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Equivalent-Circuit Model for Quartz Resonators Effects of 
Finite Element Analysis, Acceleration, and Mass Loading

R. MEFTAH and Y. MEYER

Institut Superieur de Mecanique de Paris (SUPMECA Paris), LISMMA/Structures, Saint Ouen Cedex, France 

In radar equipments and communication systems, quartz resonators are key components. So as to enhance the resonator performances,
the development of accurate modelings taking into account the environment interaction (temperature, acceleration, magnetism, . . .)
is one of the major economic and strategic stakes. The main idea is to produce a realistic modeling. In literature, a lot of modelings are
based on finite element analysis. But, for industrial applications, it is essential to link these accurate modelings to electric simulation
softwares, such as Spice. Moreover, it is necessary to develop a simple computation method in order to answer the industrial time
constraints. The idea is to use a Butterworth-Van Dyke (BVD) model based on an electrical equivalent circuit with, as input data,
the studied natural frequency and the antiresonance frequency of an accurate finite element modeling. For the numerical example, a
SC-cut (Stress-Compensated cut) quartz resonator is studied in this article for its fundamental thickness-shear resonance, the third
and the fifth overtone. The influence of the model mesh quality, the electrode mass-loading, and the acceleration sensitivity on the
motional parameters are analyzed. First, the choice of the finite element number along the thickness axis is crucial for the computation
accuracy of the motional parameters. Then, the more the electrode material has a high density, the more the mass loading has a strong
influence of the motional parameter values. Finally, the motional parameters are not really influenced by the acceleration field.

Keywords: resonator, bulk acoustic wave, quartz, thickness-shear mode, acceleration sensitivity, mass loading, frequency stability

1. Introduction

Quartz resonators are key components of many guidance
systems, radar equipments, and communication devices. A
resonator is a resonant device operating at a specific frequency.
Generally, these resonators are based on thickness-shear
modes. The thickness shear modes appear in high frequencies.
These modes correspond to small displacements along the
crystalline plans, which slip the ones compared to the others, as
illustrated in Figure 1. This figure shows also the various over-
tones of these thickness-shear modes. With these frequencies,
a precise time can be obtained. Then, a precise synchroniza-
tion or an accurate identification can be performed. But,
a resonator, and so its resonant frequency, is very sensitive
to a wide range of environment parameters as temperature,
acceleration, magnetism, vibrations, shocks, etc. [1–3]. This
drawback affects stability and accuracy of equipments by
producing large phase noise and frequency deviations.

For precise time applications, the key properties are a good
temperature stability, a high quality factor, and a low acceler-
ation sensitivity. Compared to the other piezoelectric materi-
als, the quartz crystal provides an interesting combination of
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properties. The quartz material properties are highly repeat-
able, manufacturable, and extremely stable with respect to the
temperature shifts and aging. The frequency temperature coef-
ficient can be limited by a precise crystal cut (AT-cut, BT-cut,
SC-cut, etc.) [4–6]. Intrinsically, the quartz structures have lim-
ited the changes of material properties over a given period of
time [7]. For example, the common aging rate for commercial
quartz resonators is approximatively 5 ppm (parts per million)
per year. Moreover, the internal losses of quartz material are
very low [8]. Consequently, an intrinsic quality factor of about
107 at 1 MHz can be easily obtained. To achieve a resonator
with low acceleration sensitivity, the first activity is based on
the modification of the resonator support by working on the
assembly process and geometrical optimization [9, 10]. The
second way to improve a vibratory behavior is to use a control
process by modifying the DC bias with respect to acceleration
[11] or by introducing, onto crystal device, actuating electrodes
to actively control the structure [12]. All these improvements
are found on a mathematical modeling of quartz structures
and, also, of ambient phenomenons.

In the literature, one of the major issues is the improvement
of the resonator numerical modeling by taking into account
environment. Indeed, the improvement of the resonator fre-
quential stability is currently a major economic and strategic
stake. The main idea is to produce a realistic modeling. For ex-
ample, Yong and et al. [13] study the impact of a finite element
analysis on the resonator properties. Taking into account the
resonator losses is analyzed by Lee and et al. [14]. The thermal
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Fig. 1. Thickness shear modes (color figure available online).

effects on the resonator frequency value [15] or the impact of
the geometrical nonlinearities on the quartz device [16] are
also studied. All these accurate studies are based on finite
element analysis. But, for an industrial application, it is nec-
essary to link these accurate modelings to electric simulation
softwares, such as Spice, for example. So, it’s crucial to develop
a simple computation method in order to answer at the indus-
trial time constraints. The idea is to use a Butterworth-Van
Dyke (BVD) model based on an electrical equivalent circuit
with, as input data, the natural frequencies of an accurate
finite element model. These electric parameters are called mo-
tional parameters of the quartz resonator. This process is well-
known. But, the environment and computation influence on
the behavior of the motional parameters is rarely studied in the
literature [17].

