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Abstract—The widespread use of mobile devices and location-
based services has generated massive amounts of mobility
databases. While processing these data is highly valuable, privacy
issues can occur if personal information is revealed. The prior
art has investigated ways to protect mobility data by providing a
large range of Location Privacy Protection Mechanisms (LPPMs).
However, the privacy level of the protected data significantly
varies depending on the protection mechanism used, its configu-
ration and on the characteristics of the mobility data. Meanwhile,
the protected data still needs to enable some useful processing.
To tackle these issues, we present PULP, a framework that finds
the suitable protection mechanism and automatically configures
it for each user in order to achieve user-defined objectives
in terms of both privacy and utility. PULP uses nonlinear
models to capture the impact of each LPPM on data privacy
and utility levels. Evaluation of our framework is carried out
with two protection mechanisms of the literature and four real-
world mobility datasets. Results show the efficiency of PULP,
its robustness and adaptability. Comparisons between LPPMs’
configurator and the state of the art further illustrate that PULP
better realizes users’ objectives and its computations time is in
orders of magnitude faster.

Index Terms—D.4.6 Security and Privacy Protection; D.4.8.b
Modeling and prediction; H.2.0.a Security, integrity, and protec-
tion; J.9.a Location-dependent and sensitive; D.2.16.b Configu-
ration control

I. INTRODUCTION

Geolocation data is increasingly used to improve the quality
of services, leading to the surge of Location Based Services
(LBS) such as navigators or nearest places recommendation
applications. Hence, a large amount of mobility data is gener-
ated and currently used by companies and researchers. Indeed,
the processing of mobility data can reveal many valuable
information that may be used for a broad range of applications,
e.g., traffic congestion management, urban development and
etc. However, the processing of location data also comes with
threats on the privacy of the recorded users. As motivation for
privacy protection, one can cite the publication of mobility
dataset by Strava in 2018 that revealed the maps of unknown
US military bases [30]; or the new regulations that are enforced
by the governments, such as the European GDPR [14]. The
most common threats on privacy are (i) reidentification attacks
where the identity of an anonymous user is guessed based on

previously recorded data [11], [19], (ii) mobility prediction
that anticipates users’ next moves based on their habits [31],
[13], (iii) extraction of user’s places of interest ( e.g., home,
workplace [12], and place of worship [10]) and (iv) inference
of social relationships (e.g., partners, and coworkers) [4]. In
this work, we will focus on the privacy threat that consists in
identifying a user’s Points Of Interest (POI), as it is often the
very first step to infer users’ other information [24].

To overcome these privacy issues, many efforts in the lit-
erature aim to develop protection mechanisms. The protection
efforts are not only motivated by cautious companies and
researchers but is more and more forced by national and
international governments and organizations. The so-called
Location Privacy Protection Mechanisms (LPPM) modify the
location information of users to improve their privacy level.
The principle behind each LPPM varies; for instance Geo-
Indistinguishability (GEO-I) adds noise to the spatial informa-
tion of a user data [3], PROMESSE modifies timestamps in
order to smooth the user speed [25], and CloakDroid assigns
the value of a location point to its closest location on a
grid [20]. LPPMs need fine tuning of their parameters that may
require sophisticated knowledge and experience. The choice
of these configurations (e.g., the amount of noise and data
granularity) significantly impacts the level of protection of
the obfuscated data. The obfuscation should be carried out
carefully to make sure that the utility of the protected data is
preserved. Indeed, the mobility data aims at being processed
to retrieve some high level information ( e.g.,road frequencies
and means of transportation). Dealing with both privacy and
utility simultaneously is not straightforward given the natural
trade-off that exists between the two. As privacy enhancing
mechanisms alters the original datasets to hide information,
the data usability by definition decreases. Using a LPPM may
result into various levels of privacy and utility depending on
the properties of the user mobility.

In order to enable the feasibility and practicability of
these protection mechanisms for end-users, some configuration
mechanisms have been proposed in the literature. In [1], the
authors present a heuristic-based mechanism that iteratively
modifies the configuration of a spatial cloaking LPPM to meet
a privacy-oriented objective, while considering the utility of
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data. In [8], the authors adapt the configuration of GEO-I to the
density of the surrounding area, assuming that the less noise
is needed to add to the original data for privacy protection
when there are people around. In [26], the authors propose an
iterative greedy mechanism that evaluates privacy and utility
of obfuscated data to refine the parameters of a certain LPPM
configuration. These solutions are often computing intensive as
they are heuristics-based. They do not always explicitly take
into account the usability of the protected data and lack of
objective-driven formulation that enables a user to define her
privacy and utility requirements. Moreover, these works focus
only specific protection mechanism, hindering its applicability
to comparing across mechanisms.

There is a strong need for a solution that enables choosing
between LPPMs and configuring the chosen one in order to
meet user-defined objectives in terms of privacy and utility.
In this paper we present PULP, standing for Privacy and
Utility through LPPM Parametrization. PULP a framework
which automatically selects a LPPM among different ones, and
determines the best configuration of the LPPM based on each
user’s objective. The core of PULP is user-specific modeling
that captures the impact of every considered LPPM on the
privacy and utility level of the obfuscated data. A model is
built by measuring the privacy and utility levels of obfuscated
data after a few profiling runs of applying the LPPM with a
set of configuration parameters. Based on each user objectives,
the behavioral model is used to chose and configure a LPPM
for each one. Four objective formulations are considered, for
various combinations of objectives in terms of privacy and
utility: (i) ensure a given ratio between privacy and utility,
(ii) guarantee minimal levels of privacy and utility, (iii) keep
privacy above a given level while increasing utility as much
as possible, and (iv) guarantee a minimal utility level while
improving privacy as much as possible.

The evaluation of PULP is carried out using four mobility
databases of 770 users in total. Two LPPMs, i.e., GEO-I
and PROMESSE, are considered in the evaluation, and a POI-
based privacy metric and a spacial-based utility are considered.
Results show that PULP accurately models the impact of
LPPMs on users’ data and thus enables to recommend a LPPM
and its configuration so as to satisfy the objectives, when
possible. Results highlight the importance of tuning the LPPM
and its configuration for individual users. Moreover, the use of
models enables a significant reduction of the computing time
compared to state of the art.

The contributions of the paper are then:

• Accurate, robust and adaptive modeling of LPPMs with
different configuration parameters,

• Computing-efficient objective-based recommendation and
configuration laws of protection mechanisms.

The rest of this paper is organized as follows. First some
background information is given in Section II. Then, PULP
framework is described in Section III. Sections IV and V
describe PULP’s automatic LPPM configuration laws. Exper-
imental validation and analysis are carried out in Section VI,
followed by a review of the state of the art in Section VII.
Conclusion and perspectives end the paper in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we first provide detailed description of the
mobility traces, LPPMs considered and the formal definitions
of privacy and utility metrics, followed by a motivating exam-
ple of why no single LPPM solution fits all users.

