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Abstract—To process Big Data, the cloud computing archi-

tecture is used since several years. Service Level Objectives
(SLO) become key indicators for the performances of the cloud
computing providers. Controlling the cluster size is one of the
main issues. Static decision procedures are available but they
fail to provide an optimal decision in the presence of highly
time varying service demands. The cluster has to be viewed as
a dynamic system where the service demand is a disturbance
to be compensated dynamically by a control action which is in
this case the cluster size.
PI feedback control has been already considered as a mean
for dynamically controlling the size of the cluster[1]. However
since the disturbance is measurable an adaptive feedforward
compensation can be added for improving the performance
of a feedback controller. A general algorithm for adaptive
feedforward control in the context of cloud computing is
proposed and analyzed. Simplified versions are also presented
and analyzed. Experimental results obtained on the Grid’5000
(French nation-wide cluster infrastructure) will be presented.

Index Terms—Control of computing systems, Adaptive con-
trol, Cloud computing, Feedback control, Feedforward control,
MapReduce

I. INTRODUCTION

Thanks to the improved capacity of the hardware storage
and transport network, the cloud computing architecture has
evolved. Cloud computing is particularly well suited for
the processing of Big Data'. Cloud computing is becoming
a more and more attractive solution. One of the biggest
appeals of cloud computing is the on-demand assigning
of a large group of shared hardware resources to software
applications, called elastic resource provisioning. Therefore,
we need frameworks to efficiently deal with the dynamic
aspect of cluster resources allocation [2].

One of issues with automatic resource provisioning ap-
proaches such as the ones currently deployed in public clouds
is that they don’t work well for real time applications.
Currently, if an application running in the cloud has to meet
runtime criteria, it is up to the human application manager
to decide the amount of resources it needs. However, when
the manager is notified that an application is running slowly,
it requires high level of expertise to decide on how much
to intervene. This decision is a highly difficult task due to

"While there is no a consensus in defining ”Big Data” one can say
that amount of data that can not be processed reasonable fast in a single
computing center constitutes “Big Data”.

workloads fluctuations over time [3], [4], the use of shared
hardware resources or interferency and concurrency issues
among many others [5]. Therefore, there is a need for fully
automatized cluster scaling algorithms. Furthermore, as cloud
providers desire to maximize the resource utilization, they
have mechanisms for the dynamic reallocation of unused
resources in the cluster, which further adds to the variability
of system performance. So even with the same workload
and resource amount, an application performance depends
also on the load induced by neighboring applications, making
the ideal scaling even harder to achieve. Current approaches
to ensure performance in cloud systems are basically static
taking in account experience. Improvement of this approach
is provided by a predictive estimation of the computer load.
Another approach called reactive can be considered as using
feedback but with no guarantee that the system will be stable
Of course combination of these approaches (hybrid) is also
considered [6].

The use of a control approach for driving the computing
resources allocation has been also considered in the recent
years. This new application of control brings novel challenges
that enable to enrich both communities. A basic framework is
considered in the book [7] however it is the paper [1] which
represents a significant advance in applying control method-
ology to this problem since in addition of the theoretical
analysis, experimental results obtained on the Grid’5000, a
French nation wide infrastructure made up of a 5000 CPU’s
are presented. The concepts of control objectives (like service
time), disturbances (user demand) and the control input
(number of CPU) have been clarified. Models of the system
have been identified. A PI control has been implemented for
assuring steady state performances and a feedforward control
has been considered since the disturbance is measurable.
Unfortunately the characteristics of the model vary and the
feedforward control is very sensitive to the knowledge of the
gain of the system. Introduction of an adaptive feedforward
control able to provide good results when the values of the
parameters of the system are unknown has been considered
in [8]. The objective was to adapt only the static gain of
the disturbance compensator in the absence of the feedback
controller. Analysis of the algorithm has been provided as
well as simulation results using the Berekmeri’s identified
models and a PI feedback controller.



