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Abstract

The authors propose a wavelet based decomposition of creep fluctuation signals recorded from living muscle precursor cells that revisit the 
traditional computation of their power spectrum from FFT based decomposition. This decomposition offers a higher sensitivity for detecting 
the occurrence of fractional fluctuations and for quantitatively estimating the power law exponent β of this spectrum as a signature of the 
scale invariant rheology of living cells. This new method has also the unprecedented advantage of providing a test of the validity of the com
monly assumed “monofractal” self similar (as compared to “multifractal” intermittent) nature of these fluctuations and hence accrediting the 
use of a single rheological exponent α ¼ β=2. We report and discuss results obtained when applying this method to creep experiments per
formed with an AFM nanoindenter placed in contact with single myoblasts and myotubes, adherent on collagen coated coverslips, and in dif
ferent culture conditions.

I. INTRODUCTION

Eukaryotic cells are constructed from three sets of protein
filaments arranged in a cross-linked cytoskeleton (CSK)
network involving active and passive cross-linkers [1,2]. The
actin-myosin II association constitutes the main engine for
the muscular function of individual cells, and for their spatio-
temporal dynamics such as cell contractility, adhesion, and
motility [3,4]. Single cell rheology has been thoroughly
investigated in the past few decades with a great diversity of
experimental approaches, both in temporal and spectral
domains [1,5 13]. Complex quantities such as the relaxation
modulus bG( f ) and the compliance bJ( f ) were estimated over
five decades of f from 10 3 Hz to 100 kHz. At high frequen-
cies (f � 103 Hz), the effective rheology of the actomyosin
CSK was shown to be dominated by the mechanical and
thermal properties of individual actin filaments or bundles
[1,2,14,15]. At lower frequencies, in the 1 103 Hz range,
unbinding and rebinding events of passive cross-linkers make
the CSK resemble a viscoelastic soft glassy material with a
power-law (fractional) rheology [5,7 9,16]. In that frequency
range, an indivisible relationship exists between storage (real
part) and loss (imaginary part) components of bG( f ) that both
scale as G0( f ) � G00( f ) � f α. The exponent α depends on
the internal structure of the cell and its interplay with its

environment. For example, cells prestressed by strong adher-
ence on stiff supports turn progressively to a more solid and
elastic material (α ! 0) [4,9].

The mechanics of lipid layers forming artificial and cyto-
plasmic membranes was also reported to present quite inter-
esting fractional hereditary rheology [17,18]. In physiological
situations, the membrane stress is neither homogeneous spa-
tially nor invariant in time. Beyond some stress threshold, the
membrane may break or switch to a ceramide phase [17].
Actually, in living cells the mechanics of this lipid bilayer is
not independent of the underlying actin cortex (actin-based
filaments network). Its anchoring to the plasma membrane
and its thickness (ranging from 0.05 to 1 μm) are maintained
dynamically by the assistance of ATP driven molecular
motors [bivalent cross-linking myosins (I) with lipid binding
motifs and actin binding motifs]. This actin cortex is an iso-
tropic network of actin filaments, oriented parallel to the
plasma membrane with mesh size from 20 to 250 nm [19],
facilitating the penetration of the cantilever tip (tip radius
curvature ,10 nm).

The fractional exponent α was experimentally estimated
using either (i) forced periodic driving by an indenter in
contact with the cell or (ii) “unforced” (thermal fluctuations)
driving of small particles anchored to or embedded inside the
cell [5 10]. This latter method is by far quicker since it
allows one to explore a wide range of frequencies from a
single recording. It becomes mandatory when the cell state
evolves in time. However, it requires a frequency (spectral)a)Electronic mail: francoise.argoul@u bordeaux.fr
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decomposition of the recorded signal and in some situations
a time-frequency decomposition. Most previous experimental
studies relied on the Generalised Stokes Einstein Relation
(GSER) to uncover, from thermal fluctuations, the complex
viscoelastic modulus bG( f ) [20,21]. But the validity of GSER
is still a debated issue since a living cell is an active glassy
material that cannot be considered at thermal equilibrium
[22 25]. Indeed, micro-tracers perceive an effective tempera-
ture due to the nonhomogeneous and nonstationary
out-of-equilibrium properties of this material. Thus, a viola-
tion of the GSER is likely to manifest as a departure (e.g.,
anomalous intermittent multifractal diffusion [26]) from self-
similar Gaussian statistics of tracer random fluctuations [27].

Atomic force microscopy (AFM) became rapidly an alter-
native to micro-particle trajectory tracking, because it could
be used to periodically force the cantilever nanotip in contact
with the tested material [13,28 30]. Recently, “unforced”
microrheology of soft gels and cells was also achieved with
AFM [11,31,32]. The advantage of AFM forcing, as com-
pared to micro-particle tracing, is that except its nanotip in
contact with the soft sample, the AFM cantilever body is
outside the sample and is excited by the surrounding thermal
chamber (at equilibrium). We can, therefore, reasonably
identify the fluctuating force that drives randomly an AFM
cantilever inside a liquid chamber as a Gaussian stochastic
perturbation. For this experimental demonstration, we use
muscle precursor cells (myoblasts and myotubes from a
mouse model C2C12 and human myoblasts) in different
culture conditions: (i) normal, (ii) with an inhibition of the
myosin function, and (iii) with a depletion of the source
of energy (ATP) of the cell. We also study dystrophic
(Duchenne muscular dystrophy DMD) human myoblasts as
a comparative pathological situation. In this study, the creep
experiments were performed for a constant loading force of
1 nN, which corresponds to a depth of penetration of the tip
of the cantilever of 1 to 2 μm, depending on the rigidity of
the cell. The typical shear modulus of these cells varies from
1 to 2 kPa [13]. However, the tension of the (plasma mem-
brane/actin-cortex) system was estimated to be � 10 4 N/m
[33], which is about three orders of magnitude smaller than
the nominal spring constant of the cantilever beam used in
this work (�0.1 N/m). Hence, the cantilever is very stiff and
during its penetration into the cell (prior to recording the
cantilever deflection signal), it more likely perforates the
plasma membrane, creating a local pore that may facilitate
Ca2þ ion import into the cytoplasm [13].