A. Mobility Traces

The base of this work is mobility datasets collected in the
wild: the Cabspotting (CABS) [23], the PRIVAMOV [6], the
GEOLIFE [32], and the Mobile Data Challenge (MDC) datasets
[17], amounting to a total of 770 users. These datasets contain
mobile information about users during their daily life. To have
homogeneous datasets, we align the length period of the four
datasets to the one of the shortest (i.e., CABS which has 30
days of mobility data) by selecting their most active period.

We index each user by the subscript of i, and each LPPM
by j. We denote the mobility trace of user Ui by Ti when
the mobility data has not been obfuscated, and by T ′ij after
applying LPPM j on the trace Ti. Both Ti and T ′ij are
sets of records chronologically ordered. A record is a tuple
〈lat, lng, t〉 that indicates for user Ui her location on the
surface of the Earth defined by latitude-longitude coordinates
(i.e., lat, lng), at a given time t.

B. Location Privacy Protection Mechanisms (LPPMs)

Roughly speaking, state-of-art LPPMs alter the spatial in-
formation of user mobility data or its temporal information.
In the following, we present two examples of LPPMs: GEO-
I that focuses on spatial distortion, and PROMESSE that adds
temporal disturbance to the data.

GEO-I. Geo-Indistinguishability protects a user location
data by adding spatial noise drawn from a Laplace distribution
to each record of the actual mobility trace [3]. GEO-I has a
configuration parameter ε, expressed in meters−1 varying in
R+, which quantifies the amount of noise to add to raw data.
The lower the ε is, the more noise is added. GEO-I is a state of
the art LPPM that follows the differential privacy model [9];
that is, it allows to calibrate noise in order to increase privacy
while reducing the impact on data utility. Therefore, in the
following we consider GEO-I as one underlying LPPM to
validate our PULP’s approach.

PROMESSE. PROMESSE has been developed in order to
prevent the extraction of Points-Of-Interest (users’ stop places)
while maintaining a good spatial accuracy [25]. Its principle
is to distort timestamps of location traces as well as remove
and insert records in a user’s trace in order to keep a constant
distance between two events of the trace (parameterized by ε
in meters). PROMESSE adds temporal noise to a trace while
GEO-I introduces spatial noise.

Although we specifically consider GEO-I and PROMESSE,
the proposed methodology in the following sections is general
for any LPPM that works for every user independently and
that has a single configuration parameter. For some LPPMs,
the computation of obfuscated trace is done accordingly the
obfuscation of other users, k-anonymity for instance. PULP
works only for LPPM for which the obfuscation for one user
only depends on this user.
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C. Data Privacy and Utility Metrics

Protecting raw mobility data with LPPMs improves the
user privacy but also risks the quality or the usability of the
resulting data. There is no standard way of assessing, at a
user level, these two complementary dimensions associated
to LPPMs. We choose to define privacy by looking at a
user’s POI (i.e. significant stops) protection [12], and utility by
evaluating the spatial accuracy of revealed locations [8]. Both
metrics evaluate the gain of privacy and the loss of utility of
the obfuscated data compared to the raw data. The proposed
metrics have parameters that enable to adjust the notion of
privacy and utility to the considered LBS and to the user
requirements. The next paragraphs define privacy and utility
metrics and give an illustrated example of their computation.

1) Privacy Metric: To evaluate privacy of mobility traces,
we first consider the retrieval of POIs. A Point Of Interest is a
meaningful geographical area where a user made a significant
stop. A POI is defined by the position of its centroid and by
a diameter d, describing an area where the user stayed for at
least t minutes. We define poi(T ) as the set of POIs retrieved
from the mobility trace T .

Using the concept of POI and poi(·) set, we aim to quantify
user’ privacy level by looking at how POIs retrieved from the
obfuscated data (under LPPM j) match successfully to the
POIs retrieved from the non-obfuscated data, i.e., comparison
between poi(Ti) and poi(T ′ij) sets. We define the function
Matched(poi(T ′ij), poi(Ti)) that, given two sets of POIs,
derive the subset of poi(T ′ij) containing the POIs that match
with POIs in the second set poi(Ti). Two POIs are considered
as matched if they are sufficiently close one to the other
(dmax being the maximal distance threshold). To formally
define privacy, one can use either measurement of precision
(Ppr(i, j)) which defines the ratio between the number of
obfuscated trace’s POIs successfully matched with real POIs
and the number of obfuscated POIs,

Ppr(i, j) =
|Matched(poi(T ′ij), poi(Ti))|

|poi(T ′ij)|
,

or recall (Rpr(i, j)) which defines the ratio between the
number of obfuscated trace’s POIs successfully matched with
real POIs and the number of real POIs,

Rpr(i, j) =
|Matched(poi(T ′ij), poi(Ti))|

|poi(Ti)|
.

The precision function assesses the accuracy of the matching
while the recall function evaluates the completeness. We
advocate to use Fscore to reconcile the both measurements
of precision and recall.

We formally write the privacy metric, showing the normal-
ized percentage of successfully hidden (non-matched) POIs,
after applying LPPM j on user i as:

Pr(i, j) = 1− 2 · Ppr(i, j) ·Rpr(i, j)
Ppr(i, j) +Rpr(i, j)

. (1)

This privacy metric is defined in range of [0, 1] where a
higher value reflects a better protection.

Leveraging the POI diameter d, its minimal duration t and
the matching threshold distance dmax enable to clearly define

a user’s conception of her privacy. For instance, a user willing
to hide her home and work place with a high accuracy should
choose a large t, and small d and dmax. However, if a user
wants to hide most of the places she goes to in order to
dissimulate her hobbies, she should set a small t and a rather
large dmax.

2) Utility Metric: To evaluate data utility of users’ traces,
we resort to the comparison between the area coverage of the
original mobility trace and the one of the obfuscated trace.
We define the area coverage using the concept of map cells.
A cell is said visited (or covered) by a user if the mobility
trace of the user contains at least one record with coordinates
in this cell. We first define cell(Ti) and cell(T ′ij) as the sets
of cells visited by the mobility trace of user i, before and
after applying the LPPM j. To enable the comparison of cell
coverage across a user’s trace, we use precision and recall;
formally defined as

Put(i, j) =
|cell(Ti) ∩ cell(T ′ij)|

|cell(T ′ij)|
,

Rut(i, j) =
|cell(Ti) ∩ cell(T ′ij)|

|cell(Ti)|
.

Similarly to privacy metric, we finally define the utility
metric of user i obfuscated with LPPM j, Ut(i, j), by the
Fscore which gathered precision and recall of cell coverage

Ut(i, j) =
2 · Put(i, j) ·Rut(i, j)
Put(i, j) +Rut(i, j)

. (2)

This utility metric is defined in the range [0, 1], where a
higher value reflects a better utility, meaning a better spacial
accuracy of the LBS results.

