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We propose a wavelet-based decomposition of creep fluctuation signals recorded from

living muscle precursor cells that revisits the traditional computation of their power

spectrum from FFT-based decomposition. This decomposition offers a higher sen-

sitivity for detecting the occurrence of fractional fluctuations and for quantitatively

estimating the power-law exponent β of this spectrum as a signature of the scale-

invariant rheology of living cells. This new method has also the unprecedented ad-

vantage to provide a test of the validity of the commonly assumed “monofractal”

self-similar (as compared to “multifractal” intermittent) nature of these fluctuations

and hence to accredit the use of a single rheological exponent α = β/2. We report and

discuss results obtained when applying this method to creep experiments performed

with an AFM nanoindenter placed in contact with single myoblasts and myotubes,

adherent on collagen coated coverslips, and in different culture conditions.

keywords muscle precursor cells, cell rheology, atomic force microscopy, passive rhe-

ology, wavelet transform, time-frequency decomposition, Morse wavelets, fractional

damping, cytoskeleton filaments, ATP depletion
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I. INTRODUCTION

Eukaryote cells are constructed from three sets of protein filaments arranged in a cross-

linked cytoskeleton (CSK) network involving active and passive cross-linkers1,2. The actin-

myosin II association constitutes the main engine for the muscular function of individ-

ual cells, and for their spatio-temporal dynamics such as cell contractility, adhesion, and

motility3,4. Single cell rheology has been thoroughly investigated in the past decades with

a great diversity of experimental approaches, both in temporal and spectral domains1,5–11.

Complex quantities such as the relaxation modulus Ĝ(f) and the compliance Ĵ(f) were

estimated over five decades of f from 10−3Hz to 100 kHz. At high frequencies (f & 103 Hz),

the effective rheology of the actomyosin CSK was shown to be dominated by the mechanical

and thermal properties of individual actin filaments or bundles1,2,12,13. At lower frequencies,

in the 1-103 Hz range, unbinding and rebinding events of passive cross-linkers make the CSK

resemble a viscoelastic soft glassy material with a power-law (fractional) rheology5,7–9,14. In

that frequency range, an indivisible relationship exists between storage (real part) and loss

(imaginary part) components of Ĝ(f) that both scale as G′(f) ∼ G′′(f) ∼ fα. The exponent

α depends on the internal structure of the cell and its interplay with its environment. For

example, cells prestressed by strong adherence on stiff supports, turn progressively to a more

solid and elastic material (α→ 0)4,9.

The mechanics of lipid layers forming artificial and cytoplasmic membranes was also

reported to present quite interesting fractional hereditary rheology15,16. In physiological

situations, the membrane stress is neither homogeneous spatially nor invariant in time.

Beyond some stress threshold, the membrane may break or switch to a ceramide phase15.

Actually, in living cells the mechanics of this lipid bilayer is not independent of the underlying

actin cortex (actin-based filaments network). Its anchoring to the plasma membrane and

its thickness (ranging from 0.05 to 1 µm) are maintained dynamically by the assistance of

ATP driven molecular motors (bivalent cross-linking myosins (I) with lipid binding motifs

and actin binding motifs). This actin cortex is an isotropic network of actin filaments,

oriented parallel to the plasma membrane with mesh size from 20 to 250 nm17, facilitating

the penetration of the cantilever tip (tip radius curvature <10 nm).

The fractional exponent α was experimentally estimated using either (i) forced periodic

driving by an indenter in contact with the cell, or (ii) “unforced” (thermal fluctuations)
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driving of small particles anchored to or embedded inside the cell5–10. This later method is

by far quicker since it allows to explore a wide range of frequencies from a single recording.

It becomes mandatory when the cell state evolves in time. However, it requires a frequency

(spectral) decomposition of the recorded signal and in some situations a time-frequency

decomposition. Most previous experimental studies relied on the Generalised Stokes Einstein

Relation (GSER) to uncover, from thermal fluctuations, the complex viscoelastic modulus

Ĝ(f)18,19. But the validity of GSER is still a debated issue since a living cell is an active

glassy material that cannot be considered at thermal equilibrium20–23. Indeed, micro-tracers

perceive an effective temperature due to the non-homogeneous and non-stationary out-of-

equilibrium properties of this material. Thus, a violation of the GSER is likely to manifest as

a departure (e.g. anomalous intermittent multifractal diffusion24) from self-similar Gaussian

statistics of tracer random fluctuations25.

Atomic force microscopy (AFM) became rapidly an alternative to micro-particle tra-

jectory tracking, because it could be used to periodically force the cantilever nano-tip in

contact with the tested material26–28. Recently, “unforced” microrheology of soft gels and

cells was also achieved with AFM11,29,30. The advantage of AFM forcing, as compared to

micro-particle tracing, is that except its nano tip in contact with the soft sample, the AFM

cantilever body is outside the sample and is excited by the surrounding thermal chamber (at

equilibrium). We can therefore reasonably identify the fluctuating force that drives randomly

an AFM cantilever inside a liquid chamber as a Gaussian stochastic perturbation. For this

experimental demonstration, we use muscle precursor cells (myoblasts and myotubes from a

mouse model C2C12 and human myoblasts) in different culture conditions: (i) normal, (ii)

with an inhibitition of the myosin function, and (iii) with a depletion of the source of energy

(ATP) of the cell. We also study dystrophic (Duchenne muscular dystrophy - DMD) human

myoblasts as a comparative pathological situation. In this study, the creep experiments were

performed for a constant loading force of 1 nN which corresponds to a depth of penetration

of the tip of the cantilever of 1 to 2 µm, depending on the rigidity of the cell. The typical

shear modulus of these cells varies from 1 to 2 kPa31. However the tension of the [plasma

membrane/actin-cortex] system was estimated ∼ 10−4 N/m32, which is about three order

of magnitude smaller than the nominal spring constant of the cantilever beam used in this

work (∼0.1 N/m). Hence, the cantilever is very stiff and during its penetration into the

cell (prior to recording the cantilever deflection signal), it more likely perforates the plasma
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membrane, creating a local pore that may facilitate Ca2+ ion import into the cytoplasm31.

The wavelet transform is a mathematical time-frequency (time-scale) decomposition of

signals introduced in the early 1980s33, which was applied to a great variety of situations

in physics, physical chemistry, biology, signal and image processing, material engineering,

mechanics, economics, epidemics. . . 34–44. Real experimental signals are very often nonsta-

tionary (they contain transient components), and involve a rather wide range of frequencies

which may also drift in time. Standard Fourier analysis is therefore inadequate in these

situations, since it provides only statistical information about the relative contributions of

the frequencies involved in the analyzed signal. The possibility to perform simultaneously a

temporal and frequency decomposition of a given signal was first proposed by Gabor for the

theory of communication45. Later on, two distinct approaches (based on different wavelet

transforms) were developed in parallel: (i) a continuous wavelet transform (CWT)33,39,40

and (ii) a discrete wavelet transform (DWT)35. For singular (self-similar or multi-fractal)

signals or images, the CWT transform rapidly became a predilection mathematical micro-

scope to perform space-scale analysis and to characterize scale invariance properties36,37,42.