The objective of this article is to study the influence of
the model mesh quality, the electrode mass-loading, and the
acceleration sensitivity on the motional parameters of a quartz
resonator. A SC-cut quartz resonator is studied in this article
for its fundamental thickness-shear resonance, the third and
the fifth overtone. For the numerical process, the authors make
the choice of a 3D implementation. It is clearly not the optimal
way of modeling in terms of computation time and accuracy.
However, it seems to be more understandable and currently
sufficient for a large industrial use.

The article is organized as follows. Section 2 describes a
thickness-shear mode resonator, made of quartz, and gives
relevant information about the studied structure. In Section

3, the piezoelectric linear formulation, applied to quartz ma-
terial, and the finite element discretization of the resonator
is provided. The BVD model, based on the computation of
the motional parameters, is detailed. In the following section,
the finite element analysis optimization is performed for the
studied resonator. The model mesh influence on the motional
parameters is studied for the fundamental frequency, the third
overtone, and the fifth overtone. The mass-loading effects on
the motional parameters are investigated and compared for
three modelings: two modeling taking into account the elec-
trodes mass and one modeling without electrodes, in Section 5.
Several electrode materials are also studied. Section 6 presents
the acceleration sensitivity influence on the motional param-
eters along an out-plan axis and radial axis. A confrontation
between the experimental data and the numerical data is ex-
posed in Section 7. Finally, concluding remarks are discussed.

2. Thickness-Shear Mode Resonator

The studied thickness-shear mode resonator is a 120 MHz
resonator. A close-up of a representative Computer Aided
Design resonator is given in Figure 2. This resonator is a bi-
plane quartz plate with a “stress-compensated” cut crystal
(SC-cut crystal). The structure has a circular shape. The res-
onator dimensions are given in Figure 3. A specific geometrical
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Fig. 2. Representative Computer Aided Design resonator (color
figure available online).

coordinate system is linked to the resonator. This coordinate
system is presented in Figure 4.

3. Numerical Modeling

3.1. Governing Equations

In a structural domain �0, the mechanical displacement u and
the electric potential V satisfy the stress equations of motion
(Navier’s equation) and the Gauss’ law of electrostatics.

�i j,i + f j = � ü j , (1)

Di,i = �e = 0, (2)

where � represents the mechanical stress tensor (N.m−2), D the
electric displacement (C.m−2), � the mass density (kg.m−3), �e

the volume charge density (C.m−3), and f the external volume
force density (N.m−3).

The associated mechanical boundary conditions are:

{

u = u0 ∀x ∈ ∂�u
0

ni �i j = t̄ j ∀x ∈ ∂�T
0

, (3)

Fig. 3. Thickness-shear mode resonator.

Fig. 4. Geometrical coordinate system for the quartz resonator.

where ∂�u
0 and ∂�T

0 represent respectively Dirichlet mechani-
cal conditions and Neumann mechanical conditions and n an
outward normal vector at ∂�T

0 .
The associated electric boundary conditions are:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V = 0 ∀x ∈ ∂�V
0

V = Va ∀x ∈ ∂�V
a

[ni Di ] = 0 ∀x ∈ ∂�
q
0

, (4)

where ∂�V
0 , ∂�V

a , and ∂�
q
0 represent respectively the Dirich-

let electrical conditions, the Dirichlet electrical conditions at
input/output electrical surfaces, and the Neumann electrical
conditions and n an outward normal vector at ∂�

q
0 .

3.2. Quartz Crystal Constitutive Equations

In order to determine the solution of the piezoelectric vibra-
tion problem, the arrays of material coefficient for the partic-
ular symmetry of quartz crystal have to be known. Because of
their symmetry, the mechanical stress and strain tensors can
be brought together in stress T and strain S vectors contain-
ing six independent values by using the compressed matrix
notation (IEEE standard).

The piezoelectric behavior law can be described by tensor
relations. These equations express the main constitutive for-
mulations between stress and strain tensors. If the magnetic
and thermal effects are considered negligible, the multiphysics
relationships are written in a compressed matrix notation as
follows:

Tp = cE
pqSq − ekpEk, (5)

Di = eiqSq + ε
S
ikEk, (6)

where E = −∇V.

cE, ε
S, e, and E are respectively the elasticity matrix at con-

stant electric field (N.m−2), the dielectric permittivity matrix
at constant strain (F.m−1), the quartz electromechanical cou-
pling matrix (C.m−2), and the electric field vector (V.m−1). The
coefficients of matrices (7), (8), and (9) are extracted from [18].
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The mass density of quartz crystal is 2648 kg.m−3.

ekp =

⎡

⎢

⎣

e11 −e11 0 e14 0 0

0 0 0 0 −e14 −e11

0 0 0 0 0 0

⎤

⎥

⎦
, (7)

where e11 = 0.171 and e14 = −0.046;

cE
pq [1010] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c11 c12 c13 c14 0 0

c12 c11 c13 −c14 0 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 0

0 0 0 0 c44 c14

0 0 0 0 c14

c11 − c12

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (8)

where c11 = 8.67, c12 = 0.7, c13 = 1.19, c14 = −1.79, c33 =
10.72, and c44 = 5.79; and

ε
S
ik[10−11] =

⎡

⎢

⎣

ε11 0 0

0 ε11 0

0 0 ε33

⎤

⎥

⎦
, (9)

where ε11 = 3.91 and ε33 = 4.1.