In the present paper we present a general algorithm for adap-
tive feedforward control of cloud computing centers taking
in account the full dynamic of the system and the presence
of a feedback controller. Furthermore since the models of the
system have delays, which can not be handled optimally by a
PI controller, one considers feedback polynomial controllers
with an integrator. This allows to assign the poles of the
closed loop at desired values even in the presence of large
delays. This approach enables more robustness compared
with the state of the art solutions. The paper is organized
as follows: Sections II, IIT and IV give a control perspective
to the system considered. Sections V and VI give details on
the control structure. Sections VII and VIII are dedicated to
the development and analysis of adaptive feedforward control
algorithms. Experimental results are presented in Section IX.

II. CLOUD COMPUTING OPERATION - A CONTROL
PERSPECTIVE

The use of the control approach for resource allocations in
cloud computing can not ignore the computer structure and
the programming techniques used. We have to be able do
define the variables of interest, measure them, transmit them
to the controller and implement the control. We are in the
context of massive parallel processing over distributed plat-
forms and one of the most popular programming approaches
is MapReduce and its implementation via the Hadoop envi-
ronment developed by Apache [9].

From the cloud provider point of view, the service time
(the time it takes for a user request to be treated) is thus
a performance metric that has to be monitored (controlled
variable i.e. the system output). One simple action that can
be done to control the on-line service time is to modify the
number of resources of the cloud allocated to the jobs (con-
trol input). For the MapReduce use case, adding resources,
commonly known as nodes, to the cluster will increase the
number of Map and Reduce functions processing the input
data leading to a reduction of the service time. If the number
of resources (nodes) diminishes, the results are converse.
The cluster size is then our control signal. However, in the
case of public clouds, multiple clients send requests at the
same time (measurable disturbance) thus generating a varying
input workload which influences the service performance. If
multiple concurrent jobs are running, the amount of resources
allocated for each job is reduced and thus the job service time
increases. As the workload of the system is independent of
the cloud provider we will consider it as a disturbance. Figure
1 gives an image of the system from a control perspective.
This approach will be illustrated at the level of a cluster?.

III. MAPREDUCE ENVIRONMENT

As an example of application of our methodology, we
chose the programming model called MapReduce.

For a user to run a MapReduce job, at least three things
need to be supplied to the framework: the input data to

2One can view the cloud as a hierarchical system where the upper level
is the cloud, the intermediate level is the data center and the basic level is
the cluster.
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Fig. 1. Cloud control system.

be treated, a Map function, and a Reduce function. From
our point of view, the Map and Reduce functions can be
only treated as black box models since they are entirely
application-specific, and we have no a priori knowledge
of their behavior. Without some profiling, no assumptions
can be made regarding their runtime, resource usage or the
amount of output data produced. On top of this, many factors
(independent of the input data and of the Map and Reduce
functions) are identified that influence the performance of
MapReduce jobs: CPU, input/output skews, software failures
[10], Hadoop’s node homogeneity assumption not holding up
[11], and bursty workloads [12] among others. All the sources
of disturbances specific to clouds (concurrency, network
skews [13] or hardware failures among others) can be added
to the variability of our system, especially when MapReduce
is executed on a public cloud.

MapReduce resource provisioning for ensuring Service
Level Agreement (SLA)3 objectives is relatively a fresh
area of research. Few approaches formulate the problem of
finding the optimal resource configuration either as an off-
line optimization problem [14] or as an on-line one, based
on past runtimes [15], or by ensuring job level deadlines.
Our work is related to these approaches but with several
important differences, since we deal on-line with a workload
of multiple data intensive jobs (which is the case in large pro-
duction clusters), while taking advantage of the mathematical
proofs of convergence and robustness of control theoretic
techniques. The control is implemented in Matlab and all
the measurements are made on-line in real time. The service
time (the time it takes for a client request to be fulfilled)
and the number of clients are measured from the cluster. The
number of nodes in the cluster is a control signal that we use
to ensure the service time deadlines, regardless the changes
in the number of clients. All the actuators and sensors are
implemented in Linux Bash scripts.

IV. MAPREDUCE MODELING

The experiments presented in this paper, were run using the
MapReduce Benchmark Suite (MRBS) developed by [10],
which is a performance and dependability benchmark suite
for MapReduce systems. MRBS can emulate several types of
workloads and inject different fault types into a MapReduce
system. The workloads emulated by MRBS are selected to
represent a range of loads, from the compute-intensive to
the data-intensive (e.g. business intelligence - BI) workload.

