylation of its promoter. These findings prompted us to

assess whether hypermethylation of the DOK1 promoter could be

ascribed to the presence of EBV. Using pyrosequencing and real-

time PCR, respectively, DOK1 methylation and expression levels

were measured in our experimental model. EBV infection of RPMI

cells led to hypermethylation of DOK1 promoter (Figure 5A). This

phenomenon was even more evident in LCLs (Figure 5A).

EBVDLMP1 was unable to promote DOK1 promoter methylation,

further underlining the importance of the viral oncoprotein in this

event. However, in agreement with the fact that LMP1 alone is

unable to displace E2F1 from the DOK1 promoter, low DNA

methylation was detected in RPMI cells expressing LMP1 alone

(Figure 5A). In addition, no further methylation was observed in

RPMI cells co-expressing LMP1 with other EBV proteins, i.e.

EBNA3A, 3B, or 3C (data not shown), suggesting that a more

complex pattern of viral gene expression is required to induce

hypermethylation of DOK1 promoter. Treatments with the methyl-

transferase inhibitor 5-Aza-29-deoxycytidine (5-Aza) significantly

affected DOK1 promoter methylation in LCLs and RPMI cells

infected with EBV (Figure 5A). As expected, 5-Aza treatment

rescued the recruitment of E2F1 to the DOK1 promoter in GFP-EBV

infected cells, while no change was observed in LMP1-expressing

cells (Figure 5B). However, an increase of DOK1 mRNA and

protein levels was observed upon exposure to 5-Aza in GFP-EBV-

infected cells (RPMI or LCLs) as well as in LMP1-expressing RPMI

cells (Figure 5C and D). This event correlates with the decrease of

H3K27me3 and the increase of H3K4me3 levels (Figure 5E).

Together, these data show that EBV induces hypermethylation

of the DOK1 promoter. Although expression of LMP1 alone

marginally promotes DNA methylation, deletion of its gene in the

EBV genome prevents the occurrence of this event. Thus, LMP1

appears to be essential, but not sufficient for hypermethylation of

the DOK1 promoter.

Re-expression of DOK1 in LCLs decreased cellular
proliferation and induced apoptosis

To understand the biological significance of EBV-induced

DOK1-down-regulation, we re-expressed DOK1 in LCLs. We

observed that ectopic DOK1 levels decreased LCL proliferation in

a dose-dependent manner (Figure 6A). Consistently with these

observations, DOK1 induced a significance decrease of cell

populations in G0/G1 and G2/M phases (Figure 6B). In

addition, high levels of DOK1 led to a significant increase of

subG0 population and AnnexinV-positive cells (Figure 6B and
C).Together, these data demonstrate the role of DOK1 in

inhibiting cell proliferation induced by EBV and promoting both

cell growth arrest and apoptosis.

Discussion

Several studies have demonstrated that the loss of DOK1

function is a key event in human carcinogenesis [1,3,4,9,33].

Indeed several mechanisms of DOK1 inactivation have been

characterized so far DOK1 expression was found to be silenced by

hypermethylation of its promoter in a variety of human cancers,

including, head and neck, lung, gastric and liver cancer as well as

in Burkitt’s lymphoma-derived cell lines [9,10,11]. In addition,

DOK1 was found to be mutated in chronic lymphocytic leukemia

(CLL) [8]. At the protein level, DOK1 is targeted for proteasome

degradation triggered by oncoprotein kinases (OTKs) such as

p210bcr-abl and oncogenic forms of Src [7].

A recent study has provided evidence that DOK1 inactivation

also occurs in virus-induced cancers [10]. Indeed, a correlation

between DOK1 aberrant hypermethylation and the presence of

hepatitis B virus (HBV) has been reported in hepatocellular

carcinoma (HCC) [10]. Similarly, the expression of DOK1 mRNA

was found to be down-regulated in cell lines derived from Burkitt’s

lymphoma [34], a pathological condition associated with EBV

infection. However, these initial findings do not provide evidence

about whether the down-regulation of DOK1 expression is directly

induced by the viral proteins or is a consequence of the

chromosomal alterations occurring during the carcinogenic

processes. In this study, we demonstrate for the first time that

EBV is directly involved in the inhibition of DOK1 expression. Our

data show that the EBV LMP1 oncoprotein plays a key role in this

event. Indeed, an EBV mutant lacking the entire LMP1 gene was

unable to inhibit DOK1 transcription, while re-expression of LMP1

in cells infected with the EBVDLMP1 mutant fully restored the

ability of EBV to decrease DOK1 mRNA and protein levels.

