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Combinatorics of nondeterministic walks of the Dyck and Motzkin type∗

Élie de Panafieu† Mohamed Lamine Lamali‡ Michael Wallner‡

Abstract
This paper introduces nondeterministic walks, a new vari-
ant of one-dimensional discrete walks. At each step, a
nondeterministic walk draws a random set of steps from
a predefined set of sets and explores all possible exten-
sions in parallel. We introduce our new model on Dyck
steps with the nondeterministic step set {{−1}, {1}, {−1, 1}}
and Motzkin steps with the nondeterministic step set
{{−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}}. For
general lists of step sets and a given length, we express the
generating function of nondeterministic walks where at least
one of the walks explored in parallel is a bridge (ends at the
origin). In the particular cases of Dyck and Motzkin steps,
we also compute the asymptotic probability that at least one
of those parallel walks is a meander (stays nonnegative) or
an excursion (stays nonnegative and ends at the origin).

This research is motivated by the study of networks
involving encapsulations and decapsulations of protocols.
Our results are obtained using generating functions and
analytic combinatorics.

Keywords. Random walks, analytic combinatorics,

generating functions, networking, encapsulation.

1 Introduction

In recent years lattice paths have received a lot of
attention in different fields, such as probability theory,
computer science, biology, chemistry, physics, and much
more [5, 9, 11]. One reason for that is their versatility
as models like e.g., the up-to-date model of certain
polymers in chemistry [16]. In this paper we introduce
yet another application: the encapsulation of protocols
over networks. To achieve this goal we generalize the
class of lattice paths to so called nondeterministic lattice
paths.

1.1 Definitions
Classical walks. We mostly follow terminology

from [2]. Given a set S of integers, called the steps,
a walk is a sequence v = (v1, . . . , vn) of steps vi ∈ S. In
this paper we will always assume that our walks start at
the origin. Its length |v| is the number n of its steps, and
its endpoint is equal to the sum of the steps

∑n
i=1 vi.

As illustrated in Figure 1a, a walk can be visualized by
its geometric realization. Starting from the origin, the
steps are added one by one to the previous endpoints.
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This gives a sequence (yj)0≤j≤n of ordinates at discrete

time steps, such that y0 = 0 and yj :=
∑j
i=1 vi. A bridge

is a walk with endpoint yn = 0. A meander is a walk
where all points have nonnegative ordinate, i.e., yj ≥ 0
for all j = 0, . . . , n. An excursion is a meander with
endpoint yn = 0.

Nondeterministic walks. This paper investi-
gates a new variant of walks, called nondeterministic
walks, or N-walks. In our context, this word does not
mean “random”. Instead it is understood in the same
sense as for automata and Turing machines. A process
is nondeterministic if several branches are explored in
parallel, and the process is said to end in an accepting
state if one of those branches ends in an accepting state.
Let us now give a precise definition of these walks.

Definition 1.1. (Nondeterministic walks) An N-
step is a nonempty set of integers. Given an N-step
set S, an N-walk w is a sequence of N-steps. Its length
|w| is equal to the number of its N-steps.

As for classical walks we always assume that they start
at the origin and we distinguish different types.

Definition 1.2. (Types of N-walks) An N-walk
w = (w1, . . . , wn) and a classical walk v = (v1, . . . , vn)
are compatible if they have the same length n, the same
starting point, and for each 1 ≤ i ≤ n, the ith step is
included in the ith N-step, i.e., vi ∈ wi. An N-bridge
(resp. N-meander, resp. N-excursion) is an N-walk
compatible with at least one bridge (resp. meander,
resp. excursion). Thus, N-excursions are particular
cases of N-meanders.

The endpoints of classical walks are central to the
analysis. We define their nondeterministic analogues.

Definition 1.3. (Reachable points) The reach-
able points of a general N-walk are the endpoints of all
walks compatible with it. For N-meanders, the reachable
points are defined as the set of endpoints of compatible
meanders. In particular, all reachable endpoints of
an N-meander are nonnegative. The minimum (resp.
maximum) reachable point of an N-walk w is denoted
by min(w) (resp. max(w)). The minimum (resp. maxi-
mum) reachable point of an N-meander w is denoted by
min+(w) (resp. max+(w)).



The geometric realization of an N-walk is the sequence,
for j from 0 to n, of its reachable points after j
steps. Figure 1 illustrates the geometric realization
of a walk v = (2,−1, 0, 1) in (1a), of an N-walk
w = ({2}, {−1, 1}, {−2, 0}, {0, 1, 2}) in (1b), and of the
classical meanders compatible with w in (1c). Note that
the walk v (highlighted in red) is compatible with the
N-walk w.
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(a) A classical walk.
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(b) An N-walk.
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(c) Meanders compatible with the N-walk.

Figure 1: Geometric realization of a walk, an N-walk,
and its compatible meanders.

Probabilities. Any set of weights, and in partic-
ular any probability distribution on the set of steps or
N-steps induces a probability distribution on walks or
N-walks. The probability associated to the walk or N-
walk w = (w1, . . . , wn) is then the product

∏n
i=1P(wi)

of the probabilities of its steps or N-steps.

1.2 Main results Our main results are the
analysis of the asymptotic number of nonde-
terministic walks of the Dyck and Motzkin
type with step sets {{−1}, {1}, {−1, 1}} and
{{−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}},
respectively. The results for the unweighted case where
all weights are set equal to one are summarized in
Table 1. These results are derived using generating
functions and singularity analysis. The reappearing
phenomenon is the one of a simple dominating polar
singularity arising from the large redundancy in the
steps. The type of N-walk only influences the constant
or the proportion among all N-walks. The lower order
terms are exponentially smaller and of the square root
type. These are much more influenced by the types.
From a combinatorial point of view, we see a quite
different behavior compared with classical paths. In
particular, the limit probabilities for a Dyck N-walk
of even length to be an N-bridge, an N-meander, or
an N-excursion, are 1, 1/2, or 1/4, and for Motzkin
N-walks 1, 3/4, or 9/16.