3SLA is a contract between a cloud service provider and a service client,
where the quality of service is formally defined.



One of the main objectives of MRBS is to emulate client
interactions, which may consist of one or more MapReduce
jobs run at the same time. A data intensive BI workload
is selected as the workload. The BI benchmark consists of
a decision support system for a wholesale supplier. Each
client interaction emulates a typical business oriented query
run over a large amount of data (10GB here). To generate
the client interactions Apache Hive is deployed on top of
Hadoop. This converts SQL like queries to a series of
MapReduce jobs. All the nodes in the cluster are on the same
switch to minimize network skews. All the experiments have
been conducted on-line, on Grid’5000, on a single cluster
of 60 nodes. A dynamic model that predicts MapReduce
cluster performance (i.e. the average service time in the
present paper) with respect to the number of nodes and
clients was proposed and validated by experiments in [1].
Since the system is considered linear in the operating region,
the principle of superposition can be applied to calculate the
output. The model structure is recalled here in Figure 2, and

#Clients
d(k)
Clients Model
D
#Nod Nodes Model + Service Time
u(k) +k (k)
G %

MapReduce model

Fig. 2. MapReduce model.

the mathematical expression in the discrete time domain is:
¥(6) =D(q~")d(1) + G(g~"u(r) (1)

where y is the average service time of all jobs (the output),
u is the changes in the number of nodes in the cluster (the
control input) and d is the changes in clients (considered as
a measurable disturbance). In the following we will use the
error £(¢), which is the comparison of the measured service
time with its reference value, as a performance indicator of
our control. D(¢~") is the direct path transfer function i.e.
the link between the disturbance and our performance metric,
and G(g~') represents the compensatory path, allowing to
modify the cluster size for controlling the service time. Both
models were identified as first-order transfer function with
delays, as described in egs. (2) and (3)
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The terms (14 Bag ') and (14 Beg ') allow to take in
account fractional delay (less than one sampling period).
V. FEEDBACK CONTROL

A feedback control is introduced to reduce the effect of
the disturbances (number of clients) and to assure in steady
state the desired value of the service time. As such, the

feedback controller should incorporate an integrator. Since
the system to be controlled has delays, it is reasonable to
use a polynomial controller R/S in order to be able to assign
conveniently the poles of the closed loop and to shape the
sensitivity functions for robustness and performance. The
structure of the controller is:

- Bk(q")
K(q 1) = ; C))
(I—g HAk(g™)
where
B(q™') =b) +biq "+t by, g7, (5)
Ae(gH=1+d%qg " + ... +a;,[§lkqin/‘9(. (6)

For the models considered, the closed loop poles are the roots
of the polynomial equation:

P(g ") =Ag(1—q ')Ak + BBk @)

This equation allows either to compute B and A given the
desired closed loop poles defined by P or to compute the
closed loop poles given Bg and A%. A particular case of the
polynomial R/S controller is the digital PI controller already
used in [16]:

b 4+ g
Hpp = —— 5~

(I-g7")

The closed loop poles are in this case given by:
Pri(g™") = (1+agq™)(1—q7") )
(14 Beg ") (DY +bEg " )g Ut

VI. STRUCTURE OF THE FEEDFORWARD CONTROL

®)

Since the disturbance (number of clients) is measurable, a
feedforward compensation can be added. In a linear context
one has to assume that D and G in Figure 2 are perfectly
known. This will allow to define the structure of the feed-
forward compensator and to compute its optimal parameters.
Unfortunately in practice since the parameters of G and D
are not perfectly known and in addition they can be time
varying an adaptive approach has to be considered.

