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This work describes an automatic method for removing modulated sinusoidal compo-

nents in signals. The method consists in using the Optimized Spectral Kurtosis for

initializing Series of Extended Kalman Filters.

The first section is an introduction to vibration applications with Kalman Filters and

modulated sinusoids. The detection process with OSK is described in the second section.

The third section concerns the tracking algorithm with SEKF for amplitude and frequency

modulated sinusoidal components. The last section deals with the complete process

illustrated with an experimental application on a rotating machine.

1. Introduction

In the field of Operating Modal Analysis (OMA) applied on structures like helicopters or large structures in energy

production, vibration signals are composed with random sources and periodic signals due to rotating machines which

cannot be shut down. It is a well-known problem that these harmonic components introduce mistakes in experimental

modes extraction by OMA algorithms. The present paper intended to solve this problem by tracking and removing

modulated sinusoidal signals in noisy records. The previous work has focused on the detection of sinusoidal components [1].

The present work aims to remove these sinusoidal components by using Series of Extended Kalman Filter [2].

In the field of vibrations, several works have already used Kalman filters for identification, detection, health monitoring

or tracking order. In identification and detection processes, Kalman Filters are performed for the localization of cracks on

rotating machines [3], for stiffness identification [4] or vibration force estimation [5,6]. Some health monitoring methods for

structures and rotating machines are based on Kalman Filters with varying Auto Regressive identification parameters [7–11].

Kalman Filters are also used in active vibration control [12–15] with real-time algorithms and non-stationary signals on

smart structures. Other works use Kalman filters to improve time-frequency analysis and order tracking techniques [16–20].

Order Tracking techniques for rotating machines are often based on Vold-Kalman Filter [21,22]. Recent techniques aim to
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improve the Vold Kalman Filtering for resampling techniques, high frequency resolution in Fourier analysis and crossing

orders detection [23–30]. Most of these works are based on shaft speed information, as an instantaneous frequency is often

measured by tachometers. These methods are developed in conjunction with specific signal processing method [31,32].

Promising techniques based of Extended Kalman filtering make the tracking of frequency components possible without

tachometer. Different versions of state-space model were proposed to improve robustness and efficiency [33–37], but

parameterization is still an open subject.

The focus of this study is based on harmonic components which introduce mistakes in stabilization diagrams used in

OMA. Previously, Mohanty and Rixen [38] have shown that “modal analysis procedures fail to identify the modal parameters

accurately” in the presence of harmonic excitation.

The whole process of measurement from an excitation source to measured signals is pictured in a diagram (see Fig. 1).

Thereafter the structure is supposed to have a linear dynamic behavior. Then in a limited bandwidth, the relation between

inputs and outputs can be fully captured by its transfer function H(s), defined in the Laplace domain.

This structure is excited by two kinds of input. The first one is created by a random source which delivers a white noise.

Thus it is a stochastic input named Es(s). The second one is created by an unbalanced rotating machine. Contrary to the first

input, it supplies a signal whose amplitude and frequency are slowly modulated. As the signal slowly changes over time, it

has a phase and is deterministic. It is named Ed(s), for deterministic input. Both inputs are not measured.

For a linear structure, the response Y(s) can be separated into its stochastic and deterministic parts:

YðsÞ ¼ YsðsÞ þ YdðsÞ ð1Þ

where Ys(s)¼H(s)Es(s) is the response due to the stochastic input Es(s) and Yd(s)¼H(s)Ed(s) is the response due to the

deterministic input Ed(s).

As errors are unavoidable in measurements, they have to be taken into account too. As for inputs, two kinds of

observation noise can distort signals. The first one is a random noise Ns(s) which comes from electronic flaws. Its probability

law is usually supposed to be Gaussian p(t)¼N(0,W) and is characterized in the frequency domain by a flat density of

spectral amplitudes, i.e. its energy is uniformly distributed among frequencies.

