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BESSEL SPDES AND RENORMALIZED LOCAL TIMES

HENRI ELAD ALTMAN AND LORENZO ZAMBOTTI

Abstract. In this article, we prove integration by parts formulae (IbPFs) for
the laws of Bessel bridges from 0 to 0 over the interval [0, 1] of dimension smaller
than 3. As an application, we construct a weak version of a stochastic PDE hav-
ing the law of a one-dimensional Bessel bridge (i.e. the law of a reflected Brow-
nian bridge) as reversible measure, the dimension 1 being particularly relevant
in view of applications to scaling limits of dynamical critical pinning models.
We also exploit the IbPFs to conjecture the structure of the stochastic PDEs
associated with Bessel bridges of all dimensions smaller than 3.

1. Introduction

The classical stochastic calculus due to Kiyoshi Itô was originally created as
a tool to define and solve stochastic differential equations (SDEs). In classical
monographs on the subject, see e.g. [33, 25, 34], Bessel processes play a prominent
role as a fundamental example on which the extraordinary power of the theory can
be tested.

Stochastic partial differential equations (SPDEs) were invented around fifty
years ago as a natural function-valued analog of SDEs, and are by now a well-
established field which is increasingly active and lively. SPDEs driven by a space-
time white noise have recently received much attention, because they are naturally
associated with ultraviolet divergences and renormalization, phenomena which are
now mathematically well-understood in many circumstances using the recent the-
ories of regularity structures [23, 4] and of paracontrolled distributions [21].

In particular, the classical stochastic calculus for semimartingales and SDEs has
no analog for space-time-white-noise driven SPDEs, despite some early and more
recent attempts [43, 3], because of the divergences created by the white noise. A
partial substitute is given by the Fukushima stochastic calculus associated with
Dirichlet forms [13, 27], but the formulae that one obtains are often less explicit
than one would hope. The marvellous power of the Itô calculus for the study
of fine properties of semimartingales remains without proper analog in genuinely
infinite-dimensional processes.

In this paper we discuss a particular class of equations which seems a natural
analog of Bessel processes in the context of SPDEs driven by a space-time white
noise. As we explain below, the standard approach to Bessel processes does not
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work at all for these Bessel SPDEs, and we have to apply a different method,
with necessarily weaker results, at least in comparison with the finite-dimensional
situation. We will rely on Dirichlet forms methods and on integration by parts
formulae on path spaces. These will include distributional terms - rather than
σ-finite measures - as in the theory of white noise calculus [24].

The processes that we consider have interesting path properties, as it is the
case for Bessel processes, but with the enhanced richness of infinite-dimensional
objects, see e.g. [44] for a recent account. We hope that this work will further
motivate the study of infinite-dimensional stochastic calculus, which is still in its
infancy.

1.1. From Bessel SDEs to Bessel SPDEs. A squared Bessel process of dimen-
sion δ ≥ 0 is defined as the unique continuous non-negative process (Yt)t≥0 solving
the SDE

Yt = Y0 +

∫ t

0

2
√

Ys dBs + δ t, t ≥ 0, (δ ≥ 0) (1.1)

where (Bt)t≥0 is a standard Brownian motion. Squared Bessel processes enjoy a
remarkable additivity property (see [35] and (3.1) below), and play a prominent in
several areas of probability theory. For instance, in population dynamics, they arise
as the scaling limit of Galton-Watson processes with immigration. On the other
hand, they play an important role in the study of the fine properties of Brownian
motion, see e.g. [33]. Moreover their fascinating behavior at the boundary point
0 can be studied in great detail, see e.g. [44] for a recent account.

Well-posedness of the SDE (1.1) satisfied by (Yt)t≥0 follows from the classical
Yamada-Watanabe theorem [33, Theorem IX.3.5]. If we consider the Bessel process
Xt :=

√
Yt, t ≥ 0, the situation is more involved. For δ > 1, by the Itô formula,

X is solution to

Xt = X0 +
δ − 1

2

∫ t

0

1

Xs
ds+Bt, t ≥ 0, (δ > 1) (1.2)

and this equation satisfies pathwise uniqueness and existence of strong solutions
since the drift is monotone decreasing. For δ = 1, X is the solution to

Xt = X0 + Lt +Bt, t ≥ 0, (δ = 1)

where (Lt)t≥0 is continuous and monotone non-decreasing, with L0 = 0 and

X ≥ 0,

∫ ∞

0

Xs dLs = 0. (1.3)

In other words X is a reflecting Brownian motion, and the above equation has a
unique solution by the Skorokhod Lemma [33, Lemma VI.2.1].

For δ ∈ (0, 1), the situation is substantially more difficult and it turns out that
the relation (1.2) is not valid anymore in this regime. One can show, see e.g. [44,
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Proposition 3.12], thatX admits diffusion local times, namely continuous processes
(ℓat )t≥0,a≥0 such that

∫ t

0

ϕ(Xs) ds =

∫ ∞

0

ϕ(a) ℓat a
δ−1 da, (1.4)

for all Borel ϕ : R+ → R+, and that X satisfies

Xt = X0 +
δ − 1

2

∫ ∞

0

ℓat − ℓ0t
a

aδ−1 da +Bt, t ≥ 0, (0 < δ < 1). (1.5)

Note that by the occupation time formula (1.4) we have
∫ ∞

0

ℓat − ℓ0t
a

aδ−1 da = lim
ε↓0

∫ ∞

ε

ℓat − ℓ0t
a

aδ−1 da =

= lim
ε↓0

(
∫ t

0

1(Xs≥ε)
1

Xs

ds− ℓ0t

∫ ∞

ε

aδ−2 da

)

and in the latter expression both terms diverge as ε ↓ 0, while the difference

converges since |ℓat −ℓ0t | . a1−
δ

2
−κ with κ > 0: this is why we speak of renormalised

local times.
The formula (1.5) is not really an SDE, and to our knowledge one cannot (so far)

characterize X as the unique process satisfying this property, unless one manages
to prove that X2 is a solution to (1.1). We stress again that the relation between
(1.1) and (1.2)-(1.3)-(1.5) is based on Itô’s stochastic calculus.

In a series of papers [38, 39, 40, 41] the second author of this article studied a
class of stochastic partial differential equations (SPDEs) with analogous properties.
For a parameter δ > 3 the equation, that we call Bessel SPDE, is











∂u

∂t
=

1

2

∂2u

∂x2
+
κ(δ)

2 u3
+ ξ

u(0, ·) = u0, u(t, 0) = u(t, 1) = 0

(δ > 3) (1.6)

where u ≥ 0 is continuous and ξ is a space-time white noise on R+ × [0, 1], and

κ(δ) :=
(δ − 3)(δ − 1)

4
. (1.7)

As δ ↓ 3, the solution to (1.6) converges to the solution of the Nualart-Pardoux
equation [31], namely the random obstacle problem



























∂u

∂t
=

1

2

∂2u

∂x2
+ η + ξ

u(0, ·) = u0, u(t, 0) = u(t, 1) = 0

u ≥ 0, dη ≥ 0,
∫

R+×[0,1]
u dη = 0,

(δ = 3) (1.8)
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where η is a Radon measure on ]0,∞[× ]0, 1[. The unique invariant measure of
(1.6) for δ > 3, respectively (1.8), is the Bessel bridge of dimension δ, resp. 3. In
other words, the invariant measure has the law of (Xt)t∈[0,1] conditioned to return
to 0 at time 1, where X solves (1.2) with X0 = 0 and δ > 3, respectively δ = 3.
Equation (1.8) also describes the fluctuations of an effective (1+1) interface model
near a wall [16, 14] and also arises as the scaling limit of several weakly asymmetric
interface models, see [11].

While (1.6) for δ > 3 is the analog of (1.2) for δ > 1, (1.8) is the analog of (1.3).
The analogy can be justified in terms of scaling invariance: the equations (1.2)
and (1.3) are invariant (in law) under the rescaling Xt 7→ λ−1Xλ2t for λ > 0, while
(1.6) and (1.8) are invariant under u(t, x) 7→ λ−1u(λ4t, λ2x) (apart from the fact
that the space interval changes from [0, 1] to [0, λ−2]).

It has been an open problem for over 15 years to complete the above picture.
Namely, what is an SPDE whose invariant measure is the Bessel bridge of dimen-
sion δ < 3 ? Is it an SPDE analogue of (1.5) ?

We stress that equations (1.6) and (1.8) enjoy nice properties (pathwise unique-
ness, continuity with respect to initial data, the Strong Feller property) because
of the dissipative, namely monotone non-increasing, character of the drift. This is
however true only as long as the coefficient κ(δ) is positive, and fails for δ ∈ ]1, 3[.
In the regime δ < 3, we shall see that even the notion of solution becomes highly
non-trivial, as for Bessel processes in the regime δ < 1. The nice properties men-
tioned above may still be true but the known techniques become ineffective.

This problem is particularly interesting for δ = 1, which corresponds to the re-
flecting Brownian bridge as an invariant measure. Indeed, the reflecting Brownian
bridge arises as the scaling limit of critical pinning models, see [7], [14, Chapter
15.2] and [12, 20]. Dynamical pinning models are believed to have a scaling limit,
which would be an infinite-dimensional diffusion having the law of a reflecting
Brownian motion as reversible measure. What kind of SPDE that limit should
satisfy has however remained a very open question so far.

Note that the one-dimensional trick of considering a power of u, in this case for
instance v := u4, in order to find a more tractable SPDE fails because one obtains
rather frightening equations of the form

∂v

∂t
=

1

2

∂2v

∂x2
+ 2 κ(δ)− 3

8

1√
v

:

(

∂v

∂x

)2

: +4v
3
4 ξ

where the : : notation denotes a KPZ-type renormalization. Even the theory of
regularity structures does not cover this kind of equations, due to the non-Lipschitz
character of the coefficients. One could hope that a Yamada-Watanabe result could
be proved for this class of equations; inspiringly, the exponent 3

4
in the noise-term

is known to be critical for pathwise uniqueness of parabolic SPDEs (without the
KPZ-type term), see [29, 28]. This approach is, at present, completely out of reach.
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Therefore, in this paper, rather than tackling these difficulties, we answer the
above questions by exploiting the specific, very nice structure underlying Bessel
processes. More precisely, we derive integration by parts formulae for the law of
Bessel bridges of dimension δ < 3. These formulae involve the laws of pinned Bessel
bridges (or, more precisely, the measures Σδ

r( · | a) defined in (3.12) below) which
should correspond to the local times of the solution u to our would-be SPDEs.
Thus, the drift term in these SPDEs should involve the process (ℓat,x)a≥0 defined
by

∫ t

0

ϕ(u(s, x)) ds =

∫ ∞

0

ϕ(a) ℓat,x a
δ−1 da, (1.9)

for all Borel ϕ : R+ → R+. Some explicit computations on the measures Σδ
r( · | a)

suggest that this process should moreover have a vanishing first-order derivative
at 0, that is

∂

∂a
ℓat,x

∣

∣

∣

∣

a=0

= 0, t ≥ 0, x ∈ (0, 1). (1.10)

Finally, the integration by parts formulae that we find enable us to identify the
corresponding Bessel SPDEs. For 1 < δ < 3, the SPDE should have the form

∂u

∂t
=

1

2

∂2u

∂x2
+
κ(δ)

2

∂

∂t

∫ ∞

0

1

a3
(

ℓat,x − ℓ0t,x
)

aδ−1 da + ξ, (1 < δ < 3). (1.11)

Then (1.11) is the SPDE analog of (1.5). On the other hand, for δ = 1, we find
that the SPDE should be of the form

∂u

∂t
=

1

2

∂2u

∂x2
− 1

8

∂

∂t

∂2

∂a2
ℓat,x

∣

∣

∣

∣

a=0

+ ξ, (δ = 1), (1.12)

while for 0 < δ < 1

∂u

∂t
=

1

2

∂2u

∂x2
+ ξ (0 < δ < 1)

+
κ(δ)

2

∂

∂t

∫ ∞

0

1

a3

(

ℓat,x − ℓ0t,x −
a2

2

∂2

∂a2
ℓat,x

∣

∣

∣

∣

a=0

)

aδ−1 da.

(1.13)

In (1.11), as in (1.5), we have a Taylor expansion at order 0 of the local times
functions a 7→ ℓa. By contrast, equations (1.12) and (1.13) have no analog in the
context of one-dimensional Bessel processes. In (1.13) the Taylor expansion is at
order 2, while (1.12) is a limit case, like (1.8). Although they seem quite different,
all the above SPDEs can be written in a unified way as follows. We introduce for
α ∈ R the following distributions on [0,∞)

• if α = −k with k ∈ N, then

〈µα, ϕ〉 := (−1)kϕ(k)(0), ∀ϕ ∈ C∞
0 ([0,∞))
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• else,

〈µα, ϕ〉 :=
∫ +∞

0

(

ϕ(a)−
∑

0≤j≤−α

aj

j!
ϕ(j)(0)

)

aα−1

Γ(α)
da, ∀ϕ ∈ C∞

0 ([0,∞)).

Note that, for all α ∈ R, µα coincides with the distribution
xα−1
+

Γ(α)
considered in

Section 3.5 of [17]. Then for all ϕ ∈ C∞
0 ([0,∞)), the map α 7→ 〈µα, ϕ〉 is analytic.

Moreover, for δ > 3 the non-linearity in (1.6) can be expressed as

κ(δ)

2

∫ t

0

1

(u(s, x))3
ds =

κ(δ)

2

∫ ∞

0

1

a3
ℓat,x a

δ−1 da =
κ(δ) Γ(δ − 3)

2
〈µδ−3, ℓ

·

t,x〉,

which, by (1.7), we can in turn rewrite as

Γ(δ)

8(δ − 2)
〈µδ−3, ℓ

·

t,x〉, (1.14)

an expression which, at least formally, makes sense for any δ ∈ (0,∞) \ {2}. Note
that the singularity at δ = 2 is just apparent, since in this case, we can rewrite
the previous expression simply as:

−1

8

∫ ∞

0

1

a3
(

ℓat,x − ℓ0t,x
)

a da,

where the integral is indeed convergent due to the cancellation (1.10). Then, the
expression (1.14) encapsulates, in a unified way, the non-linearities of (1.8)-(1.11)-
(1.12)-(1.13). In particular, for δ = 3, it equals 1

4
ℓ0t,x, which is coherent with the

results about the structure of the reflection measure η in (1.8) proved in [41] and
showing that a.s.