The wavelet transform is a mathematical time-frequency
(time-scale) decomposition of signals introduced in the early
1980s [34], which was applied to a great variety of situations
in physics, physical chemistry, biology, signal and image pro-
cessing, material engineering, mechanics, economics, epi-
demics, etc. [35 45]. Real experimental signals are very often
nonstationary (they contain transient components), and
involve a rather wide range of frequencies which may also
drift in time. Standard Fourier analysis is, therefore, inade-
quate in these situations since it provides only statistical infor-
mation about the relative contributions of the frequencies
involved in the analyzed signal. The possibility to perform
simultaneously a temporal and frequency decomposition of a

given signal was first proposed by Gabor for the theory of
communication [46]. Later on, two distinct approaches (based
on different wavelet transforms) were developed in parallel:
(i) a continuous wavelet transform (CWT) [34,40,41] and (ii)
a discrete wavelet transform [36]. For singular (self-similar or
multifractal) signals or images, the CWT transform rapidly
became a predilection mathematical microscope to perform
space-scale analysis and to characterize scale invariance prop-
erties [37,38,43]. In particular, it was used to elaborate a stat-
istical physics formalism of multifractals [47 51]. During the
past 30 years, the CWT was used for biological applications,
on both one-dimensional (1D) signals and two-dimensional
(2D) images [43 45,52 54]. 1D-CWT was applied to AFM
force curves collected from single living plant cells [55],
living mammalian cells [11 13] and to AFM fluctuation
signals to characterize the passive microrheology of living
myoblasts [31]. It was generalized to 2D [and to three-
dimensional (3D)] CWT [43,52,56] and it proved again its
versatility and power for analyzing AFM topographic images
of biosensors [57], fluorescence microscopy images of chro-
mosome territories [58], and diffraction phase microscopy of
living cells [59,60].

The originality of this work is to use a wavelet-based
time-frequency decomposition method for analyzing the frac-
tional rheologic fluctuations of living cells when probed with
an AFM cantilever and to demonstrate that these fluctuations
are self-similar and Gaussian in the (5 Hz 150 Hz) range [the
complex compliance J( f )/ f α]. It also establishes the frac-
tional exponent α as a fractional hereditariness marker [61]
distinguishing myoblasts with internal cytoskeleton tensions
(prestressed adherent cells, showing stiffer and longer actin
stress fibers) from those which have lost their tensed actin
network. In Sec. II, we describe the experimental methods,
the rheological models, and the time frequency analysis with
complex analytic wavelet transforms of AFM cantilever fluc-
tuations. In Sec. III, we compare the fractional hereditariness
of the different types of muscle precursor cells and the range
of frequencies where their compliance J( f ) scales as a power
law � f α. We conclude in Sec. IV.

II. METHODS

A. Materials and methods

1. Cell culture and differentiation

a. C2C12 myoblast culture. C2C12 myoblasts (ATCC
CRL-1772) were cultured in a growth medium (GM) com-
posed of high glucose (4.5 g/l) Dulbecco’s Modified Eagle
Medium (DMEM) with L-glutamine (PAA, GE Healthcare)
supplemented with 20% fetal bovine serum (FBS, PAA), 1%
penicillin streptomycin antibiotics (100 U/ml penicillin and
100 μg/ml streptomycin, Gibco, Thermo Fisher Scientific)
and 10 mM HEPES (Gibco). GM was stored at 4 �C up to
1 month; fresh GM was replaced every 2 days. The myoblasts
were maintained in a 5% CO2 atmosphere at 37 �C inside 90
mm diameter Petri dishes until �70% confluency. To avoid
that 60 70% confluent myoblasts differentiate spontaneously,
the dishes were washed with preheated PBS and cells were
detached from the dish bottom with 0.25% trypsin EDTA
(Gibco) for 3 min at 37 �C. Then, the cells were harvested
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and either replated at lower concentration or frozen-stored.
Prior to AFM FIC collection, C2C12 myoblasts (� 1:5� 105

cells from passages 10 to 14) were seeded on collagen coated
Petri dishes, CCPDs (35 mm diameter) in GM and kept at
least 24 h at 37 �C with 5% CO2. Then, the medium was
changed and replaced by 2 ml of GM and the Petri dish was
transferred to the AFM. Each sample was used within 2 3 h
and discarded afterwards.

b. C2C12 myoblast differentiation. Confluent (60%)
C2C12 myoblasts on CCPDs were induced to differentiation,
replacing GM with a differentiation medium (DM) [62]. DM
was composed of high glucose (4.5 g/l) DMEM with
L-glutamine (PAA), supplemented with 2% Donor Horse
Serum (PAA), 1% penicillin streptomycin antibiotics
(100 U/ml penicillin and 100 μg/ml streptomycin, Gibco),
and 10 mM HEPES (Gibco). The myoblasts were maintained
in DM at 37 �C with 5% CO2 for at least 5 days, renewing
the medium every 2 days. Different culture supports were
used (glass bottom Petri dishes, SPDs, and CCPDs) to
compare their impact on C2C12 cell myogenic differentia-
tion. C2C12 myoblast differentiation was monitored by DIC
and time-lapse video recording. Multinucleated myotubes
were observed with fluorescence confocal microscopy and
probed by AFM at their 5th day of differentiation. A fusion
index, defined as the percentage of nuclei contained in myo-
tubes compared to the total number of nuclei observed in
each image field, was used to quantify the level of myotube
formation in different culture conditions.

C2C12 myoblasts grown on CCPDs (35 mm diameter)
were rinsed twice with preheated PBS and fixed with freshly
made 4% paraformaldehyde (PFA, Fluka, St. Louis, MO) in
PBS for 20 min at room temperature (RT) (24 �C). Then, the
sample was maintained in 2 ml PBS before AFM measure-
ments which lasted � 4 h at RT.

c. Primary human myoblast culture. Purified primary
human myoblasts from a patient (3 years old) affected by the
DMD (V024) were courteously donated from Hospices Civils
de Lyon (Centre de Biotechnologie Cellulaire, Groupement
Hospitalier Est, Bron, France) after patient informed consent
in accordance with the Declaration of Helsinki. The DMD
patient carried deletions of axons 48 52 in the dystrophin
gene. The myoblasts were grown in proliferation medium
(PM) at 37 �C with 5% CO2 on CCPDs. PM was composed of
high glucose (4.5 g/l) DMEM with L-glutamine (PAA), sup-
plemented with 20% FBS (PAA), 1% penicillin streptomycin
antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin,
Gibco), insulin (10 μg/ml, Sigma), human basic fibroblast
growth factor (hbFGF, 25 ng/ml, Sigma), and epidermal
growth factor (EGF, 10 ng/ml, Sigma). The filtered PM was
stored at 4 �C up to 1 month; fresh PM was replaced every 2
days. DMD myoblasts were dissociated from the culture sub-
strates either for routine subculture or for cryopreservation
using 0.05% trypsin EDTA (Gibco) for 3 5 min at 37 �C after
replacement of PM with preheated PBS.