Playing with the cells’ size enables to adapt to the LBS used.
Some services require a really good spatial accuracy such as
running training apps; and some are less demanding, such as
news apps. For the first category of LBS, cells’ size should
be small (tenth of meters) while for the other the size can be
way larger (more than a kilometer).

Note that the level of privacy and utility of a user depends
not only on the LPPM used to protect her data but also of its
configuration ε. However, for sake of readability, we did not
introduce ε here in our notations.

3) Illustration of Privacy and Utility Metrics with LPPMs:
To better illustrate the definition of privacy and utility, we use
a schematic example by applying GEO-I and PROMESSE on a
synthetic user’s trace, see Figure 1.

Computing privacy metric: In Figure 1 (a), the raw
mobility trace of the user Ti is represented with the small
squares, each square being a location record. We overdraw the
mobility trace after adding some noise with GEO-I (T ′ij). Their
Points-of-Interest (POIs) are illustrated with large circles. The
set of POIs of the original trace poi(Ti) are the dashed circles,
while POIs of the obfuscated trace poi(T ′ij) are the continuous
ones. Based on those sets, we can compute the number of
obfuscated POIs that match the real ones (the 2 top ones in
this example). Thus, the precision and recall of the matching
of POIs are 2/3 and the level of privacy 1/3.
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⏹ raw trace Ti trace with Geo-I Tij'

raw POI poi(Ti) POI with Geo-I poi(Tij')

⏺ ⏹ raw trace Ti trace with Geo-I Tij'

visited with Geo-I cell(Tij')

⏹ raw trace Ti trace with Promesse Tij'*

raw POI poi(Ti) POI with Promesse poi(Tij')

⏹ raw trace Ti trace with Promesse Tij'

visited cell(Ti) visited with Promesse cell(Tij')

(a) POI - GEO-I (b) Cell - GEO-I (c) POI-PROMESSE (d) Cell-PROMESSE

Fig. 1. Schematic examples of how POIs and cell coverage change for a single user after applying GEO-I and PROMESSE.

Figure 1 (c) is similar to Figure 1 (a) but here the considered
LPPM is PROMESSE. In this case, the obfuscated data T ′ij (the
small stars) are spatially regularly distributed (timestamps are
modified). In this illustration, all obfuscated POIs correspond
to the real ones, the privacy precision is 1 but the recall is
only 1/3. The resulting privacy value is then 1/2.

Computing utility level: Utility metric is illustrated in
Figure 1 (b) for GEO-I and in 1 (d) for PROMESSE. In each
case, the set cell(Ti) is illustrated by the cells with the right
diagonal (7 in total) while the sets cell(T ′ij) are the ones
with left dashed diagonals. For GEO-I, the obfuscated trace
covers 9 cells, the utility precision is 7/9 and the recall 1,
thus the utility level is 0.86. For PROMESSE, the obfuscated
trace covers 6 cells, the precision and recall are respectively
1 and 6/7, hence a utility of 0.92.

D. Problem Statement: No Single Solution Fits All

We now present a motivating example showing that applying
LPPMs in an ad-hoc fashion can result into very different
privacy and utility values for individual users. Particularly,
we choose four users (selected to show diversity) and apply
both GEO-I with ε1 = 0.01m−1 and ε2 = 0.005m−1,
and PROMESSE with ε = 100m for all of them. Following
definitions of eq. (1) and (2), we obtain the privacy and utility

0 0.2 0.4 0.6 0.8 1
   

0.2

0.4

0.6

0.8

  1

user1 - Promesse

user2 - Promesse

user3 - Promesse

user4 - Promesse

Fig. 2. Same LPPM can result into different privacy and utility metrics:
examples from 4 users using PROMESSE with ε = 100m and GEO-I with two
different configurations: ε1 = 0.01m−1 and ε2 = 0.005m−1.

metrics for all combinations of LPPMs, configurations, and
users in Figure 2. Let us first analyze those metrics from the
perspective of individual users. Both utility and privacy values
of user 4 (triangles of all colors) differ when applying GEO-
I or PROMESSE, showing the importance of LPPM choice.
Such an observation can also be made for user 1, 2 and 3,
with varying degrees of differences. Taking the perspective
fixed LPPM, either GEO-I or PROMESSE, one can see that
they offer different levels of privacy protection and utility
preservation to different users (symbols of the same color).
Figure 2 also illustrate that using one LPPM but with various
configurations can lead to totally different privacy protection
and service utility. In other words, it is impossible to find a
single (configuration) solution that fits all users’ privacy and
utility objectives. All these observations highlight the complex
interplay among privacy/utility metrics, the LPPM and its
configuration. Moreover, to ensure the fulfillment of privacy
and utility objectives for every user, it is deemed important
and necessary to consider the impact of LPPMs and their
configurations at the level of individual users.

III. DESIGN PRINCIPLES OF PULP FRAMEWORK

A. Overview

This section describes the methodology and design prin-
ciples of PULP, a framework that efficiently chooses and
configures LPPMs according to each users’ privacy and utility
objectives. PULP leverages a nonlinear modeling approach
and provides several variants of automatic LPPM configuration
laws. The key components of PULP framework are illustrated
in Figure 3, and the configuration laws are summarized in
Figure 4.

The profiler conducts off-line experiments to build users’
privacy and utility profiles, with respect to the LPPMs con-
sidered and a set of values of their configuration parameter.
For each user, the modeler bases on its off-line profile and
extrapolates the privacy models and utility models which are
non-linear functions in LPPM configuration parameter (one
privacy model and one utility model for each LPPM). Ac-
cording to users’ objectives and privacy & utility models, the
configurator suggests the suitable LPPM and its configuration.
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Fig. 3. PULP framework

PULP is effective for processing already collected
databases, with protection mechanisms that work at the user
level, with only one main configuration parameter. Indeed,
PULP is not suitable for online processes, as it does not
include temporal aspects in the decision making.

The rest of this section presents each component of PULP.
Then, Sections IV and V describe PULP’s automatic LPPM
configuration laws.

B. Profiler

The aim of the profiler is to obtain the values of privacy
and utility of individual users under a given LPPM and its
configuration parameter set of values. The profiler takes as
input a user’s mobility trace and loops on all LPPMs and
on a set of their possible configurations. The outputs are the
resulting list of privacy and utility metrics values for all cases.
Specifically, the profiler considers two LPPMs, GEO-I with
ε = [10−4, 1] in meter−1 and PROMESSE with ε = [50, 104]
in meter where range values are chosen according to LPPMs’
authors recommendations. The number of configuration values
needed is driven by the fitting accuracy of the modeler. One
shall choose the set of configuration values to run and its
size such that a certain accuracy of the model is reached. The
number of values required depends on the accuracy target as
well as the functional form of models. Suggestions on how to
choose them are given in Section VI-B3.

