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ASYMPTOTIC ANALYSIS OF A QUANTITATIVE GENETICS MODEL WITH

NONLINEAR INTEGRAL OPERATOR

VINCENT CALVEZ, JIMMY GARNIER, AND FLORIAN PATOUT

Abstract. We study the asymptotic behavior of stationary solutions to a quantitative genetics
model with trait-dependent mortality and a nonlinear integral reproduction operator. Our as-
ymptotic analysis encompasses the case when the deviation between the offspring and the mean
parental trait is typically small. Under suitable regularity and growth conditions on the mortality
rate, we prove existence and local uniqueness of a stationary profile that get concentrated around
a critical point of the mortality rate, with a nearly Gaussian distribution having small variance.
Our approach is based on perturbative analysis techniques that require to describe accurately the
correction to the Gaussian leading order profile. Our contribution extends previous results obtained
with linear reproduction operator, but using an alternative methodology.

1. Introduction

We investigate solutions (λε, Fε) ∈ R× L1(Rd) of the following stationary problem:

λεFε(z) +m(z)Fε(z) = Bε(Fε)(z) , z ∈ R
d ,(PFε)

where Bε is the following non linear, homogeneous integral operator associated to the infinitesimal
model Fisher (1918); Barton et al. (2017):

(1.1) Bε(f)(z) :=
1

εdπ
d

2

∫∫

R2d

exp

[
− 1

ε2

(
z − z1 + z2

2

)2
]
f(z1)

f(z2)∫
Rd f(z′2) dz

′
2

dz1dz2.

In the context of quantitative genetics, the variable z denotes a multi-dimensional phenotypic
trait, Fε(z) is the phenotypic distribution of the population and m(z) is the (trait-dependent)
mortality rate which results in the selection of the fittest individuals.

The mixing operator Bε acts as a simple model for the inheritance of quantitative traits in a
population with a sexual mode of reproduction. As formulated in (1.1), it is assumed that offspring
traits are distributed normally around the mean of the parental traits (z1 + z2)/2, with a variance
which remains constant accross generations, here ε2/2.

We are interested in the asymptotic behaviour of the trait distribution Fε as ε vanishes.
This asymptotic regime was investigated thoroughly for various linear operators Bε associated

with asexual reproduction such as for instance the diffusion operator Fε(z)+ε2∆Fε(z), or the convo-
lution operator 1

εK(zε)∗Fε(z) whereK is a probability kernel with unit variance, see Diekmann et al.
(2005); Perthame (2007); Barles and Perthame (2007); Barles et al. (2009); Lorz et al. (2011) for
the earliest investigations, see further Méléard and Mirrahimi (2015); Mirrahimi (2018); Bouin et al.
(2018b) for the case of a fractional diffusion operator (or similarly a fat-tailed kernelK), and see fur-
ther Mirrahimi (2013); Mirrahimi and Perthame (2015); Bouin and Mirrahimi (2015); Lam and Lou
(2017); Gandon and Mirrahimi (2017); Mirrahimi (2017); Mirrahimi and Gandon (2018); Calvez et al.
(2018) for the interplay between evolutionary dynamics and a spatial structure. In the linear case,
the asymptotic analysis usually leads to a Hamilton-Jacobi equation for the Hopf-Cole transform
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Uε = −ε logFε. This yields an original problem with non-negativity constraint that requires a
careful well-posedness analysis Mirrahimi and Roquejoffre (2015); Calvez and Lam (2018).

Much less is known about the non linear equation (PFε), although this model is widely used in
theoretical evolutionary biology to describe sexual reproduction, see e.g. Slatkin (1970); Roughgarden
(1972); Slatkin and Lande (1976); Bulmer (1980); Turelli and Barton (1994); Tufto (2000); Barfield et al.
(2011); Huisman and Tufto (2012); Cotto and Ronce (2014); Barton et al. (2017); Turelli (2017).

From a mathematical viewpoint, the model (1.1) received recent attention in the field of prob-
ability theory Barton et al. (2017) and integro-differential equations Mirrahimi and Raoul (2013);
Raoul (2017). In the latter couple of articles, a scaling different from (1.1) is studied: the variance
is of order one, but there is a large reproduction rate that enforces the relaxation of the phenotypic
distribution towards a Gaussian local equilibrium. Macroscopic equations are rigorously derived in
Raoul (2017), in the case of an additional spatial structure, in the spirit of hydrodynamic limits
for kinetic equations.