DMD primary human myoblasts were seeded (2:5� 104

cells from 2nd and 3rd passages) on CCPDs (35 mm diame-
ter) in PM and kept at 37 �C with 5 % CO2 at least 24 h
before AFM recording. Then, the medium was changed and

replaced by 2 ml of PM and the Petri dish was transferred to
the AFM. Each sample was used within 2 3 h and discarded
afterwards.

d. ATP depletion. Living cells rely on a combination of
oxidative and glycolytic energy metabolism for ATP produc-
tion. For a complete ATP depletion, both pathways must be
inhibited [63], namely, the mitochondrial electron transport
chain (ETC) complex III with antimycin A (AMA) [64] and
glycolysis with 2-deoxy-D-glucose (2-DG) [65]. ATP deple-
tion buffer composition: 140 mM NaCl, 5 mM KCl, 1 mM
MgCl2, 2 mM CaCl2, 10 mM HEPES, 6 mM 2-DG (Sigma),
and 5 μM AMA (Sigma). The filtered solution was adjusted
to pH = 7.4 and stored at �20 �C. CCPDs with adherent
C2C12 myoblasts were first rinsed twice with preheated
PBS and filled with freshly thawed ATP depletion buffer
(2 ml). Fifteen minutes was necessary for the cellular ATP
concentration to decrease below 7 % of its initial concen-
tration [66]. AFM FIC capture was performed on single
cells, inside the ATP-depletion buffer at RT for 2 3 h,
before discarding the CCPD.

e. Blebbistatin treatment. C2C12 myoblasts were treated
with (S)-(-)-Blebbistatin (Santa Cruz Biotechnology) to inhibit
the activity of the nonmuscle myosin II [67]. Aliquots of
100 μM blebbistatin dissolved in dimethylsulfoxide (DMSO)
were stored at �20 �C. GM was replaced with the same
amount (2 ml) of preheated GM containing blebbistatin (50 μM)
for 20 min [68]. AFM experiments on C2C12 cells inside
GM-blebbistatin were performed in � 2:5 h at RT.

f. Petri dish surface treatment. We tested different surface
treatments: gold coating, standard (SPD), and type I collagen
coated petri dishes (CCPDs), and we observed that CCPDs
lead to greater C2C12 myoblast lengths, widths, and areas. In
this study, we chose type I collagen for myoblast adhesion
because this protein is one of the major insoluble fibrous
protein found in the in vivo extracellular matrix. Type I colla-
gen aqueous solution (3 mg/ml) from bovine skin and tendon
BioReagent (Sigma-Aldrich) was diluted in ultra-pure water
to get 100 μg/ml. Petri dishes were incubated 3 h with this
solution (8 μg/cm2) at 37 �C to allow proteins to bind, dried
overnight at RT under clean atmosphere, and rinsed with
Dulbecco’s Phosphate Buffer Saline (PBS, Sigma) before use.

2. Fluorescence microscopy and staining

Fluorescence confocal microscopy imaging was per-
formed with an inverted scanning confocal microscope
(ZEISS LSM710) equipped with a motorized X Y stage and
a set of ZEISS objectives with magnification from 10� to
63�. Fluorescent images (1224� 900 pixels) were collected
using a 405 nm blue-violet laser diode (DAPI, AMCA), a
488 nm argon laser (Alexa Fluor 488), and a 561 nm diode-
pumped solid state (DPSS) laser (Cy3). The excitation and
the fluorescence signal acquisition of each fluorophore were
executed in sequential multitracking channels in order to
avoid bleed-through crossover artifacts. Saturation was
checked and avoided using range indicators of the Zen soft-
ware. The scan speed and image averaging were optimized
before image acquisition in order to have the highest
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signal-to-noise ratio for a minimum cost of time. Z-Stack
images of 9 μm + 3 μm depth with 0.5 μm interval between
each slice were acquired with the Zen software. ImageJ 1.47v
processing program was used to analyze the confocal micros-
copy images and to reconstruct the Z projections.

Fluorescent labelling of specific intracellular structure of
C2C12 cells was performed combining immunofluorescence
and nonantibody labelling techniques. Adherent C2C12 myo-
blasts (�105) and confluent myotubes on 35 mm diameter
CCPDs were rinsed twice with preheated PBS and fixed with
freshly made 4% PFA (Fluka) in PBS for 20 min at room
temperature (RT). The samples were then permeabilized with
0.05% Triton X-100 (Euromedex, Souffelweyersheim,
France) in PBS for 10 min at RT before being saturated with
1% bovine serum albumin (BSA, Sigma) in PBS and kept
for 30 min at RT. The samples were stained either for
F-actin, β-tubulin, and nucleus or for the three cytoskeleton
filaments according to the two following protocols. In the
first case, after incubation with mouse monoclonal
Cy3-conjugate anti-β-tubulin (Sigma) diluted 1:200 in 1%
BSA PBS for 1 h at RT in a humid and dark chamber, the
cells were incubated with phalloidin-Alexa Fluor 488
(Molecular Probes) diluted 1:100 in 1% BSA PBS for 15
min at RT in a humid and dark chamber. Finally, the

samples were sealed with glass cover-slides and VectaShield
mounting medium (Vector Laboratories) with DAPI
(40,6-diamino-2- phenylindole) and stored at least for 10 min
at 4 �C. In the second case before β-tubulin staining, the cells
were incubated with mouse monoclonal anti-desmin (DAKO,
Agilent Technologies) diluted 1:200 in 1 % BSA PBS over
night in a humid chamber at 4 �C. The day after, incubation
with AMCA-conjugated goat secondary antibody anti mouse
( Jackson ImmunoResearch) diluted 1:1000 in 1% BSA PBS
was carried out for 1 h at RT in a humid and dark chamber.
Then, the labelling of β-tubulin and F-actin was performed
similarly to the previous protocol before sealing the samples
with glass cover-slides and VectaShield mounting medium
without DAPI and storing them at least 10 min at 4 �C. In
both protocols, the samples were gently rinsed with PBS
three times for 5 min between each step. Fluorescence
images of C2C12 myoblasts and myotubes in different condi-
tions are shown in Fig. 1.

3. AFM experimental protocols and cantilever
calibration

A CellHesion 200 Atomic Force Microscope (AFM, JPK
Instruments) coupled to a transmission inverted microscope

FIG. 1. Fluorescence images of C2C12 myoblast cells [(a), (b), and (d)] and C2C12 myotubes (c) showing their nuclei (DAPI blue), actin filaments (phalloi
din Alexa Fluor 488 green), and microtubules (β tubulin Cy3 conjugate red). (a) Normal myoblast cell. (b) Myoblast cell treated with an ATP depletion
buffer. (c) Normal myotubes after 5 days of differentiation. (d) Myoblast cells treated with a blebbistatin buffer. Scale bar: 20 μm. A color Fig. 1 is found in the
online version of the manuscript.

4



and a CCD camera was used for nano-indentation experi-
ments. The apparatus was equipped with an X Y Motor
Precision Stage ( JPK) with 20�20 mm motorized stage, a
vibration isolation table (Melles Griot), a foam-based acous-
tic isolation system, and a white light LED illumination
(Thorlabs, MCWHLS). The AFM Z-piezotransducer with
movement range of 100 μm was controlled by a closed loop
feedback system with subnanometric precision. Proportional
gain (P gain) was set at 20 and integral gain (I gain) at
0.002.

