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The Neumann problem for a Barenblatt
equation with a multiplicative stochastic force
and a nonlinear source term

Caroline Bauzet, Frédéric Lebon and Asghar Maitlo

Abstract. In this paper, we are interested in an existence and unique-
ness result for a Barenblatt’s type equation forced by a multiplicative
noise, with additionally a nonlinear source term and under Neumann
boundary conditions. The idea to show such a well-posedness result is
to investigate in a first step the additive case with a linear source term.
Trough a time-discretization of the equation and thanks to results on
maximal monotone operator, one is able to handle the non-linearity of
the equation and pass to the limit on the discretization parameter. This
allows us to show existence and uniqueness of a solution in the case of
an additive noise and a linear source term. In a second step, thanks to
a fixed point procedure, one shows the announced result.

Mathematics Subject Classification (2010). Primary 47J35, 60H15;
Secondary 47H10, 47HO5.

Keywords. Stochastic Barenblatt equation, multiplicative noise, addi-
tive noise, stochastic force, It6 integral, maximal monotone operator,
Neumann condition, time discretization, heat equation, fixed point.

1. Introduction

We are concerned with the following stochastic PDEs of Barenblatt type
involving respectively an additive noise:

a(at(u—/'hdw)>—Au — gin (0,T) x D x 9,
0

Vun = 0on (0,T)x 9D x Q, (1.1)
u(0,.) =y,
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and a multiplicative one with additionally a nonlinear source term:

d(@t(u—/.f%p(u)dw)) — Au+ B(u) $in (0,T) x D x Q,
0
Vun = 0on (0,T)x 9D x Q,
u(0,.) = wup.
We consider a standard adapted one-dimensional continuous Brownian mo-
tion

(1.2)

w:{wt,}},OgtéT}

defined on a complete probability space (2, F, P) with a countably generated

o-field denoted F = (F;)¢>0 such that wy = 0 and Fy contains the negligible

sets (see [11], [16] for further informations on stochastic analysis), the additive

and multiplicative stochastic integrals fo hdw and fo ¢ (u)dw are understood

in the sense of It6, D is a smooth bounded domain of R? with d > 1, n is the

outward normal vector to 9D and wug is a given initial condition. We assume

the following hypotheses:

Hy: he N2(0,T, HY(D)).

Hy: &= 15+ «a where I : R — R is the identity function and o : R — R is
a Lipschitz-continuous, coercive and non-decreasing function.

Hs: g € N2(0,T, L*(D)).

Hy: ug € HY(D).

Hs: 2 : R — R is a Lipschitz-continuous function satisfying #(0) = 0.

Hg: B : R — R is a Lipschitz-continuous function.

Hy: 9 € N2(0,T, L*(D))T.

In the deterministic case, these classes of Barenblatt equations (namely
f(0su)—Au = g, with f a non-decreasing function) were originally considered
by G.I. BARENBLATT in the theory of fluids in elasto-plastic porous medium
[6]. Then, several studies around these equations were conducted in various
areas: for applications in porous media models [14, 12, 13], for irreversible
phase change modeling [17] and for reaction-diffusion with absorption prob-
lems in Biochemistry [17]. More recently, the study of Barenblatt equations
were revisited by different authors for constrained stratigraphic problems in
Geology [1, 2, 3, 4, 19].

In the stochastic case, only few papers have been devoted to the study of
Barenblatt equations with a stochastic force. Let us mention the work [5],
where a related equation to the Barenblatt one with stochastic coefficients
were studied. In [8], the authors were interested in abstract problem of Baren-
blatt’s type with a stochastic force. Precisely, they investigated the Dirichlet
problem for (1.1) in the case where the laplacian operator were replaced

TFor a given separable Hilbert space X, we denote by ./\/'3, (0, T, X) the space of predictable
X-valued processes endowed with the norm H¢H/2\/2 O0.1,x) = E [fOT H¢||§(dt} (see Da

PRATO-ZABCZYK [11] p.94).



by a maximal monotone operator deriving from a potential. Then [7] pro-
posed a result of existence and uniqueness of weak solution for equations
(1.1) and (1.2) under Dirichlet boundary conditions and by assuming that
g = ﬂ = 7_9 = O.

The aim of the present work is to complete the previous studies in the stochas-
tic case by proposing an existence and uniqueness result of weak solution for a
Barenblatt’s type equation with a multiplicative noise fo A (u)dw, a non lin-
ear source term S(u) and under Neumann boundary conditions. This paper
represents an intermediate and preliminary work in view to aboard appli-
cations in phase transition phenomena (including irreversible phase changes
such as solidification of glue, cooking an egg,...) trough the study of nonlinear
evolution systems as in [9] with additionally a stochastic force.

For the sake of clarity, let us make precise some useful notations:

. Q=(0,T) xD.

. 2.y the usual scalar product of z and y in R%.

. 2(D) =€°(D) and 2'(D) the space of distributions on D.

. ||| and (., .) respectively the usual norm and the scalar product in L?(D).

. E[] the expectation, i.e. the integral over Q with respect to the proba-
bility measure P.

. Cy > 0 the Lipschitz constant of «.

. Cy > 0 the coerciveness constant of a: for any z,y in R,

(a(z) = a(y)) (@ —y) = Calz — y)*.

. Cy > 0 the Lipschitz constant of .77.
. Cp > 0 the Lipschitz constant of 3.

Now let us introduce the concept of solutions we are interested in for the two
above problems and the main results of the paper.

Definition 1.1. Any predictable process u belonging to NZ(0,T, H'(D)),
L*(Q,¢([0,T), L*(D))) and € ([0,T], L*(Q, H'(D)))is a solution to our sto-
chastic problem (1.1) if ¢t-almost everywhere in (0,7"), P-almost surely in €,
the following variational formulation holds: for any v € H!(D),

/Do?<8t(u—/O-hdw)>vd:c+/DVu.Vvdx:/ngdx, (1.3)

with u(0,.) = ug € H*(D).

w (O’ T7 Hl(D))’
L?(Q,¢([0,T), L*(D))) and ¢([0, T}, L*(Q2, H'(D))) is a solution to our sto-
chastic problem (1.2) if ¢-almost everywhere in (0,7"), P-almost surely in €,

Definition 1.2. Any predictable process u belonging to N2
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the following variational formulation holds: for any v € H(D),

/ Oy u—/%” dw) vd:c+/ Vu.Vudr
/B vd;v—/ Jvdez, (1.4)

with u(0,.) = up € H' (D).
Remark 1.3. Since the respective solutions of (1.1) and (1.2) belong to the

set L2 (Q, € ([0,T],L*(D))), they satisfy the initial condition in the following
sense:

P-a.s, in u(t =0,.) = limu(t,.) in L*(D). (1.5)

t—0
The results we want to prove in the sequel are the following :

Theorem 1.4. Under assumptions Hy to Hy, there exists a unique solution to
Problem (1.1) in the sense of Definition 1.1.