The second possible noise often results of an electrical field which produces a periodic component at a stable frequency,

but with modulated amplitude. Unfortunately this electrical field is also caught by sensors. For instance, in Europe spurious

harmonic components at nn50 Hz are well known by experimental engineers. This added noise Nd(f) is deterministic and is

noticeable in signal spectra as narrow components around a fundamental frequency at 50 Hz and its harmonics. During

modal identification, they look like spurious low-damped modes. Unfortunately, this noise cannot be accurately predicted

because it highly depends on each experiment and on each sensor technology. This kind of noise is seldom taken into

account, although it can seriously alter signals if modal amplitudes are weak compared to it.

In conclusion, observed signals result in the sum of these noises added to structural responses:

YmðtÞ ¼ YðtÞ þ NdðtÞ þ NsðtÞ ð2Þ

that can be also separated into its stochastic and deterministic parts:

YmðtÞ ¼ YsðtÞ þ NsðtÞ þ YdðtÞ þ NdðtÞ ð3Þ

As a rule, OMA are designed for only stochastic input and noise measurement. It is a strong assumption for these

algorithms and is seldom respected. As a result, deterministic components in responses can strongly false results given by

OMA algorithms.

The purpose of the proposed method is to identify the deterministic part Yd(t) and to substract it from Ym(t). It will give

an approximation of the stochastic response which would be obtained if Ed and Nd were missing. Then this approximation

Acronyms

ARMA Auto Regressive – Moving Average

DOF Degree Of Freedom

EKF Extended Kalman Filter

SEKF Series of Extended Kalman Filters
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Fig. 1. Block diagram of the studied problem. Measured signals Ym(s) are composed of stochastic and deterministic components. The aim of the study is to

remove the deterministic part in Ym(s).
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could be possibly used for OMA identification techniques, although here the focus is made on the filtering process. Here the

term filtering means that the deterministic component of Yd(t) is going to be filtered from the measured signals Ym(t),

without previous knowledge of Yd(t) main frequency.

In the present study, the detection and the tracking of sinusoidal components are performed without the knowledge of

frequencies of periodic signal. Studied signals are assumed to be composed of random noise and modulated sinusoidal

components. Indeed, measured signals on rotating engines in operational conditions are:

sðtÞ ¼ bðtÞ þ∑
k

pkðtÞ

With bðtÞ ¼ YsðtÞ þ NsðtÞ and ∑
k

pkðtÞ ¼ YdðtÞ þ NdðtÞ ð4Þ

The first term b(t) is assumed to be mainly composed of modal responses under random excitation. The second terms

pk(t) come from engines in operation and from spurious harmonic components of the electric power supply. Signals pk(t) are

deterministic and assumed to be both amplitude and frequency modulated. The kth pseudo periodic source is assumed to be

composed of N modulated sines:

pkðtÞ ¼ ∑
N

i ¼ 1

ai;kðtÞcos 2πi f 0;kt þ Δf k

Z t

0

mkðθÞdθ

� �

þ φi;k

� �

ð5Þ

where ai;kðtÞ is the amplitude for the kth source and the ith sinusoid, f 0;k is the central fundamental frequency of the kth

source, Δf k is the frequency deviation of the kth source, mk is the reduced frequency modulation of the kth source with

MAXfjmkjg≤1, φi,k is the phase of the kth source and the ith sinusoid. In the proposed technique, the frequency modulation is

assumed to occur slowly in a short range of variation.

d

dt
Δf k

Z t

0

mkðθÞdθ

� �

⪡ f 0;k with mkðtÞ o1 and Δf k⪡f 0;k

�

�

�

� ð6Þ

Two signals are sketched in time domain in Fig. 2: signal A is a frequency and amplitude modulated sinusoid (Fig. 2

upper left) and signal B is a narrow bandwidth random noise (Fig. 2 lower left). Both signals share the same spectrum

magnitude (Fig. 2 right), although they have different phase spectras. Thus, for a given PSD or spectrum magnitude where

phase information is lost, the original temporal signal cannot be identified: it could be either a modulated sinusoid

(deterministic) or a random noise (stochastic).