Creep (fixed force) experiments were performed with two
types of AFM probes: (i) triangular gold-coated silicon
nitride cantilevers from Sharp Nitride Lever (SNL-10,
Bruker, Camarillo, CA) with nominal spring constant of
0.06 N/m (min¼ 0:03N/m; max¼ 0:12N/m) and typical res-
onant frequency in air: 18+ 6 kHz; (ii) rectangular partially
gold-coated quartz cantilevers (qp-CONT 20, Nanosensors,
Neuchatel, Switzerland) with nominal spring constant of
0.1 N/m (min ¼ 0:08N/m; max¼ 0:15N/m) and typical reso-
nant frequency in air: 30+ 4 kHz. Before each experiment,
cantilever calibration was carefully performed both in air, to
verify the correct positioning of the probe and the proper
system alignment, and in liquid to estimate the cantilever
spring constant (k). First, the deflection sensitivity (nm/V) of
the cantilever-photodiode system was evaluated using the
in-contact part of force indentation curves (FICs) on a clean
glass surface (five FICs collected in both air and liquid).

a. AFM cantilever calibration. The cantilever spring
constant was calibrated in both air and liquid by the thermal
noise method [69,70]. From the thermal fluctuations of the
cantilever, its spring constant k can be estimated, assuming
harmonicity (small amplitude fluctuations) and energy
equipartition [69]: k ¼ kBT=kd2l, where kd2l is the mean
square displacement of the cantilever from its neutral posi-
tion, T the absolute temperature in Kelvin, and kB the
Boltzmann’s constant. Since AFM cantilevers have different
geometries and several vibration modes, a correction factor κ
must be included: k ¼ κ kBT=kd2l, where the factor κ varies
according to the vibration mode and the cantilever geometry
[71]. The value κ ¼ 0:817 (respectively 0.778) was used for
rectangular (respectively triangular) cantilevers.

Power spectral density was computed from AFM cantile-
ver deflection signals captured 100 μm away from the sample
surface. Finally, the vertical deflection (ΔD) (nm) of the can-
tilever being proportional to the force applied to the sample,
we converted it to a tip sample interaction force ΔF (nN)
knowing the stiffness of the cantilever k (N/m) through
Hooke’s law: ΔF ¼ kΔD and the sensitivity of the photodi-
ode quadrant.

b. Creep (constant force) experiment protocol. AFM cons-
tant force experiments were performed with a CellHesion
200 Atomic Force Microscope ( JPK Instruments, Berlin,
Germany) coupled to a transmission inverted microscope, a
white light LED illumination (Thorlabs, Model MCWHLS,
Newton, NJ), a CCD camera (The Imaging Source Europe,
Bremen, Germany), a 20� 20 mm X-Y Motor Precision
Stage ( JPK), a vibration isolation table (Melles Griot,
Albuquerque, NM), and a foam-based acoustic isolation

system. We used qp-Cont-20 rectangular quartz-like cantile-
vers (Nanosensors TM, Neuchatel, Switzerland), which have
the following specifications: thickness 0:75+ 0:03 μm,
length 125+ 5 μm, width 35+ 2 μm, resonance frequency
26 34 kHz, nominal force constant 0.1 N/m (min = 0.08 N/m;
max = 0.15 N/m), and tip height: 6 8 μm. Before recording
the cantilever fluctuation signals, the system alignment and
the thermal noise cantilever calibration were carried out on a
35 mm Petri dish with a glass bottom filled with 2 ml of
ultra-pure water. A thermal noise signal (100 s) was first
recorded in these conditions at 100 μm above the dish
surface. Then, the dish with water was discarded and
replaced with a collagen coated 35 mm Petri dish containing
the living cells (� 1:5 � 105 cells from passages 10 to 14)
in 2 ml of culture medium. The chamber thermal noise signal
was again captured at 100 μm above the dish surface on a
region close to the probed cell (� 50 μm), then the cantilever
tip was approached to the cell nuclear region, using the JPK
constant force mode (force set point = 1 nN, proportional
gain= 20, integral gain = 0.002) and maintained at this force
of 1 nN for the cantilever fluctuations recording. After a time
delay of 5 s, required for the cantilever approach to the cell
and cantilever contact force establishment, the cantilever
height, error, lateral and vertical deflection signals were
recorded during 100 s with an acquisition rate of 800 kHz.

B. Theory/Calculation

1. Formalism for the fractional rheology of cells

Fractional calculus provides a natural framework for
describing the power-law rheology of living cells [72]. Here,
we adapt this formalism to reformulate the hereditary
integrals which have been proposed for modelling stress
relaxation or creep experiments with spherical or conical
indenters [73 75].

General linear constitutive equations for viscoelastic mate-
rials were formulated from hereditary (convolution) integrals
[73]. They were further extended to pyramidal or conical
indentations [74,75]. For creep experiments (fixed loading
force F) with conical shape indenters, the square of the depth
of indentation d reads as a convolution integral of the force
derivative:

d2(t) ¼ D
ðt
0
J(t � τ)dF(τ), (1)

where J is the creep compliance, D ¼ π(1 ν)
4 tan θ , ν is the Poisson

coefficient, and θ the nominal tip half-angle. We assume in
this study that the cells behave as isotropic viscoelastic mate-
rials and we take ν ¼ 0:5 as a first approximation. Actually,
living cells are not isotropic, and their Poisson coefficient
may not be invariant in time. A first attempt to generalize
hereditary integrals to anisotropic materials with fractional
rheology was recently published [76], and could be extended
for modelling the indentation of anisotropic living cells with
axisymmetric indenters of variable shape.

The principle of a creep experiment is formalized by the
following equation for the force: for t . 0: Fm(t) ¼ F0 H(t),
where H(t) is the Heaviside step function. To reach and
maintain this mean loading force, the vertical position of the
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AFM cantilever is adjusted in real time. In real experiments,
around this mean loading force Fm, the fluctuations of F are
the consequence of either thermal noise-driven fluctuations
or mechanical vibrations of the experiment:

F(t) ¼ Fm(t)þ SF(t) ¼ F0 H(t)þ SF(t): (2)

If we assume that the fluctuations SF(t) are stochastic and
uncorrelated, they can be modeled by a zero mean Gaussian
stochastic process for which a flat power spectrum density
has been defined.