Moreover, the solution of (1.1) depends continuously on the data, this is
stated in the following proposition.

2(0,T, L*(D)), b, h in N2(0,T, H'(D)),
ug, Gig in HY(D) and denote by u, U the associated solutions to the Problem
(1.1) in the sense of Definition 1.1 with the respective sets of data (g, h,uo)
and (g,iz, Qo). Then for any t in [0,T], by denoting Q; = (0,t) x D, the
followmg inequality holds :

(Cat )Hf’)t(U )22 + B [ll(w = )(t)||2]+%E[HV(ufﬁ)(t)IIQ]

Proposition 1.5. Consider g, § in N

. - 1 .
<Cy {2||V(Uo — 0)|[* + IV (h = h)l|72(axqu + 5”9 - 9|%2(Qth)} (1.6)
+ €' |uo — dio|* + 17 = hl|72 x>

t
whereU:u—/ hdw,U:ﬁ—/ hdw and CT =1+ €T (
0

i o +T+4)

Ca
Theorem 1.6. Under Assumptions Ha to Hz, there exists a unique solution
to Problem (1.2) in the sense of Definition 1.2.

The paper is organized as follows. In a first step, we investigate the
existence of a solution for Problem (1.1). The approach is the following: we
use an implicit time discretization scheme to approximate such a solution. It
relies on studying properties of the time-approximate solution and passing to
the limit on the obtained discrete problem with respect to the discretization
parameter. Because of the random variable, classical results of compactness
do not hold, and the main difficulty here lies in the identification of the non-
linear term’s limit associated with the discretization of a(@t fo hdw) )

a second step, the uniqueness result is proven using classical energy estimates
well known on the heat equation. In addition, one shows at the limit on the



discretization parameter that the solution of Problem (1.1) depends contin-
uously on the data (Proposition 1.5). By the way of a fixed-point theorem,
we are able to extend in a last step our result of existence and uniqueness to
the multiplicative case with additionally a nonlinear source term, that is the
well-posedness of Problem (1.2).

2. Study of the additive case

The result of existence of a solution for Problem (1.1) is based on an implicit
time discretization scheme for the deterministic part and an explicit one for
the It6 part. To do so, let us introduce notations used for the discretization
procedure.

2.1. Notations and preliminaries results

We consider X a separable Banach space, N € N*, set At = % and t, = nAt
with n € {0, ..., N}. For any sequence (z,,)o<n<n C X, let us denote by
N—1
2t = Z xk+1]l[tkvtk+l)’
k=0
N-1
TAr = 'rk]l[tkwtk-}—l) Z.rAt(.—At),
k=0
Nl .
~A k+1 — Lk
X Z— |:At (_tk)"’_l’k ]]'[tk7tk+1)’
k=0
(%Af' i Tk+1 — Tk
= Z ]l[tk tr 1)7
ot At otk
k=0
with the convention that t_; = —At, for t < 0, #2(t) = xo and 22 (ty) =

#2t(ty) = . Elementary calculations yield for an arbitrary constant C' > 0
independent of At

N N
122720, = At Y llzwl% 5 133 1720,0.0) < CALD llaell;
k=1 k=0
N—1
||$At - jAtH%%o,T;X) = At Z [ %
k=0
N-1

A A
|22 = At) = 2% a0 1) = At Y lonn — zklk;
k=0
5 ] Nl ,
207 AF Z k41 — 2kl
(0,75.X) 0

%
ot

At At
27| oe 0,75x) = pnax lzkllx and |27 oo (0,1,x) = pnax 2kl x-
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We will use the following notations for the discretization of the data for any
nin {0,...,N}:
1 tn n—1
wy, = w(ty), hy = E/t 1 h(s,.)ds, B, = ;(wk+1 — wi )by

n—

1 tn
and g, = Kt/ g(s, ')d$7

tn—1

with the convention that ¢_; = —At and h(s,.) = g(s,.) =0if s < 0.
Remark 2.1. As h and g are predictable, h,, and g, belong respectively to
L? (2, F,); HY(D)) and L? ((Q, F,,); L*(D)) for any n in {0, ..., N}.
tn
Remark 2.2. For any n in {0,...,N}, B, = / hat(s)dw(s).
0

Indeed, as hy, is F3,-measurable, one has
n—1

Bn =Y (w1 — wi)hi

k=0

n—1 tht1
Z/ hidw(s)
=0 t
t, n—1
Z hk]l[tk7tk+1[(s)dw(5)
k=0
ha

tn

+(s)dw(s).

Lemma 2.3. There exists a constant C > 0 independent of At such that for
any n in {0,...,N}

E Z ||hk||§{1(o) Z ||!ch||2
k=0 k=0

Proof. Since for any n € {0, ..., N} and any k € {0,...,n}

/
y

C C
< — FE .
At and

2 1 tk i
Il = | g7 hes
! H'(D)
1 ty 2
< — 1
< ga([ 1 nds)
1 b )
< g XA I s
one gets :
ElZ||hk||%{1(D)] < Z/t [[h(s) H1(D)d3‘|
k=0 k-1
< C

||h||L2 (0.1)xQHY(D)) S A7



The proof of the second estimate is the same. O

Lemma 2.4. The sequences (hat) and (gat) converge to h and g respectively
in N2(0, T, HY (D)) and N2(0, T, L*(D)) as the time discretization parameter
At tends to 0.

Proof. See SIMON [18], Lemma 12 p.52. O

Proposition 2.5. The sequences (B2') and (B®') converge to / hdw in
0
L2(0,T; L?(Q, H*(D))) as the time discretization parameter At tends to 0.