As a result, in the case of structural behavior identification, dynamic responses based on “output only” techniques have to

be free of such modulated sinusoidal signals. Thus, the purpose is to remove sinusoidal components, such as unbalanced

rotating machines speed or electrical current components, from the original signal. The method is built upon three

main steps.

First, all sinusoidal components are detected with an Optimized Spectral Kurtosis (OSK) [1]. Thus, the number of

sinusoidal components and their central frequencies are identified by the OSK. This process is described in Section 2.

Secondly, an Extended Kalman Filter (EKF) is built per detected central frequency. Then a set of EKFs is obtained and

called a Series of Extended Kalman Filters (SEKF). Its size is defined by the number of identified frequencies. State variables

and variances in the EKF are firstly identified with OSK data in order to initialize the SEKF process. Kalman filtering is a very

Fig. 2. Example of frequency and amplitude modulations of a sinusoid (Signal A: upper left), random noise in a narrow bandwidth (Signal B: lower left):

both signals have the same spectrum magnitude (right) - (signal B is computed with spectrum magnitude of signal A and uniform 0–2π random phase).
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powerful tool but it can quickly diverge if state vector, covariance state vector, process noise and observation noise are not

properly initialized. In this work, we will focus on the parameterization of Kalman filtering and will demonstrate that

appropriate formulas for parameters computation give relevant results. Furthermore, OSK makes possible to perform the

initializations of EKF effectively. This step is developed in Section 4.1.

Finally, each detected periodic signal is tracked and removed from the original signal with the help of an EKF. These steps

are developed in Section 3 from a theoretical point of view, and numerical applications are detailed in Section 4.

2. Detection of modulated sinusoidal components

2.1. Definition of the optimized spectral kurtosis method

The detection of sinusoidal components is based on two kinds of information, statistical and spectral, as developed in a

previous work [1]. The Optimized Spectral Kurtosis (OSK) is a numerical method applied to signal which provides a spectral

description of Kurtosis. It is shortly reminded in this paragraph for the sake of understanding.

Assume that the frequency bandwith of a signal is discretized into N frequency bins. First, the original signal is filtered

with a narrow Pass Band Filter (PBF) centered on each frequency bin. As this step is repeated per frequency bin, N filtered

signals are obtained.

Secondly, the Kurtosis of each filtered signal is computed and the numerical result defines the assumed nature of the

signal (included in the spectral bandwidth). In the ith frequency band, the ith Kurtosis is defined by:

K i ¼ E
Xf i � μ

s

� �4
" #

ð7Þ

where Xfi is the ith filtered signal obtained from the ith PBF, μ¼ E½X�; s2 ¼ E½ðX � μÞ2�, and E(X) is the statistical expectation of X.

The complete spectral description of Kurtosis is obtained by the N Kurtosis values along the entire frequency bandwidth.

In order to obtain an accurate spectral resolution, the used PBF is a sixth order Cauer filter [31] for real-time computation

but could also be performed with an ideal PBF for post-processing computation. In the case of a real-time computation,

statistical expectations are given by the following linear recursive formula:

Ek Y½ � ¼ 1−
1

k

� �

Ek−1 Y½ � þ
1

k
yk ð8Þ

where yk is the new data (realization of process Y), Ek−1[Y] the old expectation of Y and Ek the new expectation of Y.

2.2. Testing of OSK on an experimental bench

In order to test OSK and SEKF on a real experiment, a test bench is set up (Fig. 3). The experiment is composed of two

masses links with flexible blades. The mechanical system can be described as a two DOF system in the bandwidth 0–100 Hz.

2nd floor

1st floor

Electrodynamic

shaker

(White Noise)

Insulation

Insulation

Unbalanced rotating

machine

(Sinusoidal

excitation)

Accelerometer

Accelerometer

Fig. 3. (a) Picture of the bench test. (b) Diagram of the experiment.
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The system natural frequencies are 9.7 Hz and 36.7 Hz. The structure is simultaneously excited with a white noise by an

electrodynamic shaker and an amplitude and frequency modulated signal thanks to an unbalanced rotating machine closed

to 1320 rpm (Fig. 3b). Rotating machine is meaningful of operating system. White noise excitation with Electrodynamic

shaker is significant of random excitations such as aerodynamic forces.