In a different context, a similar collisional operator as Bε (1.1) was introduced in the mod-
elling of self-propelled particles with alignment interactions, see for instance Bertin et al. (2006);
Degond et al. (2014). When two particles interact they tend to align with the mean velocity, with
some possible noise. However, there are some discrepancies with our case study, since the operator
is not conservative in our case, by definition of a reproduction operator. Moreover, it is normalized
by the total mass of the phenotypic distribution:

∫
f(z′2) dz

′
2. The rationale behind this choice

is that during the mating process, the first parent chooses the trait of its partner depending on
its frequency in the population. This is the neutral case without any assumption about assorta-
tive mating. Moreover, this dependency upon the frequency rather than the density discards any
small population effects that could arise from a quadratic collisional operator. Such homogeneity
of degree one is a key ingredient in our analysis.

The problem (PFε) is equivalent to the existence of special solutions of the form exp(λεt)Fε(z),
for the following non-linear but one-homogeneous equation which will be the subject of future work:

(1.2) ∂tf(t, z) +m(z)f(t, z) = Bε(f)(t, z) , t > 0 , z ∈ R
d.

Alternatively speaking, the problem (PFε) expresses the balance between selection via trait-dependent
mortality m(z), and the generation of diversity through reproduction Bε. The scalar λε is analo-
gous to the principal eigenvalue of the operator Bε −m. However, it might not be unique, as in
the Krein-Rutman theory, see Corollary 1.5. It measures the global fitness of the population: the
population grows exponentially fast λε > 0 when the reproduction term Bε dominates, while it
declines exponentially fast λε < 0 when the mortality m out-competes the reproduction.

This preliminary analysis on the stationary profile paves the way for a systematic analysis of
various quantitative genetics models, including time marching problems and the combination of
multiple effects (spatial structure, aging of the population etc).

Our work is inspired by similar asymptotics in the case of linear operator Bε, see the seminal
work by Diekmann et al. (2005) and references cited above. Accordingly, our goal is to analyze
problem (PFε) in the limit of vanishing variance ε2 → 0. Since there is few diversity generated in
this asymptotic regime, we expect that the variance of the distribution solution Fε vanishes as well.
Actually, there is strong evidence that the leading order profile of Fε is a Gaussian distribution
with variance ε2. As a matter of fact, any Gaussian distribution with variance ε2 is invariant by
the infinitesimal operator Bε in the absence of selection (m ≡ 0, λε = 1) Turelli and Barton (1994);
Mirrahimi and Raoul (2013). This motivates the following decomposition of the solution:

(1.3) Fε(z) =
1

(2π)
d

2 εd
exp

(
−(z − z0)

2

2ε2
− Uε(z)

)
.
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The latter (1.3) is similar to the Hopf-Cole transform used in the asymptotic analysis of adaptative
evolutionary dynamics in asexual populations. In our case Uε is a corrector term that measures the
deviation from the leading Gaussian distribution of variance ε2. Our analysis reveals that selection
determines the center of the distribution z0, as expected, and also reshapes the distribution Fε via
the corrector Uε.

The operator Bε is invariant by translation. Up to a translation of m, we may assume that the
leading order Gaussian distribution is centered at the origin, i.e. z0 = 0. Next, up to a change of
λε ← λε +m(0), we may assume that m(0) = 0. Note that we may also assume Uε(0) = 0 without
loss of generality, as the original problem is homogeneous.

Plugging the transformation of (1.3) into (PFε) yields the following equivalent problem for Uε :

λε +m(z) = Iε(Uε)(z) exp
(
Uε(z)− 2Uε

(z
2

)
+ Uε(0)

)
, z ∈ R

d.(PUε)

The residual term from the integral contribution is the following non-local term Iε(Uε), see Section
2.1 for the details of the derivation:

(1.4) Iε(Uε)(z)

=

∫∫

R2d

exp

[
−1

2
y1 · y2 −

3

4

(
|y1|2 + |y2|2

)
+ 2Uε

(z
2

)
− Uε

(z
2
+ εy1

)
− Uε

(z
2
+ εy2

)]
dy1dy2

πd/2

∫

Rd

exp

[
−1

2
|y|2 + Uε(0)− Uε(εy)

]
dy

.

This decomposition appears to be relevant because a formal computation shows that Iε(Uε)→ 1 as
ε → 0. Establishing uniform convergence is actually a cornerstone of our analysis. Thus for small
ε, the problem (PUε) is presumably close to the following corrector equation, obtained formally at
ε = 0:

(PU0) λ0 +m(z) = exp
(
U0(z)− 2U0

(z
2

)
+ U0(0)

)
, z ∈ R

d.

Interestingly, this finite difference equation admits explicit solutions by means of an infinite series:

U0(z) = γ0 · z +
∑

k>0

2k log
(
λ0 +m(2−kz)

)
,

However, two difficulty remains: identify (i) the linear part γ0 ∈ R
d and (ii) the unknown λ0 ∈ R.

On the one hand, the linear part γ0 cannot be recovered from (PU0) because linear contributions
cancel in the right-hand-side of (PU0). Thus, identifying the coefficient γ0 will be a milestone of
our analysis. On the other hand, two important conditions must be fulfilled to guarantee that the
series above converges, namely:

λ0 +m(0) = 1 , and ∂zm(0) = 0.