Proof. Using successively Lemma 2.3, It6 isometry and Lemma 2.4, we have

T .
E / IIBM*/ hdw||5 (pyds
0 0
n=1 .t . s 2
—F Z/ (wk+1 wk)hk(s_tk)+Bk_/ h(o’)dw((j’) dS
= Ji, At 0 H'(D)
n=l itpgq w _ 2
k+1 — Wk
< 2F Z/ +T (S—tk)2||hk||%11(D)d5]
k=0
th+1 s 2
4 2E Z/ |Bk_/ h(o)dw(o)|[ 1 ) ds
0
, , n—1 tht1 s 9
< OAPE Znhkn +CE Z/ H/ h(o)dw(o) [y ds
—0 7tk ti
tht1 2
+CE Z/ ||/ (hae = 1)(@)dw(@) 12 ) s
trey
< CAt+CE / / (hat = h)(©@)|[311(pydods
ty
thkyr S
e z / 11(0)]13 1y dords
tr tr
< CAt+CHhAt hl|Z2 0.1y x .11 (D)) + CALIR] L2 (0,70, 11 (D))
and so

At / hdw in L*((0,T) x Q, H*(D)) as At — 0.
0
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Moreover, thanks to Lemma 2.3

N-1
1B = B[ (0 1y xe, 1 (py) = ALE lz 1 Brt1 — Bk?p(m]
k=0

= AtE

N—-1
> [l (wsr — wk)hkl‘éum]
k=0

N—-1
> ||hk||%11(D)]

k=0

= A’F

< CAt,
and so BAt — / hdw in L%((0,T) x Q, HY(D)) as At — 0. O
0

Remark 2.6. If one assumes that h belongs to N2(0,T, H?(D)), one shows
in the same manner that B2! converges strongly to fo hdw in L?((0,T) x
Q, H?(D)) as At tends to 0.

2.2. Discretization scheme

We consider a positive integer N and n € {0, ..., N}. Using the notations of
the previous section, the discretization scheme is the following one: for given
small positive parameter At and u, in L? ((Q,F,); H'(D)), we aim to find
Uny1 in L2 ((Q, F,.,); H (D)), such that P-a.s in © and for any v in H'(D)

Up, — Up Wn, — Wp,
/D ( +1At —h, HAt )vd:ch /D Vugs1.-Vode

Up41 — Up Wnp4+1 — Wn
— b Jode = [ gavde.
—+—/Da< Al Al vax /ngx

To proceed in this way we prove that, once n is fixed, we can find the solution
for the step n + 1 by a fixed point argument.

Proposition 2.7. Set N € N*,n € {0,..., N} and u,, € L* ((Q, F,); H(D)).
Then there ezists a unique up41 € L* ((Q, F,,,,); HY(D)) such that P-a.s in
Q and for any v in H'(D)

Up, — Uy Wnp — Wp,
/D ( +1At —h, +1At )Ud:ch /DVun_,_l.Vvda:

Up41 — Up Wp4+1 — Wn
—h, )d: vd. 2.1
Ry (S

Proof. Set N € N*,n € {0,..,N} and u, € L*((Q,F,); H(D)). The
variational problem (2.1) can be rewritten in the following way : finding
Un+1 € L ((Q, Fi,.,,); HY(D)) such that P-a.s in Q and for any v in H'(D)

/Un+1vdx+At/ VUn+1.Vvdx+/ a(Upy1)vdx
D D D

= / gnvdx — / V (U, + hn(Wpt1 — wy)) .Vodz. (2.2)
D D



The idea to solve (2.2) is to use the fixed-point theorem of Banach on the
following equivalent problem for a fixed A > 0

A+ 1)/ Uny1vdx + )\At/ VUp41.Vvde = / (Un+1 — Aa(Upy1))vdx
D D D

+ )\/ gnvdx — )\/ V (tun + hp(Wpt1 — wy)) Vodz. (2.3)
D D

To do so, we introduce the following application, for A > 0

Jx: L? (% L%(D)) — L? (% L%(D))
v o= v=Aa(v).

Firstly, thanks to the monotonicity of «, one shows that under the condition
0< A< Ci, J) is a contraction. Secondly, one considers for 0 < A < Ci the
application

T)\ : L2 ((Q,ftn+1);L2(D)) - L2 ((Q ]:tn-H) I(D))
S = us,

where ug is the solution in L? ((Q, F,,,,); H' (D)) of the following variational

problem, P-a.s in  and for any v in H!(D)

A+ 1)/ ugvdzr + )\At/ Vug.Vudr = / (S — Aa(9))vdx
D D D

+ )\/ grvdr — )\/ V (un + hp(wpp1 — wy)) Vode.
D D

Note that thanks to the Lax-Milgram theorem, T is well defined. Using
the contraction property of Jy, one shows that T) is a strict contraction
in L% ((Q,F,.,); L*(D)), thus using the Banach fixed-point theorem, one
gets the existence and uniqueness of a solution for (2.3) denoted U, in

L? ((Q, F,.,); HY(D)). By setting up1 = AtUpq1 + tn + Bn(Wyi1 — wy),

one gets that (2.1) admits a unique solution in L* ((Q, 7, ., ); H'(D)). O

2.3. Estimates on the approximate sequence

We propose the following discretization of our variational formulation (1.4) :
t-almost everywhere in (0,7, P-almost surely in  and for any v in H!(D)

/ a (6,5 (&At - BAt)) vdx +/ Vutt Vode = / garvdx. (2.4)
D D D

The aim here is to obtain boundedness results for the sequences @2, u®t and

’[LAt _ BAt.
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Proposition 2.8. A constant C > 0 independent of At exists such that

IV@2 || L 0,7, L2 (2x D) I VU2 | L 0,732 (2x D)) < € (2.5)
122 — | 20,1y x 0,1 (py) < CVAL, (2.6)

[ — a2 (. — At)|| 20,1y <0, 11 (py) < CVAL, (2.7)

10:(a% — BA)|| 12 (axq) < C, (2.8)

|2 — B | o< (0. 7:22 (0x D)) < C, (2.9)

IV (@ = B2)||2(axq) < C, (2.10)

@2 | 20,1y xe, 1 (D)) |16 || L2 0,1y x 2,11 (D)) < C (2.11)
la®(. - At)||nz 01,151 (D)) < C. (2.12)

Proof. Set N € N*, n € {0,..,N — 1} and k € {0,...,n}. The variational
formulation (2.1) with the couple of indexes (k+ 1, k) and the particular test

Uk41 — Uk h Wg41 — Wk
— N

functi =
unction v Al Al

gives us

2
Ukl — Uk A Wg+1 — Wk
At FTUAL

Uk+1 — Uk Wg41 — Wk Uk+1 — Uk Wg1 — Wk
+/a< At LN ) ( At LN )
/ Vaugy1.V <uk+1At_ Uk _ hi wkﬂAt_ U)k> dx = /D grvdz.