Fig. 4 shows PSD and OSK applied on a 131 s record of the accelerometer of the 1st floor with 262144 (218) samples. The

sampling frequency is 2000 Hz, the filter bandwidth is around 0.15 Hz; detection is defined for a Spectral Kurtosis lower

than 2. Sine signal leads to OSK equal to 1.5. Gaussian random signal leads to OSK equal to 3.Detected sinusoidal components

are highlighted with “o” markers on both graphs when the OSK is below 2 [1].

The results shown in Fig. 4 highlight expected observations. Frequency fb¼22 Hz is well detected as a sinusoidal

component and not as a structural response. The corresponding OSK at 22 Hz is lower than 2. Duly, both structural

eigenmodes (9.7 Hz and 36.7 Hz) are not identified as sinusoidal components. Nevertheless, other components, not initially

foreseen, are identified as sinusoidal components: the electric network frequency fr¼50 Hz, a low frequency around 5 Hz

and two frequencies: fr−fb¼28 Hz and fr+fb¼72 Hz.

These components are very small but are parts of the signal. The first one is due to the electric power frequency used for

the electric motor. The two following are due to magnitude modulation between the rotation frequency of the engine and its

electric power frequency. These components are 100 to 100,000 times smaller than the main excitation at fb¼22 Hz.

Measurements have been made with a piezoelectric accelerometer. Due to this technology, low frequencies are not

studied in the present work (even if a 5 Hz component is detected). The next step consists in removing these components

from the original signal.

3. Tracking of modulated sinusoidal components

The filtering of modulated sinusoidal components into a composite signal cannot be carried out by classical spectral

analysis methods. ARMA filters [31] are not able to separate sinusoidal components and random noise into a same frequency

bandwidth. Liftering techniques in cepstral analysis [32] and curve smoothing introduce important distortions in phase

spectrum.

As instantaneous phases of modulated signals need to be accurately tracked, here a technique based on Extended Kalman

filtering has been selected. Contrary to Vold-Kalman filtering, no shaft speed information is required. Different versions of

state-space model have been proposed to model an amplitude and frequency modulated sine for robustness and stability

reasons [33–37]. An appropriate state-space model is chosen and detailed in the following paragraph, and formulas for

parameterization are proposed.

3.1. Discrete state space formulation of an amplitude and frequency modulated sinusoid

The goal of this paragraph is to develop a state space formulation which is relevant on a short time scale. A sinusoid

whose amplitude and frequency are modulated over time can be described in the complex domain as an analytic signal:

xðtÞ ¼ aðtÞexpðjϕðtÞÞ ð9Þ

Fig. 4. Detection of sinusoidal components using Spectral Kurtosis. 1 frequency expected but 5 frequencies detected ([1]).
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where a(t) is the instantaneous complex amplitude and ϕ(t) is the instantaneous phase. The discrete form of x(t) at time step

tn¼Δnt is xn¼x(Δnt). The complex variable xn can be divided into its real and imaginary parts xn¼x1,n+jx2,n. A sinusoid that

slightly varies over time can be approximated by:

xn ¼ anexpðjð2πf nnΔtÞÞ ð10Þ

where fn is the instantaneous frequency.

As the parameters fn and an of the sinusoid slightly vary over time, they are almost equal between two consecutive time

steps. Then a transition formulation can be given from xn to xn+1:

xnþ1≈anexpðjð2πf nnΔtÞÞ � expðjð2πf nΔtÞÞ ð11Þ

This approximation is only true if modulations of an and fn are slower that the period of the sinusoid. This constraint is

assumed to be verified. Then a linear transition is obtained between the imaginary part x2,. and real part x1,. of xn and xn+1:

x1;nþ1 ¼ x1;ncosð2πf nΔtÞ−x2;nsinð2πf nΔtÞ

x2;nþ1 ¼ x1;nsinð2πf nΔtÞ þ x2;ncosð2πf nΔtÞ ð12Þ

or written in a matrix form

x1;nþ1

x2;nþ1

 !