The latter is a constraint on the possible translations that can be operated: the origin must be
located at a critical point of m. The former prescribes the value of λ0 accordingly. These two
conditions are necessary conditions for the resolvability of problem (PU0). Indeed, evaluating
(PU0) at z = 0, we get the first identity. Next, differentiating and evaluating again at z = 0, we
get the second identity.

In the sequel we make this formal discussion rigourous, following a perturbative approach for
ε small enough. Before stating our main result, we need to prescribe the appropriate functional
space for the corrector Uε.
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Definition 1.1 (Functional space for Uε).
For any positive parameter α 6 2/5, we define the functional space

Eα =



u ∈ C3(Rd) : u(0) = 0, and

∣∣∣∣∣∣

|Du(z)|
(1 + |z|)α

∣∣D2u(z)
∣∣

(1 + |z|)α
∣∣D3u(z)

∣∣
∈ L∞(Rd)



 ,

equipped with the norm

(1.5) ‖u‖α = max

(
sup
z∈Rd

|Du(z)| , sup
z∈Rd

(1 + |z|)α
{∣∣D2u(z)

∣∣ ,
∣∣D3u(z)

∣∣}
)
.

For any bounded set K of Eα, we use the notation ‖K‖α = supu∈K ‖u‖α. Occasionally we use the
notation ϕα for the weight function ϕα(z) = (1+ |z|)α. Although 2/5 is not the critical threshold, it
happens that the exponent α cannot be taken too large in our approach. We set implicitly α = 2/5
in the following results, however we leave it as a parameter to emphasize its role in the analysis,
and to pinpoint the apparition of the threshold. Note that α > 0 is required in our approach, as
one constant collapses in the limit α→ 0 (see estimate (5.7) below).

Then, we detail the assumptions on the selection function m.

Definition 1.2 (Assumptions on m).
The function m is a C3(Rd) function, bounded below, that admits a local non-degenerate minimum
at 0 such that m(0) = 0, and there exists µ0 > 0 such that D2m(0) > µ0 Id in the sense of symmetric
matrices. Furthermore we suppose that (∀z) 1 +m(z) > 0 and

(1 + |z|)α Dkm(z)

1 +m(z)
∈ L∞(Rd) , for k = 1, 2, 3 .(1.6)

Remark 1.3. Our result is insensitive to the sign of the local extremum. Indeed, one can replace
the hypothesis that m admits a ”local non degenerate minimum” at 0 with a ”local non degenerate
maximum” at 0, and that there exists µ0 < 0 such that D2m(0) 6 µ0 Id. However, we leave our
main assumption as in Definition 1.2 as it is the most natural one from the point of view of stability
analysis for the time-marching problem (1.2).

The condition (1.6) is clearly verified if m is a polynomial function. It would be tempting to
write, in short, that log(1 +m) ∈ Eα, which is indeed a consequence of (1.6). However, the latter
condition also contains the decay of the first order derivative D log(1 +m) with rate |z|−α, which
is not contained in the definition of Eα (1.5) for good reasons.

We also introduce the subset Eα0 :

(1.7) Eα0 =
{
v ∈ Eα : Dv(0) = 0, D2v(0) > D2m(0) > µ0 Id

}
,

Then, our assumption on m in fact guarantees that

log(1 +m) ∈ Eα0 .(1.8)

The main result of this article is the following theorem :

Theorem 1.4 (Existence and convergence).

(i) There exist K0 a ball of Eα, and ε0 a positive constant, such that for any ε 6 ε0, the problem
(PUε) admits a unique solution (λε, Uε) ∈ R×K0.

(ii) The family (λε, Uε)ε converges to (λ0, U0) as ε→ 0, with

λ0 = 1,(1.9)

U0(z) = γ0 · z + V0(z),(1.10)
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Phenotypic trait z

1

Phenotypic trait z

Figure 1. Numerical simulations of the stationary problem (PFε) with ε = 0.1 in
an asymmetric double-well mortality rate (grey line). The numerical equilibrium is
in yellow plain line. The only difference between the two simulations is the initial
data (red dashed line). The simulations illustrate the lack of uniqueness for problem
(PFε).

where

γ0 =





∂3
zm(0)

2∂2
zm(0)

, if d = 1

1

2

(
D2m(0)

)−1
D(∆m)(0) , if d > 1

and V0 =
∑

k>0

2k log
(
1 +m(2−kz)

)
.(1.11)

Moreover, the convergence Uε → U0 is locally uniform up to the second derivative.

An immediate remark is that the regularity required by (1.6), and particularly the C3 regularity
of m, is consistent with formula (1.10) which involves the pointwise value of third derivatives of m.
Alternatively speaking we think that our result is close to optimal in terms of regularity.