We also explore general N-steps and prove that the
generating function of N-bridges is always algebraic. N-
excursions with general N-steps will be investigated in
a longer version of this article.

1.3 Motivation and related work Let us start
with a vivid motivation of the model using Russian
dolls. Suppose we have a set of n + 1 people arranged
in a line. There are three kinds of people. A person
of the first kind is only able to put a received doll in
a bigger one. A person of the second kind is only able
to extract a smaller doll (if any) from a bigger one. If
she receives the smallest doll, then she throws it away.
Finally, a person of the third kind can either put a doll
in a bigger one or extract a smaller doll if any. We want
to know if it is possible for the last person to receive the
smallest doll after it has been given to the first person
and then, consecutively, handed from person to person
while performing their respective operations. This is
equivalent to asking if a given N-walk with each N-
step ∈ {{1}, {−1}, {−1, 1}} is an N-excursion, i.e., if
the N-walk is compatible with at least one excursion.
The probabilistic version of this question is: what is the
probability that the last person can receive the smallest
doll according to some distribution on the set of people
over the three kinds?

Networks and encapsulations. The original
motivation of this work comes from networking. In
a network, some nodes are able to encapsulate pro-
tocols (put a packet of a protocol inside a packet of
another one), decapsulate protocols (extract a nested
packet from another one), or perform any of these two



Type Dyck N-steps Motzkin N-steps
P({−1, 1}) \ ∅ P({−1, 0, 1}) \ ∅

N-Walk 3n 7n

N-Bridge 1+(−1)n
2

(
3n − 2

√
2√
π

8n/2
√
n

+O
(

8n/2

n3/2

))
7n −

√
3
π

6n√
n

+O
(

6n

n3/2

)
N-Meander 3n

2 + 3
√
2(1+(−1)n)+4(1−(−1)n)√

π
8n/2
√
n3

+O
(

8n/2

n5/2

)
3
47n + 3

√
3

2
√
π

6n√
n3

+O
(

6n

n5/2

)
N-Excursion 1+(−1)n

2

(
3n

4 + 4
√

2 8n/2
√
πn3

+O
(

8n/2

n5/2

))
9
167n − γ 6n√

πn3
+O

(
6n

n5/2

)
Table 1: The asymptotic number of nondeterministic unweighted (all weights equal to 1) Dyck and Motzkin
N-walks with n steps obeying different constraints: N-Bridges contain at least one classical bridge ending at 0,
N-Meanders contain at least one classical meander staying nonnegative, and N-excursions contain at least one
classical excursion staying nonnegative and ending at 0. The constant γ ≈ 0.6183 is an algebraic number defined
as the positive real solution of 1024γ4 − 8019γ2 + 2916 = 0.

operations (albeit most nodes are only able to trans-
mit packets as they receive them). Typically, a tunnel
is a subpath starting with an encapsulation and ending
with the corresponding decapsulation. Tunnels are very
useful for achieving several goals in networking (e.g.,
interoperability: connecting IPv6 networks across IPv4
ones [19]; security and privacy: securing IP connec-
tions [18], establishing Virtual Private Networks [17],
etc.). Moreover, tunnels can be nested to achieve sev-
eral goals. Replacing the Russian dolls by packets, it is
easy to see that an encapsulation can be modeled by a
{1} step and a decapsulation by a {−1}, while a passive
transmission of a packet is modeled by a {0} step.

Given a network with some nodes that are able
to encapsulate or decapsulate protocols, a path from
a sender to a receiver is feasible if it allows the latter
to retrieve a packet exactly as dispatched by the sender.
Computing the shortest feasible path between two nodes
is polynomial [12] if cycles are allowed without restric-
tion. In contrast, the problem is NP-hard if cycles are
forbidden or arbitrarily limited. In [12], the algorithms
are compared through worst-case complexity analysis
and simulation. The simulation methodology for a fixed
network topology is to make encapsulation (resp. decap-
sulation) capabilities available with some probability p
and observe the processing time of the different algo-
rithms. It would be interesting, for simulation purposes,
to generate random networks with a given probability
of existence of a feasible path between two nodes. This
work is the first step towards achieving this goal, since
our results give the probability that any path is feasible
(i.e., is a N-excursion) according to a probability distri-
bution of encapsulation and decapsulation capabilities
over the nodes.

Lattice paths. Nondeterministic walks naturally
connect between lattice paths and branching processes.
This is underlined by our usage of many well-established

analytic and algebraic tools previously used to study
lattice paths. In particular, those are the robustness
of D-finite functions with respect to the Hadamard
product, and the kernel method [2, 4, 7].

The N-walks are nondeterministic one-dimensional
discrete walks. We will see that their generating
functions require three variables: one marking the
lowest point min(w) that can be reached by the N-walk
w, another one marking the highest point max(w), and
the last one marking its length |w|. Hence, they are also
closely related to two-dimensional lattice paths, if we
interpret (min(w),max(w)) as coordinates in the plane.

2 Dyck N-walks

The step set of classical Dyck paths is {−1, 1}. The
N-step set of all nonempty subsets is

S =
{
{−1}, {1}, {−1, 1}

}
,

and we call the corresponding N-walks Dyck N-walks.
To every step we associate a weight or probability
p−1, p1, and p−1,1, respectively.

Example 2.1. (Dyck N-walks) Let us consider the
Dyck N-walk w = ({1}, {−1, 1}, {−1, 1}, {−1}).
The sequence of its reachable points is
({0}, {1}, {0, 2}, {−1, 1, 3}, {−2, 0, 2}). There are 4
classical walks compatible with it:

Classical walk Geometric realization
(sequence of steps) (ordinates)

(1,−1,−1,−1) (0, 1, 0,−1,−2)
(1,−1, 1,−1) (0, 1, 0, 1, 0)
(1, 1,−1,−1) (0, 1, 2, 1, 0)
(1, 1, 1,−1) (0, 1, 2, 3, 2)

There are two bridges, which happen to be excursions.
Thus, w is an N-bridge and an N-excursion.