Then

Uk+1 — Uk Wg+1 — Wk
Cy+1 h
(Ca+1) At FTTAL
Uk+1 — Uk Wg41 — Wk
+ Vuk 1 AV ( - hk ) dr < / k’l}dl‘
Pt At At O

Moreover for any § > 0,

Uk41 — Uk h Wg4+1 — Wk
— Ng

1
(Cot1) At At

At

dzr

+ / Vg VL g
D

_/ Vgt — k) Vi = d —/ Vg Vhy, A gy
b D

At

2
Ukl — Uk h Wg41 — Wk
At FTTAL

At

1)
< Z
-2

1 2
+2*5||9k|| )

Uk
/ Vatear VL g = (Vg 2~ 9kl 411V (o —

[E
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Using this with 6 = Cy, + 1 and for all € > 0, one gets

2
Wg+1 — Wk
At

C,+1
2

Uk4+1 — Uk
At

_hk

1
+ oA Vg [P = [[Vuel® + |V (upgr — up)]|?]
2 4 e —wil”
- 2At 2e/At

W41 — Wi 1 2
— [ Vup.Vh dr + —= .
[ vuvn e Gl

IV (uhyr — ) V]|

Then, since u, and hy are Fi, -measurable, by taking the expectation one

gets
21

1
+ 27 B IVuea | = [1Vunl* + 11V (wgr — we)l ]

1
< KtE IV (ungr — un)|[?] + - [IVh]1?] +

Uk41 — Uk h Wg+41 — Wk
— Nk

1NE
(Cat1) At At

_ E 7.
Co+1 [Hng ]

+ B [IVupia | = Vsl 2] + (1 = OB ||V (ki1 = i)

At At
< B [I9Al?] + z= E [lael ).

In this way

Uk+1 — Uk h Wg4+1 — Wk
— g

0L+ 1D)ALE
(Co+ DAL At At

and by summing from k = 0 to n, one gets

U1 — Uk W41 — Wk h

At At

(Coa+1))_ALE
k=0

k

+ LB (IVwenl = 1Vucll] + (1= 3 (19 (i1 = )]

k=0 =

<= ZAtE || Vh|)?]
k 0
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and thanks to Lemma 2.3, there exists a constant C' independent of At such
that

n 2
~ Uk41 — Uk Wg41 — Wk
(Ca+1)> AtE — hy ]
— At At
n
+ B [IVunial?] + (1= 9> B IV (ki1 — i) ]
k=0

1 & SR

< 2D AE[IVAIP] + == > AE [[lgel *] + [[Vuol
k=0 at 1 k=0

<cC.

Consequently, by taking e = 1/2 for example, we obtain

n 2
Uk+1 — Uk Wi+1 — Wk 2
> AtE A + E [|[Vuns1])?]
k=0
1 n
+5 > BV (w1 —wi)|]* < C, (2.13)

k=0

and we get directly the following estimates:

IV@| oo 0,7, 22 (0x D)) VU2 e 0,7, p2(0x D)) < C
IV (a2 _uAt)HL?(QxQ) < CVAL,
10:(@% = BA)|[12axq) < C.

Using (2.13), we have

N-1
||aAt — uAtH%%QxQ) = At Z E [[|ug41 — Uk”ﬂ
k=0
= U U w wy, ||
<At Eloag || Ak g, SREL TR L opp - 2
kz_:o AL F A +2[|hg (wr+1 — wy)||
N-1 Y " w we |12 N—1
=oAL S AE ||| ATk gy, AL R 25" AL2E [||hi)?
Z Al AL + Z (7 ]?]
k=0 k=0
< CAt.
In the same manner, since
N-1
ud = wAt( = AD|Bangy = A Y B [Jlurss — uel 7]
k=0

one gets also that

H'LLAt — ’U,At(. — At)”%z(QXQ) S CAt



Now, using the equality

N-1

IV (u® = u (. = AD) [[F2 (g = At Y B [[IV (wrr —wi) 7],
k=0

one obtains due to (2.13) that
V(A =Bt = A1) ey < CAL.
Similarly, one shows that

[u®(. = At) — @' (. — A 72 0.1y x 00,11 (D)
N-1
<C AtE |:||U]€+1 - Uk”%l([))}

—0

k
CAt,

N

and by combining this with the previous inequalities one gets that
@3 — a2 (. = At)| L2 0,1y x 2,17 (D)) < CVAL.
Additionally for any n in {0, ..., N — 1} since By = 0 one has

E [||un+1 - Bn-&-lHQ}

n 2
=L |||up + Zuk-H —up — (Big1 — Br)
k=0
" 2
<2 2 | 9A#2E Uk+1 — Uk _h WE41 — Wk
ol 2 + oy
k=0
n 2
Uk+1 — Uk Wg41 — Wk
<2 2427y AtE —h
[Juoll” + kz_o At N ]

gca

13

which proves that ||a®! — BAtHLoo(O’T;LQ(QXD)) < C. Let us now show that
V(@2 — BA)||12(axq) is bounded independently of At. Using (2.5), it
remains to prove that VB2 is bounded in L?(Q x Q). Due to Lemma 2.3
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and the fact that E [(w;1 — w;)?] = At for any j € {0,..., N — 1}, one has

N
952 aanq) < ALY EIVBlLan)

k=0
2

k
= AtZE A Z Wi41 — ’LUj)th dx
7=0
= AtZZ/ ’LU]'+1 - wj)th)Q} dx

k= Oj 0

— AtZZ/ (w1 —w;)?] B [(Vhy)?] da
k= Oj 0

= AtZAtEZHh 2 (o)

< C.

and the result holds. Finally, using the fact that a2 — BA* and BA! are
bounded in L?(Q x Q), one gets that 4~ is also bounded in L?(2 x Q).
Combining this with (2.5), one obtains the boundedness of @2* in L2((0,T') x
Q, H'(D)). Thanks to (2.6)-(2.7), one gets the same result for @2*(. — At)
and u®* which gives (2.11). Finally, (2.12) holds by noticing that a2!(. — At)
belongs to N2(0,T, H(D)) as a continuous and adapted process.