In particular it was used to elaborate a statistical physics formalism of multifractals46–50.

During the past 30 years, the CWT was used for biological applications, on both 1D signals

and 2D images42–44,51–53. 1D-CWT was applied to AFM force curves collected from single

living plant cells54, living hematopoietic stem cells11,55 and to AFM fluctuation signals to

characterize the passive microrheology of living myoblasts29. It was generalized to 2D (and

to 3D) CWT42,51,56 and it proved again its versatility and power for analyzing AFM topo-

graphic images of biosensors57, fluorescence microscopy images of chromosome territories58

and diffraction phase microscopy of living cells59,60.

The originality of this work is to use a wavelet-based time-frequency decomposition

method for analyzing the fractional rheologic fluctuations of living cells when probed with

an AFM cantilever and to demonstrate that these fluctuations are self-similar and Gaussian

in the [5 Hz - 150 Hz] range (the complex compliance J(f) ∝ fα). It also establishes the

fractional exponent α as a fractional hereditariness marker61 distinguishing myoblasts with

internal cytoskeleton tensions (prestressed adherent cells, showing stiffer and longer actin

stress fibers) from those which have lost their tensed actin network. In section II, we

describe the experimental methods, the rheological models and the time-frequency analysis

with complex analytic wavelet transforms of AFM cantilever fluctuations. In section III, we
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compare the fractional hereditariness of the different types of muscle precursor cells and the

range of frequencies where their compliance J(f) scales as a power law ∼ fα. We conclude

in section IV.

II. METHODS

A. Materials and methods

1. Cell culture and differentiation

a. C2C12 myoblast culture C2C12 myoblasts (ATCC CRL-1772) were cultured in

a growth medium (GM) composed of high glucose (4,5 g/L) Dulbecco’s Modified Eagle

Medium with L-glutamine (DMEM, PAA, GE Healthcare) supplemented with 20% fetal

bovine serum (FBS, PAA), 1% penicillin-streptomycin antibiotics (100 U/ml penicillin and

100 µg/ml streptomycin, Gibco, Thermo Fisher Scientific) and 10 mM HEPES (Gibco).

GM was stored at 4◦C up to 1 month; fresh GM was replaced every 2 days. The myoblasts

were maintained in a 5% CO2 atmosphere at 37◦C inside 90 mm diameter petri dishes until

∼ 70% confluency. To avoid that 60-70% confluent myoblasts differentiate spontaneously,

the dishes were washed with preheated PBS and cells were detached from the dish bottom

with 0.25% trypsin-EDTA (Gibco) for 3 minutes at 37◦C. Then the cells were harvested

and either re-plated at lower concentration or frozen-stored. Prior to AFM FIC collection,

C2C12 myoblasts (∼ 1.5 105 cells from passages 10 to 14) were seeded on collagen coated

petri dishes CCPDs (35 mm diameter) in GM and kept at least 24 hours at 37◦C with 5%

CO2. Then the medium was changed and replaced by 2 ml of GM and the petri dish was

transferred to the AFM. Each sample was used within 2 to 3 hours and discarded afterwards.

b. C2C12 myoblast differentiation Confluent (60%) C2C12 myoblasts on CCPDs were

induced to differentiation, replacing GM by a differentiation medium (DM)62. DM was

composed of high glucose (4,5 g/L) Dulbecco’s Modified Eagle Medium with L-glutamine

(DMEM, PAA), supplemented with 2% Donor Horse Serum (HS, PAA), 1% penicillin-

streptomycin antibiotics (100 U/ml penicillin and 100 µg/ml streptomycin, Gibco) and

10 mM HEPES (Gibco). The myoblasts were maintained in DM at 37◦C with 5% CO2

for at least 5 days, renewing the medium every 2 days. Different culture supports were

used (glass bottom petri dishes, SPDs and CCPDs) to compare their impact on C2C12 cell
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myogenic differentiation. C2C12 myoblast differentiation was monitored by DIC and time-

lapse video recording. Multinucleated myotubes were observed with fluorescence confocal

microscopy and probed by AFM at their 5th day of differentiation. A fusion index, defined

as the percentage of nuclei contained in myotubes compared to the total number of nuclei

observed in each image field, was used to quantify the level of myotube formation in different

culture conditions.

C2C12 myoblasts grown on CCPDs (35 mm diameter) were rinsed twice with preheated

PBS and fixed with freshly made 4 % paraformaldehyde (PFA, Fluka, St. Louis, MO) in

PBS for 20 minutes at room temperature (RT) (24 ◦ C). Then the sample was maintained

in 2 ml PBS before AFM measurements which lasted ∼ 4 hours at RT.

c. Primary human myoblast culture Purified primary human myoblasts from a patient

(3 years old) affected by the Duchenne muscular dystrophy (DMD, V024) were courteously

donated from Hospices Civils de Lyon (Centre de Biotechnologie Cellulaire, Groupement

Hospitalier Est, Bron, France) after patient informed consent in accordance with the Dec-

laration of Helsinki. The DMD patient carried deletions of axons 48-52 in the dystrophin

gene. The myoblasts were grown in proliferation medium (PM) at 37 ◦C with 5 % CO2 on

CCPDs. PM was composed of high glucose (4,5 g/L) Dulbeccos Modified Eagle Medium

with L-glutamine (DMEM, PAA), supplemented with 20 % fetal bovine serum (FBS, PAA),

1 % penicillin-streptomycin antibiotics (100 U/ml penicillin and 100 µg/ml streptomycin,

Gibco), insulin (10 µg/ml, Sigma), human basic fibroblast growth factor (hbFGF, 25 ng/ml,

Sigma) and epidermal growth factor (EGF, 10 ng/ml, Sigma). The filtered PM was stored at

4 ◦C up to 1 month; fresh PM was replaced every 2 days. DMD myoblasts were dissociated

from the culture substrates either for routine subculture or for cryopreservation using 0.05%

trypsin-EDTA (Gibco) for 3-5 minutes at 37 ◦C after replacement of PM with preheated

PBS.