The set of reachable points of a Dyck N-walk or
N-meander has the following particular structure.

Lemma 2.1. The reachable points of a Dyck N-walk w
are {min(w) + 2i | 0 ≤ min(w) + 2i ≤ max(w)} , where
min(w), max(w), and the length of w have the same
parity. The same result holds for Dyck N-meanders,
with min(w) and max(w) replaced by min+(w) and
max+(w) (see Definition 1.3).

We define the generating functions D(x, y; t),
D+(x, y; t), of Dyck N-walks and Dyck N-meanders as

∑
Dyck N-walk w

(∏
s∈w

ps

)
xmin(w)ymax(w)t|w|,

∑
Dyck N-meander w

(∏
s∈w

ps

)
xmin+(w)ymax+(w)t|w|.

Note that by construction these are power series in t
with Laurent polynomials in x and y, as each of the
finitely many N-walks of length n has a finite minimum
and maximum reachable point.

Remark 2.1. One difference to classical lattice paths
is the choice of the catalytic variables x and y. Here,
they encode the minimum and the maximum reachable
points, while in classical problems one chooses to keep
track of the coordinates of the endpoint, (see [2], for
example).

2.1 Dyck N-meanders and N-excursions As a
direct corollary of Lemma 2.1, all N-bridges and N-
excursions have even length. The total number of Dyck
N-bridges and Dyck N-excursions are then, respectively,
given by

[x≤0y≥0t2n]D(x, y; t) and D+(0, 1; t),

where the coefficient extraction operator [tk] is defined
as [tk]

∑
n≥0 fnt

n := fk and the nonpositive part ex-

traction operator [x≤0] is defined as [x≤0]
∑
k∈Z gkx

k :=∑
k≤0 gkx

k (and analogously for [y≥0]).

Proposition 2.1. The generating function of Dyck N-
meanders is characterized by the relation

D+(x, y; t) = 1 + t
(
p−1x

−1y−1 + p1xy + p−1,1x
−1y

)
× (D+(x, y; t)−D+(0, y; t))

+ t
(
p−1xy

−1 + (p1 + p−1,1)xy
)

× (D+(0, y; t)−D+(0, 0; t))

+ t (p1 + p−1,1)xyD+(0, 0; t).

Proof. Applying the symbolic method (see [7]), we
translate the following combinatorial characterization of
N-meanders into the claimed equation. An N-meander
is either of length 0, or it can be uniquely decomposed
into an N-meander w followed by an N-step. If min+(w)
is nonzero, then any N-step can be applied. The gen-
erating function of N-meanders with positive minimum
reachable point is D+(x, y; t)−D+(0, y; t). If min+(w)
vanishes, but max+(w) is nonzero (those N-meanders
have generating function D+(0, y; t)−D+(0, 0; t)), then
an additional N-step {−1} increases min+(w) (the path
ending at 0 disappears, and the one ending at 2 becomes
the minimum) and decreases max+(w), while an addi-
tional N-step {1} or {−1, 1} increases both min+(w)
and max+(w). Finally, if min+(w) and max+(w)
vanish, which corresponds to the generating function
D+(0, 0; t), then the N-step {−1} is forbidden, and the
two other available N-steps both increase min+(w) and
max+(w).

Let us introduce the min-max-change polynomial
S(x, y) and the kernel K(x, y) as

S(x, y) :=
p−1
xy

+ p1xy + p−1,1
y

x
,

K(x, y) := xy(1− tS(x, y)).

The generating function of Dyck N-walks has now the
compact form 1/(1 − tS(x, y)). A key role in the
following result on the closed form of Dyck N-meanders
is played by Y (t) and X(y, t), the unique power series
solutions satisfying K(1, Y (t)) = 0, and K(X(y, t), y) =
0 which are given by

Y (t) =
1−

√
1− 4p−1(p1 + p−1,1)t2

2(p1 + p−1,1)t
,

X(y, t) =
1−

√
1− 4p1(p−1 + p−1,1y2)t2

2p1yt
.

Theorem 2.1. The generating function D+(x, y; t) of
Dyck N -meanders is algebraic of degree 4, and equal to

x−X(y, t)

1−X(y, t)2
y − xY (t)−X(y, t)Y (t) + xyX(y, t)

xy(1− tS(x, y))
.

The generating function of Dyck N-excursions is sym-
metric in p−1 and p1, and equal to

D+(0, 1; t) =
X(1, t)

1−X(1, t)2
1−X(1, t)Y (t)

(p−1 + p−1,1)t
.

Proof (Sketch). Starting from the result of Proposi-
tion 2.1 one first substitutes x = 1 and finds a
closed-form expression for D+(0, 0; t) using the kernel
method. After substituting this expression back into



the initial equation one applies the kernel method again
with respect to x and finds a closed-form solution for
D+(0, y; t). Combining these results one proves the
claim. Finally, using a computer algebra system a short
computation using the closed form of Dyck N-excursions
shows the symmetry in p−1 and p1.

Remark 2.2. It would be desirable to find a combina-
torial interpretation of the surprising symmetry in p−1
and p1 of Dyck N-excursions (which is clear for Dyck
N-bridges).

With this result, we can easily answer the counting
problem in which all weights are set equal to one.
Thereby we also solve a conjecture in the OEIS1 on the
asymptotic growth.

Corollary 2.1. For p−1 = p1 = p−1,1 = 1 the
generating function of unweighted Dyck N-meanders is

D+(1, 1, t) = −1− 4t−
√

1− 8t2

4t(1− 3t)

= 1 + 2t+ 6t2 + 16t3 + 48t4 + . . . .

The number of unweighted Dyck N-meanders is asymp-
totically equal to

[tn]D+(1, 1, t) =
3n

2
+
(

3
√

2(1 + (−1)n) + 4(1− (−1)n)
)

× 8n/2√
πn3

+O
(

8n/2

n5/2

)
.

These N-walks are in bijection with walks in the first
quadrant Z2

≥0 starting at (0, 0) and consisting of steps
{(−1, 0), (1, 0), (1, 1)}. The counting sequence is given
by OEIS A151281.