2.4. At the limit

From the previous subsection, one gets naturally the following convergence
results:

Proposition 2.9. Up to subsequences denoted in the same way, there exist u
belonging to N2(0,T, H (D)) N L*(Q,€([0, T}, L*(D))) and x in L*(Q x Q)
such that

(i) @At ult —win L2((0,T) x Q, HY(D)),

(1) Vart, Vulrt 5 Vu in L®(0,T; L*(2 x D)),

(iii) (0 (aDt — BAY)) — x in L2(Q x Q),

(iv) @’ — BAY —~u— / hdw in L*(Q, HY(Q)),

0

(v)  u(0,.) =ug in HY(D).
Proof.
(i) Thanks to (2.6)-(2.7)-(2.11) and (2.12), there exists u in N2(0,T, H' (D))
such that, up to subsequences denoted in the same way, we have

@Bt utt At (. — At) — win L2((0,T) x Q, HY(D)).

Since @A*(.— At) belongs to the Hilbert space N2(0, T, H'(D)) endowed with
the norm of L2((0,T) %, H'(D)), one gets that u is also in N2 (0, T, H'(D)).
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(#4) Using (2.5)-(2.6), one gets directly that up to subsequences denoted in
the same way,

Vil Vult X Yy in L(0,T; L(Q x D)).

(ii7) Due to the Lipschitz property of o and (2.8), the sequence a(d;(a®t —
BAY)) is bounded in L?(Q x Q) and there exists x in the same space such
that, up to a subsequence

(9 (@™t — BAY)) — x in L2(Q x Q).

(iv) Thanks to (2.8)-(2.9)-(2.10), there exists ¢ in L>°(0,T; L?(2 x D)) and
L? (Q, Hl(Q)) such that, up to a subsequence,

@ —BA — (in L?(Q, HY(Q)) and @' — B2 = ¢ in L>(0,T; L*(x D)).

Using (i) and Proposition 2.5, one gets by uniqueness of the limit that ¢ =

u— [ hdw.

(v) Si?lce L*(Q, H'(Q)) is continuously embedded in L2 (9, %'(0,T], L*(D))),
one gets that u—/. hdw belongs to L? (€2, €([0,T], L?(D))). Moreover, as the
It6 integral of an (J)\/'l% (0, T, L*(D)) process is a continuous square integrable
L?(D)-valued martingale (see [11]), / hdw is in L? (Q,€([0,T], L*(D))).

0
Thus u belongs to L*(Q,%([0,T], L*(D))) and finally u is an element of
€([0,T), L*(2 x D)). Particularly, we have

wp = @24(0) — BAY(0) = (u— / hdw)(0) in L*(D)
0
and so u(0,.) = up € H(D). O

Using these convergence results, passing to the limit in (2.4) with re-
spect to At is now possible but the remaining difficulty is in identifying the
weak limit x in L2(Q x Q) of a(8,(@2" — BAY)). To do so, we suppose in a
first step (only for technical reason) that h belongs to N2(0,T, H*(D)). In
a second step, we will see how to get back a solution with the announced
hypothesis h in N2(0,T, H*(D)).

We consider our discrete variational problem (2.1) for any n in {0, ..., N — 1}

Upi1 — U,
% where Uy, 1 = Upq1 — Z(wk+1 — wy)hy.

k=0

with the test function
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One gets P-a.s in Q:
Un+1 Un 2 Un+1 - Un Un+1 - Un
/ (At > dzr + /D a AL AL dz
n+1 — U
n d
/ VU, +1- < At ) X

- n Un - Un
Z Wr4+1 — Wk / Ahk +1 d +/ HTd.'L‘,

=0

and then

Un—i—l - Un 2 Un+1 - Un Un+1 - Un
A _— A
t/D( A7 ) dx + t/Da< At A7 dx

1 1
+ §||VU7L+1H2 - *||VU7L||2

< At / AB, 2t —n U”“ Un o + At / U"“ Unir =Un .
D

Now, by adding from n =0 to NV — 1, we obtain

n+1 n n+1 n Un+1_Un
AtZ/( ) dm—i—AtZ/ ( > e

1N1

5 2 (VU] * = IVU[?)

n=0

<At2/ AB,, 2t —n ”*1 Un +At2/ "“ d:c,

and this gives

/ ’at(ﬁm _ BAt)|2dtdx +/ a(@t(ﬂAt _ BAt))at(ﬂAt _ BAt)dtdm
Q Q

1
+ 5 (IO = [[VUol)
< / ABAO (aAt — BAYdtdx + / gae0y (@At — BAYdtdz.
Q Q
Noticing that VU2(T) = VUy, we finally get after taking the expectation

E UQ |0, (@ — BAt)|2dtdx} + %E [IvT24 D)) - %E [IVUol1?]
+E [ / a (at(am - BN)) By (At — Bm)dtdaz} (2.14)
Q

<E [ / ABA9, (aht — BAt)dtdm] +E { / a0y (WA — Bm)dtdx] .
Q Q
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Proposition 2.10. Up to a subsequence
e! (8t<’l]At - BAt)) — a(Op(u — / hdw)) in L*(Q x Q).
0
Proof. Passing to the superior limit in (2.14), we have using Proposition 2.9
. 1 .
N SAt _ BAEY|2 LRI At 2
lim inf [0(@% = B2 [32qeq) + 5 lim inf B [IVT(T)|?]

_ _ 1
+lim sup F U (O (@At — BAY)) O, (aA —BAt)dtda:] — ~E[||Vuol?]
At—0 Q 2

<E [/Q /Ot Ahdwdy (u — /Ot hdw)dtdm} +E [/Q 90, (u — /Ot hdw)dtdm] .

Indeed, due to Remark 2.6, B2 converges strongly in L2 ((0,T) x Q, H*(D))
to fo hdw and so, by continuity of the Laplace operator, AB? converges
strongly in L?(2 x Q) to A [ hdw. Moreover, following [16] (Lemma 2.4.1
p.35), A fo hdw = fo Ahdw.

Now, using the following embedding ([15] Lemme 8.1 p.297)

L>(0,T; L*(Q, H (D))n% ([0, T], L*(Q, L*(D))) C%., ([0,T], L*(Q, H" (D))) T

one gets that for all time ¢ in [0, 77, UAL(t) belongs to L2(, H'(D)) and
UAt(t) = U(t) in L?(2, H'(D)). Then using the lower semi-continuity of the
L?(Q, HY(D))-norm

. . rTAt 2 2
lim inf B [[VOA(T)|2] > E[|IVUT)|P].
Finally
: 1 1
0,6 = [ haw) s ey + 5E [IVU@IE] = 52 [IVw?]