DMD primary human myoblasts were seeded (2.5 x 104 cells from 2nd and 3th passages)

on CCPDs (35 mm diameter) in PM and kept at 37 ◦C with 5 % CO2 at least 24 hours

before AFM recording. Then the medium was changed and replaced by 2 ml of PM and

the petri dish was transferred to the AFM. Each sample was used within 2 to 3 hours and

discarded afterwards.

d. ATP depletion Living cells rely on a combination of oxidative and glycolytic energy

metabolism for ATP production. For a complete ATP depletion, both pathways must be
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inhibited63, namely the mitochondrial electron transport chain (ETC) complex III with

antimycin A (AMA)64 and glycolysis with 2-deoxy-D-glucose (2-DG)65. ATP depletion buffer

composition: 140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM HEPES, 6 mM

2-DG (Sigma), 5 µM AMA (Sigma). The filtered solution was adjusted to pH 7.4 and stored

at -20◦C. CCPDs with adherent C2C12 myoblasts were first rinsed twice with preheated PBS

and filled with freshly thawed ATP depletion buffer (2 ml). 15 minutes were necessary for

the cellular ATP concentration to decrease below 7 % of its initial concentration66. AFM

FIC capture was performed on single cells, inside the ATP-depletion buffer at RT for 2-3

hours, before discarding the CCPD.

e. Blebbistatin treatment C2C12 myoblasts were treated with (S)-(-)-Blebbistatin

(Santa Cruz Biotechnology) to inhibit the activity of the non-muscle myosin II67. Aliquots

of 100 µM blebbistatin dissolved in dimethylsulfoxide (DMSO) were stored at -20◦C. GM

was replaced with the same amount (2 ml) of preheated GM containing blebbistatin (50 µM)

for 20 minutes68. AFM experiments on C2C12 cells inside GM-blebbistatin were performed

in ∼ 2, 5 hours at RT.

f. Petri dish surface treatment We tested different surface treatments: gold coating,

standard (SPD) and type I collagen coated petri dishes (CCPD), and we observed that

CCPDs lead to greater C2C12 myoblast lengths, widths and areas. In this study, we chose

type I collagen for myoblast adhesion because this protein is one of the major insoluble

fibrous protein found in the in vivo extracellular matrix (ECM). Type I collagen aqueous

solution (3 mg/ml) from bovine skin and tendon BioReagent (Sigma Aldrich) was diluted

in ultra-pure water to get 100 µg/ml. Petri dishes were incubated three hours with this

solution (8µg/cm2) at 37◦C to allow proteins to bind, dried overnight at RT under clean

atmosphere and rinsed with Dulbecco’s Phosphate Buffer Saline (PBS, Sigma) before use.

2. Fluorescence microscopy and staining

Fluorescence confocal microscopy imaging was performed with an inverted scanning con-

focal microscope (ZEISS LSM710) equipped with a motorized X-Y stage and a set of ZEISS

objectives with magnification from 10X to 63X. Fluorescent images (1224 x 900 pixels) were

collected using a 405 nm blue-violet laser diode (DAPI, AMCA), a 488 nm argon laser

(Alexa Fluor 488), and a 561 nm diode-pumped solid state (DPSS) laser (Cy3). The exci-
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FIG. 1. Fluorescence images of C2C12 myoblast cells (a, b, d) and C2C12 myotubes (c) showing
their nuclei (DAPI - blue), actin filaments (phalloidin alexa fluor 488 - green) and microtubules
(β-tubulin Cy3-conjugate - red). (a) Normal myoblast cell. (b) Myoblast cell treated with an ATP
depletion buffer. (c) Normal myotubes after 5 days of differentation. (d) Myoblast cells treated
with a blebbistatin buffer. Scale bar: 20 µm.

tation and the fluorescence signal acquisition of each fluorophore was executed in sequential

multi-tracking channels in order to avoid bleed-through crossover artefacts. Saturation was

checked and avoided using range indicators of the Zen software. The scan speed and image

averaging were optimized before image acquisition in order to have the highest signal-to-

noise ratio for a minimum cost of time. Z-Stack images of 9 µm ± 3 µm depth with 0.5

µm interval between each slice were acquired with the Zen software. ImageJ 1.47v process-

ing program was used to analyze the confocal microscopy images and to reconstruct the Z

projections.
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Fluorescent labelling of specific intracellular structure of C2C12 cells was performed

combining immunofluorescence and non-antibody labelling techniques. Adherent C2C12

myoblasts (∼ 105) and confluent myotubes on 35 mm diameter CCPDs were rinsed twice

with preheated PBS and fixed with freshly made 4% paraformaldehyde (PFA, Fluka) in

PBS for 20 minutes at room temperature (RT). The samples were then permeabilized with

0.05 % Triton X-100 (Euromedex, Souffelweyersheim, France) in PBS for 10 minutes at

RT before being saturated with 1 % bovine serum albumins (BSA, Sigma) in PBS and

kept 30 minutes at RT. The samples were stained either for F-actin, β-tubulin and nu-

cleus, or for the three cytoskeleton filaments according to the two following protocols. In

the fist case, after incubation with mouse monoclonal Cy3-conjugate anti-β-tubulin (Sigma)

diluted 1:200 in 1 % BSA PBS for 1 hour at RT in a humid and dark chamber, the cells

were incubated with phalloidin-Alexa Fluor 488 (Molecular Probes) diluted 1:100 in 1 %

BSA PBS for 15 minutes at RT in a humid and dark chamber. Finally, the samples were

sealed with glass cover-slides and VectaShield mounting medium (Vector Laboratories) with

DAPI (4’,6-diamino-2- phenylindole) and stored at least for 10 minutes at 4◦C. In the second

case before β-tubulin staining, the cells were incubated with mouse monoclonal anti-desmin

(DAKO, Agilent Technologies) diluted 1:200 in 1 % BSA PBS over night in humid cham-

ber at 4◦C. The day after, incubation with AMCA-conjugated goat secondary antibody anti

mouse (Jackson ImmunoResearch) diluted 1:1000 in 1% BSA PBS was carried out for 1 hour

at RT in a humid and dark chamber. Then the labelling of β-tubulin and F-actin was per-

formed similarly to previous protocol before sealing the samples with glass cover-slides and

VectaShield mounting medium without DAPI and storing them at least 10 minutes at 4◦C.

In both protocols the samples were gently rinsed with PBS 3 times for 5 minutes between

each step. Fluorescence images of C2C12 myoblasts and myotubes in different conditions

are shown in Fig. 1.

3. AFM experimental protocols and cantilever calibration

A CellHesion 200 Atomic Force Microscope (AFM, JPK Instruments) coupled to a trans-

mission inverted microscope and a CCD camera was used for nano-indentation experiments.

The apparatus was equipped with a X-Y Motor Precision Stage (JPK) with 20×20 mm mo-

torised stage, a vibration isolation table (Melles Griot), a foam-based acoustic isolation sys-
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tem and a white light LED illumination (Thorlabs, MCWHLS). The AFM Z-piezotransducer

with movement range of 100 µm was controlled by a closed loop feedback system with sub-

nanometric precision. Proportional gain (P gain) was set at 20 and integral gain (I gain)

at 0.002.