As the distributional derivative of the Heaviside step func-
tion is the Dirac delta distribution: dH(t) ¼ δ(t)dt, Eq. (1)
can be rewritten as

d2(t) ¼ D F0J(t)þ
ðt
0
J(t � τ)dSF(τ)

� �
: (3)

d2 can be expressed as the sum of two terms:

d2(t) ¼ [dm(t)þ Sd(t)]
2

¼ d2m(t)þ 2dm(t)Sd(t)þ [Sd(t)]
2, (4)

where d2m(t) ¼ DF0J(t) is a mean time-varying value and
Sd(t) is a fluctuating term of much smaller amplitude. Given
that dm(t) varies on much longer time scales than Sd(t), for
the range of frequencies investigated here ([1 Hz, 1 kHz]),
the low frequency dynamics will be separated from the
higher frequency fluctuations: dm(t) � dm ¼ Cste. Since
moreover Sd(t) � dm, the term of order 2 in Sd(t) in Eq. (4)
can be neglected and we get the expression for Sd(t):

Sd(t) ¼ D
2dm

ðt
0
J(t � τ)dSF(τ): (5)

Structural damping materials are characterized by temporal
power-law compliances J(t) [77 80]:

J(t) ¼ tα

CαΓ(1þ α)
, (6)

where Cα ¼ E0
Cη

E0

� �α
has a dimension that depends on α,

and Γ is the Euler gamma function. Cα reduces to a Young
modulus E0 when α ¼ 0 and to a viscosity coefficient Cη

when α ¼ 1. For 0 , α , 1, the parameters E0 and Cη do
not have these physical meanings. Thus, the integral of
Eq. (5) transforms into a fractional integral of the force
fluctuations:

Sd(t) ¼ D
2dmCαΓ(1þ α)

ðt
0
(t � τ)αdSF(τ): (7)

A simple integration by part leads to

Sd(t) ¼ D
2dmCαΓ(α)

ðt
0
(t � τ)α 1SF(τ)dτ

¼ D
Cα

Iα0þSF
� �

(t), (8)

where (Iα0þSF)(t) denotes the Riemann-Liouville fractional
integral of SF [81]. Thus, Sd(t) can be interpreted as the

fractional integration of exponent α of the force fluctuations
SF. Equation (8) can be rewritten in Fourier space as

bSd( f ) ¼ ð1
1
Sd(t) e

2πiftdt ¼ D
2dmCα

[if ] α bSF( f ): (9)

Equation (9) is an infinite integral over a continuously
varying time variable. In practice, discrete Fourier transforms
are used in numerical computations and require some precau-
tions. Before starting the experiments, the range of frequency
for characterizing the rheology of cells has to be chosen.
This frequency range is used to fix the temporal discretization
(time step δT) and the total duration of the recorded signal.
δT was taken such that the largest frequency of the corre-
sponding power spectrum fs ¼ 1=δT be larger than the upper
bound of the frequency domain (to avoid aliasing effects).
Similarly, the duration of the signal was fixed to be much
larger (10�) than the inverse of the minimum frequency, to
eliminate boundary effects for the wavelet transform
computation.

If the sample compliance does not change during the
experiment (avoiding active processes) and GSER [21,22] is
valid, the complex compliance varies as a power law of the
frequency [ f ¼ ω=(2π)]:

bJ(f ) ¼ bSd( f )bSF( f ) ¼ D
2dmCα

[if ] α: (10)

2. Time–frequency analysis of noisy signals with the
wavelet transform

a. Wavelet transform mathematical formulation. The
wavelet transform TSd (b, a) of a signal Sd(t) consists of its
decomposition in terms of wavelets which are constructed
from a chosen analyzing wavelet ψ by means of translations
(time parameter b) and dilations (scale parameter a . 0). It is
written as a convolution product of Sd(t) with the analyzing
wavelet ψ shifted by b and scaled by a [40,41]:

Tψ [Sd](b, a) ¼ 1

a1=2

ð1
1
Sd(t)ψ

� t � b

a

� �
dt

¼ a1=2
ð1

1
bSd( f )ψ̂�(af )e2πifbdf , (11)

where we have chosen to use the L2 norm that preserves the
modulus square (energy) of the wavelet. We note ψ̂� the
complex conjugate of ψ̂ . The scale a is a nondimensional
quantity, it can be defined as an inverse of the frequency
a ¼ f0=f . In this study, we took f0 equal to the peak fre-
quency fψ̂max (see supplementary material [103]).

Usually ψ is only required to be of zero mean, but for the
particular purpose of singularity detection of interest here, we
will also require ψ to be orthogonal to some low-order poly-
nomials [i.e., to have N vanishing moments

Ð
R
xnψ(t)dt ¼ 0,

n ¼ 1, 2, . . . , N � 1] [82]. For the wavelet ψ to be admissi-
ble, its Fourier transform must fulfill the condition:

Cψ ¼
ð1

1

jψ̂(f )j2
jf j df , 1: (12)
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This time frequency analytic tool has proved particularly
efficient for the analysis of complex nonstationary signals,
and signals involving a mixture of periodic and stochastic
components. In particular, continuous wavelets constructed
from derivatives of Gaussian functions were used to track
local singularities [83 89] and a whole formalism for
the statistical thermodynamics of fractals was elaborated
[47 51,90,91]. For the detection of rhythms (periodic or qua-
siperiodic components) from noisy signals, complex-valued
square integrable wavelets, gcsi wavelets, were proposed such
that their Fourier transform vanishes for negative frequency
values (analytic functions) [92 94]. Analytic wavelet trans-
forms provide both the magnitude and the phase information
of a signal in the time frequency domain.

b. Morse wavelets. The generalized Morse wavelets con-
stitute a two-parameter family of exactly analytic continuous
wavelets. They have been introduced in the late 1980s to
define time frequency localization operators [95,96] and
revisited more recently for their application to complex
(noisy) signals [97 100]. These wavelets are defined in the
frequency domain (ω ¼ 2πf ) as

bψn;γ(ω) ¼ Cn;γω
ne ωγ

; for ω � 0;

bψn;γ(ω) ¼ 0; for ω , 0;
(13)

where Cn,γ is a normalization constant, n and γ are two
parameters controlling the wavelet shape. Equation (13)
confers the analyticity to the generalized Morse wavelets.
The maxima of bψn,γ(ω) (the peak frequency) corresponds to
frequencies such that n� γωγ ¼ 0, that is, ω0 ¼ 2πf0 ¼
n=γð Þ1γ [see the supplementary material [103] for the expres-
sion of the derivative of bψn,γ(ω) ]. The Morse wavelet family
includes as special cases the Cauchy wavelets bψn,1(ω)
(γ ¼ 1), as well as analytic versions of the derivative of
Gaussian wavelets bψn,2(ω) (γ ¼ 2), and also the Airy wave-
lets (γ ¼ 3).