Expression of LMP1 alone in human cancer B-cells was sufficient

to efficiently inhibit DOK1 transcription by promoting the

formation of a transcriptional repressor complex containing

E2F1, pRB, and the DNA methyl-transferase DNMT1. In

addition, deletion of the E2F1-binding element (ERE1) strongly

affected the binding of three cellular proteins to the DOK1

promoter, and a Re-ChIP assay confirmed that E2F1 is the carrier

of pRB and DNMT1. We also observed that LMP1 promotes the

recruitment of the histone-lysine N-methyl-transferase EZH2

independently of E2F1, leading to an increase in the level of

H3K27me3. In agreement with the recruitment of the two

epigenetic enzymes, an increase in H3K27me3 and DNA

methylation levels was detected at the DOK1 promoter.

vitro DNA pull-down assay. The DOK1 promoter region containing the original E2F-response element located at (2498/2486) or a mutated one
(obtained by replacing the core GGCG of the consensus sequence with AAAA), was amplified by PCR using specific 59biotinylated primers. The PCR
products (agarose gel, bottom panel) were incubated with total lysate from RPMI cells transduced with empty pLXSN (Vector) or expression vector
pLXSN-LMP1, and then pulled down using streptavidin-agarose beads. Immunoblotting was used to check the recruitment of E2F1, pRB, DNMT1,
EZH2 and p65 to the different PCR fragments. b-Actin was used as a negative control of binding to DNA. (E) Transduced RPMI cells with empty pLXSN
(Vector) or expression vectorpLXSN-LMP1 were used for quantitative ChIP Re-ChIP assay. To assess the individual recruitment of E2F1, pRB, DNMT1,
and EZH2 to the DOK1 promoter, chromatin was immuno-precipitated (IP 1) with the indicated antibodies and IgG was used as a negative control
(top). To determine the E2F1 association with the indicated factors, E2F1 chromatin complex (IP 1) was subjected to Re-ChIP (IP 2) using the indicated
antibodies (bottom). The DOK1 promoter was amplified using real time PCR and data from IP 1 and IP 2 were calculated as percentage of total input.
doi:10.1371/journal.ppat.1004125.g003
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Figure 4. LMP1-mediated NF-kB activation is required for EBV-related DOK1 down-regulation. RPMI cells transduced with empty
retroviral pLXSN (Vector), expression vector pLXSN-LMP1, or infected with GFP-EBV recombinant virus were treated with Bay11 or the equivalent
volume of DMSO (Mock). (A) mRNA levels of LMP1 and DOK1 were measured by real time PCR, and normalized to GAPDH expression. (B) The
indicated proteins were detected using western blotting. RPMI cells were transfected with pcDNA3 empty plasmid (Vector), expression vector
pcDNA3-LMP1 and/or expressing the super-repressor IkBa (DIkBa), while RPMI cells infected with GFP-EBV recombinant virus were transfected only
with pcDNA3 empty (Vector) or expression vector of the super-repressor IkBa (DIkBa). After 48 hours, cells were collected for analysis. (C) mRNA
levels of LMP1 and DOK1 were measured by real time PCR, and normalized to GAPDH expression. (D) The indicated proteins were detected using
western blotting. RPMI cells were transfected with empty pLXSN (Vector), or expression vector pLXSN-LMP1 wild type (WT), LMP1 mutant for the
CTAR1 domain (AxAxA), and CTAR2 domain (378 stop), or both CRAT1 and 2 domains (AxAxA/378 stop). After 48 hours, cells were harvested for
expression analysis. (E) mRNA levels of LMP1, GAPDH and DOK1 were measured using real time PCR. (F) The indicated proteins were detected using
western blotting. DOK1 protein levels were quantified from two independent immunoblots and normalized to the corresponding b-actin level
(bottom of B, D and F). Stable RPMI cells with empty pLXSN (Vector), or expression vector pLXSN-LMP1, were treated with Bay11 or the equivalent
volume of DMSO (Mock). (G) Cells were subjected to quantitative ChIP assay using the indicated antibody or IgG. The DOK1 promoter was amplified
by real-time PCR using specific primers flanking the E2F-response element located at 2498/2486. Data were calculated as percentages of enrichment
of total input. Error bars indicate the standard deviation from two independent experiments performed in triplicate. (H) In vitro DNA pull-down assay.
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It has previously been shown that LMP1 is able to increase the

