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Abstract. In this paper, we investigate the usefulness of tonal features
for unsupervised word discovery, taking Mboshi, a low-resource tonal
language from the Bantu family, as our main target language. In a pre-
liminary step, we show that tone annotation improves the performance
of supervised learning when using a simplified representation of the data.
To leverage this information in an unsupervised setting, we then present
a probabilistic model based on a hierarchical Pitman-Yor process that
incorporates tonal representations in its backoff structure. We compare
our model with a tone-agnostic baseline and analyze if and how tone
helps unsupervised segmentation on our small dataset.

1 Introduction

Many languages will face extinction in the coming decades. Half of the 7,000
languages spoken worldwide are expected to disappear by the end of this cen-
tury [2], and there are too few field linguists to document all of these endan-
gered languages. Innovative speech data collection methodologies [4,5] as well
as computational assistance [1,15] were recently proposed to help them in their
documentation and description work. This paper follows similar objectives and
focuses on the unsupervised discovery of words from an unsegmented sequence
of symbols. While such material could be obtained by automatic phone recogni-
tion from speech, we investigate here oracle data (hand-annotated symbols from
linguists) in a rather limited resource setting (only a few thousand sentences).
In this context, our main question is to evaluate the usefulness of tone informa-
tion in unsupervised word segmentation, and we use Mboshi, a mostly unwritten
African language of the Bantu family, as our main test case.

The integration of tonal information in segmentation relies on Bayesian non-
parametric (BNP) models, popularized in Natural Language Processing (NLP)
by [8,10,9]. In this approach, (pseudo)-words or (pseudo)-morphs are generated
by a bigram model over a non-finite inventory, through the use of a Dirichlet
process (DP), or a more general Pitman-Yor process (PYP), which enables to
discover units that follow a power-law distribution, a universal characteristic of
language lexicons. These algorithms were originally designed as computational
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models of language acquisition and were mainly applied to non-tonal languages,
with the exception of [11], who investigated the use of adaptor grammars for
unsupervised word segmentation of Mandarin Chinese. Tones were shown to
have a small impact on segmentation accuracy and were reported to yield a
small improvement for simple grammars and no improvement with more complex
ones. Also worth mentioning is the work of [12], who studied the role of prosodic
information (at a macroscopic level) for word segmentation. The approach was
tested on English and Japanese: for both languages, it was shown that prosodic
boundaries were actually helping word segmentation.
Contributions: we investigate in this paper whether and how tone annotation
can help word segmentation in the case where the distribution of tones obey
morphological and syntactical, as well as lexical, constraints. After briefly pre-
senting some peculiarities of Mboshi, we first show (in Section 2) that tones
help disambiguate word boundaries in a supervised setting - suggesting that
this information could also help the unsupervised discovery of words. We then
present in Section 3 a new hierarchical BNP model, which uses generalized back-
off schemes to integrate tonal representations in word segmentation. Based on
the experiments reported in Section 4, we conclude that, notwithstanding the in-
herent unstability of BNP models, tonal information can improve word discovery
procedures.

2 A Preliminary Study: Supervised Word Segmentation

In order to assess the potential for tones to help discovering a tonal language’s
word units, we first conducted a supervised experiment making use of decision
trees. We start this section by presenting a short sketch of the language targeted
in this work: Mboshi.

2.1 Mboshi language

Mboshi is a language spoken in Congo-Brazzavile, and it was one of the lan-
guages documented by the BULB (Breaking the Unwritten Language Barrier)
project [1,15], using the LIG-AIKUMA tool [5]. Preliminary experiments for a
small portion of it were reported in [7]. Mboshi is a two tone Bantu language
whose words are typically composed of roots and affixes. Almost all Mboshi
words include at least one prefix, while the presence of several prefixes and
one suffix is also very common. While the language can be considered as rarely
written, linguists have nonetheless defined a non-standard grapheme form of it,
considered to be close to the language phonology. The suffix structure tends to
be a single vowel (e.g. -a or -i) whereas the prefix structure may be both CV and
V. Most common syllable structures are V and CV, although CCV may arise
due to affricates and pre-nasalized plosives (coded with symbols dz and mb).
Mboshi also makes use of short and long vowels (coded respectively as V and
VV). With respect to tones, the high tone is coded using an acute accent on the
vowel while low tone vowel has no special marker. Word root, prefix and suffix
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all bear specific tones which tend to be realized as such in their surface forms.3

Tonal modifications may also arise from vowel deletion at word boundaries. Con-
cerning grammatical tones, word root, prefix and suffix all bear specific tones
which tend to be realized as such in their surface forms. Tonal modifications
may arise from vowel deletion at word boundaries. A productive combination of
tonal contours in words can also take place due to the preceding and appended
affixes. These tone combinations play an important grammatical role particu-
larly in the differentiation of tenses. However, in Mboshi, the tones of the roots
are not modified due to conjugations, unlike in many other Bantu languages.