We illustrate in Fig. S1 [103] Morse wavelets for different
values of γ and n. The solid (respectively dashed) lines corre-
spond to γ ¼ 1 (respectively γ ¼ 2). Increasing n confers an
increasing number of oscillations to the wavelet, and a peak
frequency increase in the Fourier domain. The shape of the
wavelet varies also with γ, the larger γ, the sharper and the
smaller the wavelet maxima frequency, and the greater its
number of oscillations. To detect local frequencies in a

signal, the greater n and γ values will be the more efficient.
On the contrary to extract power-law behaviors which occur
on wider frequency ranges, smaller n and γ values will be
preferred. In this perspective, we chose here a Cauchy
wavelet (γ ¼ 1) with n ¼ 1 (Fig. S1 [103]).

c. Time-frequency decomposition of the energy of a
signal. The total energy of a signal Sd(t) is given by

ISd ¼
ð1

1
jSd(t)j2dt ¼

ð1
1
jbSd(f )j2df : (14)

This total energy of Sd can be recovered from its wavelet
decomposition. Let us define the integral of the square
modulus of the wavelet transform of Sd:

ITψ [Sd] ¼
ðð

R�
þ�R

Tψ [Sd](b, a)
�� ��2da

a2
db: (15)

Thanks to Parseval theorem, Eq. (11) and the change of
notation Ω ¼ af , with a . 0 (da=a ¼ dΩ=Ω), we can
rewrite Eq. (15) in the following form as

ITψ [Sd] ¼
ðð

R�
þ�R�

þ

jbSd(f )j2jψ̂(Ω)j2 dΩΩ df : (16)

Note that the range of integration of f and Ω has been
limited to positive values because we have chosen an analytic
analyzing wavelet (null for negative Ω values). The total
energy computed from the wavelet transform of Sd is, there-
fore, proportional to its total energy:

ITψ [Sd] ¼ Cψ ISd ¼ Cψ

ð1
1
jbSd(f )j2df , (17)

where we recognize the admissibility constant Cψ [Eq. (12)].
Equation (17) can be rewritten as

ITψ [Sd] ¼ Cψ

ðþ1

1
PFFT
Sd

(f )df ,

¼ Cψ

ðþ1

1
PCWT
Sd

(f )df ,

(18)

where PFFT
Sd

is the power spectrum of Sd usually obtained

FIG. 2. Power spectrum of a fractional Gaussian stochastic signal computed with a standard FFT transform. (a) The signal Sd(t) (a 1 s portion of this numerical
signal of length 80 s) with Hölder exponent h 0:25. (b) FFT power spectrum. (c) Averaged FFT power spectrum of Sd on logarithmically distributed fre
quency values. The total length and sampling time of this numerical signal are identical to the characteristics of the experimental AFM signals investigated in
this work.
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from classical Fourier analysis, and

PCWT
Sd

(f ) ¼ 1
f0Cψ

ðþ1

1
Tψ [Sd](b,

f0
f
)

���� ����2db
" #

(19)

is the wavelet-based power spectrum of the signal Sd.

C. Wavelet-based power spectra of synthetic
signals

We use fractional zero mean Gaussian random signals to
illustrate the performance of wavelet-based power spectra, as
compared to standard FFT computation. Such signals are

FIG. 4. Wavelet based spectral decomposition of a synthetic fractional Gaussian random signal Sd with Hőlder exponent h 0:25, with a Morse wavelet of
exponents γ 1, n 4. Same representation as in Fig. 3.

FIG. 3. Wavelet based spectral decomposition of a synthetic fractional Gaussian random signal Sd with Hőlder exponent h 0:25, with a Morse wavelet of
exponents γ 1, n 1. (a) The signal Sd(t). Real part of the wavelet transform of Sd : Rψ (t, a) Re Tψ [Sd](t, a)

	 

for three different scale values a a1

f0=10 (b), a a2 f0=100 (c), and a a3 f0=1000 (d). (e) P.d.fs of Rψ (:, a)=σ(a) computed at scales a1 (star), a2 (cross), and a3 (triangle) after rescaling
by the corresponding mean standard deviation σ(a). (f ) Color coded representation of the modulus of Tψ [Sd](t, a). Each line has been coded separately from 0
(dark blue) to 1 (red).
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characterized by a noninteger power-law scaling of their
Fourier transform: bSd(f )/ f α. Their wavelet transform with
a Morse analyzing wavelet of parameters n and γ reads

Tψn,γ
[Sd](b, a)/ a1=2

ðþ1

1
f αbψ�

n,γ(af )e
2iπfbdf : (20)

Replacing bψ�
n,γ(f ) by its expression [Eq. (13)], we get a

simple relation between the wavelet transform of Sd and the
Morse analyzing wavelet ψn α,γ :

Tψn,γ
[Sd](b, a)/ Cn,γ

Cn α,γ
(2π)αaα 1=2ψn α,γ(

b

a
): (21)

Then, the Morse wavelet-based power spectrum of Sd
[Eq. (19)] can be written as

PCWT
Sd

(f )/ f 2α 1
0

f 2αCψ

(2π)αCn,γ

Cn α,γ

� �2ðþ1

1
bψn α,γ(ν)
�� ��2dν: (22)

Given that we use the L2 norm, the integral in Eq. (22) is
equal to one and we have

PCWT
Sd

(f )/ f 2α 1
0

Cψ

(2π)αCn,γ

Cn α,γ

� �2
f 2α: (23)

This analytical expression gives the following power-law
behavior of the wavelet-based power spectrum of a fractional

Gaussian random signal Sd with bSd( f )/ f α:

PCWT
Sd

( f )/ f β with β ¼ 2α: (24)

The fractional Gaussian random signal Sd shown in Fig. 2(a)
can be considered as a fractional integration of order α ¼ 0:25
of a stationary zero mean Gaussian random signal with a flat
spectrum (corresponding to a Hőlder exponent h ¼ �0:5, or
equivalently to a monofractal signal of Hurst exponent of
H ¼ h ¼ �0:5). The power spectrum of Sd should, therefore,
behave as f 2α ¼ f 0:5. We show the power spectrum of Sd
computed from a standard FFT transformation PFFT

Sd
(f ) in

Fig. 2(b). The extraction of a power-law exponent from this
spectrum is hampered by two limitations: (i) the frequencies
of the spectrum are linearly distributed and not logarithmi-
cally, which necessitates an averaging of the FFT spectrum
[as performed in Fig. 2(c)] in a logarithmic frequency scale,
(ii) this spectrum is very noisy and the amplitude of this
noise increases with the value of the frequency. The power-
law exponent β is estimated from a linear regression fit of
the power spectra in logarithmic scales, as illustrated in
Figs. 2(b) and 2(c) for log10 f [ [0, 4]).

When using the power spectrum computed with the
wavelet transform PCWT

Sd
( f ), the range of frequencies where

the power-law can be estimated depends not only on the
length of the signal, for a fixed sampling time, but also on

FIG. 5. Comparison of the wavelet based power spectra of fractional Gaussian random signals with Hőlder exponent h 0:25, computed with Morse wave
lets for different n values. [(a) and (b)] The signal Sd(t). [(c) and (d)] The power spectra log10 P

CWT
Sd

(f ) vs log10 (f ) computed with a Morse wavelet of exponents
γ 1 (left) and γ 2 (right) with different n values (n 1, 4, 9, 16, 25). The power spectra were shifted vertically for a better comparison.