The rotations, defining crystal cut, have to be applied to the
electromechanical coupling matrix, the permittivity matrix,
and the elasticity matrix, as defined in relationships (10). An
easy way to perform these rotations is the use of a Bond matrix
[19]. The Bond matrix, M, is a matrix composed of the classical
rotation matrix, a, but each quadrant of the Bond matrix is a
combination of the classical rotations matrix.

e∗ = ae MT,

cE∗ = McE MT, (10)

ε
S∗ = aε

SaT.

3.3. Finite Element Discretization

By combining the relationships from (1) to (6), a set of equa-
tions, related to the modeling of the studied structure, is ob-
tained. According to [20], the weak formulation associated
with this model is expressed. Then, the finite element method
is applied for discretization. Finally, the finite element formu-
lation is given in (11) under a matrix form:

⎛

⎜

⎝

Kuu KuVi
KuVp

K t
uVi

−KVi Vi
−KVi Vp

K t
uVp

−K t
Vi Vp

−KVpVp

⎞

⎟

⎠

⎛

⎜

⎝

un

Vi

Vp

⎞

⎟

⎠

+

⎛

⎜

⎝

Muu 0 0

0 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

ün

V̈i

V̈p

⎞

⎟

⎠
=

⎛

⎜

⎝

F

0

Q

⎞

⎟

⎠
, (11)

where Vp, Vi , un , Muu, Kuu, KuV∗ , KVi V∗ and KV∗V∗ represent
respectively the nodal electrical potential vector applied to
∂�V

a (V), the unknown nodal electrical potential vector inte-
rior to each piezoelectric domain (V), the nodal displacement
vector (m), the mass matrix (kg), the elastic stiffness matrix
(N.m−2), the piezoelectric stiffness matrices (C.m−2), and the
dielectric stiffness matrix (F.m−1). F and Q are respectively the
mechanical force vector applied to the nodes of the structure
(N) and the electric charge vector measured in ∂�V

a (C).
A Guyan-type static condensation is performed so as to

keep only the electrical potential vector, Vp. From the second
line of Eq. (11), the unknown nodal electric field vector is
extracted.

Vi = K−1
Vi Vi

(

K t
uVi

un − KVi Vp
Vp

)

. (12)

By combining Eqs. (12) and (11), relationship (13) is ob-
tained:

(

Huu HuVp

Ht
uVp

−HVpVp

)

(

un

Vp

)

+
(

Muu 0

0 0

)

(

ün

V̈p

)

=
(

F

Q

)

, (13)

with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Huu = Kuu + KuVi
K−1

Vi Vi
K t

uVi

HuVp
= KuVp

− KuVp
K−1

Vi Vi
K t

Vi Vp

HVpVp
= K t

VpVp
+ K t

Vi Vp
K−1

Vi Vi
KVi Vp

.

It is necessary to apply the equipotentiality condition to the
electrodes. Indeed, the electric potential has the same value
anywhere on an electrode. Equation (14) traduces this condi-
tion:

Vp = IvVa, (14)

where Iv is a locating matrix composed of 1 and 0.
Relationship (14) is applied to system (15):

(

Huu HuVa

Ht
uVa

−HVaVa

)

(

un

Va

)

+
(

Muu 0

0 0

)

(

ün

V̈a

)

=
(

F

qa

)

, (15)

where

⎧

⎪

⎨

⎪

⎩

HuVa
= HuVp

Iv

HVaVa
= I t

v HVpVp
Iv

qa = I t
vQ

.

HVaVa
is a diagonal matrix composed of the equivalent

electric capacities of the piezoelectric patches and qa the
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Fig. 5. Equivalent circuit of the quartz resonator.

electric charge vector measured at the surface of the piezo-
electric patches.

If F = 0 is assumed, the set of Eq. (15) can be written as
follows:

Muuün + (Huu + �Huu)un = HuVa
H−1

VaVa
qa, (16)

H−1
VaVa

Ht
uVa

un − H−1
VaVa

qa = Va, (17)

where

�Huu = HuVa
H−1

VaVa
Ht

uVa
.