Creep (fixed force) experiments were performed with two types of AFM probes: (i) trian-

gular gold-coated silicon nitride cantilevers from Sharp Nitride Lever (SNL-10, Bruker, Ca-

marillo, CA) with nominal spring constant of 0.06 N/m (min= 0.03 N/m; max= 0.12 N/m)

and typical resonant frequency in air: 18±6 kHz; (ii) rectangular partially gold-coated quartz

cantilevers (qp-CONT 20, Nanosensors, Neuchatel, Switzerland) with nominal spring con-

stant of 0.1 N/m (min = 0.08 N/m; max= 0.15 N/m) and typical resonant frequency in

air: 30 ± 4 kHz. Before each experiment, cantilever calibration was carefully performed

both in air, to verify the correct positioning of the probe and the proper system alignment,

and in liquid to estimate the cantilever spring constant (k). First, the deflection sensitivity

(nm/V) of the cantilever-photodiode system was evaluated using the in-contact part of force

indentation curves (FICs) on a clean glass surface (5 FICs collected in both air and liquid).

a. AFM cantilever calibration The cantilever spring constant was calibrated in both air

and liquid by the thermal noise method69,70. From the thermal fluctuations of the cantilever,

its spring constant k can be estimated, assuming harmonicity (small amplitude fluctuations)

and energy equipartition69: k = kBT/〈d2〉, where 〈d2〉 is the mean square displacement of

the cantilever from its neutral position, T the absolute temperature in Kelvin and kB the

Boltzmann’s constant. Since AFM cantilevers have different geometries and several vibration

modes, a correction factor κ must be included: k = κ kBT/〈d2〉, where the factor κ varies

according to the vibration mode and the cantilever geometry71. The value κ = 0.817 (resp.

0.778) was used for rectangular (resp. triangular) cantilevers.

Power spectral density (PSD) was computed from AFM cantilever deflection signals cap-

tured 100 µm away from the sample surface. Finally, the vertical deflection (∆D) (nm) of

the cantilever being proportional to the force applied to the sample, we converted it to a tip-

sample interaction force ∆F (nN) knowing the stiffness of the cantilever k (N/m) through

the Hooke’s law: ∆F = k∆D and the sensitivity of the photodiode quadrant.

b. Creep (constant force) experiment protocol AFM constant force experiments were

performed with a CellHesion 200 Atomic Force Microscope (JPK Instruments, Berlin, Ger-

many) coupled to a transmission inverted microscope, a white light LED illumination (Thor-
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labs, Model MCWHLS, Newton, New Jersey), a CCD camera (The Imaging Source Europe,

Bremen, Germany), a 20 x 20 mm X-Y Motor Precision Stage (JPK), a vibration isolation

table (Melles Griot, Albuquerque, NM) and a foam-based acoustic isolation system. We used

qp-Cont-20 rectangular quartz-like cantilevers (Nanosensors TM, Neuchatel, Switzerland),

which have the following specifications: thickness 0.75± 0.03 µm, length 125± 5µm, width

35 ± 2 µm, resonance frequency 26-34 kHz, nominal force constant 0.1 N/m (min = 0.08

N/m; max = 0.15 N/m) and tip height: 6-8 µm. Before recording the cantilever fluctuation

signals, the system alignment and the thermal noise cantilever calibration were carried out

on a 35 mm petri dish with a glass bottom filled with 2 ml of ultra-pure water. A thermal

noise signal (100 seconds) was first recorded in these conditions at 100 µm above the dish

surface. Then the dish with water was discarded and replaced with a collagen coated 35

mm petri dish containing the living cells (∼ 1.5 105 cells from passages 10 to 14) in 2 ml

of culture medium. The chamber thermal noise signal was again captured at 100 µm above

the dish surface on a region close to the probed cell (≤ 50 µm), then the cantilever tip was

approached to the cell nuclear region, using the JPK constant force mode (force set point =

1 nN, proportional gain= 20, integral gain = 0.002) and maintained at this force of 1 nN for

the cantilever fluctuations recording. After a time delay of 5 seconds, required for the can-

tilever approach to the cell and cantilever contact force establishment, the cantilever height,

error, lateral and vertical deflection signals were recorded during 100 s with an acquisition

rate of 800 kHz.

B. Theory/Calculation

1. Formalism for the fractional rheology of cells

Fractional calculus provides a natural framework for describing the power-law rheology

of living cells72. Here, we adapt this formalism to reformulate the hereditary integrals which

have been proposed for modelling stress relaxation or creep experiments with spherical or

conical indenters73–75.

General linear constitutive equations for viscoelastic materials were formulated from

hereditary (convolution) integrals73. They were further extended to pyramidal or conical

indentations74,75. For creep experiments (fixed loading force F ) with conical shape inden-
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ters, the square of the depth of indentation d reads as a convolution integral of the force

derivative:

d2(t) = D
∫ t

0

J(t− τ)dF (τ) , (1)

where J is the creep compliance, D = π(1−ν)
4 tan θ

, ν is the Poisson coefficient, and θ the nominal

tip half-angle. We assume in this study that the cells behave as isotropic viscoelastic materi-

als and we take ν = 0.5 as a first approximation. Actually, living cells are not isotropic, and

their Poisson coefficient may not be invariant in time. A first attempt to generalize heredi-

tary integrals to anisotropic materials with fractional rheology was recently published76, and

could be extended for modelling the indentation of anisotropic living cells with axisymmetric

indenters of variable shape.

The principle of a creep experiment is formalized by the following equation for the force:

for t > 0: Fm(t) = F0H(t), where H(t) is the Heaviside step function. To reach and

maintain this mean loading force, the vertical position of the AFM cantilever is adjusted in

real time. In real experiments, around this mean loading force Fm, the fluctuations of F are

the consequence of either thermal noise-driven fluctuations or mechanical vibrations of the

experiment:

F (t) = Fm(t) + SF(t) = F0H(t) + SF(t). (2)

If we assume that the fluctuations SF(t) are stochastic and uncorrelated, they can be modeled

by a zero mean Gaussian stochastic process for which a flat power spectrum density has been

defined.

As the distributional derivative of the Heaviside step function is the Dirac delta distri-

bution: dH(t) = δ(t)dt, Eq. (1) can be rewritten as:

d2(t) = D
(
F0J(t) +

∫ t

0

J(t− τ)dSF(τ)

)
. (3)

d2 can be expressed as the sum of two terms:

d2(t) = (dm(t) + Sd(t))
2 = d2m(t) + 2dm(t)Sd(t) + (Sd(t))

2, (4)

where d2m(t) = D F0J(t) is a mean time-varying value and Sd(t) is a fluctuating term of

much smaller amplitude. Given that dm(t) varies on much longer time scales than Sd(t), for

the range of frequencies investigated here ([1 Hz, 1 kHz]), the low frequency dynamics will

be separated from the higher frequency fluctuations: dm(t) ∼ dm = Cste. Since moreover
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Sd(t)� dm, the term of order 2 in Sd(t) in Eq. (4) can be neglected and we get the expression

for Sd(t):

Sd(t) =
D

2dm

∫ t

0

J(t− τ)dSF(τ) . (5)

Structural damping materials are characterized by temporal power-law compliances J(t)77,78:

J(t) =
tα

CαΓ(1 + α)
, (6)

where Cα = E0

(
Cη
E0

)α
has a dimension that depends on α, and Γ is the Euler gamma

function. Cα reduces to a Young modulus E0 when α = 0 and to a viscosity coefficient Cη

when α = 1. For 0 < α < 1, the parameters E0 and Cη do not have these physical meanings.