+lim sup F { / (O (@At — BAY)) O, (uht — Bm)dtdx} (2.15)
Q

At—0

<E UQ /Ot Ahdwat(u—/ot hdw)dtda:] +E[/ant(u—/0t hdw)dtdm].

Noticing that P-almost surely in Q, U = u — / hdw satisfies the heat equa-
0
tion
U —-AU = g,
U(O, ) = Up,

€ ([O,T},L2 (Q, H! (D))) denotes the set of functions defined on [0,7] with values in
L?(Q, H' (D)) which are weakly continuous.
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t
where g =g — x + / Ahdw, one has the following energy equality (see [10]

0
Theorem X.11 p.220), for any ¢ € [0, 7] by denoting Q; = (0,t) x D :

1
/ |8tU|2dsd3c+/ XatUdsdx+§||VU(t)\|2
t Qt

s
1
= / / Ahdwd,Udsdz + / 9o Udsdx + §||Vu0||2.
Qt 0 t
Then by taking the expectation :

B U |8tU|2dsdx} +E UQ xatUdsdx] + %E VU] (2.16)

s 1
- E [/ / Ahdw&tUdsdx] +E U gatUdsdx} + 5P [1IVuol?] -
Qt 0 t

In this way, by injecting (2.16) in (2.15) we finally have

At—0

<E { /Q X (u — /O ' hdw)dtdx} .

As o : R — R is a Lipschitz-continuous nondecreasing function, the operator
Ay v € L2 x Q) — a(v) € L?(Q x Q) is maximal monotone and one gets

X = a(@t(u —/ hdw)) (see L1ONS [15] p.172). O
0

lim sup E { / a (5;(@%1t - Bm)) By (At — BAt)dtd:zz]
Q

Proposition 2.11. The application t € [0,T] — E [|[Vu(t)|?] € R is continu-
ous.

Proof. Using (2.16) and Lebesgue’s theorem, one gets the continuity of
te[0,T]— E[|VU®)|?] € R.

Moreover, since / hdw belongs to ¢ ([0, T], L*(2, H*(D))), thus
0

te0,T]— FE [| /t Vh(s)dw(s)z} eR
is continuous and one gets the annot?nced result. ([l
Remark 2.12. Note that u belongs to ¢ ([0, T], L*(, H'(D))). Indeed, due
to (2.16), Lebesgue’s theorem and the fact that U = u—/. hdw is an element
of ¢ ([0, T], L*(2, L*(D))), one gets the continuity of th((eJ application
te[0,7]— E [||U(t)||§,1(D)} eR.

Combining this with the fact that U also belongs to ¢, ([0, T], L*(Q, H'(D))),
one concludes that U is in ¢ ([0, 7], L*(2, H'(D))) and due to the regularity
of It6 integral, it is the same for wu.
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2.5. Proof of Theorem 1.4

With the study done in the previous section, we are able to show the re-
sult of existence and uniqueness of a solution for Problem (1.1) stated in
Theorem 1.4. Let us begin with the uniqueness result. We consider h in
NZ(0,T, H (D)), u, @ two solutions in the sense of Definition 1.1 of our
stochastic problem

at(u—/o'hdw)_Au+a(at(u—/0'hdw)) ~ gin (0,T) x D x

Vun = 0on (0,7) x 9D x ,
U(O, ) Uugp-

Using the notations U = u — / hdw, U=1da- / hdw, one has
0 0

QU —-U)— AU -U) +a(dU) —a(d,U) = 0in (0,T)x D xQ,
VU -U)n = 0on (0,T)xdD xQ,
(U-0)(0,.) = o.

This means that U — U is the solution of the heat equation

AV —AV = adU)—a(dU) in (0,T)xDxQ,
VV.n 0 on (0,T)x 9D x Q,
V(0,.) 0.

As previously one has the following energy equality for any ¢ in [0,7] by
denoting Q; = (0,t) x D:

B[ [ 10w - 0)Pasar| + 1B (19 - D)0

519U - DO~ B | [, (a@0-a@i) o - 0yirat]

with ¢t € [0,T] — E NV(U — (A])(t)||2} continuous.
Using the coercivity property of « one gets for any ¢ in [0, 7
~ N 1 N
(Ca+ DIIOUU = D)l Bx(xn + 5 [IVW = D) O] <0, (2:17)

Moreover, the study of the heat equation also provides the following estimate
for any ¢ in [0, 7]
SB[ - D) 0] - I - D)) + VW - D))
92 ) L2(2xQy)
Lo AT
<0 = Ollzzoxan + 210U = D)l Bs@qn:

which gives using (2.17)

1 A 1 A
SE [0 = D)OI] < 51U = Ollzaxqn;

finally © = @ and we have uniqueness of the solution.
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Now let us prove the existence result. Set h in N2(0,T, H?(D)). Thanks to
the previous section, for all v in HY(D), ¢ in L?(0,T) and v in L>(), the
following variational equation holds

E [/Q O (u —/0 hdw)vgowdxdt] +FE [/Q Vu.vam/)da:dt}

tE { /Q a(Ay(u — /0 ' hdw))vcpwdmdt} -E [ /Q gvgm/zdxdt} .

Using the separability of H'(D), one gets that a.e in (0,7), P-a.s in © and
for any v in H!(D)

/d(@t(u—/. hdw))vdm—l—/ Vu.Vvda;:/ gud.
D 0 D Q

Using Proposition 2.9 and Remark 2.12, u has the regularities required by
Definition 1.1 and satisfies the initial condition u(0,.) = ug € H(D). Thus
we have existence of a solution u in the sense of Definition 1.1.