3.4. Equivalent Circuit Model

The equivalent circuit, presented in Figures 5 and 6, depicts the
electric activity of a quartz crystal unit operating at its natural
resonant frequency. The C0 represents the static capacitance
of the crystal. R, Cs, and L compose the dynamical circuit
of the crystal, and are called motional parameters. An elec-
tromechanical equivalency can be performed. The motional
inductance (L) represents the vibrating mass of the crystal
unit. The motional capacitance (Cc) represents the elasticity
of quartz, and the resistance (R), represents the bulk losses
occurring within quartz. Let’s note that the motional param-
eters are input data for the electric simulation software. Thus,
the knowledge of these parameters is essential.

The static capacitance can be given by the geometrical pa-
rameters of the quartz structure. It is the ratio between the
electric potential, V0, and the electric charge, q0. In electro-
statics, for a structure mechanically free, Eq. (6) becomes:

Di = ε
T
ikEk. (18)

Fig. 6. Equivalent electromechanical parameters.

The electric charge is given by the relationship (19):

q =
∫∫

s

D.n ds, (19)

where n is the normal vector and s the quartz structure surface
(m2).

q = −
∫∫

s

⎡

⎢

⎢

⎣

ε
T
11 0 0

0 ε
T
22 ε

T
23

0 ε
T
32 ε

T
33

⎤

⎥

⎥

⎦

⎡

⎢

⎣

0

E2

0

⎤

⎥

⎦
.

⎡

⎢

⎣

0

1

0

⎤

⎥

⎦
ds. (20)

By assuming that the electric field is linear along the thick-
ness axis of the structure, Eq. (21) can be written:

q =
s

h
ε

T
22V. (21)

Finally, the static capacitance can be given by relationship
(22):

C0 =
s

h
ε

T
22 =

s

h
ε

T
r22

ε0, (22)

where ε22, ε
T
r22, and ε0 are respectively the absolute permittiv-

ity, the quartz permittivity in vacuum, and the vacuum per-
mittivity (ε0 = 8.86 pF/m). As quartz is a very low coupling
material, ε

T
r22 ≈ ε

S
r22. So, the static capacitance of the studied

quartz structure is C0 = 5.1pF .
To compute the motional parameters Cc and L, two eigen-

value simulations are achieved. The mechanical boundary
condition is the clamping of the quartz device side surface.

For the first computation, the electrodes are open-circuited,
as shown in Figure 7a. The electric voltage between the elec-
trodes is given by Eq. (23):

Va = u R + uL + uc = 0, (23)

where u R, uL, and uc are respectively the electric voltage (V)
in the resistance, the inductance, and the capacitance. Then,
these different voltages are given by Eq. (24):

u R = Ri = RCc

duc

dt
,

uL = L
di

dt
= LCc

d2uc

dt2
. (24)

Relationship (25) is the differential equation of uc:

LCc

d2uc

dt2
+ RCc

duc

dt
+ uc = 0. (25)

For a conservative system (R = 0), the natural frequency
is given by Eq. (26). The motional resistance can be calcu-
lated with the consideration of viscosity [21]. But, for a first
approach, the damping coefficient of the quartz resonator is
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Fig. 7. Boundary conditions.

neglected.

fr =
1

2�
√

LCc

. (26)

The second computation is performed for the parallel elec-
trical circuit presented in Figure 7b. Relationships (27) can be
written as:

u0 = uc + uL,

q0 + qc = 0, (27)

where u0, q0, and qc are the voltage in the static capacitance
(V), the electric charge (C) across the static, and dynamic
capacitance.

The natural frequency is given by Eq. (28):

fa =

√

1 + C0

Cc

2�
√

LCc

. (28)

By combining Eqs. (28) and (26), motional parameters rela-
tionships (29) and (30) are obtained:

Cc =

[

(

fa

fr

)2

− 1

]

C0, (29)

L =
1

4�2 f 2
r Cc

. (30)

4. Mesh Optimization

In this section, the model mesh sensitivity is studied and a
simple model in which the electrode mass effect is neglected is
considered.

Let’s note that the modeling approach with Comsol is quite
different with respect to the other finite element analysis soft-
wares. The studied physics are not included in specific finite
elements. Comsol directly uses the Partial Differential Equa-
tions (PDEs). Indeed, the PDEs are directly discretized. The
geometry is only a support for the PDEs and, for example, is
used to define the boundary conditions.

4.1. Computation Process

The process initialization is based on the computation of an
infinite plate equivalent to the studied resonator. In the case
of an infinite plate, the natural frequencies are given by Eq.
(31) [22]:

fn =
n

2h
V66 =

n

2h

√

C66

�
, (31)

where n is the number of the studied overtone, h the thickness
of the structure (m), V66 the sound velocity through the thick-
ness axis, C66 the 66 elasticity coefficient (N.m−2), and � the
mass density of the quartz structure.