¼
cosð2πf nΔtÞ −sinð2πf nΔtÞ

sinð2πf nΔtÞ cosð2πf nΔtÞ

" #

x1;n

x2;n

 !

ð13Þ

The instantaneous amplitude an is given by:

an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21;n þ x22;n

q

: ð14Þ

As an and fn should be allowed to vary over time, it is proposed here to use the following non-linear state space

formulation:

Xnþ1 ¼ ϕðXnÞ þWn ð15Þ

where Xn¼(x1,n x2,n x3,n)
T and Wn the process noise. A state variable x3,n ¼2πfnΔt was added to track the evolution of the

instantaneous frequency fn. The transition between two time steps is composed by a sum of two parts: the stationary part

and the evolutionary part.

The stationary part links two successive points of a stationary sinusoid by ϕ(.). Then ϕ(.) is assumed as the non-linear

transition function and is given by ϕ(Xn)¼FnXn:where

Fn ¼

cosðx3;nÞ −sinðx3;nÞ 0

sinðx3;nÞ cosðx3;nÞ 0

0 0 1

0

B

@

1

C

A
ð16Þ

The two first components are related to the complex amplitude and are obtained by the previous linear relation. The

third component x3,n+1¼x3,n constrains the frequency not to change strongly between two time steps.

Up to now, the non-stationary behavior of the sinusoid was not modeled because it is not possible to formulate an exact

equation for its evolution. We suppose thatWn is a random variable whose probability law is Gaussian:Wn¼N(0,Q),where Q

is its variance matrix. Then variations of amplitude and frequency are allowed by random values of Wn.

In a first glance, it could seem strange to choose a random variable for an effect which is generally deterministic. For

instance, the variation of frequency excitation due to an engine is mainly deterministic. Anyway, this state space does not

need to represent accurately the evolution of a sinusoid on a long period, but only step by step. Then on a short time scale,

a random evolution of an and fn is enough to model a non-stationary sinusoid.

For a signal composed of M modulated sinusoidal components, the size of the state function is 3 M.

FnðXnÞ ¼

cosðx3;nÞ −sinðx3;nÞ 0 … 0 0 0

sinðx3;nÞ cosðx3;nÞ 0 … 0 0 0

0 0 1 0 0 0

⋮ ⋮ ⋱ 0 0 0

0 0 0 … cosðx3þ3ðM−1Þ;nÞ −sinðx3þ3ðM−1Þ;nÞ 0

0 0 0 … sinðx3þ3ðM−1Þ;nÞ cosðx3þ3ðM−1Þ;nÞ 0

0 0 0 … 0 0 1

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

and Xn ¼

x1;n

x2;n

x3;n

⋮

x1þ3ðM−1Þ;n

x2þ3ðM−1Þ;n

x3þ3ðM−1Þ;n

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

ð17Þ

This state space formulation is nonlinear: the transition function ϕ(Xn) is varying over time and depends on the

frequency modulation.

In reality, only the real part x1,n of the analytic signal xn can be observed. Unlike the transition phase, the observation

phase is completely linear

Zn ¼ 1 0 0
� �

Xn þ Vn

Zn ¼ x1;n þ Vn ð18Þ
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for one sinusoid and slightly more complex for M sinusoids

Zn ¼ 1 0 0 … 1 0 0
� �

Xn þ Vn

Zn ¼ x1;n þ…þ x1þ3ðM−1Þn þ Vn ð19Þ

where Vn is a noise observation random process.