expression and activity of DNA methyl-transferases (DNMT 1, 3a,

and 3b), which could explain the increase of the DOK1 promoter

methylation. Interestingly, DNA methylation was strongly enhanced

in B-cells infected by the entire virus compared with cells expressing

only LMP1. Thus, it is likely that additional viral products may

cooperate with LMP1 in promoting DOK1 silencing via DNA

methylation. No down-regulation of DOK1 was observed when

EBNA1, 2, 3A, 3B, and 3C are expressed in RPMI cells. In addition,

none of these viral proteins further stimulate DNA methylation at

DOK1 promoter when co-expressed with LMP1 (data not shown).
Thus, a more complex pattern of viral gene expression may be

involved in the hyper-methylation of DOK1 promoter. Most

importantly, we show that in EBV-infected B-cells the DNA

methylation extends over a large region of the DOK1 promoter

including ERE1 that loses the ability to recruit the active form of

E2F1. Inhibition of DNA methylation significantly increases DOK1

transcription in LMP1-expressing cells as well as EBV-infected cells.

In summary, based on our findings, a two-step model can be

proposed for EBV in the inhibition of DOK1 expression (Figure 7).

In the first step, LMP1 favors the formation and recruitment of

transcriptional repressor complexes containing E2F1/pRB/

DNMT1 and EZH2. These complexes induce epigenetic changes

in the DOK1 promoter region, leading to its inhibition. In the

second step, LMP1 in collaboration with other EBV proteins leads

to further increase of DNA methylation which in turn results in a

loss of all transcriptional regulatory complexes and a strong

repression of the DOK1 promoter. These data corroborate our

previous studies that highlighted the key role of E2F1 and DNA

methylation in the regulation of DOK1 expression [29]. Our data

also show that the LMP1-induced DOK1 down-regulation is linked

to activation of the NF-kB canonical pathway. Indeed, NF-kB

activation by LMP1 plays a role in the formation and recruitment

of inhibitory complex E2F1/pRB/DNMT1 to the DOK1 promot-

er. Although we did not observe any recruitment of p65 to the

DOK1 promoter, neither by DNA-pull-down assay nor by

chromatin immuno-precipitation (data not shown), we cannot

exclude the involvement of other NF-kB transcription factors.

Until now, several studies reported that DNA methylation

patterns were higher in EBV positive tumors compared to the

EBV-negative ones and that EBV infection was clearly demon-

strated to induce specific methylation epigenotypes that lead to

silencing of multiple tumor suppressor genes such as BIM,

p16INK4A, p14ARF, p73, E-cadherin and PTEN in EBV–associated

nasopharyngeal and gastric cancers [17,35,36,37,38]. While these

events are believed to be caused by elevated levels of DNMTs

induced by LMP1 and 2, the mechanisms establishing the

methylation patterns themselves are unknown. As DNA methyl-

transferases have little specificity in vitro, we propose the notion

that LMP1 triggers DOK1 gene repression through the recruitment

of DNMT1 to its promoter in a specific manner via E2F1-binding

to its response element, and this event might be an early step for

EBV-induced DNA methylation. As some of the genes listed above

are targets of E2F1 [39,40], it will be interesting to see whether

their methylation patterns are also specific to the recruitment of

the inhibitory complex E2F1/pRB/DNMT1. Moreover, EBV

appears to have an initiator role of epigenetic alterations and

therefore inducing oncogenesis, however, the latency expression

patterns of EBV genes differ in different cancers, which make

unclear the contribution of the virus to some types. One

explanation would be that EBV-induced epigenetic changes, such

as EBV-mediated DNA methylation of DOK1 promoter, are stable

events and could also persist even after the changes in EBV latent

gene expression. As DOK1 gene silencing was found to be related

to its promoter hypermethylation in gastric cancer [11], it will be

important to investigate whether these events are associated with

the presence of EBV in these cancers and others.