Thus, the integral of Eq. (5) transforms into a fractional integral of the force fluctuations:

Sd(t) =
D

2dmCαΓ(1 + α)

∫ t

0

(t− τ)αdSF(τ). (7)

A simple integration by part leads to:

Sd(t) =
D

2dmCαΓ(α)

∫ t

0

(t−τ)α−1SF(τ)dτ=
D
Cα

(
Iα0+SF

)
(t), (8)

where (Iα0+SF)(t) denotes the Riemann-Liouville fractional integral of SF
79. Thus, Sd(t)

can be interpreted as the fractional integration of exponent α of the force fluctuations SF.

Eq. (8) can be rewritten in Fourier space as

Ŝd(f) =

∫ ∞
−∞

Sd(t) e
−2πiftdt =

D
2dmCα

[if ]−αŜF(f). (9)

Eq. (9) is an infinite integral over a continuously varying time variable. In practice, discrete

Fourier transforms are used in numerical computations and require some precautions. Before

starting the experiments, the range of frequency for characterizing the rheology of cells has

to be chosen. This frequency range is used to fix the temporal discretization (time step δT )

and the total duration of the recorded signal. δT was taken such that the largest frequency

of the corresponding power spectrum fs = 1/δT be larger than the upper bound of the

frequency domain (to avoid aliasing effects). Similarly, the duration of the signal was fixed

to be much larger (10×) than the inverse of the minimum frequency, to eliminate boundary

effects for the wavelet transform computation.

If the sample compliance does not change during the experiment (avoiding active pro-

cesses) and the Generalized Stokes-Einstein Relation (GSER)18,19 is valid, the complex com-
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pliance varies as a power law of the frequency (f = ω/(2π)):

Ĵ(f) =
Ŝd(f)

ŜF(f)
=

D
2dmCα

[if ]−α. (10)

2. Time-frequency analysis of noisy signals with the wavelet transform

a. Wavelet transform mathematical formulation The wavelet transform TSd(b, a) of a

signal Sd(t) consists of its decomposition in terms of wavelets which are constructed from a

chosen analyzing wavelet ψ by means of translations (time parameter b) and dilations (scale

parameter a > 0). It is written as a convolution product of Sd(t) with the analyzing wavelet

ψ shifted by b and scaled by a39,40:

Tψ[Sd](b, a) =
1

a1/2

∫ ∞
−∞

Sd(t) ψ
∗
[
t− b
a

]
dt = a1/2

∫ ∞
−∞̂
Sd(f)ψ̂∗(af)e2πifbdf, (11)

where we have chosen to use the L2 norm that preserves the modulus square (energy) of the

wavelet. We note ψ̂∗ the complex conjugate of ψ̂. The scale a is a non-dimensional quantity,

it can be defined as an inverse of the frequency a = f0/f . In this study we took f0 equal to

the peak frequency fψ̂max (see Supplementary Data).

Usually ψ is only required to be of zero mean, but for the particular purpose of singu-

larity detection of interest here, we will also require ψ to be orthogonal to some low-order

polynomials (i.e. to have N vanishing moments
∫
R x

nψ(t)dt = 0, n = 1, 2, ..., N − 1)80 . For

the wavelet ψ to be admissible, its Fourier transform must fulfill the condition:

Cψ =

∫ ∞
−∞

|ψ̂(f)|2

|f |
df <∞. (12)

This time-frequency analytic tool has proved particularly efficient for the analysis of

complex non-stationary signals, and signals involving a mixture of periodic and stochastic

components. In particular, continuous wavelets constructed from derivatives of Gaussian

functions were used to track local singularities81–87 and a whole formalism for the statistical

thermodynamics of fractals was elaborated46–50,88,89. For the detection of rhythms (periodic

or quasiperiodic components) from noisy signals, complex-valued square integrable wavelets

gcsi wavelets were proposed such that their Fourier transform vanishes for negative frequency

values (analytic functions)90–92. Analytic wavelet transforms provide both the magnitude

and the phase information of a signal in the time-frequency domain.
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b. Morse Wavelets The generalized Morse wavelets constitute a two-parameter family

of exactly analytic continuous wavelets. They have been introduced in the late 1980’s to

define time-frequency localisation operators93,94 and revisited more recently for their appli-

cation to complex (noisy) signals95–98. These wavelets are defined in the frequency domain

(ω = 2πf) as:

ψ̂n,γ(ω) = Cn,γ ω
ne−ω

γ

, for ω ≥ 0

ψ̂n,γ(ω) = 0, for ω < 0 (13)

where Cn,γ is a normalization constant, n and γ are two parameters controlling the wavelet

shape. Eq. (13) confers the analyticity to the generalized Morse wavelets. The maxima

of ψ̂n,γ(ω) (the peak frequency) corresponds to frequencies such that n − γωγ = 0, that is

ω0 = 2πf0 = (n/γ)
1
γ (See the Supplementary Data for the expression of the derivative of

ψ̂n,γ(ω)). The Morse wavelet family includes as special cases the Cauchy wavelets ψ̂n,1(ω)

(γ = 1), as well as analytic versions of the derivative of Gaussian wavelets ψ̂n,2(ω) (γ = 2),

and also the Airy wavelets (γ = 3).

We illustrate in Fig. S1 Morse wavelets for different values of γ and n. The solid (resp.

dashed) lines correspond to γ = 1 (respectively γ = 2). Increasing n confers an increasing

number of oscillations to the wavelet, and a peak frequency increase in the Fourier domain.