9



the analyzing wavelet. The Morse wavelets [Eq. (13)] are
particularly interesting because by varying a single parameter
n, one can modify their number of oscillations and hence one
may privilege either periodic or singular behavior detection.
This effect is illustrated in Figs. 3 and 4 for n ¼ 1 and n ¼ 4,
respectively, γ ¼ 1 being fixed. Let us recall that
f0 ¼ (n=γ)1=γ=(2π), corresponding to the peak frequency of
ψ̂n,γ(2πf ), depends on both n and γ. The scale a of the
wavelet is inversely proportional to its frequency: a ¼ f0=f .
Given that the original signal Sd is Gaussian, its wavelet
transform coefficients at different scales are also Gaussian
variables. As illustrated in Figs. 3(e) and 4(e) for the real part
of the wavelet transform, the different p.d.fs computed at dif-
ferent scales (inverse of frequency) all superimpose on the
same Gaussian distribution when rescaling the wavelet coeffi-
cients computed at a given scale a by the standard deviation
σ(a) (the frequency dependence of the power-spectrum of Sd
can be obtained by computing the variance of the wavelet
transform coefficients across scales σ2(a) (a ¼ f0=f ) [Eqs.
(18) and (19)]. This illustrates the advantage of the wavelet
transform analysis with respect to Fourier analysis, since it
provides a very efficient way to diagnose and characterize the
monofractal (vs multifractal) nature of the analyzed signal
with fluctuation statistics that do not (vs do) change across
scales.

The modulus of the wavelet transforms is color coded in
Figs. 3(f ) and 4(f ), after rescaling each line of the matrix
jTψ [Sd](b, a)j in between 0 and 1 to highlight their transfor-
mation when increasing the analyzing wavelet parameter n.
For the smaller n value (n ¼ 1), the local maxima of the
wavelet transform modulus follow almost vertical maxima
lines, pointing toward the singular points of the signal, over a
wide range of scales (frequencies) [Fig. 3(f )] allowing to
better estimate and quantify the scaling properties of the ana-
lyzed signal. For larger n value (n ¼ 4), this range of scales
(frequencies) shrinks to smaller (respectively higher) scales
(respectively frequencies), leaving room to detect low fre-
quency trends in the signal (if any). This suggests that to
characterize properly singular power-law behavior from
complex signals, it will be preferable to use Morse wavelets
with n as small as possible. On the contrary, to track periodic
behavior, or more generally rhythms, higher n values will be
better suited. This conclusion is corroborated by the recon-
struction of the power spectra from the modulus square of
the wavelet transforms in Fig. 5.

The estimation of the local slope β from the wavelet-based
power spectra in logarithmic scales was performed by a home-
made program under MATLAB environment. The principle
of this computation is briefly outlined in Fig. 6. We looked
for the largest frequency range [ log10 (fmin), log10 (fmax)] to

FIG. 6. Principle for the estimation of the β exponent from wavelet based power spectra. Power spectra of the fractional Gaussian random signals shown in
Fig. 5(a), computed with a Morse wavelet of exponent γ 1, and n 1 (a) and (b), and n 4 (c) and (d). The range of frequency was maximized so that the
difference of the power spectrum with its linear fit (b) and (d) remains in the interval [ 0:01, 0:01]. The result of this parametrization is highlighted with red
curves in (a) and (d).
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perform a linear regression fit of the power spectrum (in log
scales) to get some estimate of the power-law exponent β.
This was done by subtracting the so-obtained linear fit from
the power spectrum and by requiring that the local distance
of the power spectrum with its linear parametrization
remained in the [� 0:01, 0:01] interval [Figs. 6(b) and 6(d)].
The choice of the order n of the Morse wavelet is important
with respect to that issue. With n ¼ 1 [Figs. 6(a) and 6(b)],
we get a slope β2 ¼ 0:507 over a frequency interval
log10 [ f ] [ [0:04, 2:09], which is significantly wider than
the frequency interval log10 [f ] [ [0:40, 1:93] delimited with
n ¼ 4 [Figs. 6(c) and 6(d)]. The relevance of the β slope
estimated from the power spectrum will be reinforced or
weakened according to whether the scaling law occurs over a
wider or narrower frequency range. This methodology
proved to be very useful and efficient to define the frequency
range (experimental situations) where cell rheology obeys a
fractional behavior.

III. RESULTS AND DISCUSSION

A. Creep fluctuation signals recorded from living
muscle precursor cells have Gaussian statistics
across scales

The principle of the AFM experiment and a cantilever
position fluctuation signal Sd recorded from an adherent
living C2C12 myoblast are shown in Figs. 7(a) and 7(b),

respectively. In Figs. 7(c) and 7(e), the real part of the wavelet
transform Rψ (t, a) ¼ Re Tψ [Sd](t, ai)

	 

is plotted for different

wavelet scales ai ¼ f0=fi over a 1 s time interval. As shown in
Fig. 7(f), the corresponding p.d.f.s of these wavelet coeffi-
cients have a Gaussian shape at the three considered scales.
Importantly, these p.d.f.s superimpose on a single curve when
rescaling Rψ (:, ai) by its standard deviation σ(ai). This dem-
onstrates that these AFM tip fluctuations are self-similar and
that the signal Sd is monofractal [50,51]. As reported in Fig. 8,
we have reproduced this scaling analysis on different muscle
precursor cells (C2C12 myoblasts), cultured in different condi-
tions, namely, normal culture medium [Figs. 8(a) 8(c)], ATP
deprived cells [Figs. 8(d) 8(f)], and blebbistatin treated cells
[Figs. 8(g) 8(i)]. We confirm in Figs. 8(a), 8(d), and 8(g) that
these fluctuations remain Gaussian in the wavelet frequency
range: f ¼ f0=a [ [5 Hz 150 Hz], and independently of the
cell treatment, in agreement with previous experimental evi-
dences obtained with single particle tracing [101,102]. More
importantly, we demonstrate the monofractal scaling properties
of these fluctuations by superimposing their p.d.fs computed
at different wavelet scales, after rescaling Rψ (t, f0=f ) by its
standard deviation σ( f ). This wavelet-based time frequency
decomposition of Sd was thus mandatory to validate that these
rheological fluctuation signals are self-similar with Gaussian
statistics, and that they can be described by a single exponent
α, which can be estimated from the power-law decay of their
power spectra PCWT

Sd
( f ) [Eq. (24)].