With Comsol Multiphysics, the natural frequencies and the
antiresonance frequencies are computed around the three first
overtones. The mechanical boundary conditions are a fixed
side surface of the quartz plate (u0 = 0 in ∂�u

0) and the other
surfaces free (t = 0 in ∂�T

0 ). The boundary conditions are
presented in Figure 8. For the natural frequencies, electrodes
are short-circuited (v = va in ∂�v

0). For the antiresonance fre-
quencies, the electrodes are open-circuited (qv = 0 in ∂�

q
0).

Fig. 8. Boundary conditions.
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Fig. 9. Finite element discretization.

4.2. Finite Element Discretization Cases

The finite element discretization process is divided into two
steps. First, the 2D surface of the quartz structure is meshed
with Argyris finite elements [23]. Second, the surface mesh is
extruded by layer to obtain the volumic mesh. So, the structure
is meshed by Lagrange quadratic prismatic elements with six
Gauss points. The advantage of this meshing process is the
precise control of the finite element number in the thickness
axis of the structure.

Three different surface meshes are analyzed. The first one
contains 128 elements per layer, the second 78 elements, and
the last 44 elements. For each mesh, the number of nodes in
the thickness axis is studied. Figure 9 presents the specified
meshes.

All computations are achieved with a laptop with the char-
acteristics presented in Table 1.

4.3. Numerical Results

Let’s note that, as presented in Figures 10 and 11, the num-
ber of nodes along the thickness axis strongly influence
the fundamental frequency value. This value tends towards

Table 1. Computer characteristics

Intel Core 2 Duo
CPU Processor T5500

Frequency 1.66 Hz
Memory 1GB (533 Hz)

Fig. 10. Fundamental frequency with a null electric potential.

23.96007MHz and the antiresonance frequency tends towards
23.98173MHz. This value is obtained with ten nodes along the
thickness axis and with the first surface mesh (128 elements per
layer). As shown in Figures 12 and 13, the computation time
considerably increases with the number of nodes along the
thickness axis, in particular for the zero load case. Beyond nine
nodes, which corresponds to 37,380 degrees of freedom, the
computation becomes impossible because of out of memory.
The additional stiffness in the antiresonance problem makes
more complex and longer computations.

For the second surface mesh (78 elements per layer), the
same value of frequency is obtained with 15 elements along
the thickness axis. The number of nodes along the thickness
axis is a more important parameter than the surface mesh for
the resonance and antiresonance frequency accuracy. For the
third surface mesh (44 elements per layer), the frequencies do
not converge to the nominal values, as presented in Figure 10.

Fig. 11. Fundamental frequency with a null electric charge.
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Fig. 12. Computation time for the fundamental frequency with a
null electric potential.

So, the surface mesh is not the most important parameter for
the computation accuracy but it is a necessary condition to
converge the computation.

Basically, as presented in Figures 12 and 13, the computa-
tion time strongly increases with the number of surface degrees
of freedom and thickness degrees of freedom. So, the second
surface mesh with 20 nodes along the thickness axis makes it
possible to have a good compromise precision/computation
time. Indeed, by limiting at 20 nodes the number of nodes
along the thickness axis, the relative error compared to the
rated frequency does not exceed 0.5 ppm (part per million).

The same remarks on the evolution of the resonance and an-
tiresonance frequencies can be underlined for the third and the
fifth overtone, as presented in Figures 14–17. Let’s note that, as
shown in Figures 18–21, the computation times increase with
the studied overtone number. The third surface mesh case is
not analyzed for overtones due to the non-converged results
for the fundamental frequencies.

Fig. 13. Computation time for the fundamental frequency with a
null electric charge.

Fig. 14. Frequency for the third overtone with a null electric
potential.

Fig. 15. Frequency for the third overtone with a null electric
charge.

Fig. 16. Frequency for the fifth overtone with a null electric po-
tential.
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Fig. 17. Frequency for the fifth overtone with a null electric charge.

Fig. 18. Computation time for the third with a null electric po-
tential.

Fig. 19. Computation time for the third overtone with a null
electric charge.

Fig. 20. Computation time for the fifth overtone with a null elec-
tric potential.

With the limitation at 20 nodes along the thickness axis, for
the third overtone and in the second surface mesh case, the
nominal resonance frequency is 71.90903 MHz. The relative
error is approximately 111 ppm. The resonance frequency of
the fifth overtone is 119.8456 MHz with a relative error of
204 ppm.

Thanks to a computation time/accuracy compromise, an
optimal mesh can be chosen. The structure surface is dis-
cretized with 78 elements and, along the thickness axis, 20
nodes are selected. For the discretization along the thick-
ness axis, a general criterion based on the sound wavelength
(�n = V66

fn
) can be applied. By combining Eq. (31), the wave-

length formulation and the limitation of 20 nodes for the fifth
overtone, the finite element size is determined by relationship
(32):

Sizefinite-element <
�5

20
=

h

50
. (32)

This mesh will be used for all the simulations. In Table 2, the
optimal results for the chosen mesh is given.