η([0, t]× dx) =
1

4
ℓ0t,x dx.

At least formally, the δ-Bessel SPDEs for δ < 3 correspond to the unique analytic
continuation of the δ-Bessel SPDEs for δ ≥ 3. This is justified by considering
the corresponding integration by parts formulae on a specific set of test functions,
where every term depends in an analytic way on δ, see (4.10) below.

While the formulae (1.11), (1.12) and (1.13) remain conjectural, for the case
δ = 1, we do construct, by Dirichlet Forms methods, a Markov process (ut)t≥0

with the reflected Brownian bridge as reversible measure, and satisfying a modified
version of equation (1.12) above. More precisely, we show that

∂u

∂t
=

1

2

∂2u

∂x2
− 1

4
lim
ǫ→0

ρ′′ǫ (u) + ξ, (δ = 1) (1.15)

where ρǫ(x) = 1
ǫ
ρ(x

ǫ
) is a smooth approximation of the Dirac measure at 0, see

Theorem 5.7 for the precise statements. Similar arguments allow to treat the case
δ = 2: this will be done in a forthcoming article.
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1.2. Integration by parts formulae for the laws of Bessel bridges. Integra-
tion by parts plays a fundamental role in analysis, and most notably in stochastic
analysis. For instance, it lies at the core of Malliavin Calculus and the theory of
Dirichlet forms, see e.g. [30, 13, 27].

While it is relatively easy in finite dimension, where the standard rules of calculus
apply, obtaining integration by parts formulae (IbPFs for short) for measures on
infinite-dimensional spaces can be a difficult task, one of the main reasons being
the absence of Lebesgue measure in that context. The most celebrated example
is the IbPF associated with Brownian motion, or its corresponding bridge, on the
interval [0, 1], which reads

E [∂hΦ(B)] = −E [〈h′′, B〉Φ(B)] ,

for all Fréchet differentiable Φ : L2(0, 1) → R and all h ∈ C2
c (0, 1), where 〈·, ·〉

denotes the canonical scalar product in L2(0, 1). This formula follows for in-
stance from the quasi-invariance property of the Wiener measure on [0, 1] along
the Cameron-Martin space.

In [39], the second author exploited the relation between the law of the Brownian
bridge and the law P 3 of the 3-dimensional Bessel bridge (also known as the
normalised Brownian excursion) on [0, 1] to deduce an IbPF for the latter measure;
other proofs were given later, see e.g. [15, 44]. In [40], exploiting an absolute
continuity relation with respect to the 3-dimensional Bessel bridge, the second
author obtained IbPFs for the law P δ of Bessel bridges of dimension δ > 3. Put
in a nutshell, these formulae read as follows:

Eδ [∂hΦ(X)] + Eδ [〈h′′, X〉Φ(X)] = −κ(δ)Eδ
[

〈h,X−3〉Φ(X)
]

(1.16)

for all δ > 3, and

E3 [∂hΦ(X)] + E3 [〈h′′, X〉Φ(X)] =

= −
∫ 1

0

dr
hr

√

2πr3(1− r)3
Eδ [Φ(X) |Xr = 0] ,

(1.17)

where Φ and h are as above. Here, for all δ > 0, Eδ denotes the expectation
with respect to the law P δ, on the space of continuous real-valued functions on
[0, 1], of the δ-dimensional Bessel bridge from 0 to 0 over the interval [0, 1], and
κ(δ) is defined in (1.7). Note that κ(δ) > 0 for δ > 3, and κ vanishes at δ = 3,
the dimension corresponding to the Brownian excursion. At the same time, the
quantity 〈|h|, X−3〉 is integrable with respect to P δ for δ > 3, but is non-integrable
with respect to P 3 for h that is not identically 0. Hence, (1.17) can be seen as
the limit, as δ ց 3, of (1.16). Formula (1.17) also possesses a geometric-measure
theory interpretation as a Gauss-Green formula in an infinite-dimensional space,
the second term in the rigt-hand side corresponding to a boundary term (see
Chapter 6.1.2 in [44]).
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What can we say for Bessel bridges of dimension δ < 3 ? In such a regime, the
techniques used in [40], based on absolute continuity relations with the Brownian
excursion as well as monotonicity arguments, fall apart. Indeed, when δ ∈ (1, 3),
κ(δ) < 0, so the required monotonicity properties do not hold anymore, while for
δ < 2 the absolute continuity relations fail to exist. Hence, the problem of finding
IbPFs for the measures P δ, when δ < 3, has remained open until now, excepted for
the value δ = 1, corresponding to the reflected Brownian bridge, for which some
(strictly weaker) IbPFs have been obtained, see [42] for the case of the reflected
Brownian motion, [19] for the case of a genuine bridge, and Remark 4.11 below
for a discussion.

1.3. Outline of the results. Here and below, let C([0, 1]) := C([0, 1],R) be the
space of continuous real-valued functions on [0, 1]. In this article, we obtain IbPFs
for the laws P δ of Bessel bridges of dimension δ ∈ (0, 3) from 0 to 0 over [0, 1]. Our
formulae hold for a large class of functionals Φ : C([0, 1]) → R. More precisely, we
consider linear combinations of functionals of the form

Φ(ζ) = exp(−〈m, ζ2〉), ζ ∈ C([0, 1]), (1.18)

with m a finite Borel measure on [0, 1], and where 〈m, ζ2〉 :=
∫ 1

0
ζ2t m(dt). We

prove that these functionals satisfy IbPFs for the laws P δ, for all δ > 0. Our
method is based on deriving semi-explicit expressions for quantities of the form

Eδ [Φ(X)] and Eδ [Φ(X) |Xr = a] , a ≥ 0, r ∈ (0, 1),

using solutions to some second-order differential equations, and exploiting the nice
computations done in Chapter XI of [33]. The fundamental property enabling these
computations is the additivity property of the squared Bessel processes, which in
particular implies that both of the quantities above factorize in a very specific way,
see the expression (3.15) below. As a consequence, for functionals as above, all the
IbPFs for P δ, δ ≥ 3 are just multiples of a single differential relation which does
not depend on δ (see Lemma 4.6 below), the dependence in δ entering only through
the multiplying constant which involves some Γ values. When δ ≥ 3, expressing
these Γ values as integrals, and performing a change of variable, we retrieve the
formulae already obtained in [39] and [40]. On the other hand, when δ < 3, one of
the Γ values appearing is negative, so we cannot express it using the usual integral
formula, but must rather use renormalized integrals.

As a result, when δ ∈ (1, 3), the IbPFs can be written

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) =

= −κ(δ)
∫ 1

0

hr

∫ ∞

0

aδ−4
[

Σδ
r (Φ(X) | a)− Σδ

r (Φ(X) | 0)
]

da dr,
(1.19)

where, for all a ≥ 0, Σδ
r (dX | a) is a measure on C([0, 1]) proportional to the law

of the Bessel bridge conditioned to hit a at r, see (3.12). Thus, the left-hand side
is the same as for (1.16) and (1.17), but the right-hand side now contains Taylor
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remainders at order 0 of the functions a 7→ Σδ
r (Φ(X) | a). When δ ∈ (0, 1), this

renormalization phenomenon becomes even more acute. Indeed, in that case, the
IbPFs are similar to (1.19), but the right-hand side is replaced by

− κ(δ)

∫ 1

0

hr

∫ ∞

0

aδ−4

[

ϕ(a)− ϕ(0)− a2

2
ϕ′′(0)

]

da dr, (1.20)

where ϕ(a) := Σδ
r (Φ(X) | a), and where we see Taylor remainders at order 2 ap-

pearing. An important remark is that the terms of order 1 vanish

ϕ′(0) =
d

da
Σδ

r (Φ(X) | a)
∣

∣

∣

∣

a=0

= 0, r ∈ (0, 1), (1.21)

so we do not see them in the above Taylor remainders. Finally, in the critical case
δ = 1, we obtain the fomula

E1(∂hΦ(X)) + E1(〈h′′, X〉Φ(X)) =
1

4

∫ 1

0

hr
d2

da2
Σ1

r(Φ(X) | a)
∣

∣

∣

∣

a=0

dr. (1.22)

The IbPFs are stated in Theorem 4.1 below. One important, expected feature
is the transition that occurs at the critical values δ = 3 and δ = 1. Another
important but less expected feature is the absence of transition at δ = 2, as well
as the related remarkable fact that the functions a 7→ Σδ

r (Φ(X) | a) are, for all
r ∈ (0, 1), smooth functions in a2, so that all their odd-order derivatives vanish at
0. This is the reason why there only ever appear derivatives of even order in our
formulae. An objection to this observation might be that the class of functionals
(1.18) is too restrictive. However, in a forthcoming article, we will show that
the IbPFs obtained in the present article still hold for a class of very general
functionals. In particular, vanishing of first-order derivatives at a = 0 can be
established for a 7→ Σδ

r (Φ(X) | a) for any Φ ∈ C1
b (L

2(0, 1)), which confirms the
absence of transition at δ = 2 observed in this article. Finally, note that all the
IbPFs above can be written in a unified way, by re-expressing the last term as

− Γ(δ)

4(δ − 2)

∫ 1

0

〈µδ−3,Σ
δ
r(Φ(X) | · )〉

in analogy with (1.14). The latter formula bears out the idea that the new IbPFs
for Bessel bridges of dimension δ < 3 are given by the unique analytic continuation
of those for δ ≥ 3, at least for suitable test functionals Φ as in (1.18).

The IbPFs (1.19), (1.20) and (1.22) above suggest that the gradient dynamics
associated with the laws of Bessel bridges of dimension δ < 3 should be given by
the SPDEs (1.11), (1.13) and (1.12) respectively. Note that, in the case δ ≥ 3,
the SPDEs had been solved in [31, 40] using pathwise techniques, and many fine
properties of the solution had been studied, such as their hitting properties (see [6]),
or the existence of occupation densities (see [41]). By contrast, in the case δ < 3,
the SPDEs (1.11), (1.12) and (1.13) do not yet seem to possess any strong notion
of solution, and essentially lie outside the scope of any existing theory of SPDEs.



BESSEL SPDES AND RENORMALIZED LOCAL TIMES 10

However, in this article, for δ = 1, using Dirichlet form techniques, and thanks to
the IbPF (1.22) for the reflecting Brownian bridge, we are able to construct a weak
version of the associated SPDE in the stationary regime. Thus, the dynamics for
δ = 1 can be described by (1.15), which is a weaker version of (1.12). We also
prove (see Theorem 5.8 below) that the corresponding Markov process does not
coincide with the process associated with the absolute value of the solution to
the stochastic heat equation. A similar construction can be implemented in the
case δ = 2: this will be done in the forthcoming article [9]. The approach using
Dirichlet forms was already used in Robert Voßhall’s thesis [37], which provided a
construction of the Markov process for δ = 1, but not the SPDE.

The article is organized as follows: in Section 2 we address a toy-model consisting
of a family of measures on R+, hence much simpler than the laws of Bessel bridges,
but displaying a similar renormalization phenomenon at the level of the IbPFs.
In Section 3 we recall and prove some useful facts on the laws of squared Bessel
processes, Bessel processes, and their bridges. In Section 4, we state and prove
the IbPFs for the laws of Bessel bridges. The dynamics associated with the law
of a reflected Brownian bridge is constructed and studied in Section 5. Finally,
in Section 6, we justify our conjectures (1.11) (1.12) and (1.13) for the δ-Bessel
SPDEs for δ < 3, and we formulate some additional related conjectures.

Acknowledgements. The arguments used in Prop 5.1 below to show quasi-
regularity of the form associated with the law of a reflected Brownian bridge were
communicated to us by Rongchan Zhu and Xiangchan Zhu, whom we warmly
thank. The first author is very grateful to Jean-Dominique Deuschel, Tal Oren-
shtein and Nikolas Perkowski for their kind invitation to TU Berlin, and for very
interesting discussions. We also thank Giuseppe Da Prato for very useful discus-
sion and for his kindness and patience in answering our questions. The authors
would finally like to thank the Isaac Newton Institute for Mathematical Sciences
for hospitality and support during the programme ”Scaling limits, rough paths,
quantum field theory” when work on this paper was undertaken: this work was
supported by EPSRC grant numbers EP/K032208/1 and EP/R014604/1. The sec-
ond author gratefully acknowledges support by the Institut Universitaire de France
and the project of the Agence Nationale de la Recherche ANR-15-CE40-0020-01
grant LSD.

2. A prelude

In this section we consider a toy model consisting of a family of Schwartz dis-
tributions on R+ satisfying nice integration by parts formulae. The content of
this section is classical (see e.g. Section 3.5 of [17]), but it will serve as a useful
finite-dimensional example for the theory to come. For α ≥ 0, we set

µα(dx) =
xα−1

Γ(α)
dx, α > 0, µ0 = δ0,
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where δ0 denotes the Dirac measure at 0. A simple change of variable yields the
Laplace transform of the measures µα, α ≥ 0

∫

exp(−λx)µα(dx) = λ−α, λ > 0, α ≥ 0. (2.1)

It turns out that the family of measures (µα)α≥0 can be extended in a natural
way to a family of distributions (µα)α∈R . We first define the appropriate space of
test functions on [0,∞).

Definition 2.1. Let S([0,∞)) be the space of C∞ functions ϕ : [0,∞) → R such
that, for all k, l ≥ 0, there exists Ck,ℓ ≥ 0 such that

∀x ≥ 0, |ϕ(k)(x)| xℓ ≤ Ck,ℓ. (2.2)

For α < 0, we will define µα as a distribution, using a renormalization procedure
based on Taylor polynomials. To do so, for any smooth function ϕ : R+ → R, for
all n ∈ Z, and all x ≥ 0, we set

T n
x ϕ := ϕ(x)−

∑

0≤j≤n

xj

j!
ϕ(j)(0). (2.3)

In words, if n ≥ 0 then T n
x ϕ is the Taylor remainder based at 0, of order n+1, of

the function ϕ, evaluated at x; if n < 0 then T n
x ϕ is simply the value of ϕ at x.