The shape of the wavelet varies also with γ, the larger γ, the sharper and the smaller

the wavelet maxima frequency, and the greater its number of oscillations. To detect local

frequencies in a signal, the greater n and γ values will be the more efficient. On the contrary

to extract power-law behaviors which occur on wider frequency ranges, smaller n and γ

values will be preferred. In this perspective, we chose here a Cauchy wavelet (γ = 1) with

n = 1 (Fig. S1).

c. Time-frequency decomposition of the energy of a signal The total energy of a signal

Sd(t) is given by:

ISd =

∫ ∞
−∞
|Sd(t)|2dt =

∫ ∞
−∞
|Ŝd(f)|2df . (14)

This total energy of Sd can be recovered from its wavelet decomposition. Let us define the

integral of the square modulus of the wavelet transform of Sd:

ITψ [Sd] =

∫∫
R∗
+×R
|Tψ[Sd](b, a)|2 da

a2
db . (15)
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FIG. 2. Power spectrum of a fractional Gaussian stochastic signal computed with a standard FFT

transform. (a) The signal Sd(t) (a 1 s portion of this numerical signal of length 80 s) with Hőlder

exponent h = −0.25. (b) FFT power spectrum. (c) Averaged FFT power spectrum of Sd on

logarithmically distributed frequency values. The total length and sampling time of this numerical

signal are identical to the characteristics of the experimental AFM signals investigated in this work.

Thanks to Parseval theorem, Eq. (11) and the change of notation Ω = af , with a > 0

(da/a = dΩ/Ω), we can rewrite Eq. (15) in the following form:

ITψ [Sd] =

∫∫
R∗
+×R∗

+

|Ŝd(f)|2 |ψ̂(Ω)|2 dΩ

Ω
df. (16)

Note that the range of integration of f and Ω has been limited to positive values because

we have chosen an analytic analyzing wavelet (null for negative Ω values). The total energy

computed from the wavelet transform of Sd is therefore proportional to its total energy:

ITψ [Sd] = CψISd = Cψ

∫ ∞
−∞
|Ŝd(f)|2df, (17)

where we recognize the admissibility constant Cψ (Eq. (12)). Eq. (17) can be rewritten as:

ITψ [Sd] = Cψ

∫ +∞

−∞
PFFT
Sd

(f)df,

= Cψ

∫ +∞

−∞
PCWT
Sd

(f) df, (18)

where PFFT
Sd

is the power spectrum of Sd usually obtained from classical Fourier analysis,

and

PCWT
Sd

(f) =
1

f0Cψ

[∫ +∞

−∞

∣∣∣∣Tψ[Sd](b,
f0
f

)

∣∣∣∣2 db
]
, (19)

is the wavelet-based power spectrum of the signal Sd.
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FIG. 3. Wavelet based spectral decomposition of a synthetic fractional Gaussian random signal Sd

with Hőlder exponent h = −0.25, with a Morse wavelet of exponents γ = 1, n = 1. (a) The signal

Sd(t). Real part of the wavelet transform of Sd: Rψ(t, a) = Re [Tψ[Sd](t, a)] for three different

scale values a = a1 = f0/10 (b), a = a2 = f0/100 (c), and a = a3 = f0/1000 (d). (e) P.d.fs

of Rψ(., a)/σ(a) computed at scales a1 (star), a2 (cross) and a3 (triangle) after rescaling by the

corresponding mean standard deviation σ(a). (f) Color coded representation of the modulus of

Tψ[Sd](t, a). Each line has been coded separately from 0 (dark blue) to 1 (red).

FIG. 4. Wavelet-based spectral decomposition of a synthetic fractional Gaussian random signal

Sd with Hőlder exponent h = −0.25, with a Morse wavelet of exponents γ = 1, n = 4. Same

representation as in Fig. 3.
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C. Wavelet-based power spectra of synthetic signals

We use fractional zero mean Gaussian random signals to illustrate the performance of

wavelet-based power spectra, as compared to standard FFT computation. Such signals are

characterized by a non integer power-law scaling of their Fourier transform: Ŝd(f) ∝ f−α.

Their wavelet transform with a Morse analyzing wavelet of parameters n and γ reads:

Tψn,γ [Sd](b, a) ∝ a1/2
∫ +∞

−∞
f−αψ̂∗n,γ(af)e2iπfbdf. (20)

Replacing ψ̂∗n,γ(f) by its expression (Eq. (13)), we get a simple relation between the wavelet

transform of Sd and the Morse analyzing wavelet ψn−α,γ:

Tψn,γ [Sd](b, a) ∝ Cn,γ
Cn−α,γ

(2π)αaα−1/2 ψn−α,γ(
b

a
). (21)

Then, the Morse wavelet-based power spectrum of Sd (Eq. (19)) writes:

PCWT
Sd

(f) ∝ f2α−10

f2αCψ

[
(2π)αCn,γ
Cn−α,γ

]2 ∫ +∞

−∞

∣∣∣ψ̂n−α,γ(ν)
∣∣∣2 dν. (22)

Given that we use the L2 norm, the integral in Eq. (22) is equal to one and we have:

PCWT
Sd

(f) ∝ f 2α−1
0

Cψ

[
(2π)αCn,γ
Cn−α,γ

]2
f−2α. (23)

This analytical expression gives the following power-law behavior of the wavelet-based power

spectrum of a fractional Gaussian random signal Sd with Ŝd(f) ∝ f−α:

PCWT
Sd

(f) ∝ f−β with β = 2α. (24)

The fractional Gaussian random signal Sd shown in Fig. 2(a) can be considered as a

fractional integration of order α = 0.25 of a stationary zero mean Gaussian random signal

with a flat spectrum (corresponding to a Hőlder exponent h = −0.5, or equivalently to

a monofractal signal of Hurst exponent of H = h = −0.5). The power spectrum of Sd

should therefore behave as f−2α = f−0.5. We show the power spectrum of Sd computed

from a standard FFT transformation PFFT
Sd

(f) in Fig. 2(b). The extraction of a power-law

exponent from this spectrum is hampered by two limitations: (i) the frequencies of the

spectrum are linearly distributed and not logarithmically, which necessitates an averaging

of the FFT spectrum (as performed in Fig. 2(c)) in a logarithmic frequency scale, (ii) this

spectrum is very noisy and the amplitude of this noise increases with the value of the
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FIG. 5. Comparison of the wavelet-based power spectra of fractional Gaussian random signals

with Hőlder exponent h = −0.25, computed with Morse wavelets for different n values. (a,b) The

signal Sd(t). (c,d) The power spectra log10 P
CWT
Sd

(f) vs log10(f) computed with a Morse wavelet

of exponents γ = 1 (left) and γ = 2 (right) with different n values (n = 1, 4, 9, 16, 25). The power

spectra were shifted vertically for a better comparison.

frequency. The power-law exponent β is estimated from a linear regression fit of the power

spectra in logarithmic scales, as illustrated in Fig. 2(b,c) for log10 f ∈ [0, 4]).