2.2 Data and representations

Our study uses a corpus in Mboshi built both from translated reference sentences
for oral language documentation [6] and from a Mboshi dictionary [3]. This
corpus, comprising more than 9K sentences, is split in three parts that we call
S, M and L and for which we give basic statistics in Table 1. Subset S can be
considered as homogeneous, as it comes from a single source; subsets M and L

come from two different sources and exhibit more lexical diversity.

name #sent #tokens #types

S 1,174 6,238 1,664
M 4,904 27,990 7,271
L 9,256 52,433 11,440

Table 1. Corpus statistics for the Mboshi corpus (letter+tone representation).

In our transcriptions, Mboshi’s tonal system consisting of a pair of high and
low tones is simply represented using diacritics on vowels: acute accent for a
high tone, and no accent for a low tone. Our approach consists in varying the
representation of the input text and comparing the full transcription with dia-
critics (letter+tone) to i) the transcription letter where diacritics are removed,
ii) the transcription xV where vowels are replaced by the symbol ‘V’, iii) the
transcription xLH where high-toned vowels are replaced by the symbol ‘H’ and
low-toned vowels are replaced by ’L’, iv) the transcriptions CV (resp. CLH) where
consonants in xV (resp. xLH) are replaced by a generic symbol, ‘C’ (see Table 2).
We expect the systematic comparison of tonal (letter+tone, xLH, and CLH) with
their non tonal counterpart (letter, xV, CV) to shed some light on the usefulness
of this information.

3 The distinction between high and low tones is phonological (see [14]).
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name representation

letter wa ayεε la midi
letter+tone wa áyεε la mid́ı
CV CV VCVV CV CVCV
CLH CL HCLL CL CLCH
xV wV VyVV lV mVdV
xLH wL HyLL lL mLdH

Table 2. Various representations of the text.

2.3 Disambiguating Word Boundaries with Decision trees

For each representation of the text, we train a decision tree classifier4 to predict
a binary decision corresponding to the presence or absence of a word boundary
after each character. This prediction is based on features encoding a fixed-length
window of characters centered around the decision point; and consider in our
experiments windows of varying size5 We report the precision, recall and F-
measure computed on ambiguous6 word boundaries in Table 3 on the S corpus7

where 10% of the number of sentences have been held out for testing purposes.
For the pseudo-orthographic (letter and letter+tone) text representations, it
seems that the tonal information is of little value to disambiguate the frontiers.
However, as we simplify the text representation, despite a drop in F-measure,
the contrast between a representation ignoring tones (CV) and one that captures
them (CLH) becomes much sharper, suggesting that a tonal signal can be used
to improve segmentation. This motivates the design of new models that could
capture this signal directly on pseudo-orthographic representations and help
improve the precision of unsupervised segmentation.

representation P R F-measure

letter 0.92 0.93 0.92
letter+tone 0.91 0.89 0.90

xV 0.86 0.89 0.87
xLH 0.88 0.89 0.88

CV 0.70 0.61 0.65
CLH 0.78 0.72 0.75

Table 3. Precision, Recall and F-measure on word boundaries in various text repre-
sentations of corpus S with a decision tree classifier (11-words window width).

4 We use scikit-learn’s implementation (http://scikit-learn.org/stable/modules/tree.
html)

5 With padding at the beginning and end of the sentence.
6 We exclude word boundaries corresponding to the beginning and end of the sentence.
7 Similar results are obtained for the larger corpora.

http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
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3 Non-parametric segmentation models with tone
information

3.1 Pitman-Yor processes

PYPs are a class of stochastic processes used as models for sparse probability
distributions with a countably infinite support and distributed according to a
power-law, and therefore especially suited to model distributions arising in lin-
guistic data [16,9]. A PYP is defined by some base distribution P0, and two
concentration (θ ∈]− d,∞[) and discount (d ∈ [0, 1[) hyperparameters, and gen-
erates sparse versions of P0, whose degree of sparsity is controlled by θ and d.
Rather than explicitly defining PYP(P0, θ, d), we use the Chinese Restaurant
Process (CRP) metaphor to recall its main properties.