Finally, a nonlinear discrete state space model has been formulated to model the transition and observation of sinusoid

components mixed with random processes

Xnþ1 ¼ ϕðXnÞ þWn

Znþ1 ¼HXnþ1 þ Vnþ1

(

ð20Þ

where ϕ(.) is the nonlinear transition function given by ϕ(Xn)¼F(Xn)Xn and H(.) is the observation matrix given by:

H¼ ½1 0 0…1 0 0�: ð21Þ

3.2. Application to the Extended Kalman Filter

Kalman filtering refers to a family of algorithms that track the temporal evolution of a dynamic model based on noised

measurements:

Xnþ1 ¼ f ðXn;WnÞ

Znþ1 ¼ hðXnþ1;Vnþ1Þ

(

ð22Þ

described here in discrete time domain. An efficient algorithm in terms of means and covariances can be derived when f(.)

and h(.) are linear. Indeed it estimates the state probability distribution by its two first moments. Unfortunately, they are no

longer sufficient to characterize the distribution in the nonlinear case. Then some approximations have to be done in order

to find a practical algorithm.

The extended Kalman filtering is an adaptation of the classical Kalman filtering to problems with state dynamics

governed by nonlinear transformations. Although it is not required here, it should be noticed that it can also handle a

nonlinear transformation from state variables to measurement variables. It generally exhibits a good robustness because it

uses linear approximation over small ranges of state space. Without any input control, the state model is given by the first

equation in system (22) where Wn is the process noise assumed to be Gaussian N(0,Q). The observation model is described

by the second equation in system (22) where HXn+1 is the observation function and Vn+1 the observation noise assumed to

be Gaussian N(0,R). State and observation noises are assumed to be uncorrelated. The Extended Kalman Filter [2] is defined

using predict and update phases. The predict phase gives an a priori estimate of the state and covariance based on previous

time step tn:

Predicted state X̂nþ1jn ¼ F̂njnX̂njn ð23Þ

Predicted estimated covariance P̂nþ1jn ¼
~F njnP̂njn

~F
T

njn þ Q ð24Þ

And the update phase corrects the deviation of these estimations based on new observation at time step tn+1:

Innovation ~Y nþ1jn ¼ Znþ1−HX̂nþ1jn ð25Þ

Innovation covariance Snþ1 ¼HP̂nþ1jnH
T þ R ð26Þ

Kalmangain Knþ1 ¼ P̂nþ1jnH
T ðSnþ1Þ

−1 ð27Þ

Updated state estimate X̂nþ1jnþ1 ¼ X̂nþ1jn þ Knþ1
~Y nþ1jn ð28Þ

Updated estimate covariance P̂nþ1jnþ1 ¼ ðI−Knþ1HÞP̂nþ1jn ð29Þ

As the transition function ϕ is non-linear but differentiable, it is well locally approximated thanks to its Jacobian:

~F njn ¼ ð∇XðFðXÞXÞ
T ÞT jX ¼ X̂njn

ð30Þ

In the case of M modulated components, the first order derivative is required:

∇Xn ¼
∂

∂X1;n

∂

∂X2;n
⋯

∂

∂X3M;−1n

∂

∂X3M;n

� �T

ð31Þ
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and the approximation becomes a banded block matrix:

~F n ¼

~F n;1 0 … 0

0 ~F n;2 ⋱ ⋮

⋮ ⋱ ⋱ 0

0 … 0 ~F n;M

2

6

6

6

6

4

3

7

7

7

7

5

ð32Þ

where each elementary block is given by:

~F n;i ¼

cosðx̂3i;nÞ −sinðx̂3i;nÞ −x̂1þ3ði−1Þ;nsinðx̂3i;nÞ−x̂2þ3ði−1Þ;ncosðx̂3i;nÞ

sinðx̂3i;nÞ cosðx̂3i;nÞ x̂1þ3ði−1Þ;ncosðx̂3i;nÞ−x̂2þ3ði−1Þ;nsinðx̂3i;nÞ

0 0 1

2

6

4

3

7

5
ð33Þ

This state matrix is composed of 3 M equations which could be described as M independent systems of 3 equations.

The complete EKF can be expanded in a series of M elementary EKFs which could be computed in a same step or in M

independent steps. This point of view allows parallel computation of all EKF cells. The complete process is described in the

block diagram in next section, Fig. 5.

4. OSK and SEKF in operation

In this section, the aim is to propose a method for the filtering process of experimental signals as described in the block

diagram (Fig. 5).