In conclusion, the present study sheds light on the association

between EBV infection and DOK1 down-regulation in B-cells. It

provides novel insights into the regulation of DOK1 in viral-related

carcinogenesis, and could define it as a potential cancer biomarker

and an attractive target for epigenetic-based therapy.

Materials and Methods

Expression vectors
Cellular and viral genes were expressed using the retroviral vector

pLXSN (Clontech, Palo Alto, CA) or the expression vector pcDNA-

3 (Invitrogen). The pLXSN-LMP-1 and the mutants LMP-1AxAxA,

LMP-1 378 stop, and LMP-1AxAxA/378 stop constructs have been

previously described [41]. The pGL3 basic luciferase reporter

(Promega) and pGL3 containing the DOK1 promoter constructs

have been described previously [29], The NF-kB super-repressor D-

IkBa, which lacks the coding sequence of the first 36 N-terminal

amino-acids, was kindly provided by Dr Elliot Kieff (Harvard

Medical School, Boston, Massachusetts, USA). The expression

plasmids pDEST-myc-EBNA1, pSG5-EBNA2, pDEST-myc-

EBN3A1, pDEST-myc-EBNA3B, pDEST-myc-EBNA3C were

kindly provided by Dr Evelyne Manet (ENS, Lyon, France).

Cells, transfection, and chemicals
RPMI 8226 cells were kindly provided by Dr Christophe Caux

(Centre Léon Bérard, Lyon, France). The EBV-negative immor-

talized B-cells, BJAB were previously described [42], and the

Louckes cells were kindly provided by Dr Evelyne Manet (ENS,

Lyon, France). The primary B-cells were isolated from total blood

of healthy donors using negative selection EasySep or RosetteSep

(StemCell Technologies). Primary naive B cells and RPMI cells

were infected with recombinant GFP-EBV, and GFP-EBVDLMP-

1 as described in [43,44,45], RPMI pLXSN-empty or pLXSN-

LMP1 cell lines were generated as described previously [41].

Expression of LMP-1 wild-type, LMP-1 AxAxA , LMP1 378 stop,

and LMP1 AxAxA/378 stop mutants in RPMI was achieved by

transduction with recombinant retroviruses [41]. The EBV-

immortalized lymphoblastoid cell lines (LCLs) were generated in

this study by infecting primary B-cells isolated from different

donors with recombinant EBV expressing GFP, as described

previously [41]. Primary and immortalized B-cells were cultured in

RPMI 1640 medium (GIBCO, Invitrogen life Technologies,

Cergy-Pontoise, France) supplemented with 10% FBS, 100 U/

ml penicillin G, 100 mg/ml streptomycin, 2 mM L-glutamine,

and 1 mM sodium pyruvate (PAA, Pasching, Austria). Expression

plasmids were transiently transfected in cells using Xtreme gene 9

reagents (Roche) according to the manufacturer’s protocol.

For treatment, cells were incubated in media containing different

reagents: with a final concentration of 1 mM of the NF-kB pathway

inhibitor Bay11 in dimethyl sulfoxide (DMSO) for 6 hours.