When using the power spectrum computed with the wavelet transform PCWT
Sd

(f), the

range of frequencies where the power-law can be estimated depends not only on the length

of the signal, for a fixed sampling time, but also on the analyzing wavelet. The Morse

wavelets (Eq. (13)) are particularly interesting because by varying a single parameter n,

one can modify their number of oscillations and hence one may priviledge either periodic or

singular behavior detection. This effect is illustrated in Figs 3 and 4 for n = 1 and n = 4

respectively, γ = 1 being fixed. Let us recall that f0 = (n/γ)1/γ/(2π), corresponding to the

peak frequency of ψ̂n,γ(2πf), depends on both n and γ. The scale a of the wavelet is inversely

proportional to its frequency: a = f0/f . Given that the original signal Sd is Gaussian, its

wavelet transform coefficients at different scales are also Gaussian variables. As illustrated
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FIG. 6. Principle for the estimation of the β exponent from wavelet-based power spectra. Power

spectra of the fractional Gaussian random signals shown in Fig. 5(a), computed with a Morse

wavelet of exponent γ = 1, and n = 1 (a,b) and n = 4 (c,d). The range of frequency was

maximized so that the difference of the power spectrum with its linear fit (b,d) remains in the

interval [−0.01, 0.01]. The result of this parametrization is highlighted with red curves in (a-d).

in Figs 3(e) and 4(e) for the real part of the wavelet transform, the different p.d.fs computed

at different scales (inverse of frequency) all superimpose on the same Gaussian distribution

when rescaling the wavelet coefficients computed at a given scale a by the standard deviation

σ(a) (the frequency dependence of the power-spectrum of Sd can be obtained by computing

the variance of the wavelet transform coefficients across scales σ2(a) (a = f0/f) (Eqs. (18)

and (19))). This illustrates the advantage of the wavelet transform analysis with respect

to Fourier analysis, since it provides a very efficient way to diagnose and characterize the

monofractal (vs multifractal) nature of the analyzed signal with fluctuation statistics that

do not (vs do) change across scales. The modulus of the wavelet transforms is color coded in

Figs 3(f) and 4(f), after rescaling each line of the matrix |Tψ[Sd](b, a)| in between 0 and 1 to

highlight their transformation when increasing the analyzing wavelet parameter n. For the
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smaller n value (n = 1), the local maxima of the wavelet transform modulus follows almost

vertical maxima lines, pointing toward the singular points of the signal, over a wide range of

scales (frequencies) (Fig. 3(f)) allowing to better estimate and quantify the scaling properties

of the analyzed signal. For larger n value (n = 4), this range of scales (frequencies) shrinks

to smaller (resp. higher) scales (resp. frequencies), leaving room to detect low frequency

trends in the signal (if any). This suggests that to characterize properly singular power-law

behavior from complex signals, it will be preferable to use Morse wavelets with n as small

as possible. On the contrary, to track periodic behavior, or more generally rhythms, higher

n values will be better suited. This conclusion is corroborated by the reconstruction of the

power spectra from the modulus square of the wavelet transforms in Fig. 5.

The estimation of the local slope β from the wavelet-based power spectra in logarithmic

scales was performed by a home-made program under MATLAB environment. The principle

of this computation is briefly outlined in Fig. 6. We looked for the largest frequency range

[log10(fmin), log10(fmax)] to perform a linear regression fit of the power spectrum (in log

scales) to get some estimate of the power-law exponent β. This was done by substracting

the so-obtained linear fit from the power spectrum and by requiring that the local distance

of the power spectrum with its linear parametrization remained in the [−0.01, 0.01] interval

(Fig. 6(b,d)). The choice of the order n of the Morse wavelet is important with respect to

that issue. With n = 1 (Fig. 6(a,b)), we get a slope β2 = 0.507 over a frequency interval

log10[f ] ∈ [0.04, 2.09], which is significantly wider than the frequency interval log10[f ] ∈

[0.40, 1.93] delimited with n = 4 (Fig. 6(c,d)). The relevance of the β slope estimated

from the power spectrum will be reinforced or weakened according to whether the scaling

law occurs over a wider or narrower frequency range. This methodology proved to be

very useful and efficient to define the frequency range (experimental situations) where cell

rheology obeys a fractional behavior.
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FIG. 7. (a) Sketch of the AFM principle. (b) Cantilever tip fluctuations Sd recorded from a

normal C2C12 myoblast with a loading force of 1 nN. (c-e) Real part of the wavelet transform of

Sd: Rψ(t, a) = Re [Tψ[Sd](t, a)] for three different scale values ai = f0/fi with f1 = 10 Hz (o),

f2 = 102 Hz (∗) and f3 = 103 Hz (.). (f) P.d.fs of Rψ(., a)/σ(a) for the three scale values shown

in (c-e), after rescaling by the corresponding standard deviation σ(a). The solid line corresponds

to the rescaled p.d.f. of Sd. The analyzing wavelet is a Morse wavelet of exponents γ = 1, n = 1

(Eq. (13).)

III. RESULTS AND DISCUSSION

A. Creep fluctuation signals recorded from living muscle precursor cells have

Gaussian statistics across scales

The principle of the AFM experiment and a cantilever position fluctuation signal Sd

recorded from an adherent living C2C12 myoblast are shown in Figs 7(a) and 7(b) respec-

tively. In Fig. 7(c-e), the real part of the wavelet transform Rψ(t, a) = Re [Tψ[Sd](t, ai)] is
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FIG. 8. Characterizing the AFM cantilever position fluctuations Sd and their scale invariance
properties. (a-c) Normal C2C12 myoblast cell. (d-f) ATP depleted C2C12 myoblast cell. (g-i)
Blebbistatin treated C2C12 myoblast cell. (a,d,g) P.d.fs of the real part of the wavelet transform
Rψ(., a) of the signal Sd (logarithmic representation) computed with a Morse analyzing wavelet of
exponents γ = 1, n = 1 (Eq. (13)) for different wavelet scales ai = f0/f with f = 6.8Hz (dark blue),
f = 10Hz (blue), f = 15.8Hz (light blue), f = 25.1Hz (cyan), f = 39.8Hz (green), f = 63.1Hz
(yellow), f = 100Hz (light red), f = 158.5Hz (red). (b,e,h) P.d.fs of Rψ(., a)/σ(a) where σ(a) is

the standard deviation. (c,f,i) log10[P
CWT
Sd

(f)] vs log10(f) computed from the wavelet transform of

the rheological fluctuation signals Sd (Eqs (23) and (24)); the color dots correspond to the scales
ai defined in (a,d,g); the color shaded rectangles delimit the frequency ranges where the power
spectrum has been identified to behave as PCWT

Sd
(f) ∼ f−β.