For p−1 = p1 = p−1,1 = 1 the complete generating
function of unweighted Dyck N-excursions is

D+(0, 1, t) =
1− 8t2 − (1− 12t2)

√
1− 8t2

8t2(1− 9t2)

= 1 + 4t2 + 28t4 + 2246 + 18888 + . . . .

The number [tn]D+(0, 1, t) of unweighted Dyck N-
excursions is asymptotically equal to

(1 + (−1)n)

(
3n

8
+
√

8
8n/2√
πn3

+O
(

8n/2

n5/2

))
.

Finally, we come back to one of the starting ques-
tions from the networking motivation.

1The on-line encyclopedia of integer sequences: http://oeis.

org/A151281.

Theorem 2.2. The probability for a random Dyck N-
walk of length 2n to be an N-excursion has for n → ∞
the following asymptotic form where the roles of p−1 and
p1 are interchangeable:

• (1−2p1)(1−2p−1)
(1−p1)(1−p−1)

+ O
(

(4p−1(1−p−1))
n

n3/2

)
if 0 < p1 ≤

p−1 <
1
2 ,

• 1−2p1
(1−p1)

√
πn

+O
(

1
n3/2

)
if 0 < p1 <

1
2 and p−1 = 1

2 ,

• 1√
πn3

+O
(

1
n5/2

)
if p1 = p−1 = 1

2 ,

• O
(

(4p−1(1−p−1))
n

n3/2

)
if 0 < p1 <

1
2 < p−1 < 1 and

p−1 + p1 ≤ 1.

Proof (Sketch). Starting from the results of Theo-
rem 2.1 we perform a singularity analysis [7]. Thereby
different regimes need to be considered, leading to the
different cases in the result. In the last case the condi-
tion guarantees that p−1 is closer to 1/2 than p1.

Note that the (huge) formula for the constant in the
last case can be made explicit in terms of p−1 and p1.
However, it is of different shape for p−1 + p1 = 1, and
p−1 + p1 < 1. In Figure 2 we compare the theoretical
results with simulations for three different probability
distributions. These nicely exemplify three of the four
possible regimes of convergence.

2.2 Dyck N-bridges We now turn our attention to
Dyck N-bridges. Their generating function is defined as

B(x, y, t) =
∑

n,k,`≥0

b2n,k,`x
−ky`t2n.

Recall the following relation with all N-walks (note that
bridges have to be of even length): [t2n]B(x, y, t) =
[x≤0y≥0t2n]D(x, y; t). In the following theorem we will
reveal a great contrast to classical walks: nearly all N-
walks are N-bridges.

Theorem 2.3. The generating function of Dyck N-
bridges B(x, y, t) is algebraic of degree 4. For p−1 =
p1 = p−1,1 = 1 the generating function of unweighted
Dyck N-bridges is algebraic of degree 2:

B(1, 1, t) =
1− 6t2√

1− 8t2(1− 9t2)

= 1 + 7t2 + 63t4 + 583t6 + 5407t8 + . . . .

The number [tn]B(1, 1, t) of unweighted Dyck N-bridges
is asymptotically equal to

1 + (−1)n

2

(
3n − 2

√
2√
π

8n/2√
n

+O
(

8n/2

n3/2

))
.

http://oeis.org/A151281
http://oeis.org/A151281
http://oeis.org/A151281
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Figure 2: Comparison of theoretical expectation and averaged simulation (over 105 runs) of the proportion of
Dyck N-excursions among Dyck N-walks.

Proof. In order to improve readability we drop the
parity condition on t and define

B2(x, y, t) := [x≤0y≥0]D(x, y; t),

such that

B2(x, y, t) = D(x, y; t)− [x>0]D(x, y, t)

− [y<0]D(x, y, t).
(2.1)

It is then simple to recover B(x, y, t) from B2(x, y, t). In
words, an N-bridge is an N-walk of even length whose
minimum is not strictly positive, nor is its maximum
strictly negative2.

The change in the x- (minimal reachable point) and
y-coordinate (maximal reachable point) can be conve-
niently encoded in the min-max-change polynomial

S(x, y) =
p−1
xy

+ p1xy + p−1,1
y

x
.

Then, the construction can be interpreted as the one
of two-dimensional walks of length n, starting at (0, 0),
with the step set {(−1,−1), (1, 1), (−1, 1)}, and ending
in the fourth quadrant {(x, y) : x ≥ 0, y ≤ 0}. A lot
is known about these walks, see e.g., [4]. By (2.1) it
suffices to find the generating functions F (x, y, t) :=
[x>0]D(x, y, t) and G(x, y, t) := [y<0]D(x, y, t) for 2D-
walks ending with a positive abscissa (resp. negative
ordinate). The theory of formal Laurent series with
positive coefficients tells us automatically that they are
algebraic, which implies that the generating function of

2We thank Mireille Bousquet-Mélou for suggesting us this
approach.

bridges is algebraic, see e.g., [8, Section 6] which also
gives further historical references.

Due to the symmetry of the step set we have
F (x, y, t) = G(1/y, 1/x, t) after additionally interchang-
ing the role of p−1 and p1. In order to end the proof
it remains to compute the roots of the denominator of
D(x, y, t) and perform a partial fraction decomposition.

After this detailed discussion of nondeterministic
walks derived from Dyck paths, we turn to the probably
next most classical lattice paths: Motzkin paths.

3 Motzkin N-walks

The step set of classical Motzkin paths is {−1, 0, 1}.
The N-step set of all nonempty subsets is

S =
{
{−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}

}
,

and we call the corresponding N-walks Motzkin N-walks.
A Motzkin N-walk w is said to be
• of type 1 if reach(w) is equal to
{min(w),min(w) + 2,min(w) + 4, . . . ,max(w)},

• of type 2 if reach(w) is equal to
{min(w),min(w) + 1,min(w) + 2, . . . ,max(w)}
and max(w)−min(w) ≥ 1.

The following proposition explains how these two types
are sufficient to characterize the structure of Motzkin
N-walks.