Definition 2.2. For α < 0, we define the distribution µα as follows

• if α = −k with k ∈ N, then

〈µα, ϕ〉 := (−1)kϕ(k)(0), ∀ϕ ∈ S([0,∞)) (2.4)

• if −k − 1 < α < −k with k ∈ N, then

〈µα, ϕ〉 :=
∫ +∞

0

T k
x ϕ

xα−1

Γ(α)
dx, ∀ϕ ∈ S([0,∞)). (2.5)

Note that formula (2.5) defines a bona fide distribution on S([0,∞)). Indeed, by
Taylor’s theorem, the integrand is of order xk+α near 0, therefore integrable there,
while it is dominated by xk+α−1 near +∞, so is integrable at infinity as well. We

note that µα is equal the generalized function (
xα−1
+

Γ(α)
)α∈R of Section 3.5 of [17].

Remark 2.3. Note that for all α > 0 and all Borel function ϕ : R+ → R+, the
integral

∫∞

0
ϕ(x)µα( dx) coincides with Γ(α)−1Mϕ(α), where Mϕ(α) is the value

of the Mellin transform of the function ϕ computed at α. Definition 2.2 thus
provides an extension of the Mellin transform of a function ϕ ∈ S([0,∞)) to the
whole real line. In particular, equality (2.4) is natural in view of Ramanujan’s
Master Theorem, which allows to see the successive derivatives at 0 of an analytic
function as the values, for non-positive integers, of the analytic extension of its
Mellin transform. We refer to [2] for more details on this theorem. We also stress
that the renormalization procedure used in equation (2.5) to define µα for α < 0 is
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very natural, and can also be used to extend the domain of validity of Ramanujan’s
Master Theorem, see Theorem 8.1 in [2].

Remark 2.4. For k ∈ N and α such that −k − 1 < α < −k, and for all ϕ ∈
S([0,∞)), we obtain after k + 1 successive integration by parts the equality:

〈µα, ϕ〉 := (−1)k+1

∫ +∞

0

ϕ(k+1)(x)µα+k+1(dx), (2.6)

which can be interpreted as a variant of the Caputo differential, at order −α, of
ϕ, see e.g. (1.17) in [18].

We recall the following basic fact, which is easily proven (see e.g. (5) in Section
3.5 of [17]). It can be seen as a toy-version of the integration by parts formulae of
Theorem 4.1 below.

Proposition 2.5. For all α ∈ R and ϕ ∈ S([0,∞))

〈µα, ϕ
′〉 = −〈µα−1, ϕ〉.

In parficular, for α ∈ (0, 1) we have the measure µα in the left-hand side of the
IbPF and the distribution µα−1 in the right-hand side.

Remark 2.6. As a consequence of Proposition 2.5, we deduce that the expression
(2.1) for the Laplace tranform of µα remains true also for negative α. Indeed, for
such α, picking k ∈ N such that α + k > 0, we have, for all λ > 0

〈µα, e
−λ·〉 = (−1)k 〈µα+k,

dk

dxk
e−λ·〉 = λk 〈µα+k, e

−λ·〉 = λk λ−α−k = λ−α.

3. Bessel processes and associated bridges

In this section we recall and prove some useful facts about squared Bessel pro-
cesses, Bessel processes, and their corresponding bridges. We recall that, for all
α ≥ 0, θ > 0, Γ(α, θ) denotes the Gamma probability law on R+

Γ(α, θ)(dx) =
θα

Γ(α)
xα−1 e−θx 1x>0 dx, Γ(0, θ) := δ0.

3.1. Squared Bessel processes and Bessel processes. For all x, δ ≥ 0, denote
by Qδ

x the law, on C(R+,R+), of the δ-dimensional squared Bessel process started
at x, namely the unique solution to the SDE (1.1) with Y0 = x, see Chapter XI of
[33]. We denote by (Xt)t≥0 the canonical process

Xt : C([0, 1]) → R, Xt(ω) := ωt, ω ∈ C([0, 1]).

Definition 3.1. For any interval I ⊂ R+, and any two probability laws µ, ν on
C(I,R+), let µ∗ν denote the convolution of µ and ν, i.e. the image of µ⊗ν under
the addition map:

C(I,R+)× C(I,R+) → C(I,R+), (x, y) 7→ x+ y.
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The family of probability measures
(

Qδ
x

)

δ,x≥0
satisfies the following well-known

additivity property, first observed by Shiga and Watanabe in [35].

Proposition 3.2. For all x, x′, δ, δ′ ≥ 0, we have the following equality of laws on
C(R+,R+)

Qδ
x ∗Qδ′

x′ = Qδ+δ′

x+x′ (3.1)

We recall that squared Bessel processes are homogeneous Markov processes on
R+. Exploiting the additivity property (3.1), Revuz and Yor provided, in sec-
tion XI of [33], explicit expressions for their transition densities

(

qδt (x, y)
)

t>0,x,y≥0
.

When δ > 0, these are given by

qδt (x, y) =
1

2t

(y

x

)ν/2

exp

(

−x+ y

2t

)

Iν

(√
xy

t

)

, t > 0, x > 0 (3.2)

and

qδt (0, y) = (2t)−
δ

2 Γ (δ/2)−1 yδ/2−1 exp
(

− y

2t

)

, t > 0. (3.3)

In particular, for x = 0, we have

qδt (0, y) dy = Γ

(

δ

2
,
1

2t

)

(dy).

We also denote by P δ
x the law of the δ-Bessel process, image of Qδ

x2 under the map

C(R+,R+) ∋ ω 7→ √
ω ∈ C(R+,R+). (3.4)

We shall denote by
(

pδt (a, b)
)

t>0, a,b≥0
the transition densities of a δ-Bessel process.

They are given in terms of the densities of the squared Bessel process by the
relation

∀t > 0, ∀a, b ≥ 0, pδt (a, b) = 2 b qδt (a
2, b2). (3.5)

In section XI of [33], Revuz and Yor provided semi-explicit expressions for
the Laplace transforms of squared Bessel processes (and also the corresponding
bridges). Their proof is based on the fact that, for all δ, x ≥ 0, and all finite Borel
measure m on [0, 1], the measure exp (−〈m,X〉)Qδ

x possesses a nice probabilistic
interpretation, where we use the notation

〈m, f〉 :=
∫ 1

0

f(r)m(dr)

for any Borel function f : [0, 1] → R+. This remarkable fact is used implicitly in
[33] (see e.g. the proof of Theorem (3.2) of Chap XI.3), where the authors compute
the one-dimensional marginal distributions of this measure. By contrast, in the
proof of Lemma 3.6 below, we will need to compute higher-dimensional marginals.
We thus need a way to interpret the measure exp (−〈m,X〉)Qδ

x probabilistically.
To do so, we first introduce some notations.
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Let m be a finite, Borel measure on [0, 1]. As in Chap. XI of [33], we consider
the unique solution φ = (φr, r ≥ 0) on R+ of the following problem

{

φ′′(dr) = 21[0,1](r)φrm(dr)

φ0 = 1, φ > 0, φ′ ≤ 0 on R+,
(3.6)

where the first is an equality of measures (see Appendix 8 of [33] for existence and
uniqueness of solutions to this problem). Note that the above function φ coincides
with the function φµ of Chap XI.1 of [33], with µ := 21[0,1]m.

Lemma 3.3. Let m be a finite, Borel measure on [0, 1], and let φ be the unique
solution of (3.6). Then, for all x, δ ≥ 0, the measure Rδ

x on C([0, 1]) defined by

Rδ
x := exp

(

−x
2
φ′
0

)

φ
− δ

2
1 e−〈m,X〉 Qδ

x (3.7)

is a probability measure, equal to the law of the process
(

φ2
t Y̺t

)

t∈[0,1]
,

where Y
(d)
= Qδ

x and ̺ is the deterministic time change

̺t =

∫ t

0

φ−2
u du, t ≥ 0. (3.8)

Proof. We proceed as in the proofs of Theorem (1.7) and (3.2) in Chapter XI of
[33]. Let x, δ ≥ 0. Under Qδ

x, Mt := Xt− δt is a local martingale, so we can define
an exponential local martingale by setting

Zt = E

(

1

2

∫ ·

0

φ′
s

φs
dMs

)

t

.

As established in the proof of Theorem (1.7) of [33], we have

Zt = exp

(

1

2

(

φ′
t

φt
Xt − φ′

0x− δ lnφt

)

−
∫ t

0

Xsm(ds)

)

=

= exp
(

−x
2
φ′
0

)

φ
− δ

2
t exp

(

1

2

φ′
t

φt

Xt −
∫ t

0

Xsm(ds)

)

,

recalling that the measure µ considered in [33] is given in our case by 2 1[0,1]m. In
particular, we deduce that the measure Rδ

x defined by (3.7) coincides with Z1Q
δ
x

(note that φ′
1 = 0 as a consequence of (3.6)). Moreover, by the above expression,

(Zt)t∈[0,1] is uniformly bounded by exp
(

−1
2
φ′
0

)

φ
− δ

2
1 , so it is a martingale on [0, 1].

Hence, Rδ
x defines a probability measure.

There remains to give a description of Rδ
x. By Girsanov’s theorem, under R1

x,
(Xt)t∈[0,1] solves the following SDE on [0, 1]

Xt = x+ 2

∫ t

0

√

Xs dBs + 2

∫ t

0

φ′
s

φs

Xs ds + t. (3.9)
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But a weak solution to this SDE is provided by (H2
t )t∈[0,1], where

Ht := φt

(

x+

∫ t

0

φ−1
s dWs

)

,

whereW is a standard Brownian motion. By strong and therefore weak uniqueness
of solutions to equation (3.9), see [33, Theorem IX.3.5], we deduce that X is equal
in law to the process (H2

t )t∈[0,1]. On the other hand, by Lévy’s theorem, we have

(Ht)t∈[0,1]
(d)
= (φt γ̺t)t∈[0,1] ,

where γ is a standard Brownian motion started at x. Hence we deduce that

(H2
t )t∈[0,1]

(d)
=
(

φ2
t Y̺t

)

t∈[0,1]
,

where Y
(d)
= Q1

x. Therefore, under R
1
x, we have

X
(d)
=
(

φ2
t Y̺t

)

t∈[0,1]
.

The claim is thus proven for δ = 1 and for any x ≥ 0. Now, by the additivity
property (3.1) satisfied by

(

Qδ
x

)

δ,x≥0
, there exist A,B > 0 such that, for all x, δ ≥ 0,

and all finite Borel measure ν on [0, 1], we have

Qδ
x

[

exp

(

−
∫ 1

0

φ2
t X̺t ν(dt)

)]

= AxBδ,

which can be proved exactly as Corollary 1.3 in Chapter XI of [33]. Note now that
the family of probability laws

(

Rδ
x

)

δ,x≥0
satisfies the same additivity property

∀ δ, δ′, x, x′ ≥ 0, Rδ
x ∗Rδ′

x′ = Rδ+δ′

x+x′.

Hence, there also exist Ã, B̃ > 0 such that, for all x, δ ≥ 0, and µ as above:

Rδ
x

[

exp

(

−
∫ 1

0

Xt ν(dt)

)]

= ÃxB̃δ.

By the previous point, evaluating at δ = 1, we obtain

∀x ≥ 0, AxB = ÃxB̃.

Hence A = Ã and B = B̃, whence we deduce that, for all δ, x ≥ 0

Qδ
x

[

exp

(

−
∫ 1

0

φ2
t X̺t ν(dt)

)]

= Rδ
x

[

exp

(

−
∫ 1

0

Xt ν(dt)

)]

.

Since this holds for any finite measure ν on [0, 1], by injectivity of the Laplace
transform, the claimed equality in law holds for all δ, x ≥ 0. �
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3.2. Squared Bessel bridges and Bessel bridges. For all δ, x, y ≥ 0, we denote
by Qδ

x,y the law, on C([0, 1]), of the δ-dimensional squared Bessel bridge from x

to y over the interval [0, 1]. In other words, Qδ
x,y is the law of of a δ-dimensional

squared Bessel bridge started at x, and conditioned to hitting y at time 1. A
rigourous construction of these probability laws is provided in Chap. XI.3 of [33]
(see also [32] for a discussion on the particular case δ = y = 0).

In the sequel we shall chiefly consider the case x = y = 0, and write Qδ instead

of Qδ
0,0. We recall that if X

(d)
= Qδ, then, for all r ∈ (0, 1), the distribution of the

random variable Xr is given by Γ( δ
2
, 1
2r(1−r)

), so it admits the density qδr given by:

qδr(z) :=
zδ/2−1

(2r(1− r))
δ

2Γ(δ/2)
exp

(

− z

2r(1− r)

)

, z ≥ 0, (3.10)

see Chap. XI.3 of [33].
In the same way as one constructs the laws of squared Bessel bridges Qδ

x,y,
δ, x, y ≥ 0, one can also construct the laws of Bessel bridges. In the following, for
any δ, a, b ≥ 0, we shall denote by P δ

a,b the law, on C([0, 1]), of the δ-dimensional
Bessel bridge from a to b over the time interval [0, 1] (that is, the law of a δ-
dimensional Bessel process started at a and conditioned to hit b at time 1). We
shall denote by Eδ

a,b the expectation operator for P δ
a,b. Morever, when a = b = 0,

we shall drop the subindices and use the compact notations P δ and Eδ. Note that,
for all a, b ≥ 0, P δ

a,b is the image of Qδ
a2,b2 under the map ω 7→ √

ω. In particular,

under the measure P δ, for all r ∈ (0, 1), Xr admits the density pδr on R+, where
by (3.10)

pδr(a) = 2a qδr(a
2) =

aδ−1

2
δ

2
−1 Γ( δ

2
)(r(1− r))δ/2

exp

(

− a2

2r(1− r)

)

, a ≥ 0. (3.11)

3.3. Pinned bridges. Let δ ≥ 0. For all x ≥ 0 and r ∈ (0, 1), we denote by
Qδ[ · |Xr = x] the law, on C([0, 1]), of a δ-dimensional squared Bessel bridge
between 0 and 0, pinned at x at time r (that is, conditioned to hit x at time r).
Such a probability law can be constructed using the same procedure as for the
construction of squared Bessel bridges. One similarly defines, for all a ≥ 0 and
r ∈ (0, 1), the law P δ[ · |Xr = a] of a δ-dimensional Bessel bridge between 0 and
0 pinned at a at time r. Note that the latter probability measure is the image of
Qδ[ · |Xr = a2] under the map (3.4).

With these notations at hand, we now define a family of measures which will
play an important role in the IbPF for Bessel bridges. Heuristically, they should
be related to the local times of the solution (u(t, x))t≥0, x∈[0,1] to an SPDE having
the law of a Bessel bridge as reversible measure.
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Definition 3.4. For all a ≥ 0 and r ∈ (0, 1), we set

Σδ
r(dX | a) := pδr(a)

aδ−1
P δ[dX |Xr = a], (3.12)

where pδr is the probability density function of Xr under P
δ := P δ

0,0, see (3.11).