C. Modeler

The aim of the modeler is to derive the functional re-
lation between privacy/utility metrics and the configuration
parameter of a given LPPM, i.e., Pr(i, j) = F ipr(εj) and
Ut(i, j) = F iut(εj).

To search for the most suitable and general function, we
conduct numerous data fitting schemes on our datasets. Fig-
ure 5 depicts commonly seen dependency between privacy/u-
tility and ε, via an example of applying GEO-I and PROMESSE
on a CABS user (continuous lines). Experimental conditions
are further detailed in Section VI-A. The curves’ shape can be

Fig. 4. Automatic configuration laws in PULP
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Fig. 5. Impact of LPPMs configuration on a user’s privacy and utility metrics
– Real system vs. modeled system (CABS user)

explained by the limited ranges of privacy and utility metrics
in [0, 1] and insensitiveness of metrics to extreme values of ε.
These observations lead to choose arctan function as our base
model, instead of general polynomial functions. The general
shape of our observations makes us to use ln(ε) to fit the
arctan model of Fpr and Fut, instead of ε directly.

Now, we formally introduce the utility and privacy models
with four coefficients each. Index i of user and j of LPPM are
not used in the following notation even if there is one privacy
model and one utility model per user and per LPPM.

Fpr(ε) = apr.tan
−1 (bpr(ln(ε)− cpr)) + dpr, (3)

Fut(ε) = aut.tan
−1 (but(ln(ε)− cut)) + dut. (4)

An illustration of model shapes is given in Figure 5, in
dashed line.

The physical meaning of model parameters in both Fpr
and Fut are: a and d represent the two saturation levels, a
models their amplitude and d their offset. b characterizes the
transition speed between the saturation levels while parameter
c corresponds to the ε value that results into the median privacy
(or utility) value. Specific values of parameters in Fut and Fpr
need to be learned from each combination of user i and LPPM
j. The proposed models have the computational advantage that
there are only four coefficients to be learned.

D. Configurator

The aim of PULP configurator is to select and configure
a LPPM from the available LPPM set so as to satisfy the
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user defined objectives. These objectives are related to the
user privacy (the proportion of her POIs to be hidden) and to
the data utility (the proportion of correct map cells coverage).
We consider four types of user’s objective formulation, that
combines privacy and utility differently (see also Figure 4):
• PU-ratio: keeping both privacy and utility as high as

possible, with a given ratio between privacy and utility,
e.g., privacy is twice more important than utility;

• P-thld: guaranteeing that privacy is above a given thresh-
old, while keeping utility as high as possible;

• U-thld: guaranteeing that utility is above a threshold,
while keeping privacy as high as possible;

• PU-thld: keeping both privacy and utility as high as
possible, above given thresholds.

Using the models that link each LPPM configuration parameter
to privacy and utility values, one can reformulate the objectives
on privacy and utility as requirements on LPPMs’ configu-
ration. Then, in the case where several LPPMs are able to
fulfill the objectives, PULP selects the most efficient one to
achieve the specified objectives. PULP’s output is then the
recommended LPPM∗ and its configuration ε∗.

In the following, we first present PULP’s ratio-based config-
uration law PU-ratio (Section IV), and then describe PULP’s
threshold-based configuration laws P-thld, U-thld and PU-
thld (Section V).

IV. PULP’S RATIO-BASED CONFIGURATION LAW

A first configuration law proposed by PULP is PU-ratio.
Its objectives are as follows:

(O1) Privacy-to-utility ratio is fixed:
Pr = wpr/ut.Ut, and

(O2) Privacy and utility are as high as possible.
For example, when a user specifies wpr/ut = 0.5, that

means that utility is twice more important for her than privacy.
On the contrary, wpr/ut = 2 implies that a user thinks pre-
serving the privacy is twice more important than contributing
to the LBS accuracy. We now detail the solving procedure, in
two steps, to find LPPM∗ and its configuration parameter ε∗,
based on a relative trade-off wpr/ut provided by the user.

The first step consists in finding, for each LPPMj , its
configuration ε∗j that satisfies objectives (O1) and (O2). To
achieve the trade-off ratio of wpr/ut between the privacy and
utility of objective (O1), we need to find configuration ε∗j such
that Pr = wpr/ut ·Ut. Applying the model of Eq. (3) and (4),
we obtain ε∗j by solving

Fpr(ε
∗
j ) = wpr/ut · Fut(ε∗j ).

Due to the complexity of this equation, we do not derive
closed-form solution for ε∗j . Instead, we numerically solve it as
the minimization problem of the absolute difference between
Fut and Fpr

ε∗j = argmin
εj
|Fpr(εj)− wpr/ut · Fut(εj)| (5)

The convergence of the solution is ensured by the convexity
of the function to minimize in Eq. (5). However, when the
resulting configuration parameter value does not fall into its

Fig. 6. Illustration of PU -ratio configuration law for three schematic LPPMs
with wpr/ut = 2.

legitimate range (which depends on the LPPM), we then
consider LPPMj as an infeasible LPPM to provide the target
trade-off between privacy and utility. Thus, this first step
results in the set of values {ε∗j s.t. Eq. (5) is minimized for a
feasible LPPMj} that fulfill objective (O1) .

To better understand this step, we schematically illustrate in
Figure 6 three LPPMs’s behavioral models. Here, the model
equations of each LPPMj are represented, each point of the
curve of a LPPMj represents one of LPPMj’s configuration.
In this example, objective (O1) specifies a privacy twice more
important than utility, i.e., wpr/ut = 2. Thus, the result of the
first step of PULP ratio-based Configurator PU-ratio is the
set of values of {ε∗1, ε∗2, ε∗3}, the configuration of each feasible
LPPM that fulfills objective (O1).

Among the subset of LPPMs that can achieve the tar-
get trade-off with a valid configuration parameter, the PU-
ratio Configurator then selects the LPPM that maximizes the
weighted sum of the resulting privacy and utility, to keep
privacy and utility as high as possible, c.f., objective (O2).
Thus, the resulting LPPM∗ and its configuration ε∗ for a
user are

LPPM∗ = argmax
j

(Fpr(ε
∗
j ) + wpr/ut · Fut(ε∗j )). (6)

From the example in Figure 6, the LPPM that best achieves
objective (O2) which aims at maximizing privacy and utility
is the one crossing the objective (O1) line at the upper
point. Here, PULP ratio-based Configurator PU-ratio returns
< LPPM1, ε

∗
1 >.

V. PULP’S THRESHOLD-BASED CONFIGURATION LAWS

In addition to the ratio-based configuration law, PULP
provides three threshold-based laws, namely P-thld, U-thld
and PU-thld that are presented in the following section.