Proposition 3.1. A Motzkin N-walk w is of type 1 if
and only if it is constructed only from the N-steps {−1},
{0}, {1}, and {−1, 1}. Otherwise, it is of type 2.

Proof (Sketch). The proof is based on a recurrence and
a case-by-case analysis on the number and type of N-
steps.



The set of Motzkin N-walks of type 1 (resp. 2)
is denoted by M1 (resp. M2), and their generating
functions are defined as

M1(x, y; t) =
∑
w∈M1

xmin(w)ymax(w)t|w|,

M2(x, y; t) =
∑
w∈M2

xmin(w)ymax(w)−1t|w|.

Theorem 3.1. The generating functions of Motzkin N-
walks of type 1 and 2 are rational. The generating
function of Motzkin N-bridges is algebraic.

Proof. The first statement is a direct corollary of the
previous proposition due to a simple sequence construc-
tion. An N-bridge w of type 1 is an M1 N-walk that
satisfies min(w) ≤ 0, max(w) ≥ 0, and min(w) is even.
Note that in this case this property is not equivalent to
an even number of steps. An N-bridge w of type 2 is an
M2 N-walk that satisfies min(w) ≤ 0 and max(w) ≥ 0.
Thus, the generating function of Motzkin N-bridges is
equal to

[x≤0y≥0]

(
M1(x, y; t) +M1(−x, y; t)

2
+M2(x, y; t)

)
.

Since the generating functions of M1 and M2 are
rational, according to [4, Proposition 1] (see also [13]),
the generating function of N-bridges is D-finite. Yet
the generating function is even algebraic, which can be
proved similarly as done the proof of Theorem 2.3.

Remark 3.1. Using a computer algebra system it is
easy to get closed-form solutions and asymptotics for
specific values of the weights. We do not give these
closed forms, as they are quite large and do not shed
new light on the problem. It is however interesting to
compute the asymptotic proportion of N-bridges among
all N-walks. For example, when all weights are set to 1,
it is equal to

1−
√

3

π

(6/7)n√
n

+O
(

(6/7)n

n3/2

)
.

Hence, nearly all N-walks are N-bridges.

We now turn to the analysis of Motzkin N-meanders
and N-excursions.

Theorem 3.2. The generating functions of Motzkin N-
meanders and N-excursions are algebraic.

Proof. Without loss of generality we perform all com-
putations here with all weights pi = 1. Let M+

1 and

M+
2 denote the Motzkin N-meanders of type 1 and 2.

Their generating functions are

M+
1 (x, y; t) =

∑
w∈M+

1

xmin+(w)ymax+(w)t|w|,

M+
2 (x, y; t) =

∑
w∈M+

2

xmin+(w)ymax+(w)−1t|w|.

Let also M+(x, y; t) denote the column vector
(M+

1 (x, y; t),M+
2 (x, y; t)). An N-meander is either

empty – in which case, it is of type 1 – or it is an N-
meander w followed by an N-step s. The type of w · s
depends on the type of w, the N-step s, as well as on the
case if min+(w) = 0 or if max+(w) = 0. Specifically,
• when w has type 1, then w · s has type 1 if s ∈
{{−1}, {0}, {1}, {−1, 1}}, otherwise it has type 2,

• when w has type 2 and max+(w) > 1 then w ·s has
type 2 for any s,

• when w has type 2 and max+(w) = 1 (i.e. the
reachable points are {0, 1}) then w · s has type 1 if
s = {−1}, and type 2 otherwise.

Applying the Symbolic Method [7] and the same rea-
soning as in the proof of Proposition 2.1, we obtain the
following system of equations characterizing the gener-
ating functions from the vector M+(x, y; t)

M+(x, y; t) = e1 + t
(
A(x, y)(M+(x, y; t)−M+(0, y; t))

+B(x, y)(M+(0, y; t)−M+(0, 0; t))

+ C(x, y)M+(0, 0; t)
)
,

where e1 is the column vector (1, 0), and A(x, y),
B(x, y), C(x, y) are two-by-two matrices with Laurent
polynomials in x and y given in Figure 3. Observe
that the first two matrices are upper-triangular. This
equation is rearranged into

(Id−tA(x, y))M+(x, y; t) =

e1 − t (A(x, y)−B(x, y))M+(0, y; t)(3.2)

− t (B(x, y)− C(x, y))M+(0, 0; t).

Next, we apply the kernel method (see e.g., [2] and [1])
successively on x and y in a two phases to compute the
generating function M+(x, y; t) of Motzkin N-meanders.
The small roots in the variable x of the equations

1− tA0,0(x, y) = 0,

1− tA1,1(x, y) = 0,

are denoted by X1(y, t) and X2(y, t), and are equal to

1− t−
√

1− 4t2y2 − 3t2 − 2t

2ty
,

1− t(y + 1)−
√

1− 7t2y2 − 2t2y − 3t2 − 2ty − 2t

2ty
.



A(x, y) =

(
x−1y−1 + 1 + xy + x−1y 0

x−1y−1 + 1 + x−1 x−1y−1 + 1 + xy + x−1 + y + 2x−1y

)
,

B(x, y) =

(
xy−1 + 1 + 2xy 0

y−1 + 2 y−1 + 2 + xy + 3y

)
, C(x, y) =

(
2 + 2xy 1

2 xy + 2 + 3y

)
.

Figure 3: Matrices involved in the proof of Theorem 3.2.