The measure Σδ
r( · | a) is meant to be the Revuz measure of the diffusion local

time of (u(t, r))t≥0 at level a ≥ 0.

Remark 3.5. Note that, for all r ∈ (0, 1), by (3.11), we have

pδr(a)

aδ−1
=

1

2
δ

2
−1 Γ( δ

2
)(r(1− r))δ/2

exp

(

− a2

2r(1− r)

)

, a > 0,

and the right-hand side is well-defined also for a = 0. It is this quantity that we
consider in equality (3.12) above.

To keep the formulae synthetic, for all r ∈ (0, 1) and a ≥ 0, and all Borel
function Φ : C([0, 1]) → R+, we shall write with a slight abuse of language

Σδ
r(Φ(X) | a) :=

∫

Φ(X) Σδ
r(dX | a).

In the sequel we will have to compute quantities of the form

Σδ
r

(

exp(−〈m,X2〉) | a
)

for m a finite Borel measure on [0, 1]. In that perspective, we introduce some
further notations. Given such a m, following the notation used in [32] (see also
Exercise (1.34), Chap. XI, of [33]), we denote by ψ the function on [0, 1] given by

ψr := φr

∫ r

0

φ−2
u du = φr̺r, r ∈ [0, 1], (3.13)

where ̺ is as in (3.8). Note that ψ is the unique solution on [0, 1] of the Cauchy
problem

{

ψ′′(dr) = 2ψrm(dr)

ψ0 = 0, ψ′
0 = 1.

Moreover, we denote by ψ̂ the function on [0, 1] given by

ψ̂r := φ1φr(̺1 − ̺r) = ψ1φr − ψrφ1, r ∈ [0, 1]. (3.14)

Note that ψ̂ satisfies the following problem on [0, 1]
{

ψ̂′′(dr) = 2 ψ̂rm(dr)

ψ̂1 = 0, ψ̂′
1 = −1.

Note that the functions φ, ψ and ψ̂ take positive values on ]0, 1[.
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Lemma 3.6. For all r ∈ (0, 1), δ > 0 and a ≥ 0, the following holds:
∫

exp(−〈m,X2〉) Σδ
r(dX | a) = 1

2
δ

2
−1 Γ( δ

2
)
exp

(

−a
2

2
Cr

)

Dδ/2
r , (3.15)

where

Cr =
ψ1

ψrψ̂r

, Dr =
1

ψrψ̂r

.

Proof. First note that by (3.5) and (3.12), we have

∫

exp(−〈m,X2〉) Σδ
r(dX | a) = 2

qδr(a
2)

aδ−2
Qδ[exp(−〈m,X〉) |Xr = a2]. (3.16)

To obtain the claim, it therefore suffices to compute

Qδ[exp(−〈m,X〉) |Xr = a2], Qδ := Qδ
0,0.

To do so, consider two Borel functions f, g : R+ → R+. We have
∫ ∞

0

∫ ∞

0

Qδ
0[exp(−〈m,X〉) |Xr = x,X1 = y] qδr(a

2, x)qδ1−r(x, y)f(x)g(y) dx dy =

= Qδ
0 [exp(−〈m,X〉)f(Xr)g(X1)] = φ

δ

2
1Q

δ
0

[

f
(

φ2
rX̺r

)

g
(

φ2
1X̺1

)]

=

= φ
δ/2−2
1 φ−2

r

∫ ∞

0

∫ ∞

0

qδ̺r

(

0,
x

φ2
r

)

qδ̺1−̺r

(

x

φ2
r

,
y

φ2
1

)

f(x)g(y) dx dy.

Here, we used Lemma 3.3 to obtain the third line. Since the functions f and g are
arbitrary we deduce that:

Qδ
0[exp(−〈m,X〉) |Xr = x,X1 = y] = φ

δ/2−2
1 φ−2

r

qδ̺r

(

0, x
φ2
r

)

qδ̺1−̺r

(

x
φ2
r

, y
φ2
1

)

qδr(0, x) q
δ
1−r(x, y)

dx dy a.e. on R
∗
+
2. Since the family of measures

(

Qδ
x,y

)

x,y≥0
is continuous in

(x, y) ∈ R
2
+ for the weak topology on probability measures (see [33], Section XI.3),

we deduce that, for all x ≥ 0

Qδ[exp(−〈m,X〉) |Xr = x] = lim
y→0
y>0

φ
δ/2−2
1 φ−2

r

qδ̺r

(

0, x
φ2
r

)

qδ̺1−̺r

(

x
φ2
r

, y
φ2
1

)

qδr(0, x) q
δ
1−r(x, y)

.

But, by (3.2) and (3.3), we have

qδ̺r

(

0, x
φ2
r

)

qδr(0, x)
=

(

r

̺r

)
δ

2

φ2−δ
r exp

(

−x
2

(

1

φ2
r̺r

− 1

r

))
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and

lim
y→0
y>0

qδ̺1−̺r

(

x
φ2
r

, y
φ2
1

)

qδ1−r(x, y)
=

(

1− r

̺1 − ̺r

)
δ

2

φ2−δ
1 exp

(

−x
2

(

1

φ2
r(̺1 − ̺r)

− 1

1− r

))

.

We thus obtain

Qδ[exp(−〈m,X〉) |Xr = x] =

= φ
−δ/2
1 φ−δ

r

(

r(1− r)

̺r(̺1 − ̺r)

) δ

2

exp

(

−x
2

(

̺1
φ2
r̺r(̺1 − ̺r)

− 1

r(1− r)

))

=

=

(

r(1− r)

ψrψ̂r

) δ

2

exp

(

−x
2

(

ψ1

ψrψ̂r

− 1

r(1− r)

))

,

(3.17)

where the second equality follows from the relations (3.13)-(3.14) defining ψ and ψ̂.
Applying this equality to x = a2, and replacing in (3.16), we obtain the claim. �

Remark 3.7. Along the proof of the above Proposition, for δ > 0, a ≥ 0, r ∈
(0, 1) and m as above, we also obtained from equality (3.17) the following, useful
expression

Qδ
[

exp(−〈m,X〉) |Xr = a2
]

= Eδ[exp(−〈m,X2〉) |Xr = a]

= exp

(

−a
2

2

(

ψ1

ψrψ̂r

− 1

r(1− r)

))(

r(1− r)

ψrψ̂r

)δ/2

.
(3.18)

4. Integration by parts formulae

Here and in the sequel, we denote by S the linear span of all functionals on
C([0, 1]) of the form

C([0, 1]) ∋ X 7→ exp
(

−〈m,X2〉
)

∈ R (4.1)

where m is a finite Borel measure on [0, 1]. The elements of S are the functionals
for which we will derive our IbPFs wrt the laws of Bessel bridges.

4.1. The statement. After recalling the definition (1.7) of κ(δ) = (δ−3)(δ−1)
4

, δ ∈
R, we can now state one of the main results of this article.

Theorem 4.1. Let δ ∈ (0,∞) \ {1, 3}, and k := ⌊3−δ
2
⌋ ≤ 1. Then, for all Φ ∈ S

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) =

= −κ(δ)
∫ 1

0

hr

∫ ∞

0

aδ−4
[

T 2k
a Σδ

r(Φ(X) | · )
]

da dr,
(4.2)
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where T n
x is the Taylor remainder defined in (2.3). On the other hand, when

δ ∈ {1, 3}, the following formulae hold for all Φ ∈ S

E3(∂hΦ(X)) + E3(〈h′′, X〉Φ(X)) = −1

2

∫ 1

0

hr Σ
3
r(Φ(X) | 0) dr, (4.3)

E1(∂hΦ(X)) + E1(〈h′′, X〉Φ(X)) =
1

4

∫ 1

0

hr
d2

da2
Σ1

r(Φ(X) | a)
∣

∣

∣

∣

a=0

dr. (4.4)

Remark 4.2. Note that the last integral in (4.5) is indeed convergent. Indeed,
by Lemma 3.6 T 2k

a Σδ
r(Φ(X) | · ) is the Taylor remainder of order 2k at 0 of a

smooth, even, function. Hence, near 0, the integrand is of order O(aδ+2k−2). Since,
δ + 2k − 2 > −1, the integral is convergent at 0. On the other hand, near ∞, the
integrand is of order O(aδ+2k−4). Since δ + 2k − 4 < −1, integrability also holds
at +∞.

Remark 4.3. For all δ ∈ (1, 3) the right-hand side in the IbPF (4.13) takes the
form

−κ(δ)
∫ 1

0

hr

∫ ∞

0

aδ−4
[

Σδ
r(Φ(X) | a)− Σδ

r(Φ(X) | 0)
]

da dr.

Note the absence of transition at the threshold δ = 2. This might seem surprising
given the transition that the Bessel bridges undergo at δ = 2, which is the smallest
value of δ satisfying

P δ [∃r ∈ ]0, 1[ : Xr = 0] = 0.

This lack of transition is related to the fact that, as a consequence of Lemma 3.6,
we have for all Φ ∈ E :

d

da
Σδ

r(Φ(X) | a)
∣

∣

∣

∣

a=0

= 0.

Remark 4.4. In the IbPF (4.2), the last term may equivalently be written as

− κ(δ)

∫ 1

0

hr

∫ ∞

0

a−3
[

T 2k
a Σδ

r(Φ(X) | · )
]

mδ(da) dr (4.5)

where mδ is the measure on R+ defined by

mδ(da) = 1a>0 a
δ−1 da.

Note thatmδ is a reversible measure for the δ-dimensional Bessel process. Actually,
if (Xt)t≥0 is a δ dimensional Bessel process, we can construct a bicontinuous family
of diffusion local times (ℓat )a,t≥0, satisfying the occupation times formula

∫ t

0

f (Xs) ds =

∫ +∞

0

f(a) ℓat mδ(da),

for all f : R+ → R+ bounded and Borel. We hope that such a property should
hold also for (u(t, x))t≥0, for all x ∈ (0, 1) where u is the hypothetical solution of
the dynamics corresponding to P δ. In that case the term (4.5) should correspond,
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in the dynamics, to a drift in u−3 integrated against renormalized local times. We
shall develop this idea more in detail in Section 6 below.

As a consequence of the above theorem, we retrieve the following known results,
see Chapter 6 of [44] and (1.16)-(1.17) above.

Proposition 4.5. Let Φ ∈ S and h ∈ C2
c (0, 1). Then, for all δ > 3, the following

IbPF holds

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) = −κ(δ)Eδ(〈h,X−3〉Φ(X)). (4.6)

Moreover, for δ = 3, the following IbPF holds

E3(∂hΦ(X)) + E3(〈h′′, X〉Φ(X)) =

= −
∫ 1

0

dr
hr

√

2πr3(1− r)3
E3[Φ(X) |Xr = 0].

(4.7)

Proof. For δ > 3 we have k := ⌊3−δ
2
⌋ < 0, and by (4.13)

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) =

= −κ(δ)
∫ 1

0

hr

∫ ∞

0

aδ−4 Σδ
r(Φ(X) | a) da dr

= −κ(δ)
∫ 1

0

hr

∫ ∞

0

a−3 pδr(a)E
δ[Φ(X) |Xr = a] da dr

= −κ(δ)Eδ(〈h,X−3〉Φ(X)).

For δ = 3, it suffices to note that, for all r ∈ (0, 1)

1

2
lim
ǫ↓0

p3r(ǫ)

ǫ2
=

1
√

2πr3(1− r)3
,

so that
1

2
Σ3

r(Φ(X) | 0 ) = 1
√

2πr3(1− r)3
E3[Φ(X) |Xr = 0],

and the proof is complete. �

4.2. Proof of Theorem 4.1. We first state a differential relation satisfied by the
product of the functions ψ and ψ̂ associated as above with a finite Borel measure
m on [0, 1]. This relation is the skeleton of all the IbPFs for P δ, δ > 0 : the latter
will all be deduced from the former with a simple multiplication by a constant
(depending on the parameter δ).

Lemma 4.6. Let m be a finite Borel measure on [0, 1], and consider the functions

ψ and ψ̂ as in (3.13) and (3.14). Then, for all h ∈ C2
c (0, 1) and δ > 0, the

following equality holds
∫ 1

0

√

ψrψ̂r (h
′′
r dr − 2hrm(dr)) = −1

4
ψ2
1

∫ 1

0

hr(ψrψ̂r)
− 3

2 dr. (4.8)
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Proof. Performing an integration by parts, we can rewrite the left-hand side as
∫ 1

0

hr

(

d2

dr2
− 2m(dr)

)

(

ψrψ̂r

)
1
2
.

Note that here we are integrating wrt the signed measure
(

d2

dr2
− 2m(dr)

)

(

ψrψ̂r

)
1
2

=
d2

dr2

(

ψrψ̂r

)
1
2 − 2

(

ψrψ̂r

)
1
2

m(dr).

Now, we have

d2

dr2

(

ψψ̂
)

1
2

=
1

2

ψ′′ψ̂ + 2ψ′ψ̂′ + ψψ̂′′

(ψψ̂)
1
2

− 1

4

(ψ′ψ̂ + ψψ̂′)2

(ψψ̂)3/2
.

Recalling that ψ′′ = 2ψm and ψ̂′′ = 2ψ̂ m, we obtain
(

d2

dr2
− 2m(dr)

)

(

ψψ̂
)

1
2
=
ψ′ψ̂′ψψ̂ − 1

4
(ψ′ψ̂ + ψψ̂′)2

(ψψ̂)3/2

=− 1

4

(ψ′ψ̂ − ψψ̂′)2

(ψψ̂)3/2
.

Using the expressions (3.13) and (3.14) for ψ and ψ̂, we easily see that

ψ′
rψ̂r − ψψ̂′

r = ψ1, r ∈ (0, 1). (4.9)

Hence, we obtain the following equality of signed measures:
(

d2

dr2
− 2m

)

(

ψψ̂
) 1

2
= −1

4

ψ2
1

(ψrψ̂r)3/2
dr.

Consequently, the left-hand side in (4.8) is equal to

−1

4
ψ2
1

∫ 1

0

dr hr

(

ψrψ̂r

)−3/2

.

The claim follows. �

As a consequence, we obtain the following preliminary result.