It is important to notice that our result holds true for any local mimimum z0 such that

(1.12) m(z0) < 1 + infm.

One should define the functional spaces Eα and Eα0 accordingly (and particularly replace the con-
ditions u(0) = 0 and Du(0) = 0 by the conditions u(z0) = 0 and Du(z0) = 0), and then adapt
(1.9)–(1.10) as follows, for the one-dimensional case:

λ0 = 1−m(z0),

U0(z0 + h) = γ0 · h+
∑

k>0

2k log
(
1 +m(2−k(z0 + h)) −m(z0)

)
,(1.13)

where γ0 is defined by the same formula as in (1.11) but evaluated at z0. Immediately, one sees
that the compatibility condition (1.12) is necessary to have the positivity of the term inside the log
in (1.13). As a consequence, we have:

Corollary 1.5 (Lack of uniqueness).
If the selection function m has at least two different local non-degenerate minima that verify the
compatibility condition (1.12), there exists at least two pairs (λε, Fε) solutions of problem (PFε) for
ε small enough.

We performed numerical simulations to illustrate this phenomenon (see Figure 1). The function
m is an asymmetric double well function. We solved the time marching problem (1.2) but on
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the renormalized density Fε/
∫
Fε in order to catch a stationary profile. We clearly observed the

co-existence of two equilibria for the same set of parameters, that were obtained for two different
initializations of the scheme. However, let us mention that the question of uniqueness in the case
of a convex selection function m is an open question, to the extent of your knowledge.

This result is in contrast with analogous eigenvalue problems where Bε is replaced with a lin-
ear operator, say Fε + ε2∆Fε as in various quantitative genetics models with asexual mode of
reproduction, see e.g. Barles et al. (2009) and references mentioned above, or in the semi-classical
analysis of the Schrödinger equation, see e.g. Dimassi et al. (1999). In the linear case, λε ∈ R

and Fε > 0, Fε 6≡ 0 are uniquely determined (up to a multiplicative constant for Fε) under mild
assumptions on the potential m. This is the signature that Bε (1.1) is genuinely non-linear and
non-monotone, so that possible extensions of the Krein-Rutman theorem for one-homogeneous
operators, as in Mahadevan (2007), are not applicable.

The existence part (i) was already investigated in Bourgeron et al. (2017) using the Schauder
fixed point theorem and loose variance estimates. But the approach was not designed to catch the
asymptotic regime ε → 0. The current methodology gives much more precise information on the
behavior of the solutions of the problem (PFε) in the regime of vanishing variance.

Theorem 1 provides a rigorous background for the connection between problem (PUε) and prob-
lem (PU0) in a perturbative setting. It justifies that the problem (PFε) is well approximated by
the solution (λ0, U0) of the problem (PU0). Quite surprisingly, the value γ0 of the linear part of
the corrector function U0 is resolved during the asymptotic analysis although it cannot be obtained
readily from problem (PU0) as mentioned above. It coincides with the heuristics of Bouin et al.
(2018a) where the same coefficient was obtained by studying the formal expansion up to the next
order in ε2: Uε = U0 + ε2U1 + o(ε2), and by identifying the equation on U1 in which the value
of γ0 appears as another compatibility condition. Here the value of γ0 is obtained directly as a
by-product of the perturbative analysis.

As mentioned above, our approach is very much inspired, yet different to most of the current
literature about asymptotic analysis of asexual models, where the limiting problem is a Hamilton-
Jacobi equation, see Perthame (2007) for a comprehensive introduction, and references above. To
draw a parallel with our problem, let us consider the case where Bε(f) is replaced with the (linear)
convolution operator Kε ∗ f , where the kernel has the scaling property Kε = 1

εK
( ·
ε

)
, and K is

a probability distribution kernel. There, the small parameter ε measures the typical size of the
deviation between the offspring trait and the sole parental trait. In this context, it is natural
to introduce the Hopf-Cole transform Uε = −ε log Fε. Then, the problem is equivalent to the
asymptotic analysis of the following equation as ε→ 0:

λε +m(z) =

∫

Rd

K (y) exp

(
Uε(z)− Uε(z − εy)

ε

)
dy,(1.14)

For this model, it is known that Uε converges towards the viscosity solution of a Hamilton-Jacobi
equation Barles et al. (2009):

(1.15) λ0 +m(z) = H(DU0(z)) =

∫

Rd

K (y) exp (DU0(z) · y) dy .

Note that the limiting equation on U0 (1.15) can be derived formally from (1.14) by a first order
Taylor expansion on Uε.