A. P-thld Law: Privacy Above a Minimum Threshold

Another possible set of objectives is to guarantee a mini-
mum privacy level while keeping utility as high as possible:

(O3) Privacy is higher or equal to a minimum privacy
value: Pr ≥ Prmin, and

(O4) Utility Ut is as high as possible.
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For each LPPM, we define εpr as the configuration param-
eter satisfying the equation Fpr(εpr) = Prmin. Using eq. (3),
we can express εpr as

εpr = exp

(
1

bpr
tan

(
Prmin − dpr

apr

)
+ cpr

)
. (7)

Due to the trade-off between utility and privacy, the higher
the utility is, the lower the privacy will be. Then for objec-
tive (O4), utility can be increased until the privacy reaches
its lower bound specified in objective (O3). Thus for each
LPPMj , the configuration ε∗j that achieves objectives (O3)
and (O4) for that LPPM is:

ε∗j = εpr for LPPMj (8)

Finally, as the privacy level is achieved for each combination
< LPPMj , ε

∗
j >, the overall LPPM∗ is the one that

maximizes utility:

LPPM∗ = argmax
j

(Fut(ε
∗
j )). (9)

B. U-thld Law: Utility Above a Minimum Threshold

Similarly, one can set the constraint on a minimal level of
utility while keeping privacy as high as possible:

(O5) Utility is not below a given minimum utility thresh-
old Ut ≥ Utmin,

(O6) With the highest data privacy Pr.
For each LPPM, we define εut such that Fut(εut) = Utmin:

εut = exp

(
1

but
tan

(
Utmin − dut

aut

)
+ cut

)
. (10)

Here, objective (O6) is ensured given objective (O5) iff
ε converges to the highest value that guarantees Fut(ε) ≥
Utmin, due to the trade-off between the two. Thus, the
configuration ε∗j for LPPMj is

ε∗j = εut for LPPMj (11)

In order to elect the protection mechanism LPPM∗, we
compare the values of privacy of the obfuscated data and
choose the following:

LPPM∗ = argmax
j

(Fpr(ε
∗
j )). (12)

C. PU-thld: Privacy and Utility Above Minimum Thresholds

This configuration law aims at guaranteeing that the level
of privacy and the level of utility of the obfuscated data are
above given thresholds:

(O7) Privacy is higher than or equal to a given minimum
threshold: Pr ≥ Prmin, and

(O8) Utility is higher than or equal to a given minimum
threshold: Ut ≥ Utmin.

The trade-off between privacy and utility described in
Section II shows that the utility function Fut(ε) and privacy
function Fpr(ε) have opposite directions of variation, both
functions being monotonous. Let us first make the hypothesis

that privacy function is decreasing and utility function increas-
ing (which is the case for GEO-I for example). Then the ob-
jective (O7) of a threshold value on privacy Fpr(ε) ≥ Prmin
can be written as:

ε ≤ εpr
And (O8) Fut(ε) ≥ Utmin as

ε ≥ εut
Then the two objectives can be combined in one condition

regarding to the value of the configuration parameter:

εut ≤ ε ≤ εpr
Then for users for whom εut ≤ εpr, all the parameters in the
range [εut; εpr] satisfy the objectives. PULP returns the mean
value of the range:

ε∗ =
εpr + εut

2
. (13)

Otherwise if εut ≥ εpr, there is no solution to both
objectives (O7) and (O8) for this particular combination of
LPPM and user.

Similarly, if the utility function on a LPPM decreases while
the privacy function increases (as for PROMESSE for instance),
the objectives can be written as:

εpr ≤ ε ≤ εut
and the condition of the existence of a solution is thus
εut ≥ εpr. However, in the case where a solution exists, PULP
returns the same solution of eq. (13).

Once the configuration ε∗j of each LPPM j is found, if
any, the protection mechanism LPPM∗ is selected as follows.
The values of privacy and utility are compared by computing
their weighted sum, after using each LPPMj in its previously
calculated configuration :

LPPM∗ = argmax
j

(Prmin · Fpr(ε∗j ) + Utmin · Fut(ε∗j )).
(14)

VI. PULP EVALUATION

PULP’s validation is carried out in three strokes: first, an
analysis of the modeler with an emphasis on the accuracy of
the derived models and on their robustness; second, the config-
urator evaluation that illustrates its effectiveness in choosing
a suitable LPPM to achieve different user’s objectives; and
eventually a comparison with the state of the art. Prior to
those core results, the experimental setup is depicted.

A. Experimental Setup

For the experimental validation of PULP, two different
machines were used. The profiler was executed on a machine
running Ubuntu 14.04 and equipped with 50Gb of RAM and
12 cores cloaked at 1,2 GHz. We run the profiler using the 30-
days datasets. The modeler and the configurator use Matlab
R2016b on a Ubuntu 14.04 and equipped with 3.7Gb of RAM
and 4 cores cloaked at 2,5 GHz.

The number of configuration of each LPPM to be tested
by the profiler has been set at first to 17 for GEO-I and 10
for PROMESSE, corresponding to 4 values per decade of the
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definition range, uniformly distributed. The modeler searches
for each user’s model by fitting the experimental data using
fminunc, and PU-ratio configuration law uses min (both are
Matlab functions).

The metrics of privacy and utility used have first been
parametrized to correspond to our datasets collected in dense-
cities. For measuring privacy, we consider POIs of a maximum
diameter of d = 200 m and a minimal stay time of t = 15 min.
In order to calculate intersections between sets of POIs, we
consider that two POIs matched if their centroids are within
dmax = 100 m from each other. Google’s S2 geometry
library [27] is used for cell extraction when computing utility.
The size of the cells is highly related to the nature of the
LBS. Indeed, a navigation application needs a spatial accuracy
at a really fine level while a recommendation system needs
accuracy at a neighborhood level. We consider cells at level
15, which corresponds to areas having the size of around 300
meters (city block or neighborhood).

As initial values for the models parameters of eq. (3) and
(4), we choose the following:

a The metric amplitude. The arctan function is varying
between −π2 and π

2 . Our metrics have been defined
to vary between 0 and 1. Moreover, we expect GEO-I
utility function and PROMESSE privacy function to be
increasing and GEO-I privacy function and PROMESSE
utility function to be decreasing. Consequently, we set
a = 1

π for GEO-I utility and PROMESSE privacy and
a = − 1

π for GEO-I privacy and PROMESSE utility.
b The transition speed between the saturations. It shall be

non-null and positive, the value b = 1 was chosen.
c The offset - configuration parameter value. This parame-

ter should be the default value of the configuration param-
eter defined by the authors of the LPPM: c = ln(10−2)
for GEO-I and c = ln(200) for PROMESSE.

d The offset - metric value. As metrics vary between 0 and
1 (or 1 and 0), the offset was set to d = 0.5.