Let us now treat the case h € N2(0,T, H*(D)) stated by Theorem 1.4. We
decide to approach h by a sequence (hy,), C N2(0,T,%>°(D)). Set n,m € N
and consider g,, g, in N2(0,T, L*(D)) and uy, o, um,o in H' (D). Then, from
the previous proof, there exist two predictable processes in N2(0,7, H*(D))
denoted u,, and w,, satisfying the variational formulation (1.4) where the data
triplet (g, h,uo) is replaced respectively by (gn, Fn, tn.0) and (gm, Fm, Um,0)-
Moreover, u,, and u.,, possess the following regularities

Un, um € L*(Q,%([0,T], L*(D))) N € ([0,T], L*(Q, H'(D))),

U — / haduw, U — / hadw € L2(Q, H'(Q)) N L™ (0,T; LX(Q, H(D))).
0 0

Using the notations U, = uy — [ hndw and Uy, = tp, — [ himdw we have
t-almost everywhere in (0,7, P-almost surely in 2 and for any v in H(D)

/ at(Un — Um)’l}d.’ﬂ +/ (a(@t(Un)) — Oé(at(Um)))’UdiC
D D

+ /D V(ty — ). Vode = /D(gn — gm)vdx. (2.18)

For a fixed ¢ in [0, 7], by taking the test function

(Un B Um)(t) B (Un B Um)(t B At)
At

v =



in (2.18), we get

T

/at U, —U, (Un—Um)(t)—(AUn—Um)(t—At)d
t

/ V (n () = tm (8)).V (un (t) — wm (t) — un(t — At) — up (t — At))dz

/ V(un(t) — wm (t </ttm(hn — hm)dw> dx

Uy, — Un)(t) — (Uy, — U (t — Al)
+ [ (0(@,) - a@U,) N dr

= /D(gn ~ gy Fn = Um)(®) = (AUtn —Un)(t = A1)

Moreover, by noticing that

/D V(un(t) = wm (£).V (un(t) = tm (t) — up(t — At) — up (t — At))da

= %[HV(un — )2 = |V (tr, — um ) (£ — AL
19 = ) = ¥t = ) = A1)

we obtain

t

20t {”V( ) (B2 = ||V (i — ) (£ — A)||?

IV (= ) (8) = V(= ) (¢ = A
1 t
i/ V (tn — ) (£) — (tn, — 1) (£ — At)).v(/tw(hn - hm)dw>dx

~— [ 9= )t - At)).V(/tiAt(hn ~ o)) da

JF/D (a(atUn) — O‘(atUm)) (Up —Un)(t) — (AU;L — Up)(t — At) N
_ (Un = Un)(t) — (Up — Up,) (t — AU)
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Thus
— Un)(t) = (Un = Un)(t — At)
2At {HV )( )HQ_Hv(un_um)(t—At)Hz}
+ @ {”W U ) (t) — V(un — ) (t — At)|[?

4|V / )]

11V (e — ) (8) — (i — ) (F — AF) — 2 /t_m(hn ~ i) |’

/ V(= wn)(t — At). V(/t (i = o))
t—At
(Un = Un) () = (Un — Up)(t — A)
+ A (a(@t n) — a(@t m)) At dx

(Un — Um)(t) — (Un — Um)(t — At)
:/ (gn - gm)

AL dx.

By taking the expectation, the integral from At to T and by using the fact
that

[/ V (tn, — ) t—At)V(/t (b —hm)dw)dx} =0,

one gets

/AT B | [ o, - v O = (= Bl =20 4

At

+ﬁ/ [Hv(un - um)<t)||2 - ||V(un — um)<t — At)HZ] dt

+ / 5 [/ (@(Un) = a(OUnm)) (U"U’”)(t)(U"UM)(tAt)dx] “

At
/ —E {IV/ (i — )2 dit
At —

+/(9n—gm)(U —Un)(t) — (AUtn—Um)(t—Aw

/ / B |1V (hn — ho)|I2] dt

(Un = Un)(t) = (U = Un)(t = A1)
+ [ (@0 am)! ~ a.

dx
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and by using changes of variables

/ATE [ 0w, -0, G =)= 80

T At
i [ BNV = )OI = o [ B9 = w0 @

At 2At J,
T J— J— — J—
< IV (hn = ha)ll22(axq)
+ /D(gn _ gm) (Un - Um)(t) B (AUtvn - Um)(t - At) dr.

By passing to the limit on At and using Proposition 2.11 we obtain:
1
E [/ |0: (U, — Um)|2dxdt:| + §E [||V(un — um)(T)HZ]
Q
1
+E [/ (a(@tUn) — a(@tUm))at(Un — Uy, )dzdt _iE [||V(un - um)(O)HQ}
Q
< IV = bl ey + [ (00 = 90)0 U = U)o
Then, due to the coercivity of «
~ 1 2 1 2
(Coc + 5)”815((]71 - Um)”L?(QxQ) + §E [||V(un - um)(T)H ] (2-19)
1 1
SiE [HV(UH - um)(o)||2] + [V (hy — hm)HQLQ(QxQ) + §||gn - gm”i?(QxQ)'

Moreover, by denoting Q; = (0,t) x D, one also has for any ¢ € [0, T]

(Co+ IIOTn = Un)Foqaxan + 52 [Vl —un) @] (2:20)

1 1
S E IV (un = ) O P]+1V (A = h)[1720 00y + §Hgn — gmlF2(0x00)-

In the same manner, using the test function U,, — U,, in (2.18), one shows
the following inequality for any ¢ € [0, T]

S B M = Un)OIP] = 5 B (11U ~ Un) O]+ 5119t — ) 201

1
< Cr2x||8t(Un - Um)HQL?(Qth) + §||Un - UmHQL?(Qth)

T
+ §||V(hn - hm)”%Z(sszt) + llgn — gm”%?(Qth)'
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Moreover, due to (2.20):

1 (1 )
1040 ~Unlanan < g 5 1190~ i) O]

#1900 = ) e+ 5l0n = sl
and thus
E (I - U )1P]
< 0 = YO + TV — b)) + 200 — il B

2C2 (1
2 «a 2
10~y + e 52 9~ ) O

1
V(o = hen) 1 220x 00 + §||9n - gmH%Q(Qth)}

<K 4 / E|Un — Un)(s)|P] ds

where

202

n,m __ U — U 2 e} 1 U — 1 2
K™ =ll(un ~ wn)O)] +<é +§+T+4>{2E[IIV( v = ) O]

(e

1
H 1900 = ) g + 3110n — 9l |
Gronwall’s Lemma then asserts that for any ¢ in [0, 7]
E[l|(Un = Un)(0I[*] < K™e". (221)
By taking (Un,0,9n) = (Um0, gm) in (2.20) and (2.21), one gets the estimates

1
(Ca + )H@t(U —Un )\|%2(QxQ)+§ sup E [||V (up — um)(t)]?]
t€[0,T)

<NV = han)lIZ2 (@)