4.4. Influence of Mesh Quality on Motional Parameters

For simplicity, the surface mesh is fixed at 78 elements. Thus,
the influence of the number of nodes along the thickness-axis

Table 2. Resonance frequencies and relative error with respect to
converged value for the three overtones studied and for the opti-
mal mesh (78 elements in surface and 20 elements along thickness-
axis).

Third Fifth
Fundamental overtone overtone

Resonance frequencies 23.96007 71.90903 119.8456
(MHz)

Relative error 0.5 111 204
(ppm)
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Fig. 21. Computation time for the fifth overtone with a null elec-
tric charge.

on the motional parameters is analyzed for the fundamental
mode, the third overtone, and the fifth overtone.

As presented in Figure 22, the number of nodes along the
thickness-axis implies a motional inductance maximal relative
variation of 1% for the fifth overtone, 0.12% for the third
overtone, and less than 0.001% for the fundamental mode.

Figure 23 shows the motional capacitance evolution with
respect to the number of nodes along the thickness-axis for the
fundamental mode, the third overtone, and the fifth overtone.
The motional capacitance value is very sensitive to the number
accuracy of the resonance and antiresonance frequencies. The
value variations are 2% for the fifth overtone, 0.4% for the third
overtone, and less than 0.001% for the fundamental mode.

With the chosen mesh setup, the motional parameters are
presented in Table 3.

Table 3. Optimal motional parameters for the chosen finite ele-

ment discretization

Ls(mH) Cs( fF)

Fundamental mode 4.94 8.94
Third overtone 3.84 1.28
Fifth overtone 2.96 0.596

5. Mass-Loading Effects

The electrode mass has an effect on resonator frequency value
[24]. In this part, three different models are introduced and
compared so as to analyze the mass-loading effects.

5.1. Mass-Loading Models

The first model is the reference model. The electrodes mass
are neglected. This model is called simple model. The second
model consists in homogenizing the mass densities in the con-
tact area between the electrodes and the quartz structure. The
equivalent density �h is given by Eq. (33). This model is called
the homogenized model.

�h =
2�ehe + �q hq

2he + hq

, (33)

where (�e, he) and (�q , hq ) are respectively the mass densities
(kg.m−3) and the stiffnesses (N.m−2) of the electrodes and the
quartz structure.

In the third model, the electrodes are modeled by a finite
element method. For each electrode, 78 surface elements are
considered for one thickness element. This model is called the
complete model. Figure 24 illustrates these three models.
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Fig. 22. Motional inductance with respect to number of nodes along the thickness-axis for the fundamental mode, the third overtone,
and the fifth overtone.
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Fig. 23. Motional capacitance with respect to number of nodes along the thickness-axis for the fundamental mode, the third overtone,
and the fifth overtone.

Fig. 24. Resonator models.

Fig. 25. Modal deformation with respect to the modeling type for
the fundamental mode (X displacement).

The resonator actuating electrodes can be made in different
materials: aluminum (Al), silver (Ag), gold (Au), and platinum
(Pt).

5.2. Numerical Results

In this subsection, the influence of the type of electrode model-
ing and the four different electrode materials on the thickness-
shear modes is analyzed. The computation process developed
for the mesh sensitivity study is kept. Tables 4 to 9 sum-
marize the numerical results dealing with the natural and

Fig. 26. Modal deformation with respect to the modeling type for
the fundamental mode (Y displacement).
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Fig. 27. Modal deformations with respect to the electrode material
for the fundamental mode.

Fig. 28. Modal deformations with respect to the electrode material
for the third overtone.

Fig. 29. Modal deformations with respect to the electrode material
for the fifth overtone.

Table 4. Frequencies [MHz] for aluminium electrodes

Fundamental
Third

overtone Fifth overtone

Model Fr Fa Fr Fa Fr Fa

Simple 23,960 23,981 71,901 71,910 119,840 119,847
Homogenized 23,959 23,980 71,901 71,907 119,865 119,869
Complete 23,867 23,886 71,613 71,618 119,384 119,387

Table 5. Frequencies [MHz] for silver electrodes

Fundamental
Third

overtone Fifth overtone

Model Fr Fa Fr Fa Fr Fa

Simple 23,960 23,981 71,901 71,910 119,840 119,847
Homogenized 23,825 23,843 71,484 71,490 119,170 119,173
Complete 23,593 23,611 70,783 70,788 118,004 118,006

Table 6. Frequencies [MHz] for gold electrodes

Fundamental
Third

overtone Fifth overtone

Model Fr Fa Fr Fa Fr Fa

Simple 23,960 23,981 71,901 71,910 119,840 119,847
Homogenized 23,672 23,690 71,021 71,027 118,398 118,401
Complete 23,290 23,307 69,879 69,884 116,518 116,521