We assume a restaurant with K tables, with nk customers seated at table k
(k ∈ {1, . . . ,K}), and N =

∑K
k=1 nk the total number of customers. Each table

has a label lk from the domain D(P0) of P0. The restaurant is initially empty,
with no table. Customers enter one by one and:

– seat at table k table with probability proportional to nk − d
– seat at an empty table with probability proportional to θ + K · d. lK+1 is

then chosen by sampling from P0 and K is incremented.

The table layout defines a distribution P (l) over D(P0), where P (l) is the prob-
ability of obtaining l by uniformly picking a random customer and returning its
table label. When N →∞, P (l) converges to a sample of PYP(P0, θ, d).

Given a particular table setup, the probability of sampling a label x is com-
puted as:

P (x|n1 . . . nK , l1 . . . lK) ∝

(
K∑
k=1

1lk=x · (nk − d)

)
+ (θ +Kd) · P0(x).

3.2 Sampling segmentations using a PYP-distributed unigram word
model

In this work, we model a sentence as a concatenation of words drawn from
a unigram distribution Pw generated by a PYP(Pspl, θ, d) as in [10]. Pspl is the
spelling model, for instance a n-gram model over character sequences (see below).
We tokenize a corpus s1 . . . sn of n sentences by Gibbs-sampling every segmen-
tation si conditioned on all other segmentations.8 As explained above, sampling
x ∼ Pw can be done by maintaining a CRP associated to Pw, such that for every
token t in the current lexicon L there is a customer seated at a table labelled

8 Following [13], we use a forward filtering-backward sampling (FFBS) algorithm to
sample segmentations. As this method only approximates the posterior distribution,
we also perform a Metropolis-Hastings correction step.
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with the type of t. We also placed agnostic priors on the PYP hyperparameters:
θ ∼ exp(1) and d ∼ Beta(1, 5) and resampled these hyperparameters as well as
the CRP table layouts every 200 iterations.

3.3 A spelling model with tones

The spelling model defines a distribution over character strings that reflects
how word forms should look like. Obvious candidate spelling models are n-gram
models of character sequences:9

Pspl(w) =

l∏
i=1

P (ci|ci−n+1 . . . ci−1)

· P (stop|cl−n+1 . . . cl)

In order to also integrate tone information in the spelling model Pspl, we
define the set of contexts K as the set of sequences τ1 . . . τj cj+1 . . . ck (with k ∈
{0, . . . , n−1}), where τi are tones symbols from the set {H(high tone),L(low tone),
C(consonant)} and ci are regular characters. A context is thus a sequence of
length at most n− 1 comprising a prefix of tones and a suffix of characters.

For every non-empty context κ ∈ K, we further assume that the condi-
tional distribution P (c|κ) recursively arises from a PYP with base distribution
P (c|β(κ)), where β is a backoff function. The base distribution of the unigram
distribution (κ is empty) is the uniform distribution. In this setting, base distri-
butions of PYPs themselves arise from PYPs, giving rise to a hierarchical PYP
whose structure is defined by the backoff function β. To enrich the model with
awareness of tone patterns, we designed the following backoff scheme, where
characters are first replaced by tones (rightwards), then dropped (rightwards),
as follows:

c1 . . . cn−1
β−→ τ1c2 . . . cn−1

β−→ τ1τ2c3 . . . cn−1
β−→ . . .

β−→ τ1 . . . τn−1
β−→ τ2 . . . τn−1

β−→ τ3 . . . τn−1
β−→ τn−1

β−→ ∅.

On a Mboshi example, backoff will thus unfold as follows: ámid
β−→ Hmid

β−→
HCid

β−→ HCLd
β−→ HCLC

β−→ CLC
β−→ LC

β−→ C
β−→ ∅. This model is referred to

as multi in our experiments. We also evaluated an alternative backoff scheme
β′, where only one single tone is remembered:

c1 . . . cn−1
β′

−→ τ1c2 . . . cn−1
β′

−→ τ2c3 . . . cn−1

β′

−→ . . .
β′

−→ τn−2cn−1
β′

−→ τn−1
β′

−→ ∅

9 where we add initial padding symbols as needed.
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This is illustrated on the same Mboshi example: ámid
β′

−→ Hmid
β′

−→ Cid
β′

−→ Ld
β′

−→ C
β′

−→ ∅. This model is referred to as last in our experiments.
We compare our tone models multi and last to a baseline PYP n-gram

spelling model — referred to later on in our experiments as base — that is
unable to distinguish between high and low tones. In this baseline, the backoff
scheme βbase is simply defined by:

c1 . . . cn−1
βbase−−−→ c2 . . . cn−1

βbase−−−→ c3 . . . cn−1
βbase−−−→ . . .