When considering a new LPPM, all needed for configuring
the modeler is a standard value of its parameter (update of c
initial value only).

B. Evaluation of PULP Modeler

This section evaluates the ability of PULP modeler to
capture the behavior of privacy and utility metrics when
the LPPM configuration varies. We focus particularly on the
accuracy of the modeling, its robustness regarding the amount
of input data and its adaptability to model any privacy and
utility metric.

1) Modeler’s theoretic guarantees: The working hypothesis
regarding LPPMs are their configuration by a single parameter,
influencing both privacy and utility metrics. Thus, the variation
of those metrics will be stable or monotonous (at least in
average in case of stochastic LPPM), varying at most between
0 and 1 (by definition of the metrics), with eventual saturated
levels for high and low values of the parameter. The arctan
shape of the model enables to capture this behavior. The
accuracy of the modeling is thus given by the relevance of
the parameters of the model, output by the fminunc function.

The tolerance for stopping the iterative search for the best pa-
rameters have been set to 10−6, nonetheless with a maximum
number of iteration set to 400.

2) Modeler’s performance: As a preliminary analysis, one
can take a look at Figure 5. Experimental data (continuous line
with circles for GEO-I and stars for PROMESSE) is compared to
their model (dotted lines) for both utility and privacy metrics.
The closer the model curves are to the real data, the better
the model fitting is for that user. For our CABS user example
of Figure 5, the modeler accuracy is good for GEO-I and
PROMESSE utility and PROMESSE privacy; however for GEO-
I privacy the modeler is less accurate but still relevant as it
avoid overfitting the experimental data.

In order to ensure that PULP modeler is accurate for every
user, we compute the variance of the fitting error (difference
between experimental data and model prediction), which is a
relevant indicator for non-linear modeling. Results are shown
in Figure 7, in form of a cumulative distribution function
where low values of error variance show a high accuracy
of the modeling. For all metrics and all LPPMs, the median
modeling accuracy is less than 5.10−2, which, when put into
the perspective of our metrics varying between 0 and 1, is
a really good fitting. PROMESSE privacy is by far the better
modeled data, 95% of user have an accuracy of less than 10−4.
This can be easily explained as many users have a privacy
of 100% no matter the configuration of PROMESSE, as it is
the case for the user illustrated in Figure 5. From Figure 7,
one can also notice that the modeler has still a high accuracy
when dealing with outliers, as the 99th percentile of the error
variance is smaller than 2.10−1 for all metrics and all LPPMs.

3) Modeler’s robustness and adaptability: In the next
paragraphs, we comment on the robustness of the modeler
regarding both its sensibility to input data and its adaptation
to metrics parametrization. Illustrative figures of the kind of
Figure 7 are eluded due to space limitation, the results are
directly commented in the text.

First, we study the impact of the amount of profile data
needed for accurate modeling. We vary the number of values
of ε taken for the profiling phase, from 1 value per decade up to
4. Results show that the modeling accuracy varies depending
on the LPPM. In all cases, the more data are used, the better
the modeling is. However the improvement is negligible when
modeling GEO-I, which makes us recommend to use few
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Fig. 7. PULP modeler accuracy. Cumulative distribution function (cdf) among
all users.
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TABLE I
PULP OUTPUT FOR SELECTED USERS

Configuration Law PU -ratio PU -thld P-thld U -thld
Objectives wpr/ut = 2 Prmin = 0.6 Utmin = 0.7 Prmin = 0.7 Utmin = 0.5
PULP Output LPPM* ε∗ LPPM* ε∗ LPPM* ε∗ LPPM* ε∗

User 1 PROMESSE 694 GEO-I 0.014 PROMESSE 69 GEO-I 0.004
User 2 GEO-I 0.001 PROMESSE 244 PROMESSE 197 GEO-I 0.0034
User 3 PROMESSE 173 NaN NaN GEO-I 0.0097 GEO-I 0.0074

experiments for the profiling phase in order to limit computing.
When modeling PROMESSE, only 4 values per decade enable
to properly capture the behavior of users.

Metrics described in Section II are parametrized. The pri-
vacy metric depends on the diameter and duration of a POI
as well as on the maximum distance between two POIs to
consider they match. As for the utility metric, one can vary
the size of the cells that discretize the map. When varying these
parameters, the metrics reflect several notions of privacy and
utility. To ensure the performances of the modeler even with
these other notions of privacy and utility, we varied the four
metrics’ parameters and computed again the modeler accuracy.
In a general way, the modeler is able to keep a good accuracy:
around 10−3 for the median value and 10−2 for the 99th

percentile (excluding extreme cases).
We now detail the impact of each metric parameter on mod-

eling performance.We varied the duration of a POI between 5
and 120 minutes. For PROMESSE, the longer the POI, the better
the modeling. For GEO-I however, medium duration POIs
(around 15 to 30 minutes) are well modeled while extreme
ones have error variance close to 10−1. When looking at
the impact of POI diameter (from 100m to 1000m) on the
modeling accuracy, we found none on GEO-I (all metrics are
well modeled), while for PROMESSE the smaller the POI is, the
better the modeling is. As for the maximum distance between
two matched POIs (ranging from 25% of the POI diameter
to 250%), we obtained similar results: no impact for GEO-
I modeling and the smaller the distance is, the better the
modeling is for PROMESSE. When looking at the size of the
cells in the utility metric computation, we found that the larger
the cells are, the better PROMESSE behavior on users’ traces
is captured. However, GEO-I modeling is more accurate for
large or small cells, and a sightly worst for medium-size cells.

C. Evaluation of PULP Configurator

We now analyze the configurator’s ability to fulfill users’
objectives. To do so, we ran the four versions of PULP
configuration laws, each of them with several objectives.

PULP outputs for a set of users (selected to show diversity)
and a few objectives can be found on Table I. Results show that
for each user, a LPPM is recommended with a configuration
value, except when no LPPM can fulfill the objectives, which
is the case of user 3 with PU-thld objective. As a preliminary
analysis, we can see that users have different recommendations
even when having the same objectives. Moreover, a single user
gets various recommendation depending of her objectives.

The next sections and Figures 8 to 11 detail the results for
each law, by looking at four indicators: the LPPM selected
for each user (subfigure (a)) and its associated configuration
parameter (subfigures (b) and (c)), the privacy and utility of

users’ data when obfuscating with PULP recommendation
(subfigures (d) and (e)), and the corresponding trade-off
between privacy and utility (subfigure (f)).

1) Evaluation of PU-ratio Configuration Law: In this
variant of the configurator, the objective is to achieve a given
trade-off between privacy and utility. For its evaluation, we run
PULP on all users with various objective ratio wpr/ut ranging
from 0.5 (utility is twice more important than privacy) to 3
(privacy is three times more important than utility). Results
are shown in Figure 8. We computed the actual privacy to
utility ratio after applying the LPPM selected with its right
configuration. Results illustrated in Figure 8 (f) show that at
least 95% of the users have a resulting ratio in a range of +/-
1% of user specified values.