We then define the row vectors

u1 = (1, 0),

u2(y, t) = (tA1,0(X2(y, t), y), 1− tA0,0(X2(y, t), y)) ,

so that the left-hand side of Equation (3.2) vanishes
both when evaluated at x = X1(y, t) and left-multiplied
by u1, and also when evaluated at x = X2(y, t) and left-
multiplied by u2(y, t). Combining the corresponding
two right-hand sides, we obtain a new two-by-two
system of linear equations

(3.3) tD(y, t)M+(0, y; t) = f(y, t)−E(y, t)M+(0, 0; t),

where the vector f(y, t) of size 2 has its first element
equal to 1, and its second element equal to(
ty + t−

√
−7 t2y2 − 3 t2 − 2 (t2 + t)y − 2 t+ 1 + 1

)
t

1− ty − t−
√
−7 t2y2 − 3 t2 − 2 (t2 + t)y − 2 t+ 1

,

and the two-by-two matrices D(y, t) and E(y, t) are two
large to be shown here. Again, the matrix D(y, t) is
upper-triangular. We now define

Y1(t) =
t− 1 +

√
−7t2 − 2t+ 1

4t
,

Y2(t) =
1− 2t−

√
−12t2 − 4t+ 1

8t
,

and the row vectors

v1 = (1, 0),

v2(t) = (−D1,0(Y2(t), t), D0,0(Y2(t), t)),

to ensure that Y1(t) and Y2(t) have series expansions at
the origin, and that the left-hand side of Equation (3.3)
vanishes both when evaluated at y = Y1(t) and left-
multiplied by v1, and also when evaluated at y = Y2(t)
and left-multiplied by v2(t). The corresponding two
right-hand side are combined to form a new two-by-two
system of equations

h(t) = tF (t)M+(0, 0; t),

where the column vector h(t) and the matrix F (t)
are too large to be shown here. The matrix F (t) is

invertible, so the generating function of Motzkin N-
meanders with maximum reachable point 0 is equal to

M+(0, 0; t) =
1

t
F (t)−1h(t).

This expression is injected in Equation (3.3) to express
the generating function of Motzkin N-meanders with
minimum reachable point 0

M+(0, y; t) =
1

t
D(y, t)−1(f(y, t)− E(y, t)M+(0, 0; t)).

Finally, this expression is injected in Equation (3.2) to
express the generating function of Motzkin N-meanders

M+(x, y; t) = (Id−tA(x, y))
−1

× (e1 − t (A(x, y)−B(x, y))M+(0, y; t)

− t (B(x, y)− C(x, y))M+(0, 0; t)).

The generating function of N-meanders and N-
excursions are then, respectively, M+

1 (1, 1; t) +
M+

2 (1, 1; t) and M+
1 (0, 1; t) +M+

2 (0, 1; t).

Remark 3.2. As before we can use a computer algebra
system to get numeric results. After tedious computa-
tions one gets that for all pi’s equal to 1 the generat-
ing function of N-meanders is algebraic of degree 2 and
given by

10t− 1 +
√

(1 + 2t)(1− 6t)

8t(1− 7t)
.

The total number of N-meanders is asymptotically equal
to

3

4
7n +

3
√

3

2
√
π

6n√
n3

+O
(

6n

n5/2

)
.

The generating function of N-excursions is algebraic of
degree 4. Their asymptotic number is

9

16
7n − γ 6n√

πn3
+O

(
6n

n5/2

)
,

where γ ≈ 0.6183 is the positive real solution of 1024γ4−
8019γ2 + 2916 = 0. This means that for large n
approximately 75% of all N-walks are N-meanders and
56.25% of all N-walks are N-excursions.



1 2

Figure 4: The automaton representing the structure of
reachable points of Motzkin N-walks. The types from
Theorem 4.1 corresponding to vertex 1 are A1 = {0},
B1 = {1}, C1 = ∅, and for vertex 2, we have A2 = {0},
B2 = {0}, C2 = {0}.

4 N-bridges with general N-steps

The main result of this section is

Theorem 4.1. For any N-step set S, the generating
function of N-bridges is algebraic.

A method for computing this generating function
is provided by the proof, in Subsection 4.2. In order
to establish this result, we first derive Proposition 4.1,
which provides a description of the set of reachable
points for N-walks on a given N-step set. It is proven in
Section 4.1.

Given nonnegative integer sets A, B, C, an N-walk
w is of type (A,B,C) when an integer r is reachable if
and only if max(w)−min(w) ≥ max(A) + max(C), and
at least one of the following conditions holds
• r −min(w) belongs to A,
• max(w)− r belongs to C,
• r−min(w) ≥ max(A), max(w)− r ≥ max(C), and
r−min(w)−max(A)−1 mod (max(B)+1) belongs
to B,

with the convention max(∅) = 0. The set of N-walks of
type (A,B,C) is denoted by WA,B,C .

Proposition 4.1. Given an N-step set S, there is a
finite set of types (Aj , Bj , Cj)1≤j≤m such that the set
of all N-walks on S is equal to the disjoint union⊎m
j=1WAj ,Bj ,Cj

. Furthermore, if we consider the N-
walks as words on the alphabet S, there are nonempty
subsets (Ti,j)1≤i≤j≤m of S such that for all 1 ≤ j ≤
m, the grammar characterizing the N-walks of type
(Aj , Bj , Cj) is

WAj ,Bj ,Cj = (empty N-walk if j = 1)

+

j∑
i=1

WAi,Bi,Ci

∑
s∈Ti,j

s.

Figure 4 illustrates the previous proposition on the
example of Motzkin N-walks.

4.1 Proof of Proposition 4.1 Consider an N-walk
w and the N-walk w · s obtained by adding the N-step

s to w. In this section, we will use the observation that
the set of reachable points of w and w · s are linked by
the relation

reach(w · s) =
⋃
h∈s

{r + h | r ∈ reach(w)} .

Hence, the set of reachable points of an N-walk does not
depend on the order of its N-steps. We start the proof
with a description of reachable points as solutions of a
linear equation.

Lemma 4.1. There exists an N-walk on the N-step set
S that reaches the point r if and only if the following
equation has a solution∑

s∈S

∑
h∈s

hxs,h = r, ∀(s, h), xs,h ∈ Z≥0.

Furthermore, any N-walk that contains exactly∑
h∈s xs,h occurrences of the N-step s reaches r.

Proof. By definition, if the N-walk w = s1 ·s2 · · · s|w| on
the N-step set S reaches the point r, then there exists
a sequence of integers (hi)1≤i≤|w| such that for all i, we
have hi ∈ si, and

|w|∑
i=1

hi = r.