Lemma 4.7. Let m be a finite measure on [0, 1], and let Φ : C([0, 1]) → R be the
functional thereto associated as in (4.1). Then, for all δ > 0 and h ∈ C2

c (0, 1),

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) =

= − Γ( δ+1
2
)

2
3
2 Γ( δ

2
)
ψ

− δ−3
2

1

∫ 1

0

hr

(

ψrψ̂r

)− 3
2
dr,

(4.10)

where ψ and ψ̂ are associated with m as in (3.13) and (3.14).



BESSEL SPDES AND RENORMALIZED LOCAL TIMES 23

Proof. By the expression (4.1) for Φ, we have

∂hΦ(X) = −2〈Xh,m〉Φ(X).

Therefore

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) = Qδ
[(

〈h′′,
√
X〉 − 2〈h

√
X,m〉

)

e−〈m,X〉
]

=

=

∫ 1

0

(h′′r dr − 2hrm(dr))

∫ +∞

0

Γ

(

δ

2
,

1

2r(1− r)

)

(da)
√
aQδ

[

e−〈m,X〉
∣

∣ Xr = a
]

.

By (3.18) we obtain:

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) =

=

∫ 1

0

(h′′r dr − 2hrm(dr))
Γ( δ+1

2
)

Γ( δ
2
)

(

Cr

2
ψδ
1

)− 1
2
∫ +∞

0

Γ

(

δ + 1

2
,
Cr

2

)

(da)

=
√
2
Γ( δ+1

2
)

Γ( δ
2
)
ψ

− δ+1
2

1

∫ 1

0

dr (h′′r dr − 2hrm(dr))

√

ψrψ̂r.

Finally, by (4.8), the latter expression is equal to

− Γ( δ+1
2
)

2
3
2 Γ( δ

2
)
ψ

− δ−3
2

1

∫ 1

0

hr

(

ψrψ̂r

)− 3
2
dr

and the proof is complete. �

Apart from the above lemma, the proof of the IbPF for P δ, δ > 0, will require
integral expressions for negative Gamma values. For all x ∈ R we set ⌊x⌋ :=
sup{k ∈ Z : k ≤ x}. We also use the notation Z

− := {n ∈ Z : n ≤ 0}.
Lemma 4.8. For all x ∈ R \ Z−

Γ(x) =

∫ ∞

0

tx−1T ⌊−x⌋
t (e− · ) dt.

Proof. By Remark 2.6 we have
∫ ∞

0

tx−1T ⌊−x⌋
t (e− · ) dt = Γ(x) 〈µα, e

−·〉 = Γ(x) 1x = Γ(x),

and the claim follows. �

From Lemma 4.8 we obtain for all C > 0, x ∈ R \ Z−

Γ(x)C−x = 21−x

∫ +∞

0

a2x−1



e−C a
2

2 −
∑

0≤j≤⌊−x⌋

(−C)ja2j
2jj!



 da (4.11)

by a simple change of variable t = Cb2/2. Then (4.11) can be rewritten as follows

Γ(x)C−x = 21−x

∫ +∞

0

a2x−1 T 2⌊−x⌋
a

(

e−C (·)2

2

)

da, x ∈ R \ Z−. (4.12)
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Theorem 4.9. Let δ > 0, δ /∈ {1, 3}, and k := ⌊3−δ
2
⌋ ≤ 1. Then

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) =

= −κ(δ)
∫ 1

0

hr

∫ ∞

0

aδ−4
[

T 2k
a Σδ

r(Φ(X) | · )
]

da dr.
(4.13)

Proof of Theorem 4.9. Let δ > 0 and δ /∈ {1, 3}. Then by (4.10)

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) =

= − Γ( δ+1
2
)

23/2 Γ( δ
2
)

∫ 1

0

hr

(

ψ1

ψrψ̂r

)
3−δ

2 (

ψrψ̂r

)− δ

2

dr

= − Γ( δ+1
2
)

23/2 Γ( δ
2
)

∫ 1

0

hr C
3−δ

2
r Dδ/2

r dr

= − Γ( δ+1
2
)

23/2Γ( δ
2
)

2
5−δ

2

Γ
(

δ−3
2

)

∫ 1

0

hrD
δ/2
r

∫ ∞

0

aδ−4 T 2k
a e−

Cr

2
(·)2 da dr,

where we used (4.12) with C = Cr and x = δ−3
2

to obtain the last line. Recalling

the expression (3.15) for Σδ
r(Φ(X) | a), we thus obtain

Eδ(∂hΦ(X)) + Eδ(〈h′′, X〉Φ(X)) =

= −Γ( δ+1
2
)

Γ( δ−3
2
)

∫ 1

0

hr

∫ ∞

0

aδ−4 T k
2a Σ

δ
r(Φ(X) | a) da dr.

Now, since δ /∈ {1, 3},
Γ( δ+1

2
) = δ−1

2
Γ( δ−1

2
) = δ−1

2
δ−3
2

Γ( δ−3
2
) = κ(δ) Γ( δ−3

2
).

Therefore
Γ( δ+1

2
)

Γ( δ−3
2

)
= κ(δ) and we obtain the claim. �

There remains to treat the critical cases δ ∈ {1, 3}.
Theorem 4.10. Let Φ ∈ S and h ∈ C2

c (0, 1). The following IbPFs holds

E3(∂hΦ(X)) + E3(〈h′′, X〉Φ(X)) = −1

2

∫ 1

0

dr hr Σ
3
r(Φ(X) | 0),

E1(∂hΦ(X)) + E1(〈h′′, X〉Φ(X)) =
1

4

∫ 1

0

dr hr
d2

da2
Σ1

r(Φ(X) | a)
∣

∣

∣

∣

a=0

. (4.14)

Proof. By linearity, we may assume that Φ is of the form (4.1). For δ = 3 we have
by (4.10)

E3(∂hΦ(X)) + E3(〈h′′, X〉Φ(X)) = − 1

2
3
2 Γ(3

2
)

∫ 1

0

hr

(

ψrψ̂r

)− 3
2
dr.
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By (3.15) this equals

−1

2

∫ 1

0

dr hr Σ
3
r(Φ(X) | 0)

and the proof is complete. For δ = 1, by (4.10), we have

E1(∂hΦ(X) + 〈h′′, X〉Φ(X)) = − 1

2
√
2π

ψ1

∫ 1

0

hr

(

ψrψ̂r

)− 3
2
dr.

But by (3.15) we have, for all r ∈ (0, 1)

d2

da2
Σ1

r(Φ(X) | a)
∣

∣

∣

∣

a=0

= − CrD
1
2
r

2−
1
2 Γ(1

2
)
= −

√

2

π
ψ1

(

ψrψ̂r

)− 3
2
.

The claimed IbPF follows. �

Remark 4.11. In [42] for the reflecting Brownian motion, and then in [19] for the
Reflecting Brownian bridge, a different formula was proved in the case δ = 1. In
our present notations, for (βr)r∈[0,1] a Brownian bridge and X := |β|, the formula
reads

E(∂hΦ(X)) + E(〈h′′, X〉Φ(X)) = lim
ǫ→0

2E

(

Φ(X)

∫ 1

0

hr

[

(

β̇ǫ
r

)2

− cǫr

]

dL0
r

)

,

(4.15)
where Φ : H → R is any Lipschitz function, h ∈ C2

0(0, 1), L
0 is the standard local

time of β at 0 and for some even smooth mollifier ρǫ we set

βǫ := ρǫ ∗ β, cǫr :=
‖ρ‖2L2(0,1)

ǫ
.

The reason why (4.15) is strictly weaker than (4.14), is that the former depends
explicitly on β, while the latter is written only in terms of X . This will become
crucial when we compute the SPDE satisfied by u for δ = 1 in Theorem 5.7 below.

5. The dynamics via Dirichlet forms

In this section we exploit the IbPF obtained above to construct a weak version
of the gradient dynamics associated with P 1, using the theory of Dirichlet forms.
The reason for considering the particular value δ = 1 is that we can exploit a
representation of the Bessel bridge in terms of a Brownian bridge, for which the
corresponding gradient dynamics is well-known and corresponds to a linear sto-
chastic heat equation. This representation allows us to construct a quasi-regular
Dirichlet form associated with P 1, a construction which does not follow from the
IbPF (4.10) due to the distributional character of its last term. The IbPF (4.10)
is then exploited to prove that the associated Markov process, at equilibrium, sat-
isfies (1.15). The treatment of the particular value δ = 1 is also motivated by
potential applications to scaling limits of dynamical critical pinning models, see
e.g. [37] and [8].
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For the sake of our analysis, instead of working on the Banach space C([0, 1]),
it shall actually be more convenient to work on the Hilbert space H := L2(0, 1)
endowed with the L2 inner product

〈f, g〉 =
∫ 1

0

fr gr dr, f, g ∈ H.

We shall denote by ‖ · ‖ the corresponding norm on H . Moreover we denote by
µ the law of β on H , where β is a Brownian bridge from 0 to 0 over the interval
[0, 1]. We shall use the shorthand notation L2(µ) for the space L2(H, µ). We also
consider the closed subset K ⊂ H of nonnegative functions

K := {z ∈ H, z ≥ 0 a.e.}.
Note thatK is a Polish space. We further denote by ν the law, onK, of the 1-Bessel
bridge from 0 to 0 on [0, 1] (so that P 1 is then the restriction of ν to C([0, 1])).
We shall use the shorthand L2(ν) to denote the space L2(K, ν). Denoting by
j : H → K the absolute value map

j(z) := |z|, z ∈ H, (5.1)

we remark that the map L2(ν) ∋ ϕ 7→ ϕ ◦ j ∈ L2(µ) is an isometry.

5.1. The one-dimensional random string. Consider the Ornstein-Uhlenbeck
semigroup (Qt)t≥0 on H defined, for all F ∈ L2(µ) and z ∈ H , by

QtF (z) := E [F (vt(z))] , t ≥ 0,

where (vt(z))t≥0 is the solution to the stochastic heat equation on [0, 1] with initial
condition z, and with homogeneous Dirichlet boundary conditions











∂v
∂t

= 1
2
∂2v
∂x2 + ξ

v(0, x) = z(x), x ∈ [0, 1]

v(t, 0) = v(t, 1) = 0, t > 0

(5.2)

with ξ a space-time white noise on R+ × [0, 1]. Recall that v can be written ex-
plicitly in terms of the fundamental solution (gt(x, x

′))t≥0, x,x′∈(0,1) of the stochastic
heat equation with homogeneous Dirichlet boundary conditions on [0, 1], which by
definition is the unique solution to











∂g
∂t

= 1
2
∂2g
∂x2

g0(x, x
′) = δx(x

′)

gt(x, 0) = gt(x, 1) = 0.

Recall further that g can be represented as follows:

∀t > 0, ∀x, x′ ≥ 0, gt(x, x
′) =

∞
∑

k=1

e−
λk

2
tek(x)ek(x

′), (5.3)
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where (ek)k≥1 is the complete orthornormal system of H given by

ek(x) :=
√
2 sin(kπx), x ∈ [0, 1], k ≥ 1

and λk := k2π2, k ≥ 1. We can then represent u as follows:

v(t, x) = z(t, x) +

∫ t

0

∫ 1

0

gt−s(x, x
′) ξ(ds, dx′),

where z(t, x) :=
∫ 1

0
gt(x, x

′)z(x′) dx′, and the double integral is a stochastic convo-
lution. In particular, it follows from this fomula that v is a Gaussian process. An
important role will be played by its covariance function. Namely, for all t ≥ 0 and
x, x′ ∈ (0, 1), we set

qt(x, x
′) := Cov(v(t, x), v(t, x′)) =

∫ t

0

g2τ (x, x
′) dτ.

We also set

q∞(x, x′) :=

∫ ∞

0

g2τ (x, x
′) dτ = E[βxβx′ ] = x ∧ x′ − xx′.

For all t ≥ 0, we set moreover

qt(x, x′) := q∞(x, x′)− qt(x, x
′) =

∫ ∞

t

g2τ (x, x
′) dτ.

When x = x′, we will use the shorthand notations qt(x), q∞(x) and qt(x) instead
of qt(x, x), q∞(x, x) and qt(x, x) respectively. Finally, we denote by (Λ, D(Λ)) the
Dirichlet form associated with (Qt)t≥0 in L2(H, µ), and which is given by

Λ(F,G) =
1

2

∫

H

〈∇F,∇G〉 dµ, F,G ∈ D(Λ) = W 1,2(µ).

Here, for all F ∈ W 1,2(µ), ∇F : H → H is the gradient of F , see [5]. The
corresponding family of resolvents (Rλ)λ>0 is then given by

RλF (z) =

∫ ∞

0

e−λtQtF (z) dt, z ∈ H, λ > 0, F ∈ L2(µ).

5.2. Dirichlet form. In this section we construct the Dirichlet form associated
with our equation (1.12), and the associated Markov process (ut)t≥0.

Let FC∞
b (H) denote the space of all functionals F : H → R of the form

F (z) = ψ(〈l1, z〉, . . . , 〈lm, z〉), z ∈ H, (5.4)

with m ∈ N, ψ ∈ C∞
b (Rm), and l1, . . . , lm ∈ Span{ek, k ≥ 1}. Recalling that

K := {z ∈ H, z ≥ 0}, we also define:

FC∞
b (K) :=

{

F
∣

∣

K
, F ∈ FC∞

b (H)
}

.

Moreover, for f ∈ FC∞
b (K) of the form f = F

∣

∣

K
, with F ∈ FC∞

b (H), we define
∇f : K → H by

∇f(z) = ∇F (z), z ∈ K,
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where this definition does not depend on the choice of F . We denote by E the
bilinear form defined on FC∞

b (K) by

E(f, g) := 1

2

∫

〈∇f,∇g〉 dν, f, g ∈ FC∞
b (K),

Proposition 5.1. The form (E ,FC∞
b (K)) is closable. Its closure (E , D(E)) is a

local, quasi-regular Dirichlet form on L2(ν). Moreover, for all f ∈ D(E), f ◦ j ∈
D(Λ), and we have

∀f, g ∈ D(E), E(f, g) = Λ(f ◦ j, g ◦ j) (5.5)

The proof of Proposition 5.1 is postponed to Appendix A.

Let (Qt)t≥0 be the contraction semigroup on L2(K, ν) associated with the Dirich-
let form (E , D(E)), and let (Rλ)λ>0 be the associated family of resolvents. Let also
Bb(K) denote the set of Borel and bounded functions on K. As a consequence of
Prop. 5.1, in virtue of Thm IV.3.5 and Thm V.1.5 in [27], we obtain the following
result.