From Figure 8 (a) we can see that all users ended with a
recommended LPPM. For a given objective, the LPPM chosen
by PULP varies depending on the user, and the distribution
changes according to the objective, meaning that the adequate
LPPM of a single user may vary depending on the objective.
There is no a priori relation between the objective wpr/ut and
the distribution of selected LPPM.

When analyzing PULP choice of LPPM configuration pa-
rameters from Figure 8 (b) and (c), we make two observations:
(i) users need different configurations to fulfill the same objec-
tive and (ii) different objectives lead to various configurations
distribution. When looking at users for whom GEO-I is chosen,
the higher the objective ratio is, the lower the recommended
ε value is. Whereas for users with PROMESSE recommended,
the higher the objective ratio is, the larger the suitable ε value
is and the higher diversity there is in the recommended value.
For instance with wpr/ut = 2, users have ε from 100m to 2km.

When using the appropriate LPPM configured in a suitable
way, users can maintain privacy and utility levels that jointly
respect to the objective trade-off. In terms of absolute values,
when looking at the utility, one can notice that most users
have the same level of utility (Figure 8 (e)). The lower the
objective ratio is (i.e. the more utility matters), the higher the
utility is and the more diversity there is in the utility values.
For privacy, the same trend is observed: most users have the
same privacy but the lower the objective ratio is, the more
there is diversity in the privacy values (see Figure 8 (d)).

With an objective expressed as a trade-off between privacy
and utility, PULP enables to find a suitable LPPM for all users
and guarantee a high utility and privacy to almost all of them.

2) Evaluation of PU-thld Configuration Law: In this sec-
tion, we evaluate PULP PU-thld configuration law aiming
at achieving privacy and utility at levels higher than some
minimal thresholds. The evaluation, reported in Figure 9, has
been carried out with five couples of objectives.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , AUGUST 2018 10

First, it is important to notice that some users do not have
any LPPM recommended, as can be seen in Figure 9 (a). High
utility constraints seem to hamper the feasibility to recommend
suitable LPPMs. Recommendations range from less than 10%
of all users (Prmin = 0.5, Utmin = 0.9) to more than 95%
(Prmin = 0.3, Utmin = 0.5). Most of the recommendations
are GEO-I. The higher the utility constraint is, the more GEO-
I is recommended. When looking at values of the LPPM
configuration parameter, for GEO-I the general trend is that ε
is lower when privacy constraint in high, except in the extreme
case where Utmin = 0.9. For PROMESSE, the higher the utility
constraint, the smaller ε.

The privacy criteria is always satisfied, and almost no user
gets the limit privacy Prmin, see Figure 9 (d). However
when the utility constraint is high, most users tend to have
a privacy close to its bound. All users have their utility
criteria fulfilled (see Figure 9 (e)). Utility of most users is
really high: 80% of them have a utility above 0.8 (0.6 for
Prmin = 0.9, Utmin = 0.4). As for the privacy to utility
ratio, within a set of objectives most users (70-90%) have the
same privacy to utility ratio (Figure 9 (f)).

PULP is not able to find a suitable LPPM for all users
using this objective formulation; however, when it can, the
privacy and utility are most of the time way above the
minimum values required.

3) Evaluation of P-thld Configuration Law: Here the ob-
jective is to guarantee that the privacy is above a given
level. Results are given in Figure 10. PULP can recommend
a suitable LPPM and fulfill all users’ objectives considered
here. Around 10 to 20% of users can even achieve higher
privacy levels than requested threshold (even 80% for the
objective Prmin = 0.9), see Figure 10 (d). These proportions
correspond to users to which PROMESSE is recommended, see
correspondence with Figure 10 (a).

For those PROMESSE users, the utility is quite low but for
the other 80% of users, utility is more than 0.5 (Figure 10
(e)). Moreover, the higher the privacy limit is, the lower the
utility is. Looking at the privacy to utility ratio (Figure 10
(f)), for 80% of users (those with GEO-I recommended), the
lower the privacy limit is the higher the ratio is (allowing more
utility to the data) and all users have the same privacy to utility
ratio. However, for 20% of them (PROMESSE users) the ratio
is always the same no matter the objective.

As for the parameter values, for users with GEO-I recom-
mended, the higher the objective is, the smaller ε is. Users
with PROMESSE recommended seem to always have the same
ε recommended no matter the value of the objective, except
for Prmin = 0.9 where ε is at its upper bound for most users.

When PULP guarantees a minimal privacy level, two
distinctive types of users are observed. Some have GEO-I
recommended, a limited privacy and a high utility; while
the others use PROMESSE with a high privacy but a low utility.

4) Evaluation of U-thld Configuration Law: The results of
the configuration law guaranteeing a minimum level of utility
are illustrated in Figure 11. They show similar patterns than
those of P-thld configuration law.

All users had a LPPM recommended, and the general trend
is that the lower the utility limit is, the more PROMESSE is
recommended. Hence, PROMESSE tends to protect better than
GEO-I but result into lower utility, see Figure 11 (a).

All users have exactly the minimum utility they wanted, no
matter the value of the limit (see Figure 11 (e)). The lower the
utility limit is, the higher the privacy is. Most users (almost
70%) have good privacy levels, i.e. more than 0.7, except with
Utmin = 0.9 (see Figure 11 (d)). Therefore, the lower the
utility limit is, the higher the ratio is, allowing more privacy
preservation in the data. Within a set of objectives, most users
have the same privacy to utility ratio (Figure 11 (f)).

For users with GEO-I recommended, the higher the objec-
tive is, the higher ε is. However, for users with PROMESSE
recommended, the higher the limit is, the smaller ε is.

In this objective formulation, PULP always sets utility to its
minimum value, ensuring a good privacy to users especially
for those with PROMESSE recommended.

D. Comparison with Competitor

As PULP works with few profiling experiments, its exe-
cution time is significantly shorter compared to state of the
art. Indeed, all LPPMs configuration mechanisms that we
are aware of use greedy processes that need to run many
experiments in order to converge to a suitable configuration
(if ever they converge). We compare our framework PULP to
the closest work from the state of the art, the configurator
ALP from [26]. ALP is a framework that iteratively look
for a LPPM configuration that satisfies high level objectives
objectives such as maximizing privacy and utility. We consider
only one LPPM in PULP that is GEO-I and set our objective
to wpr/ut = 1 to be as close as possible to the ALP working
conditions. The execution time of PULP in theses conditions
is of the order of the minute for GEOLIFE dataset while ALP
requires around ten hours to converge. This makes a difference
of 3 orders of magnitude. The execution time of PULP is
barely all spent on the profiling phase. Indeed modeler and
configurator execution time are of few milliseconds. This
enables a user to change her objective and easily found again
the new adequate LPPM and its configuration.