FIG. 9. 3D color shaded rectangles illustrating the ranges of frequency (log10(f)) and fluctuation
energy (log10[P

CWT
Sd

]) values where fractional behavior with exponent α has been identified. (a)

Comparison of normal (red) with ATP depleted (blue) and fixed (green) C2C12 myoblasts. (b)
Comparison of normal C2C12 myoblasts (light red), blebbistatin treated C2C12 myoblasts (yellow),
human DMD myoblasts (grey), and C2C12 myotubes (violet). (c,d) Boxplot representation of
α = β/2 (c), and of the inferior (blue) and superior (black) frequency (log10(f)) limits (d), where
α has been estimated, for each cell type. 25-30 cells were tested for each case.
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plotted for different wavelet scales ai = f0/fi over a 1s time interval. As shown in Fig. 7(f),

the corresponding p.d.f.s of these wavelet coefficients have a Gaussian shape at the three

considered scales. Importantly, these p.d.f.s superimpose on a single curve when rescaling

Rψ(., ai) by its standard deviation σ(ai). This demonstrates that these AFM tip fluctua-

tions are self-similar, and that the signal Sd is monofractal49,50. As reported in Fig. 8, we

have reproduced this scaling analysis on different muscle precursor cells (C2C12 myoblasts),

cultured in different conditions, namely normal culture medium (Figs 8(a-c)), ATP deprived

cells (Figs 8(d-f)) and blebbistatin treated cells (Figs 8(g-i)). We confirm in Figs 8(a,d,g)

that these fluctuations remain Gaussian in the wavelet frequency range: f = f0/a ∈ [5 Hz -

150 Hz], and independently of the cell treatment, in agreement with previous experimental

evidences obtained with single particle tracing99,100. More importantly, we demonstrate the

monofractal scaling properties of these fluctuations, by superimposing their p.d.fs computed

at different wavelet scales, after rescaling Rψ(t, f0/f) by its standard deviation σ(f). This

wavelet based time-frequency decomposition of Sd was thus mandatory to validate that these

rheological fluctuation signals are self-similar with Gaussian statistics, and that they can be

described by a single exponent α, which can be estimated from the power-law decay of their

power spectra PCWT
Sd

(f) (Eq. (24)).

B. Comparing the fractional rheology of five different sets of muscle

precursor cells

We developed a home-made software, described in Sect. 2.2.2 (Figs 5 and 6), to delimit

the range of f (color shaded rectangles in Figs 8(c,f,i)) where a power-law exponent can be

recognized from PCWT
Sd

(f). We notice in Fig. 8(i), corresponding to a myoblast cell treated

with blebbistatin, that the range of f has shrunk to less than a decade and shifted to lower

frequencies, as compared to a normal myoblast. Also, the corresponding yellow rectangle

has moved to larger log10[P
CWT
Sd

] values, as the signature of greater fluctuation amplitude.

This is an indication that the amount of mechanical energy transferred from the surrounding

liquid medium to the CSK is larger for this blebbistatin treated myoblast cell and that this

cell is softer than the normal myoblast shown in Fig. 8(c). The slope β = 2α computed by

linear regression fit inside the shaded rectangles of Fig. 8(c,f,i) corresponds to the following

estimates of the rheological exponent α = 0.24±0.01, 0.23±0.01 and 0.34±0.01 respectively.
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The fractional exponent α for the blebbistatin treated myoblast is significantly larger, which

confirms that this cell is not only softer but also behaves as more viscous than the normal

and the ATP depleted myoblasts studied in this same Fig. 8.

Fig. 9 generalizes the shaded rectangle representation of Figs 8(c,f,i) to compare the

rheology of five different sets of C2C12 and human myoblasts and one set of differentiated

C2C12 myotubes from myoblasts. Each rectangle corresponds to an independent experiment.

Fig. 9(a) concentrates on C2C12 myoblasts (normal in red, ATP deprived in blue and fixed

in green). The fractional exponent α = β/2 (Eq. (24)) is introduced as a third coordinate

to better separate the different cell types. The mean values obtained when averaging over

25-30 cells of each type confirm that the normal (α = 0.24 ± 0.01) and ATP deprived

myoblasts (α = 0.22± 0.01) behave rather similarly, with fractional fluctuations extending

over more than a decade (∆[log10 f ] ≥ 1.15). ATP deprived cells do not loose their global

flat and elongated shape (Fig. 9(b)), but the perinuclear actin stress fibers are replaced

by actin aggregates which may also act as actin CSK cross-linkers. Fixing the myoblasts

is a dramatic and irreversible procedure that kills the cells, however its preserves (only

partly) their CSK and reinforces the remaining actin filament cross-linked structure with

paraformaldehyde (α = 0.26 ± 0.01). This treatment was also used before staining the

cells for the fluorescence microscopy images shown in Fig. 1. Fig. 9(b) compares the normal

buffered C2C12 myoblasts (red), with blebbistatin treated C2C12 myoblasts (yellow), C2C12

myotubes (violet) and human DMD myoblasts (grey). It is quite difficult to distinguish

the normal C2C12 myoblasts (α = 0.24 ± 0.01) from the human DMD myoblasts (α =

0.24 ± 0.01). However, we must mention that for a non negligible fraction (22%) of DMD

human myoblasts, the extraction of a power-law regime was very difficult, probably as the

consequence of an immediate cell shape change. Thus, in this later case, the statistical

sampling was limited. The C2C12 myotubes, which were differentiated from the myoblasts,

behave with a larger exponent α (α = 0.29 ± 0.02), over a narrower f range (Figs 9(c,d)).

Would the myotubes display different rheological properties? This conclusion could be

reasonable, regarding the strong remodelling of their cytoskeleton, as compared to their

precursors (Fig. 1). One could be tempted to compare the myotubes with the fixed myoblast

cells, since their scaling exponent and frequency range are similar. However, let us point out

that the fluctuation energy (the amplitude of the power spectrum) is significantly larger for

the myotubes, indicating that they are softer than myoblasts. Indeed, their actin CSK is
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very different (Fig. 1(a) and 1(c)), and their mechanical response is different too. Finally the

blebbistatin treated myoblasts also behave with a larger α exponent (α = 0.31± 0.02), on a

quite variable frequency range, and their fluctuation energy is even higher than previously

observed for the myotubes. These cells are less elastic (the greater α, the greater the viscous

component), and less tensed that normal myoblasts, their CSK has lost in part or totally

its cross-linked architecture typical of prestressed cells on adherent supports (Fig. 1).

IV. CONCLUSION

To conclude, we have proposed an original method, based on complex wavelet transform

decomposition of rheological signals, to reveal the occurrence of fractional fluctuations and

estimate accurately the power-law exponent α as a signature of self-similar scale-invariant

mechanics of living cells. This method was applied to creep experiments performed with

an AFM nanoindenter placed in contact with single myoblasts and myotubes adherent on

collagen coated coverslips. This methodology was tested on limited statistical samples (∼ 25-

30 cells for each case), but it has demonstrated its efficiency and its expeditiousness on rather

short time recording (. 100 s). We have not considered lower frequencies (< 5Hz) in that

work, not only because they would have required longer time series, but also to avoid active

actin CSK remodeling processes driven by molecular motors (myosin-II) to be involved. We

hope to elaborate on the study of active driven rheological properties of living cells in a

future work.
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