Inhibition of DNA methylation was performed by incubation for

The DOK1 promoter region containing ERE1 was incubated with total lysate from RPMI cells expressing LMP1 treated with Mock or Bay11, and then
pulled down using streptavidin-agarose beads. Immunoblotting was used to check the recruitment of E2F1, pRB, DNMT1, EZH2. b-Actin was used as a
negative control of binding to DNA.
doi:10.1371/journal.ppat.1004125.g004
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Figure 5. 5-Aza treatment rescue DOK1 expression in EBV infected cells. Cells were treated with 1 mM methyl-transferase inhibitor 5-Aza-
29deoxycytidine (5-Aza) for 4 days or equivalent volume of DMSO (Mock), then collected for analysis. (A) DNA methylation levels of the DOK1
promoter were measured using pyrosequencing. Each bar represents the percentage of methylation for individual CpG sites. (B) Quantitative ChIP
assay using anti-E2F1 (KH 95) antibody or IgG. The DOK1 promoter was amplified by real-time PCR using specific primers flanking the E2F-response
element located at (2498/2486). Data were calculated as percentages of enrichment of input. Error bars indicate the standard deviation (SD) from
two independent experiments performed in triplicate. (C) The mRNA expression levels of LMP1, GAPDH and DOK1 were determined using real time
PCR. (D) The indicated proteins were analyzed using western blotting. DOK1 protein levels were quantified from two independent immunoblots and
normalized to the corresponding b-actin level (bottom). (E) ChIP assays were carried out using anti-H3K27 trimethylation antibody, anti-H3K4
trimethylation antibody or IgG. The DOK1 promoter and GAPDH promoter were amplified by real-time PCR. Data were calculated as percentages of
enrichment of input.
doi:10.1371/journal.ppat.1004125.g005
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4 days with 5-aza-29-deoxycytidine (5-aza) at 1 mM (Sigma)

dissolved in DMSO. Cells were then harvested for analysis.

Quantitative RT-PCR
Total RNA was extracted using TRIzol reagent (Life Technol-

ogies). Reverse transcription was performed using the RevertAid

H Minus First Strand cDNA synthesis kit (Fermentas) according to

the manufacturer’s protocol. Real-time PCR was performed using

the following gene-specific primers:

DOK1: Fw ATGGACGGAGCAGTGATGGA, Rev CCCAG-

GTCTTCCTCCACCTC

LMP1: Fw CCCCCTCTCCTCTTCCATAG, Rev GCCAAA-

GATGAACAGCACAA

EBNA1: Fw GGACCCGGCCCACAACCTG, Rev CTCCT-

GCCCTTCCTCACCCTCATC

GAPDH: Fw GAAGGTGAAGGTCGGAGTC, Rev AAGA-

TGGTGATGGGATTTC. Data were analyzed using the DDCT

method.

Antibodies and immunoblotting
The following antibodies were used: anti-DOK1 (ab8112,

Abcam), anti-E2F1 (KH-95; Santa Cruz Biotechnology), anti- b-

Actin C4 (MP Biomedicals), anti-LMP1 (S12), anti- phosphor IkBa
(#9246, Cell Signaling Technology), anti-total IkBa (#9242, Cell

Signaling Technology), mouse IgG, rabbit IgG (Santa Cruz

Biotechnology), anti-p65 (#3034, Cell Signaling Technology),

anti-H3K4me3, and anti-H3K27me3 (Epigentek), anti-EZH2

(AC22; Cell Signaling Technology), anti-pRB (4H1, Cell Signaling

Technology), anti-DNMT1 (60B1220, Abnova), anti-EBNA1

(1EB12, Santa Cruz Biotechnology), anti-EBNA2 (Novocastra),

anti-EBNA3A (Exalpha), anti-EBNA3C (ab16128, Abcam). Immu-

noblotting was performed as described previously [29].

Reporter assays
Cells were transfected with 0.250 mg of pGL3 or DOK1

promoter constructs along with other experimental plasmids using

X-tremeGENE 9 (Roche Diagnostics). The Renilla construct was

included for normalization of transfection efficiency. At 48 hours

after transfection, cells were harvested and the enzyme activities of

firefly and Renilla luciferases were measured using the Dual-

Luciferase reporter assay system (Promega). The luminescence

signal was quantified using an Optocomp I luminometer (MGM

Instruments). Each condition was used in triplicate and replicated

in different independent experiments.