The filtering process consists in removing detected and tracked sinusoidal components. The efficiency of the method is

due to the fact that OSK allows an accurate initialization of SEKF. The combination of OSK and SEKF techniques could be

Fig. 5. Block diagram of the method. Four main steps in filtering process:. filter synthesis (N filters computed off line), sinusoidal components detection

with OSK (real time or post-process of M components), Extended Kalman filtering (real time or post-process of M Kalman Filters), filtering process (real

time or post-process of M modulated sinusoids).
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performed into two ways, depending whether real time or post-processing computation is required. These two ways are

illustrated in Fig. 6. The real time computation is performed for ARMA filtering with finite difference equations:

yn ¼ ∑
N

i ¼ 0

bixn−i þ ∑
M

j ¼ 0

ajxn−j ð34Þ

with output vector y, input vector x, and ARMA filter coefficients vectors a and b.

Real time OSK computation is performed with means (expectations) computed in a recursive sense for all statistical

momentum (see Eq. (8)). At last, Kalman filters are in nature designed for real time computation.

In order to test the method, the previous Series of EKF have been applied on signals obtained with the test bench

described in Sections 2.1 and 2.2. Previous results obtained in Section 2.2 have highlighted 4 modulated components.

The tracking of two of them is presented in this section. The first frequency (22 Hz) corresponds to the engine rotation and is

amplitude and frequency modulated. The second frequency corresponds to the electric power frequency (50 Hz) and is only

amplitude modulated.

4.1. Initializing the series of Extended Kalman Filters

An important step for EKF is the estimation of initial parameters conditions. The first unknown parameter is the suitable

size of the SEKF. In a second step, for each EKF, several parameters and their variances have to be estimated. The efficiency of

the filtering process strongly depends on the quality of estimated initial parameters.

For each EKF, initial values of nine parameters have to be set:

– three parameters used for sinusoidal component modeling,

– three parameters variances (one per parameter),

– three process noise variances (one per parameter).

The observation noise variance is defined for the complete SEKF.

For the proposed filtering method based on a SEKF composed of M EKF, 9 M+2 initial conditions have to be estimated.

The very first parameter is the number M of EKF. This parameter is defined by OSK and equal to the number of narrow

bandwidths in which detection occurs. The second one is the observation noise variance. The three parameters used to

define each sinusoidal component depend on the amplitude, the frequency and the phase of this component.

The estimated amplitude ~A j of the jth detected component is determined from the DSP γk
1

or the FFT sk
1

results:

~A j≅2s
1

kjf j ¼ f k
≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δf γ
1

kjf j ¼ f k

r

: ð35Þ

These two estimators overestimate the actual value of A. The higher the frequency is modulated, the larger the

overestimation.

The estimated frequency ~f j is determined from the OSK and equal to the center frequency fk of the narrow bandwidth Δf j
in which the detection occurs.

The phase is not estimated and always set in the present method to 0. This lack of estimation is quickly vanished by the

specific efficiency of the Kalman method for this kind of parameter [17].

The jth sinusoidal component modeling is also estimated:

x1þ3ðj−1Þ;0 ¼
~A j

x2þ3ðj−1Þ;0 ¼ 0

x3þ3ðj−1Þ;0 ¼Δt2πf j

8

>

>

<

>

>

:

ð36Þ

Real Time computation

Post processing computation

Filtering with

ARMA PBFs

Filtering with

Ideal PBFs

RecursiveOSK

computation
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computation

SEKF initialization
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ARMA Filter

Synthesis for OSK

SEKF

in operation
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initialization

SEKF in

operation

Filtering

Process

Ideal Filter

Synthesis for OSK
Filtering

Process

Real Time Data Acquisition After Data AcquisitionBefore Data Acquisition Time

Fig. 6. Chronogram of two different ways for combining and computing OSK and SEKF: real-time and post-processing computation.
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Due to the statistical properties of sinus functions, the estimated variances ~s
2
1þ3 j−1ð Þ; ~s

2
2þ3 j−1ð Þ of the first two parameters

are:

P1þ3ðj−1Þ;0 ¼ s
2
1þ3ðj−1Þ;0 ¼

1
2
~A
2

j

P2þ3ðj−1Þ;0 ¼ s
2
2þ3ðj−1Þ;0 ¼

1
2
~A
2

j

8

>

<

>

:

ð37Þ

These estimators underestimate actual variances. The larger the amplitude modulation, the bigger the variance

underestimation. For robustness reasons in numerical applications, these parameters are chosen four times bigger.