2C2
and sup E [||(U, — Un)®)|]*] < +T v B )2 T
s E[I0, 0,0 (C - )H (= o) ey

0.7.H <
QW

. (Un)n and

Since (hy,)n is a Cauchy sequence in N2 (0 ) (u
0,T,HY(D), L*(D)))" and

also Cauchy sequences respectively in L2(
% ((0,T], L*(, H'(D))) N NZ(0, T, H'(D)).
As mentioned by DA PRATO-ZABCzZYK [11], N2(0,T, H'(D)) is complete,
and there exists u in N2(0,7, H' (D)) such that

Up — in  NZ2(0,T,H'(D)),
Un = u —/ hdw in  L*(Q,W(0,T,H (D), L*(D))).
0

7

tw (o, T, H'(D),L?(D)) = {v € L%(0, T, H*(D)) such that d;v € L?(0,T, L%(D))}.
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Moreover, since U, (0,.) converges to u(0,.) in L*(2 x D), we obtain that
uo = u(0,.). Finally, we get that t-almost everywhere in (0,7"), P-almost
surely in Q and for any v in H(D)

/ 8t(u—/' hdw)vda:+/ Vu.Vvdx+/ a(@t(u_/' hdw))vdzx :/ gudzx,
D 0 D D 0 D

and we have the existence result when h € N2(0,T, H*(D)) as announced in

Theorem 1.4.

2.6. Proof of Proposition 1.5

Let us show the continuous dependence of the solution with respect to the
data. The idea is to use the same arguments as previously. Consider g, § in
N2(0,T, L3(D)), h, h in N2(0,T, H' (D)), ug, @i in H'(D) and denote by u,
@ the associated solutions to Problem (1.1) in the sense of Definition 1.1 with
the respective sets of data (g, h,ug) and (§, b, @g). Additionally, we consider
two sequences (fn)n, (hn)n belonging to N2(0,T,%>°(D)) as regularizations
of h and h. Then there exist two processes u, and i, satisfying respectively
the following problems in the sense of Definition 1.1

(0 (un — / hndw)) — Au, =g in (0,T) x D xQ,
0

(O (it — / hndw)) — A, =g in (0,T) x D x Q,
0
Vu,n=Vi,n=0 on (0,7)x0D xQ,

un(0,.) =ug and 4,(0,.) = Go.

Reasoning as for the existence proof, and by denoting U,, = u,, — / h,,dw
0

and U, = 4, — / hyndw, we prove that (u,), (ii,) are Cauchy sequences in
0

N2(0,T, HY(D)) N € ([0,T], L*(Q, H'(D))) and that (Uy,), (U,) are Cauchy
sequences in L*(Q,W(0,T,H*(D),L*(D))). Due to the uniqueness of the
solution of (1.1), one concludes that (uy,), and (4, ), converge respectively to
the solutions u and @, both in N2(0, 7, H'(D)) and € ([0, T], L*(Q, H'(D))).
Moreover, one shows also that (9,U,), and (8;U,), converge in L2(Q x Q)
respectively to 9,U = 9;(u — [; hdw) and 9,U = (i — [; hdw). As for the
obtention of (2.20)-(2.21), one shows that for any ¢ in [0, T,

(ot O = OBy + 3E [V — )P (222

1 R - 1 R
< §E [||V(U0 - Uo)m + IV (hn — hn)HQLQ(Qth) + §||9 - 9H2L2(QxQ,,)7
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and

E (||~ 0a)()I1]

e[ _2C2 1 TP NP
sl T IV (o = ao)lI” + 11V (ha = hn)lz2(@xq.)
T3

1 . N
+ 3lla =l |+ el — ol (229
By adding (2.22) and (2.23) and passing to the limit one gets

(Co+ DI = Dl Baangy +E [0 =~ DYAIP]+5 B IV~ a) ()]
202

<(1+ (

1 R ~
+T+4)){2|v<uo — )|+ 1V(h — 1) 2

1 . N
+ 5”9 - g”%?(Qth)} + e'lJug — diol|?
and since
E [ll(w = a)(®)IP) < E 10 = DYOI] + 1h = hlZ2@xan):

the announced result holds.

3. Study of the multiplicative case with a nonlinear source
term

Under Assumptions Hs to H7, we are interested in the following problem
with a multiplicative noise and a nonlinear source term:

a(at(u—/o'yf(u)dwo—Au+5(u) — Wi (0,T)x D xQ,

Vun = 0on (0,T) x 9D x £,
'LL(O, ) = Ug-.

(3.1)

Using Theorem 1.4, we define the application
T :NZ(0,T,H (D)) — NZ(0,T,H'(D))
S = us,

where ug is the solution of the following additive problem

d(@t(us—/‘%ﬂ(S)dw)> —Aus+5(S) = 9 in(0,T)xD xQ,
’ Vugm = 0 on (0,T) x 0D x £,
uS(O,.) = Up,

in the sense of Definition 1.1 with h = J#(S) and g = ¥ — B(S). Thus, for
any S, S in N2(0,7, H'(D)), there exist ug = 7(S) and ug = T(S) such
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that by denoting Us = ug — / H(S)dw and Ug = ug — / (S dw, we
0 0
have using Proposition 1.5, for any ¢ € [0, T]:
~ 1
(Co+ N0Us = Ug)lIT2axqn + E [[I(us = ug)(®)]I]
1
+ B[V (us — ug) O]

N 1 N
cl {|v<%<s> ~ A )32@xqn + 318(S) - ,6<s>|%2<9x@t>}
+[|72(S) - %(S)H%?(QXQQ
< KL {118 = SIx(axqn + IV(S = Dl zaxqn |

where
C’ 2
KL o= CT—+(1+CT)C% and C§—1+eT<é2C;fl+T+4>.
atj

For any a > 0 by using an integration by parts, one gets

T T
| B s —ug) @17 de+ / B [V (us — ug) ()] dt
<ol [ [ B[S - 9N+ 19 - (6] dsar
= 2KT p l/ —E [n(s SO +1V(S = $)(®)|1?) at
2K x (3 [ E (IS = SO +19(5 - $)(0)] )

T
<KL o x / B[S = )OI + V(S - ()] at

Finally
T A
| e B [1709) = TS )

<2 x g [ B[I(5 = S0 + 195 - H))F] a

Since the exponential weight in time provides in N2(0,T, HY(D)) an equiv-
alent norm, under the condition a > 2K s T is a contractive mapping, it
has a unique fixed-point and the result holds
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