For the linear case with known parameters one has the
following result:

Lemma 1: Assuming that the parameters of D and G are
known it exists a feedforward compensator:

_rot+rig rq 2

N(g") = 10
(¢ )=q 1 T51q Fs2q2 (10)
where:
r=rq—rg (11)
such that (perfect matching condition):
N.G=-D (12)

In this case perfect compensation of the disturbance is
achieved.
Proof: Taking N as:

-1 -1

(1+aaq ") (1 +Bag™") bg




it can be straightforwardly verified that eq. 12 holds. Doing
the corresponding multiplications in eq. 13 one gets the form
of N given in eq. 10 Therefore N given in eq. 10 has the
structure of an optimal feedforward compensator and the
optimal values can be computed from eq. 13

. Since the parameters of the direct path as well as the
parameter b, of the secondary path are not perfectly known
and they also can vary, an adaptive feedforward compensator
should be used. A global view of the control system is shown
in Fig 3.
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Fig. 3. MapReduce model and control scheme

VII. DEVELOPMENT OF THE ADAPTIVE FEEDFORWARD
CONTROL LAW

The adaptive feedforward compensator will have the same
structure as the linear compensator except that its parameters
will be adapted. The corresponding structure is:

Ng " =qN(t,q7") (14)
where:

Ntq) = o0 +h(t)g " +Ra(t)g
’ 1+81(1)g~ ' +8()g2

15)

7;(¢) and §(r) will be estimated in real time. The input
to the feedforward compensator is d(¢), the output of the
feedforward compensator is denoted u;(¢) and the output of
the block N is denoted u(t).
The development of the adaptive control law will be done
under the following hypotheses:
(HI)
(H2)
(H3)
(H4)
(H5)

The disturbance d(z) (number of clients)is bounded
The delays r4 and r, are known (identified)

re <rq

The signs of by and b, are known ( by > 0;b, < 0)
There exists a filter N of the form given in eq. 14 such
that eq. 12 holds.

The system operates in the presence of a feedback
polynomial controller of the form given in eq. 4

(H6)

To proceed to the development of the adaptive feedforward
control law, the key point is to establish a relation between
the estimated parameters of the feedforward compensator and
the measured error in terms of service time error with respect

to the desired value. Using the results of [17], Chapter 15,
Section 15.17, eq. (15.86) for our particular scheme one gets:

ABs o417

_— 16
S(AqAx+ BgBy) (10

et+1)=
where S is the denominator of the optimal linear feedforward
compensator,

87 = [s1,52,70,71,72] (17)

is the vector of the parameters of the optimal filter N’
(unknown),

0" = [$1,82, 0,71, 72] (18)
is the vector of estimated parameters of the filter N,
o7 (1) = [—uy (1), —uy (t = 1),d(t + 1),d(1),d(t = 1)} (19)

is the observation vector, where: d(¢ + 1)*, and u/(t) are
respectively the input and the output of the filter N’

It is useful for stability reasons (as it will be shown later) to
filter the observation vector ¢ (¢):

97(1) =L(g~")9(1) (20)
Eq.16 will take the form:
— ArBg T

This equation when 0 is time-varying (under the effect of
adaptation) takes the form (neglecting the non-commutativity
of the time operators when 6 is time varying):

ArB,

A T
gt+1)= S<AgAk+BgBk)L[9 O+ 1] 9r(1)  (22)
This equation has the standard form of an a posteriori
adaptation error equation [18] allowing straightforwardly to
write the parameter adaptation algorithm and to get the
stability condition of the full scheme. One has the following
result:

Lemma 2:(stability of the adaptive control law)
For the system described by eqs. 2, 3, 4 and 14 using the

parameter adaptation algorithm:

O(1+1)=0(r) +FO(r)e(r +1) ; (23)
e°(t+1)

grt+1)= TFOT R ; (24)

F=al ;a>0; (25)

D(1) = ps(t) (26)

where €°(t+ 1) is the measured a priori error on the service
time and under the condition that:
ArB,

H=—— "t Q27
S(AgA; + BgBi)L

is a strictly positive real transfer function, one has:

lime(r + 1) = lime°(: + 1) = 0. (28)

t—ro0

“adaptation for getting estimated parameters at t+1 starts once d(z + 1) is
measured.