Figure 6. (A) LCL cells were transfected with the indicated amounts of empty pcDNA3 (Vector) or expression vector pcDNA3-Flag-
DOK1. After 24 hours post transfection, the cells were selected using G418 for 3 days, and then released. Viable cells were monitored for cell
proliferation using the BioRad TC10 automated counter. (B) LCL cells were monitored for cell cycle analysis 48 hours after being transfected with the
indicated amounts of pcDNA3 empty (Vector) or expression vector pcDNA3-Flag-DOK1. Cells in different cycle phases (SubG0, G0/G1, S, or G2/M) are
represented as percentage of total cells. (C) The same cells from (B) were monitored for apoptosis using Annexin V staining. Non transfected cells
were used as control (NT). Error bars indicate the SD from two independent experiments. Data were analyzed using Student’s t test (*, P,0.05).
doi:10.1371/journal.ppat.1004125.g006
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Chromatin immuno-precipitation (ChIP)
For each reaction, 106 cells were cross-linked with 1%

formaldehyde, harvested and subjected to sonication to shear

the chromatin into fragments of 0.2 kb, immuno-precipitated

with 2 mg of appropriate antibody, and then processed according

to the standard protocol for ChIP analysis from Cell Signaling

Technology.

Low cell ChIP kit (Diagenode) was used for primary B cells and

infected with EBV for 48 hours. 50 000 cells per reaction were

processed according to the manufacturer’s protocol.

The input and immuno-precipitated DNA from both methods

(standard and low cell) were then analyzed by real-time PCR using

primers flanking the E2F-response element (2498/2486) of the

DOK1 promoter: Fw GCCAAAACCGAGGACTTTCG, Rev

CATCACTGCTCCGTCCATGG, or primers for GAPDH pro-

moter: Fw GACGGCCGCATCTTCTTGT, Rev CCTGGTGA-

CCAGGCGC. Data were calculated as a percentage of enrich-

ment of input.

Re-ChIP assay
Following the initial anti-E2F1 ChIP (performed as above using

107 cells and 10 mg of anti E2F1 KH-95 antibody), up to the final

wash step with TE buffer, E2F1–chromatin complexes were eluted

by the addition of 10 mM dithiothreitol (DTT) and incubated for

30 minutes at 37uC. Supernatants were diluted 1:20 with re-ChIP

buffer (1% Triton X-100; 20 mM Tris–HCl, pH 8.1; 2 mM

EDTA; 150 mM NaCl; supplemented with protease inhibitors),

and immuno-precipitated a second time (IP 2) using 4 mg of

antibody against pRB, DNMT1, and EZH2. IgG was used as

negative control. The Re-ChIP mixtures were incubated overnight

at 4uC with rotation. Isolation and purification of associated DNA

were carried out as described for the standard ChIP experiment.

The binding of each factor was determined by real-time PCR as

previously described. Data were calculated as a percentage of

enrichment of total input.

DNA pull-down assay
Cells were lysed by sonication in HKMG buffer (10 mM

HEPES, pH 7.9; 100 mM KCl; 5 mM MgCl2; 10% glycerol;

1 mM dithiothreitol (DTT); and 0.5% NP-40) containing protease

and phosphatase inhibitors. Cellular debris was removed by

centrifugation. Then, 1 mg of total lysate was pre-cleared with

40 ml of streptavidin-agarose beads (Thermo Scientific) for 1 hour

at 4uC, with rotation, and incubated with 2 mg of biotinylated

PCR product oligonucleotides and 20 mg of poly (dI-dC) for

16 hours at 4uC, with rotation. Biotin-oligonucleotide-protein

complexes were collected with 60 ml of streptavidin-agarose beads

for 1 hour at 4uC, with rotation, washed twice with HKMG

buffer, separated on SDS-PAGE, and detected by western

blotting. The biotinylated double-stranded oligonucleotides were

amplified using the same primers as for ChIP with 59 biotin.

DNA extraction and pyrosequencing
Genomic DNA was extracted using the QIAamp DNA minikit

(Qiagen) and bisulfite converted using the EZ DNA Methylation-

Gold kit (Zymo Research). Converted DNA was then subjected to

Pyrosequencing (Qiagen) as previously described [46]. The

primers used to measure the methylation of DOK1 promoter

were: Fw GAGGTGGAGGAAGATTTG, Rev BIOTIN-CCA-

CACTCACACACTCAA, and sequencing primer AGTTTTG-

GGGGTGGT. The percentage of methylation was evaluated as

the mean of each CpG analyzed.