Table 7. Frequencies [MHz] for platinum electrodes

Fundamental
Third

overtone Fifth overtone

Model Fr Fa Fr Fa Fr Fa

Simple 23,96 23,981 71,901 71,910 119,840 119,847
Homogenized 23,63 23,653 70,910 70,915 118,212 118,215
Complete 23,22 23,236 69,669 69,674 116,182 116,185

Table 8. Acceleration sensitivity

Material Ŵa(10−12/g)

Simple 2,48
Aluminum 3,19
Silver 13,24
Gold 14,03
Platen 14,18

12



Table 9. Frequency and motional parameters (fifth overtone) for 

a resonator with standard quartz SC and silver electrodes

Relative
Measurements Modeling difference (%)

Frequency (MHz) 120.0015 118.004 1.65
Static capacitance (pF) 4.7 5.1 8.53
Dynamic capacitance (fF) 0.183 0.173 5.46
Inductance (mH) 9.7 10.53 8.56
Resistance (�) 75.2 0 —

antiresonance frequencies for the first three overtones and for
the different electrode materials.

Basically, the results show that the simple model gives an ap-
proximation rather representative of the aluminum electrodes.
Indeed, the mass density of this last material (2700 kg/m3) is
close to the quartz mass density (2648.1 kg/m3). In this case,
the relative error of the frequencies compared to the com-
plete model is less than 0.4%. For other materials, the error is
more important, it amounts to 0.6% for silver (10500 kg/m3),
2.9% for gold (19300 kg/m3) and 3.2% for platinum
(23000 kg/m3).

The electrode mass density has a strong influence on the
modal shapes. The vertical and thickness-shear displacements
in the center of the plate increase when the electrode mass
density increases. With respect to overtones, this influence is
more important, as shown in Figures 25–29.

The validity of the simplified model depends on the differ-
ence between the quartz mass density and the electrode mass
density. Indeed, the more the electrode mass density is high the
more the mass-loading effects are important. Let’s also note
that the homogenized model makes it possible to improve the
approximation without modifying the computation time. It
allows to take into account the electrode mass effects. This
model will be used to study the acceleration effects in the next
section.

Fig. 30. Evolution of motional inductance with respect to electrode material and type of modeling.

5.3. Influence of Mass-Loading Effects on Motional

Parameters

For clarity of figures, the data, presented in Figures 30 and
31, are normalized. For Figure 30, the chosen normalization

is
Lsimple for overtone considered−Lmodel considered

Lsimple for overtone considered
. For figure 31, the chosen nor-

malization is Cmodel considered

Csimple for overtone considered
because the dispersion between

the different values is very strong.
The error on the electrical values is strongly related to the

type of modeling. Basically, the error with respect to the simple
model electric inductance increases with the electrode mass.
In absolute, the simple model overestimates the electric induc-
tance value. The electromechanical equivalence explains this
tendency. Let’s note that error is not sensitive to the overtone
considered.

For the equivalent electric capacitance, the error with re-
spect to the simple model becomes very important with the
high overtones. The electric capacitance values are very low
and so very sensitive to the computations. There is no clear
tendency with respect to the electrode material or the type
of modeling even if a modeling improvement can be assumed
with the taking into account of the electrode mass.

6. Acceleration Sensitivity

In this section, the acceleration sensitivity of the resonator is
studied. The influence of the various materials and accelera-
tion on the natural frequencies is focused on.

6.1. Computation Process

The taking into account of the acceleration sensitivity requires
a computation in large deformations. In this case, the tensor
of deformation is given by Eq. (34):

S =
1

2
(∇u + ∇ut) +

1

2
∇utu. (34)
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Fig. 31. Evolution of motional capacitance with respect to electrode material and type of modeling.

The computation is made in two steps. First, a static prob-
lem where the load is an acceleration equivalent volumic force
is solved. Figure 32 depicts the deformed structure for this
type of load. In the second step, the eigenvalue problem is
solved by considering the static result as initial conditions.

The acceleration sensitivity is defined by Eq. (35) [11]:

Ŵa =
facc − f

Af
, (35)

where facc, f are respectively the frequency (Hz) considering
the acceleration field and frequency without acceleration, and
A is the acceleration module (m.s−2).

6.2. Numerical Results

Figures 33 to 35 show the relative variation of the fundamen-
tal frequencies with respect to the acceleration (expressed in
g = 9.81m.s−2), applied in the three axes, and for each type of
electrode material. Along the thickness axis, let’s note that the
acceleration sensitivity increases in a parabolic way accord-
ing to the acceleration magnitude. For low acceleration values
(lower than 30 g), a linear variation can be assumed. Hence, the
directing coefficient represents the acceleration sensitivity. Ta-
ble 8 summarizes their values for each material. These values

are in good agreement with Tiersten’s results [25]. Let’s note
that the acceleration sensitivity increases with the electrode
mass density. This fact led to the development of a new res-
onator class: the BVA resonator. It was introduced by Besson
[26]. One of the major distinguishing characteristics of the
BVA resonator is that the electrodes are not deposited on the
resonator active vibrating area so as to limit the acceleration
sensitivity.