The estimation of the third variance ~s
2
1þ3 j−1ð Þ is based on the bandwidth Δf j in which the detection j occurs:

P3þ3ðj−1Þ;0 ¼ s
2
3þ3ðj−1Þ;0 ¼ ð2πΔf jΔtÞ

2 ð38Þ

The two first process noise variances Q1+3(j−1) and Q2+3(j−1) tend to zero since the modeling of amplitude modulated

component is linear. The third process noise variance deals with the frequency modulation and depends on the “velocity” of

the frequency modulation. The chosen estimation is:

Q3þ3ðj−1Þ ¼
2πΔf jΔt

f jT

!2

ð39Þ

This approximation can be seen as a linear frequency evolution along Δfj during the observation time T.

The observation noise variance R is simply chosen equal to the observed signal variance. This approximation is relevant

as long as the studied signal is mainly stochastic, i.e. the energy of sinusoid components is weak compared to the total

signal energy

4.2. Numerical results and filtering efficiency

The SEKF was performed on the experiment with two tracked sinusoids previously detected by the OSK. The first

component is around 22 Hz and the second around 50 Hz. For each component, the amplitude modulation is determined

with the instantaneous amplitude:

an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21;n þ x22;n

q

ð40Þ

This amplitude could also be obtained by the complex analytic signal composed of the observed signal (real part) and its

Hilbert transform (imaginary part).

The frequency modulation is computed by the instantaneous frequency:

f n ¼
x3;n

2πΔt
ð41Þ

The SEKF provides an analytic signal {x1,n, x2,n} per sinusoid from the original signal. Thus one tracked signal is obtained

per sinusoid. Spectral amplitudes of these tracked signals show the main components at 22 and 50 Hz and lateral modulated

bands (Fig. 7).

The first tracked signal concerns the effect of engine rotation. It is characterized by its frequency and amplitude

modulations. As it can be observed on the Fig. 8, its instantaneous frequency fluctuates between 21.8 and 22 Hz.

The second tracked signal is due to the electrical network and is only amplitude-modulated. This property could have

been foreseen since the 50 Hz component due to network is absolutely stable in frequency.

The very last step, the effective filtering process, is simply performed by removing the tracked signals from the original

signal in time domain. Fig. 9 shows spectral amplitudes before and after the filtering process for two tracked components

(22 Hz and 50 Hz). Although the filtering process removes the 50 Hz component well, it does not show the same behavior

on the 22 Hz component. This lower efficiency could be explained by the frequency evolution of 22 Hz which makes the

tracking harder. However, this component is twenty times lower after the filtering process, which is still a significant

improvement.

5. Conclusion

An important difficulty in the application of Kalman filters is the initialization of state variables and variances. The most

important asset of OSK is to initialize the computation of SEKF. The combination of Optimized Spectral Kurtosis and Series of

Extended Kalman Filters allows a robust computational technique to track and remove sinusoidal components from signal.

The filtering process can be performed during or after real time data acquisition. The complete signal filtering can be

performed automatically, even if the size of SEKF is defined by OSK. According to our numerical and experimental tests, the

tested method is limited by frequency modulation rate. Those limits are a new challenge for our work in progress, especially

for non-smooth nonlinear systems.
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Fig. 8. Time-frequency representation of the first tracked signal. Magnitude and frequency modulations are identified with a good accuracy. (Instantaneous

frequency is identified with 4 significant digits).

Fig. 9. Spectra before and after the filtering process. The two modulated sinusoidal components are successfully removed.

Fig. 7. Spectra of two tracked signals. Symmetric lateral bands are due to modulation effects on spectra.
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