FIG. 7. (a) Sketch of the AFM principle. (b) Cantilever tip fluctuations Sd recorded from a normal C2C12 myoblast with a loading force of 1 nN. [(c), (d), and
(e)] Real part of the wavelet transform of Sd : Rψ (t, a) Re Tψ [Sd](t, a)

	 

for three different scale values ai f0=fi with f1 10Hz (�), f2 102 Hz (�), and

f3 103 Hz (.). (f ) P.d.fs of Rψ (:, a)=σ(a) for the three scale values shown in (c), (d) and (e) after rescaling by the corresponding standard deviation σ(a). The
solid line corresponds to the rescaled p.d.f. of Sd . The analyzing wavelet is a Morse wavelet of exponents γ 1, n 1 [Eq. (13)].
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B. Comparing the fractional rheology of five
different sets of muscle precursor cells

We developed a home-made software, described in Sec. II B 2
[Figs. 5 and 6], to delimit the range of f [color shaded rectan-
gles in Figs. 8(c), 8(f ), and 8(i)] where a power-law exponent
can be recognized from PCWT

Sd
( f ). We notice in Fig. 8(i), cor-

responding to a myoblast cell treated with blebbistatin, that
the range of f has shrunk to less than a decade and shifted to
lower frequencies, as compared to a normal myoblast. Also,
the corresponding yellow rectangle has moved to larger
log10 [P

CWT
Sd

] values, as the signature of greater fluctuation
amplitude. This is an indication that the amount of mechani-
cal energy transferred from the surrounding liquid medium to
the CSK is larger for this blebbistatin treated myoblast cell
and that this cell is softer than the normal myoblast shown in
Fig. 8(c). The slope β ¼ 2α computed by linear regression fit
inside the shaded rectangles of Figs. 8(c), 8(f ), and 8(i) cor-
responds to the following estimates of the rheological expo-
nent α ¼ 0:24+ 0:01, 0:23+ 0:01 and 0:34+ 0:01,
respectively. The fractional exponent α for the blebbistatin
treated myoblast is significantly larger, which confirms that
this cell is not only softer but also behaves as more viscous
than the normal and the ATP depleted myoblasts studied in
this same Fig. 8.

Figure 9 generalizes the shaded rectangle representation of
Figs. 8(c), 8(f ), and 8(i) to compare the rheology of five dif-
ferent sets of C2C12 and human myoblasts and one set of
differentiated C2C12 myotubes from myoblasts. Each rectan-
gle corresponds to an independent experiment. Figure 9(a)
concentrates on C2C12 myoblasts (normal in red, ATP
deprived in blue and fixed in green). The fractional exponent

α ¼ β=2 [Eq. (24)] is introduced as a third coordinate to
better separate the different cell types. The mean values
obtained when averaging over 25 30 cells of each type
confirm that the normal (α ¼ 0:24+ 0:01) and ATP
deprived myoblasts (α ¼ 0:22+ 0:01) behave rather simi-
larly, with fractional fluctuations extending over more than a
decade (Δ[ log10 f ] � 1:15). ATP deprived cells do not loose
their global flat and elongated shape [Fig. 9(b)], but the peri-
nuclear actin stress fibers are replaced by actin aggregates
which may also act as actin CSK cross-linkers. Fixing the
myoblasts is a dramatic and irreversible procedure that kills
the cells, however its preserves (only partly) their CSK and
reinforces the remaining actin filament cross-linked structure
with PFA (α ¼ 0:26+ 0:01). This treatment was also used
before staining the cells for the fluorescence microscopy
images shown in Fig. 1. Figure 9(b) compares the normal
buffered C2C12 myoblasts (red), with blebbistatin treated
C2C12 myoblasts (yellow), C2C12 myotubes (violet) and
human DMD myoblasts (gray). It is quite difficult to distin-
guish the normal C2C12 myoblasts (α ¼ 0:24+ 0:01) from
the human DMD myoblasts (α ¼ 0:24+ 0:01). However,
we must mention that for a non-negligible fraction (22%) of
DMD human myoblasts, the extraction of a power-law
regime was very difficult, probably as the consequence of an
immediate cell shape change. Thus, in this latter case, the
statistical sampling was limited. The C2C12 myotubes,
which were differentiated from the myoblasts, behave with a
larger exponent α (α ¼ 0:29+ 0:02), over a narrower f
range [Figs. 9(c) and 9(d)]. Would the myotubes display dif-
ferent rheological properties? This conclusion could be rea-
sonable, regarding the strong remodelling of their
cytoskeleton, as compared to their precursors (Fig. 1). One

FIG. 8. Characterizing the AFM cantilever position fluctuations Sd and their scale invariance properties. [(a), (b), and (c)] Normal C2C12 myoblast cell.
[(d), (e), and (f )] ATP depleted C2C12 myoblast cell. [(g), (h), and (i)] Blebbistatin treated C2C12 myoblast cell. [(a), (d), and (g)] P.d.fs of the real part of
the wavelet transform Rψ (:, a) of the signal Sd (logarithmic representation) computed with a Morse analyzing wavelet of exponents γ 1, n 1 [Eq. (13)] for
different wavelet scales ai f0=f with f 6:8 Hz (dark blue), f 10 Hz (blue), f 15:8 Hz (light blue), f 25:1 Hz (cyan), f 39:8 Hz (green), f 63:1 Hz
(yellow), f 100 Hz (light red), f 158:5 Hz (red). [(b), (e), and (h)] P.d.fs of Rψ (:, a)=σ(a), where σ(a) is the standard deviation. [(c), (f ), and (i)]
log10 [P

CWT
Sd

(f )] vs log10 (f ) computed from the wavelet transform of the rheological fluctuation signals Sd [Eqs. (23) and (24)]; the color dots correspond to the
scales ai defined in (a) (d), and (g); the color shaded rectangles delimit the frequency ranges where the power spectrum has been identified to behave as
PCWT
Sd

(f ) � f�β:
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could be tempted to compare the myotubes with the fixed
myoblast cells, since their scaling exponent and frequency
range are similar. However, let us point out that the fluctua-
tion energy (the amplitude of the power spectrum) is signifi-
cantly larger for the myotubes, indicating that they are softer
than myoblasts. Indeed, their actin CSK is very different
[Figs. 1(a) and 1(c)], and their mechanical response is differ-
ent too. Finally, the blebbistatin treated myoblasts also
behave with a larger α exponent (α ¼ 0:31+ 0:02), on a
quite variable frequency range, and their fluctuation energy is
even higher than previously observed for the myotubes.
These cells are less elastic (the greater α, the greater the
viscous component), and less tensed that normal myoblasts,
their CSK has lost in part or totally its cross-linked architec-
ture typical of prestressed cells on adherent supports (Fig. 1).

IV. CONCLUSION

To conclude, we have proposed an original method, based
on complex wavelet transform decomposition of rheological
signals, to reveal the occurrence of fractional fluctuations and
estimate accurately the power-law exponent α as a signature
of self-similar scale-invariant mechanics of living cells. This
method was applied to creep experiments performed with an
AFM nanoindenter placed in contact with single myoblasts
and myotubes adherent on collagen coated coverslips. This
methodology was tested on limited statistical samples (�25
30 cells for each case), but it has demonstrated its efficiency
and its expeditiousness on rather short time recording
(& 100 s). We have not considered lower frequencies (, 5
Hz) in that work, not only because they would have required
longer time series, but also to avoid active actin CSK remod-
eling processes driven by molecular motors (myosin-II) to be
involved. We hope to elaborate on the study of active driven
rheological properties of living cells in a future work.
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