βbase−−−→ cn−2cn−1
βbase−−−→ cn−1

βbase−−−→ ∅

It corresponds on the previously used example to: ámid
βbase−−−→ mid

βbase−−−→ id
βbase−−−→

d
βbase−−−→ ∅.

4 Experiments

Several setups are considered with varying corpus sizes (S, M, and L) and text
representations (letter+tone, letter, etc.). We report precision, recall and F-
measure on word boundaries (BP, BR, BF) and word types (LP, LR, LF) with
respect to S used as a test set for all corpora sizes. Additionally, we make the
spelling model’s Markov order vary between 1 and 6 and also conduct exper-
iments with the base model on all the text representations discussed in Sec-
tion 2.2. Each configuration (144 in total) is ran 5 times resulting in a total
of 720 measures. Table 4 gives the results of the best thirty runs in terms of
F-measure on word boundaries (BF).

Unlike what was observed in the supervised setting (Section 2), there seems to
be some benefit in keeping the tonal information in the representation (letter+tone
vs. letter): 22 out of the 30 best runs use tone information and top 9 config-
urations actually use the letter+tone representation. We can also observe that
large values of n (beyond 3) do not help much and that n = 3 seems to be a good
compromise. The benefit of our tone models (multi and last) is less conclusive
when compared to the base model, which also obtained very good performance.

Also note that we did not observe a clear trend when increasing the corpus
size. This might be due to the more heterogeneous nature of our Mboshi M,
and L subsets mentioned in section 2.2. Of particular interest are the results
obtained with the xLH representation and the base model: notwithstanding the
replacement of 14 symbols (Mboshi has a 7 vowels inventory, each prone to
carry a low or high tone) by only 2 symbols encoding the tonal information, the
performance compares to the very best result on our segmentation task.

To serve as another baseline, we also ran dpseg [8,10] 10 for all the possi-
ble representations and corpus sizes (18 configurations). It implements a Non-
parametric Bayesian approach, where (pseudo)-words are generated by a bigram
model over a non-finite inventory, through the use of a Dirichlet-Process. We used

10 http://homepages.inf.ed.ac.uk/sgwater/resources.html

http://homepages.inf.ed.ac.uk/sgwater/resources.html
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corpus size model Markov order representation BP BR BF LP LR LF
M base 3 letter+tone 89.07 72.89 80.17 58.28 62.80 60.46
S last 1 letter+tone 77.59 81.50 79.50 54.13 45.67 49.54
M last 3 letter+tone 87.20 72.93 79.43 56.53 60.64 58.51
M base 3 letter+tone 86.53 71.52 78.31 55.93 60.34 58.05
L base 3 letter+tone 89.17 69.23 77.95 55.80 62.44 58.93
S multi 3 letter+tone 88.58 69.08 77.62 52.12 54.03 53.05
M last 3 letter+tone 83.82 71.48 77.16 52.94 57.87 55.30
M last 6 letter+tone 76.29 78.04 77.16 47.98 46.45 47.21
S last 1 letter+tone 76.86 77.47 77.16 54.45 47.42 50.69
L base 2 letter 81.51 73.20 77.13 55.25 55.21 55.23
S last 6 letter+tone 80.25 74.23 77.12 53.16 48.56 50.75
M base 3 letter 88.85 68.13 77.12 57.36 63.46 60.26
M base 3 letter 87.71 68.33 76.81 57.44 63.12 60.15
M last 5 letter+tone 84.25 70.56 76.80 50.75 57.09 53.73
M base 3 letter 89.35 67.24 76.73 56.64 63.39 59.83
M last 3 letter+tone 85.66 69.23 76.58 52.92 58.29 55.48
M base 4 letter 94.24 64.32 76.46 54.49 65.37 59.44
L base 3 letter 89.10 66.96 76.46 54.05 62.78 58.09
L base 4 letter+tone 90.90 65.88 76.39 52.28 62.08 56.76
M base 3 xLH 87.96 67.26 76.23 52.88 62.44 57.26
S last 1 letter+tone 72.64 79.94 76.11 48.96 42.61 45.57
S last 1 letter+tone 76.38 75.67 76.02 51.83 45.07 48.22
M base 3 letter 88.49 66.53 75.96 55.61 62.17 58.71
M base 2 xLH 81.70 70.64 75.77 53.19 52.49 52.84
M base 6 letter 74.72 76.62 75.66 48.74 47.31 48.01
L base 2 xLH 81.24 70.62 75.55 50.59 53.15 51.84
M last 4 letter+tone 86.32 67.16 75.54 50.11 57.21 53.42
M base 2 xLH 81.89 69.91 75.42 52.28 52.24 52.26
M base 3 letter+tone 86.54 66.65 75.30 52.70 57.57 55.03
L base 3 letter+tone 86.66 66.57 75.30 51.76 58.35 54.86