Along the thickness axis, the acceleration has a harden-
ing effect on the structure. Therefore, the frequencies increase
according to the acceleration as presented in Figure 34. For
the axis X and Z, a softening effect is observed for the setup
considered as shown in Figures 33 and 35. However, in the
structure plan, the effect depends strongly on the load direc-
tion with respect to the crystallographic axes, as depicted in
Figure 36.

6.3. Influence of Acceleration Sensitivity on Motional

Parameters

The difference between the resonance and antiresonance fre-
quencies is due to the piezoelectric coupling coefficient and
the electrode location. The acceleration field does not induce
modifications of these two parameters at first order. Thus,

Fig. 32. Static load (color figure available online).
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Fig. 33. Evolution of fundamental frequency variation with re-
spect to acceleration magnitude according X axis.

Fig. 34. Evolution of fundamental frequency variation with re-
spect to acceleration magnitude according to Y axis.

Fig. 35. Evolution of fundamental frequency variation with re-
spect to acceleration magnitude according to Z axis.

Fig. 36. Fundamental frequency variation with respect to the
angle between the acceleration direction and the Z axis for the
simple model.

the influence of the acceleration field on the resonance and
antiresonance frequencies can be considered homothetic.

Consequently, thanks to Eq. (35), Eqs. (36) and (37) can be
written as:

fr acc = (AŴa + 1) f r, (36)

faacc = (AŴa + 1) f a. (37)

Then, the influence of the acceleration field on the motional
parameters can be developed through Eqs. (38) and (39). Let’s
note that only motional inductance is modified by the ac-
celeration endured by the resonator. The electromechanical
equivalence, presented in Figure 6, shows that the motional
inductance represents the vibrating mass of the crystal unit.
Basically, this vibrating mass is forced by the acceleration field.

Ccacc =

[

(

faacc

fr acc

)2

− 1

]

C0 = Cc, (38)

Lacc =
1

4�2 fr acc2C0

=
L

(AŴa + 1)2
. (39)

Figure 37 depicts the motional inductance evolution with
respect to the acceleration magnitude along the Y axis, the
most forced resonator axis. Let’s remark that the electrode
material has a large influence of the motional inductance val-
ues. But, in absolute, the motional parameter modification due
to the acceleration field is relatively limited, less than 1 ppb
(part per billion).

7. Experimental Data

In order to check the validity of the numerical model, a com-
parison between numerical data and experimental date is pro-
vided. One hundred standard quartz SC-resonators with silver
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electrodes made by Temex, are measured. Table 9 illustrates
the differences between the results of the numerical model and
experimental measurements. Let’s note that the results of the
numerical model are close to experimental data. The variations
remain important in particular for the motional parameters.
These variations can be related to several parameters. First,
the mechanical boundary conditions considered in the model
are different with respect to the ones of the devices. Indeed,
in the numerical model, the side edges of the quartz resonator
are embedded, whereas the real resonator device has four fix-
ing points. Consequently, the static stress endured by the ac-
tive structure is quite different and can explain the frequency
value difference and the modification of the gap between the
natural resonance frequency and the natural anti-resonance
frequency. Moreover, in the numerical modeling, the damping
factor is neglected and the quartz material parameters used in
the modeling is extracted from the literature and not issued
from measurements. Consequently, the relative difference be-
tween the different analyzed values is quite limited with re-
spect to the complexity of the structure and the computation
assumptions.

8. Concluding Remarks

In this article, the influence of the model mesh quality, the elec-
trode mass-loading, and the acceleration field on the motional
parameters of a quartz resonator are investigated. A SC-cut
quartz resonator is analyzed for its fundamental thickness-
shear resonance, the third and the fifth overtone. A simple
computation method in order to answer at the industrial time
constraints is developed. A Butterworth-Van Dyke (BVD)
model based on an electrical equivalent circuit with, as in-
put data, the studied natural frequency and the antiresonance
frequency of an accurate finite element modeling is used. The
finite element model has been implemented in a commercial
software called Comsol.

The different modeling steps and its limitations are shown.
So as to have a good approximation of the motional parame-
ters, it is essential to have a precise finite element discretization
along the thickness axis. The number of nodes become more
and more critical with the overtone number. In a second step,
for more accuracy, the electrode mass-loading is taken into ac-
count. The electrode material strongly influences the motional
parameters and the modal shape amplitudes. In a third step,
the acceleration influence on the motional parameters is stud-
ied. The acceleration sensitivities obtained for the different
electrode materials are in good agreement with the literature.
The acceleration field has a very limited influence on the mo-
tional parameters. Consequently, it is not necessary to take
it into account at first order. Finally, the experimental data
confirm the validity of the numerical model.
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