There are two noticeable discrepancies between the asexual case (1.14)–(1.15) and our problem
involving the infintesimal model with small variance. Firstly, ε plays a similar role in both cases,
i.e. measuring typical deviations between offspring and parental traits. However, the appropriate
normalization differs by a factor ε: it is −ε log Fε in the asexual case, whereas it is −ε2 logFε in
our context, see (1.3). This scaling difference is the signature of major differences between the
two problems (asexual vs. sexual). Secondly, the two limiting problems (1.15) and (PU0) have
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Bouin et al. (2018a) Present article

Problem (PFε)

Problem (PUε)

Problem (PU0) Solution (λ0, U0)

Solution (λε, Uε)

Hopf-Cole transform

for small ε
Formal approximation

Fixed point argument

for ε > 0

Convergence as ε → 0

Figure 2. Scope of our paper compared to precedent work

completely different natures: a Hamilton-Jacobi PDE in the asexual case, vs. a finite difference
equation in the sexual case. Moreover, due to the lack of a comparison principle in the original
problem (PFε), we could not envision a similar notion of viscosity solutions for (PU0). Instead, we
use rigid contraction properties and a suitable perturbative analysis to construct a unique strong
solution near the limiting problem, as depicted in Figure 2.

Mirrahimi and Raoul (2013) observed that the infinitesimal operator Bε alone enjoys a uniform
contraction property with respect to the quadratic Wasserstein distance, with a factor of contraction
1/2. Recently, this was used by Magal and Raoul (2015) to perform a hydrodynamic limit in
a different regime than the one under consideration here, see also Raoul (2017). However, the
combination of Bε with a zeroth-order heterogeneous mortality m(z) seems to destroy this nice
structure (details not shown).

The next section is devoted to the reformulation of problem (PUε) into a fixed point problem,
introducing a set of notation and the strategy to prove Theorem 1.4. The organization of the paper
is postponed to the end of the next Section.

Up until the last part of the article we implicitly work in dimension d = 1, for the readers’
convenience. In section 7 we pinpoint the few elements of the proof that are specific to the one-
dimensional case and give an extension to the higher-dimensional case in order to complete the
proof of Theorem 1.4.
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2. Reformulation of the problem as a fixed point

2.1. Looking for problem (PUε). The equivalence between problem (PFε) and problem (PUε)
through the transform (1.3) is not immediate. It is detailed in Bouin et al. (2018a), but we recall
here the key steps for the sake of completeness. Plugging (1.3) into problem (PFε) yields, with the

notation q(z) = z2

2 :

λε +m(z)

=

∫∫

R2

exp

[
− 1

ε2

(
2q

(
z − z1 + z2

2

)
+ q(z1) + q(z2)− q(z)

)
− Uε(z1)− Uε(z2) + Uε(z)

]
dz1dz2

ε
√
π

∫

R

exp

(
−q(z′)

ε2
− Uε(z

′)

)
dz′

.

When ε → 0, we expect the numerator integral to concentrate around the minimum of the
principal term that is :

argmin
(z1,z2)

[
2q

(
z − z1 + z2

2

)
+ q(z1) + q(z2)− q(z)

]
=
(z
2
,
z

2

)
.

We introduce the notation

z =
z

2
.

Using the change of variable (z1, z2) = (z + εy1, z + εy2), we obtain the following equation :

(2.1) λε +m(z) =

∫∫

R2

exp (−Q(y1, y2)− Uε(z + εy1)− Uε(z + εy2) + Uε(z)) dy1dy2

√
π

∫

R

exp
(
−y2/2− Uε(εy)

)
dy

,

where

1

ε2

[
2q

(
z − z1 + z2

2

)
+ q(z1) + q(z2)− q(z)

]
=

1

2
y1y2 +

3

4
(y21 + y22) = Q(y1, y2).

Definition 2.1.
We denote by Q the following quadratic form :

Q(y1, y2) =
1

2
y1y2 +

3

4
(y21 + y22).

It is the residual quadratic form after our change of variable. We notice that 1√
2π

exp(−Q) is the

density of a bivariate normal random variable with covariance matrix

(2.2) Σ =
1

4

(
3 −1
−1 3

)
.

At the denominator of (2.1) naturally arises N the density function of a N (0, 1) random variable.
8



Finally, (2.1) is equivalent to problem (PUε):

λε +m(z) = Iε(Uε)(z) exp (Uε(z)− 2Uε (z) + Uε(0)) ,

simply by conjuring 2Uε(z/2) at the numerator and Uε(0) at the denominator, resulting into the
defintion of the remainder Iε(Uε) (1.4) that will be controlled uniformly close to 1 in all our analysis.

In the next section we explain how we reformulate the problem (PUε) into a fixed point argument
in order to use a Banach-Picard fixed point theorem which prove our results rigorously.

2.2. Some auxiliary functionals and the fixed point mapping. This section is devoted to the
derivation of an alternative formulation for problem (PUε). Let (λε, Uε) be a solution of problem
(PUε) in R× Eα.