ALP only considers the configuration challenge and does
not allow to choose between several LPPM. To still compare
the accuracy of PULP regarding to the state of the art,
the focus will be done on the users’ privacy and utility
preservation after using the frameworks. While the objective
given to ALP is to maximize both utility and privacy (no
preference is given to one or the other), the ratio between
the two after running ALP is almost always greater than 1,
meaning that more importance is given to privacy than to
utility [26]. With PULP, the ratio is almost always 1, see
Figure 8 (f). Moreover, with PULP, 80% of the users have
a utility and privacy higher than 0.7, while with ALP 90% of
the users have a privacy higher than 0.8, while 80% of them
have their utility only between 0.4 and 0.7 [26]. The low utility
with ALP comes from a small configuration parameter (less
that 5.10−2 for 70% of the users). Hence, the objective are
more evenly treated when using PULP, and enable to achieve
better utility.
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Fig. 9. PU -thld configuration law evaluation. (a) Recommended LPPM and its configuration (b) for GEO-I, (c) for PROMESSE. Achieved (d) level of privacy
and (e) utility when users are protected according to PULP recommendations, and the corresponding (f) privacy to utility ratio. Five objectives couple of
constraints on privacy and utility are illustrated.
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Fig. 10. P-thld configuration law evaluation. (a) Recommended LPPM and its configuration (b) for GEO-I, (c) for PROMESSE. Achieved (d) level of privacy
and (e) utility when users are protected according to PULP recommendations, and the corresponding (f) privacy to utility ratio. Five objectives constraints on
privacy Prmin are illustrated: 0.3, 0.5, 0.7, 0.8, 0.9.
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Fig. 11. U -thld configuration law evaluation. (a) Recommended LPPM and its configuration (b) for GEO-I, (c) for PROMESSE. Achieved (d) level of privacy
and (e) utility when users are protected according to PULP recommendations, and the corresponding (f) privacy to utility ratio. Five objectives constraints on
utility Utmin are illustrated: 0.3, 0.5, 0.7, 0.8, 0.9.
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VII. RELATED WORK

A. Location Privacy Protection Mechanisms

LPPMs attempt to enhance location privacy of users willing
to interact with location-based services. Although our work is
not concerned in designing a new LPPM, we quickly present
here some prominent privacy protection schemes. Generally
speaking, LPPMs can be classified according to the privacy
guarantees they offer to the users. A well-known privacy
guarantee is k-anonymity [29], which states that a user is k-
anonymous if she is hidden among k − 1 other users sharing
similar properties. In the context of location privacy, it means
that, instead of reporting their exact location, users report
to be inside cloaking areas containing at least k users. This
has been successfully implemented using a trusted third party
to compute cloaking areas (see for instance [21]) as well as
in distributed systems relying on peer-to-peer communication
between users (e.g., PRIVÉ [16]).

Another popular privacy guarantee is differential privacy [9],
which ensures that the presence or absence of a single user
from a dataset should not significantly affect the outcome of
any query on this dataset. Geo-Indistinguishability [3] is an
extension of differential privacy designed specifically to be
used on mobility traces. Differential privacy is guaranteed
by adding noise, drawn from a two-dimensional Laplace
distribution. Further version of Geo-I have been developed in
[5] and [22].

Eventually, some application-specific protection mecha-
nisms have been developed; such as private decision making
for smart cities [2], private classification of human activities
[15] or private task recommendation for crowdsourcing [28].

B. LPPM Configuration

What makes LPPMs difficult to use in practice is that they
rely on a set of configuration parameters. For instance, the ε
parameter of differentially-private protection mechanisms is a
sensitive parameter that has a great impact on the resulting data
privacy and utility. With the inherent trade-off between privacy
and utility, it is a difficult task to set LPPM configuration
parameters to an appropriate value.

In [18], the author showed that defeating a well-performing
privacy attack would require adding so much noise that it
would make the resulting data unusable by any LBS, and
hence useless. This means that we do have to consider the
right balance between privacy and utility in order to satisfy a
system designer objectives.

A few works have been proposed to help a user choose
a LPPM configuration that fits his actual needs. Agir et. al
proposed an adaptive mechanism that dynamically computes
the size of the cloaking area the user will be hidden within [1].
However, their privacy estimation routine has a complexity
of O(L2), L being the maximum number of locations that
a cloaked area can be formed of. Chatzikokolakis et. al
introduced an extension of GEO-I that uses contextual in-
formation to adapt the effective privacy level to the density
of the area [8]. However, this approach still requires some
parametrization from the user side and is not objective-driven.
Primault et al. presented ALP, a system that configures a

LPPM depending users objectives [26]. This solution relies
on a greedy approach that iteratively evaluates the privacy
and utility for refining configuration parameters. Their eval-
uation of the metrics has a complexity varying between O(L)
and O(L2). Moreover, the convergence is not ensured and
consequently there is no guarantee that the objectives are
actually met. PULP is first presented in [7]. In this paper,
we extend this previous work by developing three more
configuration laws enabling a dataset owner to specify several
combinations of privacy and utility objectives, and we present
extensive experimental evaluations for both the modeling and
the configuration parts of PULP.

VIII. CONCLUSION

In this paper we present PULP, a framework that ensures
users’ objectives regarding privacy and utility for mobility
databases by automatically choosing and configuring LPPMs.
Our notion of privacy relies on the hiding of users’ points
of interest, and the utility of the services is measured by
looking at the spatial proximity of obfuscated data to the
original ones. PULP realizes an in-depth analysis of the
considered LPPMs applied at a user scale in order to capture
the formal relationship between the configuration parameters
of the LPPMs and both privacy and utility metrics. Then PULP
leverages the models derived to identify the adequate LPPM
and its configuration that enables to fulfill the objectives. The
considered objectives aim at maximizing privacy and utility
with various constraints regarding minimal levels or the ratio
between the two metrics.

We illustrated the ability of our system PULP to efficiently
protect a user while keeping utility of her service using two
LPPMs from the state of the art: GEO-I and PROMESSE.
Evaluation has been done for several objectives and using data
from four real mobility datasets of 770 users in total. PULP
can accurately model the behavior of LPPMs on individual
users and thus successfully achieve privacy and utility objec-
tives at the same time in an automated way. Moreover, when
comparing with the state of the art, we proved PULP to be
3 order of magnitude faster (minutes versus hours) and more
robust to achieve user specified privacy and utility objectives.

Future directions include further researches of PULP ability
to work with more LPPMs, e.g. ones that have higher number
configuration parameters. We also aim at exploring more
metrics, corresponding to extensions of the notions of users’
privacy protection and service utility. In particular, we want
to include the temporal aspect of the mobility data.
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