Corollary 5.2. There exists a diffusion process M = {Ω,F , (ut)t≥0, (Px)x∈K}
properly associated to (E , D(E)), i.e. for all ϕ ∈ L2(ν) ∩ Bb(K), and for all t > 0,
Ex(ϕ(ut)), x ∈ K, defines an E quasi-continuous version of Qtϕ. Moreover, the
process M admits the following continuity property

Px[t 7→ ut is continuous on R+] = 1, for E − q.e. x ∈ K.

The rest of this section will be devoted to show that for E-q.e. x ∈ K, under
Px, (ut)t≥0 solves (1.12), or rather its weaker form (1.15).

In the sequel, we set Λ1 := Λ+(·, ·)L2(µ) and E1 := E+(·, ·)L2(ν), which are inner
products for the Hilbert spaces D(Λ) and D(E) respectively. We shall also write
in an abusive way, for any Φ ∈ C1(H)

E1(Φ,Φ) :=
∫

K

Φ2 dν +
1

2

∫

K

‖∇Φ‖2H .

Since the Dirichlet form (E , D(E)) is quasi-regular, by the transfer method stated
in VI.2 of [27], we can apply several results of [13] in our setting.

An important technical point is the density of the space S introduced in Section
4 above in the Dirichlet space D(E). To state this precisely, we consider S to be
the vector space generated by functionals F : H → R of the form

F (ζ) = exp(−〈θ, ζ2〉), ζ ∈ H,

for some θ : [0, 1] → R+ Borel and bounded. Note that S may be seen as a
subspace of the space S of Section 4 in the following sense: for any F ∈ S ,
F |C([0,1]) ∈ S. We also set:

SK := {F
∣

∣

K
, F ∈ S }.

Lemma 5.3. SK is dense in D(E).



BESSEL SPDES AND RENORMALIZED LOCAL TIMES 29

The proof of Lemma 5.3 is postponed to Appendix A.

5.3. Convergence of one-potentials. The key tool in showing that the Markov
process constructed above defines a solution of (1.15) is the IBPF (4.10). The rule
of thumb is that the last term in the IbPF yields the expression of the drift in the
SPDE. Recall however that, for any fixed h ∈ C2

c (0, 1), the last term in (4.10) is
given:

1

4

∫ 1

0

dr hr
d2

da2
Σ1

r(Φ(X) | a)
∣

∣

∣

∣

a=0

, Φ ∈ S,

which defines a generalized functional in the sense of Schwartz, rather than a
genuine measure, on C([0, 1]). It is therefore not immediate to translate the IbPF
in terms of the corresponding dynamics. The strategy we follow to handle this
difficulty consists in approximating the above generalized functional by a sequence
of measures admitting a smooth density w.r.t. the law of the reflecting Brownian
bridge, and showing that the corresponding one-potentials converge in the Dirichlet
space D(E). This will imply that the associated additive functionals converge to
the functional describing the drift in the SPDE.

More precisely, let ρ be a smooth function supported on [−1, 1] such that

ρ ≥ 0,

∫ 1

−1

ρ = 1, ρ(y) = ρ(−y), y ∈ R.

For all ǫ > 0, let

ρǫ(y) :=
1

ǫ
ρ
(y

ǫ

)

, y ∈ R. (5.6)

Then, for all Φ ∈ S and h ∈ C2
c (0, 1), the right-hand side of the IbPF (4.14) can

be rewritten as follows

1

4

∫ 1

0

hr
d2

da2
Σ1

r(Φ(X) | a)
∣

∣

∣

∣

a=0

dr =
1

2
lim
ǫ→0

E

[

Φ(|β|)
∫ 1

0

hr ρ
′′
ǫ (βr) dr

]

. (5.7)

Indeed, starting from the right-hand side, by conditioning on the value of |βr|, and
recalling that |β| (d)

= ν, the equality follows at once.
We will now show that the convergence of measures (5.7) can be enhanced to

a convergence in the Dirichlet space D(Λ) of the associated one-potentials. We
henceforth fix a function h ∈ C2

c (0, 1). Then there exists δ ∈ (0, 1) such that h is
supported in [δ, 1 − δ]. For all ǫ > 0, let Gǫ : H → R be defined by

Gǫ(z) :=
1

2

∫ 1

0

hr ρ
′′
ǫ (zr) dr, z ∈ H. (5.8)

For all t > 0 and z ∈ H , we have

QtGǫ(z) =

∫ 1

0

hr

2
√

2πqt(r)

∫

R

ρ′′ǫ (a) exp

(

−(a− z(t, r))2

2qt(r)

)

da dr,
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where, for all x ∈ (0, 1), z(t, x) :=
∫ 1

0
gt(x, x

′)z(x′) dx′. For all ǫ > 0, we define the
functional Uǫ : H → R by

Uǫ(z) =

∫ ∞

0

e−tQtGǫ(z) dt, z ∈ H.

Note that Uǫ is the one-potential of the additive functional
∫ t

0

Gǫ(v(s, ·)) ds, t ≥ 0,

associated with the Markov process (v(t, ·))t≥0 in H defined in (5.2) (see Section
5 of [13] for this terminology). In particular, Uǫ ∈ D(Λ).

Proposition 5.4. As ǫ ↓ 0, Uǫ→U in D(Λ), where for all z ∈ H

U(z) :=

∫ ∞

0

dt e−t

∫ 1

0

dr
hr

2
√

2πqt(r)3

[

z(t, r)2

qt(r)
− 1

]

exp

(

−z(t, r)
2

2qt(r)

)

. (5.9)

Proof. First note that U is well-defined. Indeed, the function ϕ : R → R

ϕ(y) = (y2 − 1) e−y2/2, y ∈ R

is globally bounded on R. Note also that, by the bound (22) in [41], there exists
cδ > 0 such that

∀t > 0, ∀r ∈ [δ, 1− δ], qt(r) ≥ cδ
√
t. (5.10)

Hence, the integrand in (5.9) is bounded by

e−t |hr|
2
√

2πqt(r)3
‖ϕ‖L∞(R) ≤ e−tt−3/4 |hr|

2
√
2πc3δ

‖ϕ‖L∞(R),

which is integrable on R+ × [0, 1]. Note now that U ∈ L2(µ). Indeed, if z
is an H valued random variable with law µ, then, for all r ∈ (0, 1), z(t, r) =
∫ 1

0
gt(r, x)z(x) dx is a centered Gaussian random variable with variance

∫ 1

0

∫ 1

0

gt(r, x)gt(r, y)q∞(x, y) dx dy = qt(r).

Therefore

‖U‖L2(µ) ≤
∫ ∞

0

dt e−t

∫ 1

0

dr
|hr|

2
√

2πqt(r)3

(
∫

R

ϕ
(

x/
√

qt(r)
)2

N (0, qt(r))(dx)

)
1
2

≤
∫ ∞

0

dt e−t

∫ 1

0

dr
|hr|

2
√

2πqt(r)3

{

‖ϕ‖L∞(R) ∧
(

qt(r)

2πqt(r)

)
1
4

‖ϕ‖L2(R)

}

≤
∫ 1

0

dt

∫ 1

0

dr
|hr|‖ϕ‖L2(R)

2(2π)3/4qt(r)5/4q1(r)
+

∫ ∞

1

dt e−t

∫ 1

0

dr
|hr|‖ϕ‖L∞(R)

2
√

2πq1(r)3
.
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By (5.10), the first integral in the last line is convergent, and so is the second one,
whence U ∈ L2(µ) as claimed. Now, differentiating under the integrals in (5.9),
we see that U is differentiable on H , and that for all z ∈ H

∇U(z) =
∫ ∞

0

dt e−t

∫ 1

0

dr
hr gt(r, ·)

2
√

2πqt(r)4
ψ
(

z(t, r)/
√

qt(r)
)

, (5.11)

where

ψ(x) := (3x− x3) e−x2/2, x ∈ R.

Note that ψ is globally bounded and square integrable on R. In particular, the
right-hand side of (5.11) is well-defined. Indeed, by (22) in [41], there exists c > 0
such that, for all t > 0 and r ∈ (0, 1)

1

qt(r)
≤ c

r(1− r)
. (5.12)

Since, moreover, for all r, s ∈ (0, 1)
∫ ∞

0

gt(r, s) dt ≤
∞
∑

k=1

1

λk
<∞,

the integrand in (5.11) is indeed integrable on R+ × (0, 1). We now show that
∇U ∈ L2(H, µ ;H). Noting that, by (27) in [41],

‖gt(r, ·)‖ ≤ 1

t
1
4

, t > 0,

we have

‖∇U‖L2 ≤
∫ ∞

0

dt e−t

∫ 1

0

dr
|hr| t−1/4

2
√

2πqt(r)4

(
∫

R

ψ
(

x/
√

qt(r)
)2

N (0, qt(r))(dx)

)
1
2

,

where we use the shorthand notation ‖ · ‖L2 for ‖ · ‖L2(H,µ ;H). Hence

‖∇U‖L2 ≤
∫ ∞

0

dt e−t

∫ 1

0

dr
|hr| t−1/4

2
√

2πqt(r)4

{

‖ψ‖L∞(R) ∧
(

qt(r)

2πqt(r)

)
1
4

‖ψ‖L2(R)

}

≤
∫ 1

0

dt

∫ 1

0

dr
|hr| ‖ψ‖L2(R) t

−1/4

2(2π)3/4(q1(r))
1
4 qt(r)7/4

+

∫ ∞

1

dt e−t

∫ 1

0

dr
|hr| ‖ψ‖L∞(R)

2
√

2πq1(r)4
.

Since, for all t > 0 and r ∈ (0, 1)

t−1/4

qt(r)7/4
≤
(

c

r(1− r)

)7/4

t−1/4,

and since h is compactly supported in (0, 1), the first integral in the last line
above is convergent. Since the second integral is also convergent, we deduce that
∇U ∈ L2(H, µ ;H) as claimed. We have thus proved that U ∈ W 1,2(H, µ) = D(Λ).
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We show now that Uǫ converges in D(Λ) as ǫ → 0. To do so, remark that, for
all z ∈ H , we have

Uǫ(z) =

∫ ∞

0

dt e−t

∫ 1

0

dr
hr

2
√

2πqt(r)

∫

R

ρ′′ǫ (a) exp

(

−(a− z(t, r))2

2qt(r)

)

da,

which, upon integrating by parts twice in the last integral, we can rewrite

Uǫ(z) =

∫ ∞

0

∫ 1

0

hrζ(dt, dr)

∫

R

ρǫ(a)

[

(a− z(t, r))2

qt(r)
− 1

]

exp

(

−(a− z(t, r))2

2qt(r)

)

da,

where we have introduced the compact notation

ζ(dt, dr) :=
e−t

2
√

2πqt(r)3
dt dr.

Hence, for all z ∈ H , Uǫ(z)− U(z) is equal to

∫ ∞

0

∫ 1

0

hr ζ(dt, dr)

∫

R

dx ρ(x)

[

ϕ

(

z(t, r)− ǫx
√

qt(r)

)

− ϕ

(

z(t, r)
√

qt(r)

)]

.

Hence, reasoning as in the previous computations,

‖Uǫ − U‖L2(µ) ≤
∫ ∞

0

∫ 1

0

|hr| ζ(dt, dr)
∫

R

dx ρ(x) ·

·
{

√
2‖ϕ‖L∞(R) ∧

(

qt(r)

2πqt(r)

) 1
4 ∣
∣

∣

∣

∣

∣
ϕ
(

· − ǫx/
√

qt(r)
)

− ϕ
∣

∣

∣

∣

∣

∣

L2(R)

}

.

By the Dominated Convergence Theorem, for all t > 0, r ∈ (0, 1) and x ∈ R

∣

∣

∣

∣

∣

∣
ϕ
(

· − ǫx/
√

qt(r)
)

− ϕ
∣

∣

∣

∣

∣

∣

L2(R)
−→
ǫ→0

0.

Hence, again by the Dominated Convergence Theorem, we deduce that ‖Uǫ −
U‖L2(µ) −→

ǫ→0
0. Looking now at the level of the gradients, we have

‖∇Uǫ −∇U‖L2 ≤
∫ ∞

0

dt e−t

∫ 1

0

dr
|hr| t−1/4

2
√

2πqt(r)4
·

·
{

‖ψ‖L∞(R) ∧
(

qt(r)

2πqt(r)

)
1
4

‖ψ(· − ǫx/
√

qt(r))− ψ‖L2(R)

}

,

so we obtain, with similar arguments, the convergence ‖∇Uǫ −∇U‖L2 −→
ǫ→0

0. �
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5.4. A projection principle. Note that in the above section we worked in the
Gaussian Dirichlet space D(Λ). For our dynamical problem, we shall however need
to transfer the above results to the Dirichlet space D(E). To do so, we invoke the
following projection principle, which was first used in [41] for the case of a 3-Bessel
bridge (see Lemma 2.2 therein).

Lemma 5.5. There exists a unique bounded linear operator Π : D(Λ) → D(E)
such that, for all F,G ∈ D(Λ) and f ∈ D(E)

Λ1(F, f ◦ j) = E1(ΠF, f),
where j is as in (5.1). Moreover, we have

E1(ΠF,ΠF ) ≤ Λ1(F, F ).

Proof. We use the same arguments as in the proof of Lemma 2 in [41]. Let D :=
{ϕ ◦ j, ϕ ∈ D(E)}. By Proposition 5.1, D is a linear subspace of D(Λ) which is
isometric to D(E). In particular, it is a closed subspace of the Hilbert space D(Λ).

Hence, we may consider the orthogonal projection operator Π̂ onto D. Then, for
all F ∈ D(Λ), let ΠF be the unique element of D(E) such that Π̂F = (ΠF ) ◦ j. It
then follows that Π possesses the required properties. �

We obtain the following refinement of the IbPF (4.4) for P 1.