Let xh,s denote the number if values of 1 ≤ i ≤ |w|
such that (h, s) = (hi, si), then the previous equation
becomes ∑

s∈S

∑
h∈s

hxs,h = r.

The previous lemma translates the study of reach-
able points into the realm of numerical semigroups.
Using the tools of this field (Schur’s Theorem and
Fröbenius number [15]), we obtain the following lemma,
that specializes Proposition 4.1 to N-walks containing
sufficiently many occurrences of each N-step.

Lemma 4.2. Let pS denote the gcd of the N-steps from
S, shifted so that their minimum is at 0

pS = gcd

( ⋃
s∈S
{h−min(s) | h ∈ s}

)
.

For any N-step set S, there exist an integer mS and two
nonnegative integer sets A and C such that any N-walk
w on S that contains at least mS occurrences of each
N-step is in WA,{pS},C .

Proof. Given an N-step set S, the normalized version
of the N-step s is defined as {(h − min(s))/pS | h ∈
s}. The normalized version of S is then the set



of its normalized N-steps. If Lemma 4.2 holds for
normalized N-step sets, it also holds in the general
case. Thus, without loss of generality, we assume S
to be normalized. In particular, all its N-steps have
minimum 0, so the smallest reachable point is always
0. According to Schur’s Theorem, there is an integer f ,
called the Fröbenius number3, such that for any r > f ,
the equation from Lemma 4.1 has a solution. Let wr
denote an N-walk reaching r, and |w|s the number of
occurrences of the N-step s in w. Let us define the

integers `, m
(0)
S and b as

` = max
s∈S

max(s),

m
(0)
S = max

s∈S,f<r≤f+`
|wr|s,

c = max
∀s∈S, |w|s=m(0)

S

(max(w)− f − `).

Those three integers have the following meanings:
• ` is the maximum height of any N-step from S,

• any N-walk containing at least m
(0)
S occurrences of

each N-step reaches all integers from [f + 1, f + `],

• let W=m
(0)
S denote the set of N-walks that contain

exactly m
(0)
S occurrences of each N-step, then for

any such N-walk, the distance between the maximal
reachable point and f + ` is at most c.

Since any N-step has minimum 0, and maximum at most

`, adding an N-step s to an N-walk w from W=m
(0)
S

produces an N-walk w · s which reaches all the points
from f + 1 to max(w · s)− c. By recurrence, for any N-

walk w that contains at least m
(0)
S occurrences of each

N-step, all points from f+1 to max(w)−c are reachable.
Since all N-steps contain 0, we have

reach(w) ⊂ reach(w · s).

Let w=m denote an N-walk that contains exactly m
occurrences of each N-step. Then ([0, f ]∩reach(w=m))m
is an increasing (for the inclusion) sequence of sets
included in [0, f ]. Thus, it reaches for some finite integer

m = n its limit A. We set m
(1)
S = max(m

(0)
S , n). Any

N-walk w containing at least m
(1)
S occurrences of each

N-step satisfies

reach(w) ∩ [0, f ] = A,

[f + 1,max(w)− c] ⊂ reach(w).

3Computing the Fröbenius number is NP-hard under Turing
reduction if the number of integers n = | ∪s∈S s| is arbitrary [14].
It is an open problem whether it is also NP-hard under Karp

reduction. If n is fixed, there is a polynomial algorithm [10]
to compute the Fröbenius number but it is unpractical as its

complexity is in O
(

(logm)n
O(n)

)
where m = maxs∈S max(s).

However, there are algorithms that perform very well in practice
[3, 6].

Finally, let us define the symmetric of an N-step s as the
N-step {max(s) − h | h ∈ s}, and the symmetric of an
N-step set as the set of its symmetric N-steps. Applying
the previous proof to the symmetric of S, we obtain the

existence of an integer m
(2)
S , and integer f ′ and a set

C such that for any N-walk w containing at least m
(2)
S

occurrences of each N-step, we have

reach(w) ∩ [max(w)− f ′,max(w)] = C.

Defining the integer mS as max(m
(1)
S ,m

(2)
S ) finishes the

proof.

We can finally provide the proof of Proposition 4.1.

Proof of Proposition 4.1. Given an N-step set S, we
set qS = maxT⊂SmT , where mT has been defined in
Lemma 4.2. Let |w|s denote the number of occurrences
of the N-step s in the N-walk w. Consider the partial
order on N-walks such that w ≤ w′ if and only if any N-
step that has less than qS occurrences in w′ has at least
as many occurrences in w′ as in w. Let us also define
the equivalence relation w ∼ w′ when the N-steps that
occurs at least qS times in w and w′ are the same, and
the other N-steps have the same number of occurrences
in both N-walks

w ≤ w′ ⇔ (∀s ∈ S, |w′|s < qS ⇒ |w|s ≤ |w′|s) ,
w ∼ w′ ⇔

(
∀s ∈ S, (|w|s ≥ qs ⇒ |w′|s ≥ qs)

and (|w|s < qs ⇒ |w|s = |w′|s)
)
.

When the set of all N-walks is factored by the “∼” re-
lation, we obtain a finite number of disjoint subsets,
on which the “≤” partial order induces a lattice struc-
ture. In the next paragraph, we will prove that each
of those subsets V corresponds to a type, such that
there are finite nonnegative integer sets A B, C such
that V = WA,B,C . This will conclude the proof of the
proposition, as the lattice structure ensures the gram-
mar characterization stated in the second part of the
proposition.