The first step is to dissociate the study of λε and Uε. We first evaluate the problem (PUε) at
z = 0. It yields the following condition on λε, since m(0) = 0:

(2.3) λε = Iε(Uε)(0).

Considering the terms Iε as a perturbation, we divide problem (PFε) by Iε(Uε)(z) which is positive,
and we take the logarithm on each side. Then we obtain the following equation, considering (2.3) :

(2.4) Uε(z)− 2Uε(z) + Uε(0) = log

(
Iε(Uε)(0) +m(z)

Iε(Uε)(z)

)

It would be tempting to transform (2.4) into a fixed point problem by inverting the linear operator
in the left-hand-side. However, the latter is not invertible as it contains linear functions in its
kernel. Therefore we are led to consider linear contributions separately.

Our main strategy is to decompose the unknown Uε under the form

Uε(z) = γεz + Vε(z),(2.5)

with Vε ∈ Eα0 . This is consistent with the analytic shape of our statement in (1.10), where γ0 and
V0 have quite different features with respect to the function m.

Next, it is natural to differentiate (2.4). One ends up with the following recursive equation for
every z ∈ R

(2.6) ∂zUε(z)− ∂zUε(z) = ∂z

[
log

(
Iε(Uε)(0) +m

Iε(Uε)(z)

)]
(z).

One simply deduces that, if Uε exists and is regular, then we must have:

(2.7) ∂zUε(z) = ∂zUε(0) +
∑

k>0

∂z

[
log

(
Iε(Uε)(0) +m

Iε(Uε)(z)

)]
(2−kz).

One can formally integrate back the previous equation to obtain

(2.8) Uε(z) = Uε(0) + ∂zUε(0)z +
∑

k>0

2k log

(
Iε(Uε)(0) +m

Iε(Uε)(z)

)
(2−kz).

At this stage we formally identify :

⊲ Uε(0) = 0, since Uε ∈ Eα. This is not a loss of generality by homogeneity since Fε is itself
defined up to a multiplicative constant in problem (PFε).

⊲ γε = ∂zUε(0). In fact this is part of the decomposition (2.5) since Vε ∈ Eα0 .
The real number γε is unknown at this stage, but it needs to verify some compatibility condition
to make the series converging in (2.6)–(2.8). In particular, if we evaluate (2.6) at z = 0 we obtain
that γε must satisfy

(2.9) 0 = ∂zIε(γε ·+Vε)(0).
9



We will solve (2.9) using an implicit function theorem in order to recover the value γ associated
with a given V . Beforehand, we introduce the following notation:

Definition 2.2 (Finite differences operator Dε).
We define the finite differences functional Dε as

Dε(V )(y1, y2, z) = V (z)− 1

2
V (z + εy1)−

1

2
V (z + εy2) , z =

z

2
.

We introduce the following auxiliary functional which makes the link between γε and V .

Definition 2.3 (Auxiliary function Jε).
We define the functional Jε : R× Eα0 → R as follows
(2.10)

Jε(g, V ) =
1

ε2
√
2π

∫∫

R2

exp [−Q(y1, y2)− εg(y1 + y2) + 2Dε(V )(y1, y2, 0)]Dε(∂zV )(y1, y2, 0) dy1dy2.

The implicit relationship (2.9) is equivalent to Jε(γε, Ve) = 0. From this perspective, the following
result is an important preliminary step.

Proposition 2.4 (Existence and uniqueness of γε).
For any ball K ⊂ Eα0 , there exists εK , such that for all ε 6 εK and for any V ∈ K, there exists a
unique solution γε(V ) to the equation :

Find γ ∈ (−RK , RK) such that: Jε(γ, V ) = 0,

where the bound |γε(V )| < RK is defined as

RK = max



‖K‖α

∫∫

R2

exp(−Q(y1, y2))
(
y21 + y22

)
dy1dy2 + 8

2∂2
zm(0)

; ‖K‖α


 .(2.11)

Next we define the main quantity we will work with: the double integral Iε which is the rescaled
infinitesimal operator. For convenience we define it as a mapping on Eα0 . It is compatible with (1.4)
because of the decomposition (2.5).

Definition 2.5 (Auxiliary functional Iε).
We define the functional Iε : Eα0 → C3(R) as follows

Iε(V )(z) =

∫∫

R2

exp
(
−Q(y1, y2)− εγε(V )(y1 + y2) + 2Dε(V )(y1, y2, z)

)
dy1dy2

√
π

∫

R

exp
(
−y2/2− εγε(V )y + V (0)− V (εy)

)
dy

.(2.12)

Finally, in view of (2.8) and (2.5), we see that Vε must be a solution of this implicit equation :

(2.13) Vε(z) =
∑

k>0

2k log

(Iε(Vε)(0) +m

Iε(Vε)(z)

)
(2−kz), for every z ∈ R.

This justifies the introduction of our central mapping, upon which our fixed point argument will
be based.