Figure 7. Schematic model of DOK1 gene regulation in EBV-infected cells. (A) In uninfected cells, DOK1 expression is activated via the
recruitment of the active form of the E2F1 transcription factor to its response element located at (2498/2486) on the DOK1 promoter. (B) In cells
expressing the oncoprotein LMP1, DOK1 is down-regulated through the recruitment of the inhibitory complexes E2F1/pRB/DNMT1 and EZH2 to its
promoter region. These complexes lead to the induction of partial DNA methylation and the increase of H3K27 trimethylation levels, respectively. (C)
In EBV-infected cells, DOK1 is repressed through heavy DNA methylation of its promoter region and the increase in H3K27 trimethylation level. These
events likely induce conformational changes in the chromatin, which become less permissive to E2F1 transcription factor recruitment.
doi:10.1371/journal.ppat.1004125.g007
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Flow cytometry analysis
To determine cell cycle profile, cells were collected 48 hours

post-transfection with empty pCDNA3 (Vector) or expression

vector pCDNA3-Flag-DOK1, washed twice with PBS 16, and

then cell pellets were re-suspended in 70% ethanol while

vortexing, in order to prevent cell clumps. After ethanol fixation

(30 minutes at 4uC) the cells were rewashed in PBS 16and finally

re-suspended in PBS 16+ 100 mg/mL RNAse (Roche) + 25 mg/

mL of Propidium iodide (Sigma).

Apoptotic cells were detected using the PE Annexin V apoptosis

detection kit I (BD Pharmingen) according to the manufacturer’s

instructions.

Stained cells for cell cycle and for apoptosis were detected using

the BD FACSCanto II flow cytometer (BD Biosciences) and

analyzed using FACSDiva software.

Ethics statement
Blood samples from healthy donors were provided by the

Etablissement Français du Sang (EFS, Lyon, France) after being

anonymized. All participants signed a written informed consent.

Supporting Information

Figure S1 Expression of latent EBV proteins EBNA1, 2,
3A, 3B, and 3C failed to down-regulate DOK1 gene
expression. RPMI cells were transfected with 0.5 mg of empty

vector or expression vector of myc-EBNA1 (A), EBNA2 (B), myc-

EBNA3A, 3B, or 3C (C). After 48 hours post-transfection, the

expression of the indicated proteins was determined using western

blotting.

(TIF)

Figure S2 Inhibition of LMP1 mediated NF-kB activa-
tion leads to the rescue of DOK1 promoter activity and
protein expression. (A) RPMI cells were transfected with pGL3

basic vector, or containing the DOK1 promoter construct (2500/+

33) along with pcDNA3 empty (Vector), expressing LMP1 or

different amounts of the super-repressor IkBa (DIkBa). The

Renilla luciferase was used as an internal control for the reporter

assay. After 48 hours, the cells were harvested and the luciferase

activities were measured. (B) The expression of the indicated

proteins was determined using western blotting.

(TIF)

Figure S3 Early stage infection with EBV leads to
epigenetic repression of DOK1 expression in primary
B cells. (A) Primary B cells were isolated from healthy donor

blood using negative selection, and then infected with GFP-EBV

recombinant virus. Genomic DNA was extracted at different time

points 12, 16, 24, 36, and 48 hours post infection, and DNA

methylation of DOK1 promoter was measured using pyrosequenc-

ing. (B) Primary B cells were infected with GFP-EBV recombinant

virus for 48 hours. Quantitative low cell ChIP assay was

performed to measure the individual recruitment of E2F1, pRB,

DNMT1, and EZH2 to the DOK1 promoter, and the levels of

histone 3 modifications (H3K27 trimethylation or H3K4

trimethylation). Non infected primary B cells were used as control.

Data was calculated as percentage of enrichment of total Input.

Statistical significance was measured using Student’s t test (*, p

value,0.05).

(TIF)
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