Corollary 5.6. Let U be as in (5.9). For all f ∈ D(E) and h ∈ C2
c (0, 1), we have

E
(

〈h, ·〉 − 1

2
ΠU , f

)

= −1

2

∫

K

(〈h′′, ζ〉 − ΠU(ζ)) f(ζ) dν(ζ). (5.13)

Proof. By the density of SK in D(E) proved in Lemma 5.3, it is enough to consider
f ∈ SK . By (5.7)

1

4

∫ 1

0

dr hr
d2

da2
Σ1

r (f(X) | a)
∣

∣

∣

∣

a=0

=
1

2
lim
ǫ→0

E

[

f(|β|)
∫ 1

0

hr ρ
′′
ǫ (βr) dr

]

= lim
ǫ→0

∫

(f ◦ j)Gǫ dµ = lim
ǫ→0

Λ1(f ◦ j, Uǫ) = Λ1(f ◦ j, U) = E1(f, ΠU).

Therefore, for all f ∈ SK , the IbPF (4.14) can be rewritten

2E(〈h, ·〉, f) = −
∫

K

〈h′′, ζ〉 f(ζ) dν(ζ) + E1(f, ΠU),

that is

E
(

〈h, ·〉 − 1

2
ΠU, f

)

= −1

2

∫

K

(〈h′′, ζ〉 − ΠU(ζ)) f(ζ) dν(ζ).

The proof is complete. �
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Recall that M = (Ω,F , (ut)t≥0, (Px)x∈K) denotes the Markov process properly
associated with the Dirichlet form (E , D(E)) constructed above. Note that, by
Theorem 5.2.2 in [13], for all F ∈ D(E), we can write in a unique way

F (ut)− F (u0) =M
[F ]
t +N

[F ]
t , t ≥ 0, (5.14)

Pν a.s., where M [F ] is a martingale additive functional, and N [F ] is an additive
functional of zero energy. Using this fact we can thus write u as the weak solution
to some SPDE, but with coefficients that are not explicit. However the formula
(5.13) above will allow us to identify these coefficients.

We can now finally state the result justifying that that the Markov process
constructed above satisfies the SPDE (1.15) above.

Theorem 5.7. For all h ∈ C2
c (0, 1), we have

〈ut, h〉 − 〈u0, h〉 =Mt +Nt, Pu0 − a.s., q.e. u0 ∈ K.

Here (Nt)t≥0 is a continuous additive functional of zero energy satisfying

Nt −
1

2

∫ t

0

〈h′′, us〉 ds = lim
ǫ→0

N ǫ
t , N ǫ

t := −1

4

∫ t

0

〈ρ′′ǫ (us), h〉 ds,

in Pν-probability, uniformly in t on finite intervals. Moreover, (Mt)t≥0 is a mar-
tingale additive functional whose sharp bracket has the Revuz measure ‖h‖2H ν.
Finally we also have

Nt −
1

2

∫ t

0

〈h′′, us〉 ds = lim
k→∞

N ǫk
t

along a subsequence ǫk → 0 in Pu0-probability, for q.e. u0 ∈ K.

Proof. On the one hand, by (5.13), we can write

〈ut, h〉 −
1

2
ΠU(ut)−

(

〈u0, h〉 −
1

2
ΠU(u0)

)

= N
(1)
t +M

(1)
t , (5.15)

where N (1) is the continuous additive functional of zero energy given by

N
(1)
t =

1

2

∫ t

0

(〈h′′, us〉 −ΠU(us)) ds, t ≥ 0

and M (1) is defined by (5.15). On the other hand, for all ǫ > 0, by definition of
Uǫ, we have for Gǫ as in (5.8)

Λ1(Uǫ,Φ) =

∫

H

GǫΦdµ, Φ ∈ D(Λ).

Hence, remarking that Gǫ = gǫ ◦ j, where gǫ : K → R is the functional defined by

gǫ(z) :=
1

2

∫ 1

0

hr ρ
′′
ǫ (zr) dr =

1

2
〈ρ′′ǫ (z), h〉,
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by Lemma 5.5, we obtain for all f ∈ D(E)

E1(ΠUǫ, f) =

∫

K

f(z) gǫ(z) dν(z) = −
∫

K

f(z)(ΠUǫ(z)− gǫ(z)) dν(z). (5.16)

As a consequence, we have the decomposition

1

2
ΠUǫ(ut)−

1

2
ΠUǫ(u0) = N

(2,ǫ)
t +M

(2,ǫ)
t , (5.17)

where N (2,ǫ) is the continuous additive functional of zero energy given by

N
(2,ǫ)
t =

1

2

∫ t

0

(ΠUǫ(us)− gǫ(us)) ds, t ≥ 0

and M (2,ǫ) is defined by (5.17). Since Uǫ −→
ǫ→0

U in D(Λ) by Proposition 5.4, by the

continuity of Π : D(Λ) → D(E), we have the convergence ΠUǫ −→
ǫ→0

ΠU in D(E).
Therefore, setting

M
(2)
t =M

[ΠU ]
t , N

(2)
t := N

[ΠU ]
t ,

then, by (5.1.1), (5.2.22) and (5.2.25) in [13], we have

ΠUǫ(ut)− ΠUǫ(u0) −→
ǫ→0

ΠU(ut)−ΠU(u0), M
(2,ǫ)
t −→

ǫ→0
M

(2)
t , N

(2,ǫ)
t −→

ǫ→∞
N

(2)
t

in Pν-probability, for the topology of uniform convergence on finite intervals of
t ∈ R+. Adding equality (5.17) to (5.15) yields

〈ut, h〉 − 〈u0, h〉 =Mt +Nt,

with Mt =M1
t +M2

t and

Nt = N1
t +N2

t =
1

2

∫ t

0

(〈h′′, us〉 −ΠU(us)) ds + lim
ǫ→0

1

2

∫ t

0

(ΠUǫ(us)− gǫ(us)) ds

=
1

2

∫ t

0

〈h′′, us〉 ds− lim
ǫ→0

1

2

∫ t

0

gǫ(us) ds,

Moreover, note that M =M [Fh], where Fh ∈ D(E) is given by

Fh(z) := 〈z, h〉, z ∈ K.

Hence, by Theorem 5.2.3 in [13], µ<M> is given by ‖h‖2L2(0,1) · ν. For the last

statement, we apply [13, Corollary 5.2.1]. �

5.5. A distinction result. As a consequence of our IbPFs and the above con-
structions, we can prove that the Markov process (ut)t≥0 constructed above is not
identically equal in law to the process corresponding to the modulus of the solution
(vt)t≥0 to the stochastic heat equation, as it might otherwise have been guessed by
the analogous relation between the invariant measures µ and ν.

Let KR+ denote the space of functions from R+ to K, endowed with the product
σ-algebra. For all x ∈ K, let Px be the law, on KR+ , of the Markox process (ut)t≥0

associated with E , started from x. Similarly, for all z ∈ H , let Pz be the law, on
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KR+ , of (|vt|)t≥0, where (vt)t≥0 is the solution of the stochastic heat equation (5.2),
with v0 = z.

Theorem 5.8.

µ
(

{z ∈ H : P|z| 6= Pz}
)

> 0.

Proof. Assume by contradiction that P|z| = Pz for µ-a.e. z ∈ H . Then, recalling
that (Qt)t≥0 denotes the semigroup associated with Λ, and (Qt)t≥0 the semigroup
associated with E , we would have

Qt(f ◦ j) = (Qtf) ◦ j, µ− a.e.,

for all t ≥ 0 and f ∈ L2(ν). Therefore, the corresponding families of resolvents
(Rλ)λ>0 and (Rλ)λ>0 would satisfy, for all f ∈ L2(ν)

R1(f ◦ j) = (R1f) ◦ j,
where the equality holds in L2(µ). In particular, this shows that (R1f) ◦ j ∈ D(Λ)
for any f as above. We then claim that, for all F ∈ D(Λ), ΠF = E[F (β) | |β| ]
µ-a.e. Indeed, by the previous observations, for all f ∈ L2(ν), it holds

∫

H

(f ◦ j)(z)F (z) dµ(z) = Λ1(R1(f ◦ j), F ) = Λ1((R1f) ◦ j, F )

= E1(R1f,ΠF ) =

∫

K

f(x)(ΠF )(x) dν(x),

(5.18)

i.e. ΠF = E[F (β) | |β| ] µ-a.e., as claimed. By (5.18) and the first equality in
Lemma 5.5, we deduce that, for all f ∈ D(E) and F ∈ D(Λ)

Λ(F, f ◦ j) = E(ΠF, f).
Consider now the process (vt)t≥0 associated with Λ and started from v0 = β, where
β is a Brownian bridge on [0, 1]. Consider also the process (ut)t≥0 associated with

E under the law Pν (so that, in particular, u0
(d)
= |β|). Thus the processes v and u

are stationary, and |v| (d)
= u by our assumption. Let us set

At := 〈|vt|, h〉 − 〈|v0|, h〉 −
1

2

∫ t

0

〈|vs|, h′′〉 ds,

Ct := 〈ut, h〉 − 〈u0, h〉 −
1

2

∫ t

0

〈us, h′′〉 ds.

Let further k ∈ C2([0, 1]) with k(0) = k(1) = 0, and consider the functionals
Ψk : H → R and Ψ̃k : K → R given by

Ψk(z) := exp(〈k, z〉), Ψ̃k(y) := E [Ψk(β) | |β| = y ] , y ∈ K.
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Note that Ψk ∈ D(Λ), and recall that, by the above remarks, Ψ̃k = ΠΨk µ-a.e., so

in particular Ψ̃k ∈ D(E). We then have

J(t) := − d

dt
E

[

At Ψ̃k(|v0|)
]

=

= − d

dt
E

[

(〈ut, h〉 − 〈u0, h〉) Ψ̃k(u0)
]

+
1

2

d

dt
E

[
∫ t

0

〈h′′, |vs|〉 dsΨk(β)

]

= E(〈·, h〉 , Ψ̃k) +
1

2
E[〈h′′, |β|〉Ψk(β)] = Λ(〈| · |, h〉 , Ψk) +

1

2
E[〈h′′, |β|〉Ψk(β)]

=
1

2
E[〈∇Ψk(β), sign(β) h〉+ 〈h′′, |β|〉Ψk(β)] = E

[

Ψk(β)

∫ 1

0

h : β̇2 : dL0

]

by (3.10) in [Zam05], or rather its analogue for the Brownian bridge as stated in
Remark 1.3 of [19]. But, by [42, Corollary 3.4] and [19, Theorem 3.2], the last
quantity equals

√

1

2π
e

1
2
〈Qk,k〉

∫ 1

0

hr
√

r(1− r)
exp

(

− K2
r

2r(1− r)

)

λ(K ′
r,−Kr, r) dr,

where K = Qk, with Q the covariance operator of β,

(Qk)r =

∫ 1

0

(r ∧ σ − rσ) kσ dσ, r ∈ [0, 1],

and λ : R2 × [0, 1] → R is defined by

λ(x, y, r) := x2 + xy
1− 2r

r(1− r)
+ y2

(1− 2r)2

4r2(1− r)2
− 1

4r(1− r)
, x, y ∈ R, r ∈ [0, 1].

Hence,

J(t) =

√

2

π
e

1
2
〈Qk,k〉

∫ 1

0

hr
√

r(1− r)
exp

(

− K2
r

2r(1− r)

)

λ(K ′
r,−Kr, r) dr. (5.19)

On the other hand

L(t) := − d

dt
E

[

Ct Ψ̃k(|v0|)
]

∣

∣

∣

∣

t=0

= E(ΠΨk, 〈·, h〉) +
1

2
E[〈h′′, |β|〉ΠΨk(|β|)]

=
1

2
E(ΠU,ΠΨk) =

1

4
lim
ǫ→0

E

[
∫ 1

0

hr ρ
′′
ǫ (|βr|) drΠΨk(|β|)

]

,

where we used (5.13) to obtain the second equality, and the fact that U = lim
ǫ→0

Uǫ

in D(E), combined with (5.16), to obtain the third one. Therefore, recalling that
ΠΨk = E(Ψk | |β|) µ-a.e., we have

L(t) =
1

4
lim
ǫ→0

E

[
∫ 1

0

hr ρ
′′
ǫ (|βr|) drΨk(β)

]

=
1

4
lim
ǫ→0

E

[
∫ 1

0

hr ρ
′′
ǫ (βr) dr e

〈k,β〉

]

.
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By the Cameron-Martin formula, for all ǫ > 0

1

4
E

[
∫ 1

0

hr ρ
′′
ǫ (βr) dr e

〈k,β〉

]

=

=
1

4
e

1
2
〈Qk,k〉

∫ 1

0

hr
√

2πr(1− r)

∫

R

ρ′′ǫ (a) exp

(

−(a−Kr)
2

2r(1− r)

)

da dr

→
ǫ→0

1

4
e

1
2
〈Qk,k〉

∫ 1

0

hr
√

2πr(1− r)

[

K2
r − r(1− r)

r2(1− r)2

]

exp

(

− K2
r

2r(1− r)

)

dr.

Hence we obtain

L(t) =
1

4
e

1
2
〈Qk,k〉

∫ 1

0

hr
√

2πr(1− r)

[

K2
r − r(1− r)

r2(1− r)2

]

exp

(

− K2
r

2r(1− r)

)

dr. (5.20)

Since |v| and u have the same law, J(t) = L(t) and therefore the right-hand sides
of (5.19) and (5.20) above are equal. This being true for any h ∈ C2

c (0, 1), we
deduce that

K2
r − r(1− r)

4r2(1− r)2
= λ(K ′

r,−Kr, r),

for a.e. r ∈ (0, 1), hence for all r by continuity. We thus deduce that

(K ′
r)

2 − 1− 2r

r(1− r)
KrK

′
r −

1

r(1− r)
K2

r = 0, ∀ r ∈ (0, 1).