Definition 2.6 (Fixed point mapping).
We define the mapping Hε : Eα0 → Eα0 as follows

(2.14) Hε(V )(h) =
∑

k>0

2k log

(Iε(V )(0) +m(2−kh)

Iε(V )(2−kh)

)
.
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2.3. Reformulation of the problem. We are now in position to write our main result for this
Section:

Theorem 2.7 (Existence and uniqueness of the fixed point).
There is a ball K0 ⊂ Eα0 and a positive constant ε0 such that for every ε 6 ε0, the mapping Hε

admits a unique fixed point in K0.

To conclude, it is sufficient to check that solving problem (PUε), on the ball K0, and seeking a
fixed point for Hε in K0 are equivalent problems for ε 6 ε0 small enough.

Proposition 2.8 (Reformulation of the problem (PUε)).
There is a ball K ′

0 of Eα, and a positive constant ε′0 such that for every ε 6 ε′0, the following
statements are equivalent:

⊲ (λε, Uε) is a solution of the problem (PUε) in R×K ′
0.

⊲ Uε = γε(Vε) ·+Vε, with Vε ∈ Eα0 ∩K ′
0, Hε(Vε) = Vε, and λε = Iε(Vε)(0).

Moreover, the statement of Theorem 2.7 holds true in the set Eα0 ∩K ′
0.

The main mathematical difficulties are stacked into Theorem 2.7. The rest of the article is
organized as follows :

⊲ In section 3, we justify why the function γε is well defined in Proposition 2.4.

⊲ Then in section 4, we provide the main properties and the key estimates of the nonlocal
operator Iε. We point out why this term plays the role of a perturbation between problem
(PUε) and problem (PU0). In section 4.2 we prove crucial contraction estimates.

⊲ Those estimates are the main ingredients of the proof of properties of Hε in section 5: most
notably the finiteness of Hε(V ), and the fact that Hε is a contraction mapping.

⊲ This allows us to establish the proof of Theorem 2.7 and Proposition 2.8, and finally to
come back to the proof of our main result Theorem 1.4 in the sections 6.1 and 6.2.

⊲ Section 7 is devoted to those specific arguments that require an extension to the higher
dimensional case d > 1.

3. Well-posedness of the implicit function γε

3.1. Heuristics on finding γε. We consider V ∈ Eα0 , and we look for solutions γε of Jε(γε, V ) = 0,
or equivalently :
(3.1)

0 =
1

ε2
√
2π

∫∫

R2

exp [−Q(y1, y2)− εγε(y1 + y2) + 2Dε(V )(y1, y2, 0)]
(
Dε(∂zV )(y1, y2, 0)

)
dy1dy2,

in accordance with (2.10). We will see here how a Taylor expansion of the right-hand-side around
ε = 0 helps to understand why it defines a unique γε in a given interval for small ε. We will show
formally why Jε(·, V ) can be uniformly approximated by a non-degenerate linear function for small
ε.
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We expand the right-hand-side with respect to ε:

1

ε2
√
2π

∫∫

R2

exp [−Q(y1, y2)] exp [−εγε(y1 + y2) + 2Dε(V )(y1, y2, 0)]
(
Dε(∂zV )(y1, y2, 0)

)
dy1dy2

= − 1

ε2
√
2π

∫∫

R2

exp [−Q(y1, y2)] [1− εγε(y1 + y2) + o (ε)]

×
(
ε

2
(y1 + y2) ∂

2
zV (0) +

ε2

4

(
y21 + y22

)
∂3
zV (0) + o(ε2)

)
dy1dy2

=
1

ε2

(
ε2

2
γε∂

2
zV (0)− ε2

3∂3
zV (0)

8
+ o(ε2)

)
.

Then solving

0 = −3∂3
zV (0)

8
+

1

2
γε∂

2
zV (0) + o(1),

we get the expression :

(3.2) γε ∼
ε→0

3

4

∂3
zV (0)

∂2
zV (0)

.

These heuristics are consistent with the statement in Theorem 1.4, up to the relation between V0

and m that can be easily read out from (1.11). Note that the denominator involves ∂2
zV (0), so that

the local convexity of V should be controlled uniformly during our construction. This is the purpose
of the restriction in Eα0 (1.7). In the following, we provide estimates that turn these heuristics into
a rigorous proof.

3.2. Proof of Proposition 2.4. The aim of this section is to prove the existence and uniqueness
of γε(V ) stated in Proposition 2.4. We first start with a Lemma providing some useful estimates
on the function Jε. Combining these estimates with a continuity and monotonicity arguments, we
will be able to prove the Proposition 2.4.