for any bounded initial conditions.
Proof: The proof is a direct application of the results
presented in [18], chapter 3 and it is omitted.
Remark: A time varying matrix adaptation gain can also be
used (see [18] for details)
It follows that for the implementation of this adaptation
algorithm the filter L should be designed in order to satisfy
the strictly positive real condition on 27. Taking

S(AgAk +BgBk)
The condition of eq. 27 becomes that the transfer function:

By S (AgAx+B,By)

=== 30
B, S (AgAr + BgBy) (30)

L

should be strictly positive real. The satisfaction of this
condition will depend upon the quality of the estimation of
Ag,Bg,S. Conversely the allowed tolerance in the estimation
of Ag,Bg,S results from the positive real condition on the
transfer function of eq. VIL

VIII. AN INTERESTING PARTICULAR CASE

One can assume that the feedback controller has a very
slow action and that its main task is to assure a zero steady
state error. In this case one may neglect its dynamic effect
and therefore one can consider Ax = 1 and Bg = 0 (absence
of the controller). This lead to a filter L of the form:

N

B

L=+ 31
T (31)
Furthermore we can make the assumptions :
rg = ra;ag = dq;Be = Pu (32)

which means in practice that we look to the compensation
of the disturbance in steady state only. In this case the
feedforward commpensation law will take the form:

u(t) = gd(r)

which corresponds to R =g = b, /b, and S = 1. The corre-
ponding adaptive feedforward law becomes:

(33)

u(t) = &(1)d (1) 34)
where g is given by
g+1) = gt)+oaf(t+1e(t+1)
o af(t+1) )
= g([)+71+06f2(t+1)e (t+1) Wlthazg)

where ¢°(t + 1) is the a priori measured service time error
and f(r+1) is given by:

fle+1)=L(g ")d(r) (36)
where: ( : A
: —(rg+1 -1
L= (signbe)g "1+ Beg™ ) 37)

1+ad,q7!

The stability condition becomes in this case:

L+ 1+ Bez !

Hop = .
O T a1+ B!

(38)

should be a strictly positive real transfer function. This
implies first that Bg < 1 for the stability of the transfer
function. If d, is enough close to a, and ﬁg is enough close
to fB¢, this condition is always satisfied.® It is this algorithm
which has been implemented in the presence of a digital PI
controller.

IX. EXPERIMENTAL RESULTS

The experiments were conducted on Grid’5000, on a
single cluster of 60 nodes. Each node from the cluster used
for the test has a quad-core Intel CPU of 2.53GHz, an
internal RAM memory of 15GB, 298GB disk space and
infinite band network. The interconnection between the cloud
and the controller implemented in Matlab has required an
intensive effort for developing the appropriate interfaces and
communication protocols [1]. The workload used for the
experiments are some Business Intelligence task, taken from
MRBS benchmark suite [10]. Only the number of tasks to
be executed is varied here (#clients). Fig.4 gives an block
diagram of the full system.

Re
Local Sensor SsH emote

Bash Scripts Tunnels Sensor £
Scripts

Senvice Time
l(,\ia;nls MRBS

workload

generator

Controllers
in Matlab

Local
000SPHD

Client Interactions

Hadoop
HNodes MapReduce

Local g Remote
Actuator [—— — Actuator

Bash Scripts Bash Scripts

Fig. 4. Computer system configuration

Fig. 5 shows the evolution of the service time and of
the number of nodes in open loop operation of the system.
Fig.6 shows the evolution of the service time and of the
number of nodes when a digital PI controller is used.
Fig.7 shows the evolution of the service time and of the
number of nodes when in addition to the digital PI controller
an adaptive feedforward control law is used. One can see
that adding adaptive feedforward compensation improves the
performance obtained with just a PI controller. The mean
absolute error between the achieved service time and its
reference value is of 44.9sec with just a PI and of 8sec when
adding a adaptive feedforward.

SIf Bg > 1 which correponds to a fractional delay larger than half of the
sampling period, it is reasonable to approximate the model with an additional
delay of one sampling.
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X. CONCLUSIONS

Using adaptive feedforward control for cloud computing
shows encouraging results. The methodology should be fur-
ther tested for assessing the advantages of using more com-
plex algorithms both for feedback and feedforward control.
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