First, observe that two N-walks that contain the
same N-steps with the same multiplicities reach the
same set of points. Consider an element V of the
lattice. By definition, if an N-walk from V contains
less than qS occurrences of each N-step, then all N-
walks in V contain, for each N-step, the same number of
occurrences, and thus have the same set R of reachable
points. We then define A as the set R shifted by min(R),
and obtain V = WA,∅,∅. Otherwise, let T ⊂ S denote
the set of N-steps that occur in the N-walks from V
at least qs times. Let also v denote any N-walk with
exactly |w|s occurrences of each N-step s from S \ T ,



and no other N-step. Let W≥mT
denote the set of N-

walks that contain at least mT occurrences of each N-
step from T , and no other N-step. Since qS ≥ mT ,
for any N-walk w from V , there is an N-walk w′ from
W≥mT

such that the reachable points of w are the same
as for w′ · v, the concatenation of w′ and v. Since w′

belongs to W≥mT
, according to Lemma 4.2, there are

integer sets A′, C ′ and an integer pT such that w′ is in
WA′,{pT },C′ . Adding the N-steps from v to w′ changes
the set of reachable points, and we obtain integer sets
A, B, C such that w′ · v belongs to WA,B,C .

4.2 Proof of Theorem 4.1 The main idea of the
proof is the repeated use of closure properties of al-
gebraic functions, see [7]. Let WA,B,C(x, y; t) =∑
w∈WA,B,C

xmin(w)ymax(w)t|w| and BridgeA,B,C(t) de-
note the generating functions of N-walks and N-bridges
of type (A,B,C). The first part of Proposition 4.1 im-
plies

Bridge(t) =

m∑
j=1

BridgeAj ,Bj ,Cj
(t).

Hence, the proof is complete once established that each
BridgeAj ,Bj ,Cj

(t) is algebraic. The grammar character-
ization from the second part of Proposition 4.1 is trans-
lated into the following system of equations: for j from 1
to m, the generating function WAj ,Bj ,Cj

(x, y; t) is equal
to

1j=1 + t

j∑
i=1

WAi,Bi,Ci
(x, y; t)

∑
s∈Ti,j

xmin(s)ymax(s).

Solving this system, we obtain a rational expression
for each WAj ,Bj ,Cj (x, y; t), because the sets Ti,j are
nonempty. In the following, we consider some 1 ≤
j ≤ m, set (A,B,C) = (Aj , Bj , Cj), and prove that
BridgeA,B,C(t) is algebraic. We assume that those three
sets are nonempty, the other cases being similar.

An N-walk where the minimal reachable point is
positive or the maximal reachable point is negative
cannot be a bridge. Thus, we distinguish three kinds
of N-walks that have the potential to be bridges:

• w ∈W (1)
A,B,C when −max(A) ≤ min(w) ≤ 0,

• w ∈ W
(2)
A,B,C when min(w) < −max(A) and

max(C) < max(w),

• w ∈W (3)
A,B,C when 0 ≤ max(w) ≤ max(C).

The corresponding generating functions are expressed
as sums of positive parts in x and y of rational function

in t with Laurent polynomials in x and y coefficients

W
(1)
A,B,C(x, y; t) = WA,B,C(x, y; t)

− [x<−max(A)]WA,B,C(x, y; t)

− [x>0]WA,B,C(x, y; t),

W
(2)
A,B,C(x, y; t) = WA,B,C(x, y; t)

− [x≥−max(A)]WA,B,C(x, y; t)

− [y≤max(C)]WA,B,C(x, y; t),

W
(3)
A,B,C(x, y; t) = WA,B,C(x, y; t)

− [y<0]WA,B,C(x, y; t)

− [y>max(C)]WA,B,C(x, y; t).

The set of bridges from W
(1)
A,B,C is denoted by

Bridge
(1)
A,B,C , and the same holds for (2) and (3). By

definition of the type, we have

• w ∈ Bridge
(1)
A,B,C if and only if −min(w) ∈ A,

• w ∈ Bridge
(2)
A,B,C if and only if−min(w)−max(A)−

1 mod max(B) + 1 ∈ B,

• w ∈ Bridge
(3)
A,B,C if and only if max(w) ∈ C.

Those characterizations imply

Bridge
(1)
A,B,C(t) =

∑
a∈A

[xa]W
(1)
A,B,C(x−1, 1; t),

Bridge
(3)
A,B,C(t) =

∑
c∈C

[yc]W
(3)
A,B,C(1, y; t),

which are algebraic functions because the set A is finite,

and W
(1)
A,B,C(x−1, 1; t) is an algebraic function analytic

in x and t at the origin, so

[xa]W
(1)
A,B,C(x−1, 1; t) =

da

dxa
W

(1)
A,B,C(x−1, 1; t)|x=0

(the same reasoning applies to (3)). Using the classi-

cal relation, 1
p

∑p−1
k=0 F (e2iπk/p) =

∑
p|n[zn]F (z), valid

for any series F (z) and p > 0 we obtain that

Bridge
(2)
A,B,C(t), equal to∑

b∈B

∑
(max(B)+1)|(n−max(A)−1−b)

[xn]W
(2)
A,B,C(x−1, 1; t),

is algebraic as well. We conclude that the generating
function of all N-bridges is algebraic, since

Bridge(t) =

m∑
j=1

BridgeAj ,Bj ,Cj
(t)

=

m∑
j=1

Bridge
(1)
Aj ,Bj ,Cj

(t) + Bridge
(2)
Aj ,Bj ,Cj

(t)

+ Bridge
(3)
Aj ,Bj ,Cj

(t).



5 Conclusion

In this paper we introduced nondeterministic lattice
paths and solved the asymptotic counting problem for
such walks of the Dyck and Motzkin type. The strength
of our approach relies on the methods of analytic
combinatorics, which allowed us to derive not only the
asymptotic main terms but also lower order terms (to
any order if needed). Furthermore, we showed that for
a general step set the generating function of bridges is
algebraic. In the long version of this work we will extend
this setting to excursions and meanders with general N-
steps.

The method of choice is the well-established kernel
method. We extended it to a two-phase approach in
order to deal with two catalytic variables.

Additionally to the mathematically interesting
model, our nondeterminstic lattice paths have applica-
tions in the encapsulation and decapsulation of proto-
cols over networks. In the long version of this work we
want to further explore this interesting bridge between
combinatorics and networking.
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Frobenius problem. Combinatorica, 16(1):143–147,
1996.

[15] Jorge Luis Ramı́rez Alfonśın. The diophantine Frobe-
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