Since we can choose k ∈ C2
c (0, 1) such that K = Qk does not satisfy the above

equation, we obtain a contradiction. �

6. Conjectures and open problems

Theorems 4.9 and 4.10 above enable us to conjecture the structure of the Bessel
SPDEs for δ < 3. The idea is that the right-hand side of the IbPFs (4.2) (re-
spectively (4.4)) corresponds to the logarithmic derivative of the measure P δ for
δ ∈ (0, 3) \ {1} (resp. δ = 1), which should yield the drift in the SPDEs we are
looking for. More precisely, considering for instance the case δ ∈ (1, 3), for all
Φ ∈ S, we may rewrite the last term in the IbPF (4.2) as follows

− κ(δ)

∫ 1

0

hr

∫ ∞

0

aδ−4
(

Σδ
r (Φ(X) | a)− Σδ

r (Φ(X) | 0)
)

da dr =

= −κ(δ) lim
ǫ→0

lim
η→0

E

[

Φ(X)

∫ 1

0

hr

(

1Xr≥ǫ

X3
r

− 2
ǫδ−3

3− δ

ρη(Xr)

Xδ−1
r

)

dr

]

,

(6.1)

where the mollifying functions ρη, η > 0 are as in (5.6). As a consequence of
this equality, we may write formally the gradient dynamics corresponding to P δ,
δ ∈ (1, 3), as follows

∂tu =
1

2
∂2xu+ ξ +

κ(δ)

2
lim
ǫ→0

lim
η→0

(

1u≥ǫ

u3
− 2

ǫδ−3

3− δ

ρη(u)

uδ−1

)

,
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where ξ denotes space-time white noise on R+×(0, 1). Assuming now the existence
of a local time process (ℓat,x)x∈(0,1),t,a≥0 satisfying the occupation times formula

∀f : R+ → R+,

∫ t

0

f (u(s, x)) ds =

∫ +∞

0

f(a) ℓat (x) a
δ−1 da, (6.2)

and possessing sufficient regularity at a = 0, we could in turn write

lim
ǫ→0

lim
η→0

(

1u≥ǫ

u3
− 2

ǫδ−3

3− δ

ρη(u)

uδ−1

)

=

∫ +∞

0

aδ−4(ℓat,x − ℓ0t,x) da,

so the SPDE could be written:

∂tu =
1

2
∂2xu+ ξ +

κ(δ)

2

∂

∂t

∫ +∞

0

aδ−4(ℓat,x − ℓ0t,x) da.

The same reasoning can be done for δ ∈ (0, 1), yielding for that case

∂tu =
1

2
∂2xu+ ξ +

κ(δ)

2

∂

∂t

∫ +∞

0

aδ−4 T 2
a ℓ

(·)
t,x da.

As for the critical case δ = 1, as shown in Section 5, the dynamics is formally
given by (1.15), which we can rewrite using the local times as follows:

∂tu =
1

2
∂2xu+ ξ − 1

8

∂

∂t

d2

da2
ℓat (x)

∣

∣

∣

∣

b=0

. (6.3)

In all the SPDEs above, the unknown would be the couple (u, ℓ), where u is a
continuous nonnegative function on R+ × (0, 1), and, for all x ∈ (0, 1), (ℓat (x))a,t≥0

is a family of occupation times satisfying (6.2).
These conjectures raise several problems. Indeed, assuming that the process u

can be constructed - as done above for the case δ = 1 - it is at present unknown
whether a family of occupation times ℓ satisfying (6.2) should exist and, if it does,
whether it has the requested differentiability property. Moreover, pathwise unique-
ness for such equations is at present an open problem. For instance, due to the
lack of monotonicity, the techniques used in [31] to define a solution to the sto-
chastic heat equation with reflection would not be of any help. We stress that the
analogous SDE case of Bessel processes of dimension δ ∈ (0, 1) is also a problem of
interest in itself; these processes are not semi-martingales, but nonetheless satisfy
the stochastic equation

Xt = x+
δ − 1

2

∫ +∞

0

aδ−2(ℓat − ℓ0t ) da+ Bt,

where (ℓat )a,t≥0 is the diffusion local times process of the Bessel process (Xt)t≥0

(see [33], Chapter XI, ex. 1.26). Even in this one-dimensional context, the only
known method for solving this equation is to consider Yt := X2

t and show path-
wise uniqueness for Y ; this method breaks down for SPDEs since the Itô formula
produces very complicated terms, see the discussion in the Introduction.
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The Dirichlet form techniques used in Section 5 above to construct u in the case
δ = 1 can also be applied successfully to treat the case δ = 2, see the forthcoming
paper [9]. However, for δ ∈ ]0, 3[ \{1, 2}, it is not even known whether the form
which naturally generalizes (E ,FC∞

b (K)) in Proposition 5.1 is closable and whether
its closure is a quasi-regular Dirichlet form .

We recall the main result of [6]: for all δ ≥ 3, we set

ζ(δ) := sup{k ≥ N : ∃t > 0, 0 < x1 < . . . < xk < 1, u(t, xi) = 0 i = 1, . . . , k},

where u is the solution to the δ-Bessel SPDE (1.6)-(1.8). Then we have

P

(

ζ(δ) >
k

2− δ

)

= 0. (6.4)

In other words, a.s. u hits the obstacle 0 in at most ⌈ k
2−δ

⌉ space points simulta-
neously in time. It is very tempting to conjecture that (6.4) holds for all δ > 2 in
other words, the δ-Bessel SPDE would hit 0 at finitely many space points simulta-
neously in time for any δ > 2, but the number of such hitting points would tend to
+∞ as δ ↓ 2. The fact that δ = 2 is the critical value for this behaviour is clearly
related to the fact that δ = 2 is also the critical dimension for the probability that
the δ-Bessel process or bridge hit 0.

The transition between δ ≥ 3 and δ < 3 is visible at the level of the invariant
measure, namely the δ-Bessel bridge, since in the former case the measure is log-
concave, while this property is lost in the latter case. Therefore the techniques
of [1] based on optimal transport and gradient flows in metric spaces fail for δ <
3. In the same vein, the Strong Feller property holds easily for δ ≥ 3, while
it is an open problem for δ < 3, again because the drift of the SPDE becomes
highly non-dissipative. Still, the recent paper [10] of the first author shows that
Bessel processes of dimension δ < 1 are Strong Feller even if their drift contains a
renormalized local time. Moreover Tsatsoulis and Weber [36] have proved that the
2-dimensional stochastic quantization equation satisfies a Strong Feller property,
although it is an equation which needs renormalisation; also Hairer and Mattingly
[22] have proved the S-F property for a large class of equations with renormalised
drifts. All this suggests that there may be hope that this technically very useful
property holds also for δ-Bessel SPDEs with δ < 3.

Appendix A. Proofs of two technical results

Proof of Proposition 5.1. Since D(Λ) contains all globally Lipschitz functions on
H , for all f ∈ FC∞

b (K) we have f ◦ j ∈ D(Λ). A simple calculation shows that
for any f ∈ FC∞

b (K) of the form (5.4) we have

∇(f ◦ j)(z) = ∇f(j(z)) sgn(z). (A.1)
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Hence, for all f, g ∈ FC∞
b (K), we have

E(f, g) = 1

2

∫

〈∇f(x),∇g(x)〉 dν(x) = 1

2

∫

〈∇f(j(z)),∇g(j(z))〉 dµ(z)

=
1

2

∫

〈∇(f ◦ j)(z),∇(g ◦ j)(z)〉 dµ(z) = Λ(f ◦ j, g ◦ j),

where the third equality follows from (A.1). This shows that the bilinear sym-
metric form (E ,FC∞

b (K)) admits as an extension the image of the Dirichlet form
(Λ, D(Λ)) under the map j. Since FC∞

b (K) is dense in L2(ν), this extension is a
Dirichlet form. In particular, (E ,FC∞

b (K)) is closable, its closure (E , D(E)) is a
Dirichlet form, and we have the isometry property (5.5).

There remains to prove that the Dirichlet form (E , D(E)) is quasi-regular. Since
it is the closure of (E ,FC∞

b (K)), it suffices to show that the associated capacity is
tight. Since K is separable, we can find a countable dense subset {yk, k ∈ N} ⊂ K
such that yk 6= 0 for all k ∈ N.

Let now ϕ ∈ C∞
b (R) be an increasing function such that ϕ(t) = t for all t ∈

[−1, 1] and ‖ϕ′‖∞ ≤ 1. For all m ∈ N, we define the function vm : K → R by

vm(z) := ϕ(‖z − ym‖), z ∈ K.

Moreover, we set, for all n ∈ N

wn(z) := inf
m≤n

vm(z), z ∈ K.

We claim that wn ∈ D(E), n ∈ N, and that wn −→
n→∞

0, E quasi-uniformly in K.

Assuming this claim for the moment, for all k ≥ 1 we can find a closed subset Fk

of K such that Cap(K \Fk) < 1/k, and wn −→
n→∞

0 uniformly on Fk. Hence, for all

ǫ > 0, we can find n ∈ N such that wn < ǫ on Fk. Therefore

Fk ⊂
⋃

m≤n

B(ym, ǫ)

where B(y, r) is the open ball inK centered at y ∈ K with radius r > 0. This shows
that Fk is totally bounded. Since it is, moreover, complete as a closed subspace of
a complete metric space, it is compact, and the tightness of Cap follows.

We now justify our claim. For all i ∈ N, we set li := ‖yi‖−1 yi. Then for all
i ≥ 1, li ∈ K, ‖li‖ = 1 and, for all z ∈ K

‖z‖ = sup
i≥0

〈li, z〉.

Let m ∈ N be fixed. For all i ≥ 0, let ui(z) := sup
j≤i

ϕ( 〈lj, z − ym〉 ), z ∈ K. We

have ui ∈ D(E), and, for ν - a.e. z ∈ K

∞
∑

k=1

∂ui
∂ek

(z)2 ≤ sup
j≤i

(

∞
∑

k=1

ϕ′(〈lj, z − ym〉)2 〈lj , ek〉2
)

≤ 1,
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whence E(ui, ui) ≤ 1. By the definition of vm, as i → ∞, ui ↑ vm on K, hence
in L2(K, ν). By [27, I.2.12], we deduce that vm ∈ D(E), and that E(vm, vm) ≤ 1.
Therefore, for all n ∈ N, wn ∈ D(E), and E(wn, wn) ≤ 1. But, since {yk, k ∈ N}
is dense in K, as n → ∞, wn ↓ 0 on K. Hence wn −→

n→∞
0 in L2(K, ν). This

and the previous bound imply, by [27, I.2.12], that the Cesàro means of some
subsequence of (wn)n≥0 converge to 0 in D(E). By [27, III.3.5], some subsequence
thereof converges E quasi-uniformly to 0. But, since (wn)n≥0 is non-increasing,
we deduce that it converges E-quasi-uniformly to 0. The claimed quasi-regularity
follows. There finally remains to check that (E , D(E)) is local in the sense of
Definition [27, V.1.1]. Let u, v ∈ D(E) satisfying supp(u) ∩ supp(v) = ∅. Then,
u ◦ j and v ◦ j are two elements of D(Λ) = W 1,2(µ) with disjoint supports, and,
recalling (5.5), we have

E(u, v) = Λ(u ◦ j, v ◦ j) = 1

2

∫

H

∇(u ◦ j) · ∇(v ◦ j) dµ = 0.

The claim follows. �

Proof of Lemma 5.3. Recall that D(E) is the closure under the bilinear form E1
of the space FC∞

b (K) of functionals of the form F = Φ
∣

∣

K
, where Φ ∈ FC∞

b (H).
Therefore, to prove the claim, it suffices to show that for any functional Φ ∈
FC∞

b (H) and all ǫ > 0, there exists Ψ ∈ S such that E1(Φ−Ψ,Φ−Ψ) < ǫ.
Let Φ ∈ FC∞

b (H). We set for all ǫ > 0

Φǫ(ζ) := Φ(
√

ζ2 + ǫ), ζ ∈ H.

A simple calculation shows that Φǫ −→
ǫ→0

Φ and ∇Φǫ −→
ǫ→0

∇Φ pointwise, with

uniform bounds ‖Φǫ‖∞ ≤ ‖Φ‖∞ and ‖∇Φǫ‖∞ ≤ ‖∇Φ‖∞. Hence, by dominated
convergence, E1(Φǫ − Φ,Φǫ − Φ) −→

ǫ→0
0. Then, introducing for all d ≥ 1 (ζdi )1≤i≤d

the orthonormal family in L2(0, 1) given by

ζdi :=
√
d 1[ i−1

d
, i
d
[, i = 1, . . . , d,

and setting

Φd
ǫ (ζ) := Φǫ





(

d
∑

i=1

〈ζd,i, ζ2〉
)

1
2



 = Φ





(

d
∑

i=1

〈ζd,i, ζ2〉+ ǫ

)
1
2



 , ζ ∈ H,

again we obtain the convergence E1(Φd
ǫ − Φǫ,Φ

d
ǫ − Φǫ) −→

d→∞
0.

There remains to show that any fixed functional of the form

Φ(ζ) = f
(

〈ζ1, ζ2〉, . . . , 〈ζd, ζ2〉
)

, ζ ∈ H

with d ≥ 1, f ∈ C1
b (R

d
+), and (ζi)i=1,...,d a family of elements of K, can be approx-

imated by elements of S . Again by dominated convergence, we can suppose that
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f has compact support in R
d
+. We define g ∈ C1

b ([0, 1]
d),

g(y) := f(− ln(y1), · · · ,− ln(yd)), y ∈ ]0, 1]d,

and g(y) := 0 if yi = 0 for any i = 1, . . . , d. By a differentiable version of the
Weierstrass Approximation Theorem (see Theorem 1.1.2 in [26]), there exists a
sequence (pk)k≥1 of polynomial functions converging to g for the C1 topology on
[0, 1]d. Defining for all k ≥ 1 the function fk : Rd

+ → R by

fk(x) = pk(e
−x1, · · · , e−xd), x ∈ R

d
+,

we define Φk ∈ S by

Φk(ζ) = fk
(

〈ζ1, ζ2〉, . . . , 〈ζd, ζ2〉
)

, ζ ∈ H.

Since pk −→
k→∞

g for the C1 topology on [0, 1]d, fk −→
k→∞

f uniformly on R
d
+ together

with its first order derivatives. Hence, it follows that Φk −→
k→∞

Φ pointwise on K

together with its gradient. It also follows that there is some C > 0 such that for
all k ≥ 1

∀ζ ∈ K, |Φk(ζ)|2 + ‖∇Φk(ζ)‖2 ≤ C(1 + ‖ζ‖2).
Since the quantity in the right-hand side is ν integrable in ζ , it follows by domi-
nated convergence that E1(Φk − Φ,Φk − Φ) −→

k→∞
0. This yields the claim. �

References
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equations with Hölder continuous coefficients: the white noise case, Probab.
Theory Related Fields 149 (2011), no. 1-2, 1–96. MR 2773025

30. David Nualart, Malliavin calculus and its applications., Providence, RI: Amer-
ican Mathematical Society (AMS), 2009 (English).

31. David Nualart and Etienne Pardoux, White noise driven quasilinear spdes with
reflection, Probability Theory and Related Fields 93 (1992), no. 1, 77–89.

32. Jim Pitman and Marc Yor, Sur une décomposition des ponts de Bessel, Func-
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