Table 4. Top 30 best F-measures on word boundaries (BF) for all models, corpora
sizes, spelling model’s Markov order, text representations and 5 runs for each (144
configurations * 5 runs were evaluated in total). A dpseg baseline was also run for
all possible representations and corpus sizes (18 configurations) and best configuration
lead to BF equals to 70.40%.

the same hyper-parameters as [7], which were tuned on a larger English corpus
and then successfully applied to the segmentation of Mboshi. The best config-
uration lead to a F-measure on word boundaries (BF) equal to 70.40% which
is significantly below the performance of the top-30 configurations reported in
table 4.

Table 5 and 6 brings complementary view on our models’ behavior. They
compare different models/representations configurations for which F-measures
on word boundaries are averaged over spelling model’s Markov order and runs.
Results in Table 5 are reported for the S corpus. They confirm the benefit of keep-
ing tonal information in the representation. As expected, impoverished represen-
tations yield worse performance than the letter+tone or letter representations.
However, they still convey enough signal to reliably detect word boundaries.This
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result is encouraging for future experiments on true speech input, where coarse
grain pseudo-phones or pseudo-syllable units could be extracted.

All these results should be taken with some care, given the large standard
deviations of results inside each model/ representation combination. The stan-
dard deviation is even more important for the results of table 6 (L corpus). One
explanation might be the heterogeneous nature of the L corpus, but it does not
explain all the variability of our runs. The benefit of tone representation is also
less clear for the L corpus than for the S corpus: as more data are considered in
training, the usefulness of complex backoff schemes and rich information actually
decreases.

In summary, it seems that our models do not take full advantage of the
strong signal reflected in the last two lines of Table 3. This might be because
these models cannot learn tonal regularities at the grammatical level and are by
design limited to learn lexically-based tonal regularities. Yet, tones in Mboshi,
as in most Bantu languages, play as much a grammatical role as a lexical one.
Related is the current limitation of our models to a unigram word model embed-
ding the more structured spelling model. Bigram dependencies at the word level
were consistently shown to improve segmentation [10]. This will be an upcoming
extension of the models presented in this work.

model representation BF average std dev min max
last letter+tone 72.71 3.17 64.97 79.50
base letter+tone 69.62 1.82 66.16 73.03
multi letter+tone 69.48 3.93 61.46 77.62
base letter 69.26 1.98 65.01 73.33
base xLH 66.42 3.96 54.43 73.93
base xV 63.44 4.48 48.91 71.32
base CV 56.14 1.87 52.68 63.47
base CLH 50.34 4.19 44.79 60.45

Table 5. Comparing different models/representations configurations: F-measures on
word boundaries averaged over spelling model’s Markov order and runs - S corpus

5 Conclusion

In a preliminary study, we showed that when learning a segmentation classifier
on a simplified representation of a Mboshi corpus where all characters were col-
lapsed to two ‘vowel’ and ‘consonant’ categories, supplying that classifier with
tones provided an increase in performance and even led to a competitive seg-
mentation accuracy despite the considerable simplification of the data. This
suggested that segmentation could benefit from sensitivity to tonal cues, and
we tried to leverage the latter in an unsupervised setting by introducing hier-
archical n-gram spelling models that incorporate tone-conditional distributions
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model representation BF average std dev min max
base letter 69.86 4.22 57.23 77.13
base xLH 66.16 6.46 54.45 75.55
last letter+tone 65.80 5.94 42.45 73.95
base letter+tone 65.40 8.99 43.82 77.95
base xV 63.98 7.16 44.12 73.85
multi letter+tone 60.94 7.51 46.94 72.86
base CLH 55.25 6.25 32.99 63.44
base CV 49.90 8.34 23.61 64.85

Table 6. Comparing different models/representations configurations: F-measures on
word boundaries averaged over spelling model’s Markov order and runs - L corpus

in their hierarchy. These models were compared to a standard Pitman-Yor n-
gram spelling model for numerous settings. While we were able to observe some
benefit in keeping the tonal information in the representation (letter+tone vs.
letter), our proposed spelling model with tones was less successful in capturing
tonal signal in unsupervised word segmentation. For this reason, in future work,
we hope to exploit tone not purely within the spelling model, but also on the
grammatical level beyond simple unigram word sequence models.
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