Lemma 3.1 (Estimates of Jε).
For any ball K ⊂ Eα0 , there exists εK > 0, such that for all ε 6 εK and V ∈ K, the following
estimate holds true for all g in the interval (−RK , RK):

Jε(0, V ) = − 1

4
√
2π

∫∫

R2

exp(−Q(y1, y2))
[
y21∂

3
zV (εỹ1) + y22∂

3
zV (εỹ2))

]
dy1dy2 +O(ε),(3.3)

∂gJε(g, V ) =
∂2
zV (0)

2
+O(ε),(3.4)

where, in the former expansion, the variable ỹi is a by-product of Taylor expansions and is such
that |ỹi| 6 |yi|+ 1.

Remark 3.2.
We prove the uniqueness of γε on a uniformly bounded interval. One may think it is a strong
restriction not to look at large γε. It is in fact a natural restriction as we have by definition
γε = ∂zUε(0), and ∂zUε ∈ L∞ in our perturbative setting.

We postpone the proof of the technical Lemma 3.1 at the end of this section and we first use it
to prove the Proposition 2.4:

Proof of Proposition 2.4. Let K be a ball of Eα0 and V ∈ K. We deduce from Lemma 3.1 that
|Jε(0, V )| 6 GK + 1, where

GK =
‖K‖α
4
√
2π

∫∫

R2

exp(−Q(y1, y2))
(
y21 + y22

)
dy1dy2 ,
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for ε small enough. Integrating (3.4) with respect to g, we obtain

Jε(g, V ) = Jε(0, V ) +
∂2
zV (0)

2
g +O(ε) ,

where it is important to notice that the perturbation O(ε) is uniform with respect to ε for g ∈
(−RK , RK) and V ∈ K. Since V ∈ Eα0 , we know that ∂2

zV (0) > ∂2
zm(0) > 0. Therefore, Jε is

uniformly increasing with respect to g on (−RK , RK). Moreover, the choice of RK is such that

Jε(RK , V ) > −1−GK +
∂2
zm(0)

2
RK +O(ε) = 1 +O(ε) > 0 ,

for ε small enough, and similarly, Jε(−RK , V ) < 0. Finally, there exists a unique γε(V ) satisfying
Jε(γε(V ), V ) = 0 because Jε is continuous with repect to g for V ∈ Eα0 . �

Proof of Lemma 3.1. Let K be a ball of Eα0 of radius ‖K‖α. In section 3.1, we have used formal
Taylor expansions to get a formula for γε(V ), morally valid when ε = 0. The idea here is to write
exact rests to broaden the formula for small but positive ε.

⊲ Proof of expansion (3.3). Let us pick V ∈ K and ε > 0. Recall the expression of Jε(0, V ) :

Jε(0, V ) =
1

ε2
√
2π

∫∫

R2

exp [−Q(y1, y2) + 2Dε(V )(y1, y2, 0)]
(
Dε(∂zV )(y1, y2, 0)

)
dy1dy2.

We perform two Taylor expansions, namely:

(3.5)





2Dε(V )(y1, y2, 0) = −
ε2

2

(
y21∂

2
zV (εỹ1) + y22∂

2
zV (εỹ2)

)

Dε(∂zV )(y1, y2, 0) = −
ε(y1 + y2)

2
∂2
zV (0)− ε2

4
(y21∂

3
zV (εỹ1) + y22∂

3
zV (εỹ2)),

where ỹi denote some generic number such that |ỹi| 6 |yi| for i = 1, 2. Moreover, we can write
(3.6)

exp(−ε2P ) = 1−ε2P exp(−θε2P ) , P =
1

2

(
y21∂

2
zV (εỹ1) + y22∂

2
zV (εỹ2)

)
, |P | 6 1

2

(
y21 + y22

)
‖V ‖α ,

for some θ = θ(y1, y2) ∈ (0, 1). Combining the expansions, we find:

Jε(0, V ) =
1

ε2
√
2π

∫∫

R2

exp [−Q(y1, y2)]
(
1− ε2P exp(−θε2P )

)

×
(
−ε(y1 + y2)

2
∂2
zV (0) − ε2

4
(y21∂

3
zV (εỹ1) + y22∂

3
zV (εỹ2))

)
dy1dy2 .

The crucial point is the cancellation of the O(ε−1) contribution due to the symmetry of Q:

(3.7)

∫∫

R2

exp(−Q(y1, y2))(y1 + y2)dy1dy2 = 0 .

So, it remains

Jε(0, V ) = − 1

4
√
2π

∫∫

R2

exp(−Q(y1, y2))
[
y21∂

3
zV (εỹ1) + y22∂

3
zV (εỹ2))

]
dy1dy2

+
ε

2
√
2π

∫∫

R2

exp(−Q(y1, y2))P exp(−θε2P )(y1 + y2)∂
2
zV (0)dy1dy2

+
ε2

4
√
2π

∫∫

R2

exp(−Q(y1, y2))P exp(−θε2P )
(
y21∂

3
zV (εỹ1) + y22∂

3
zV (εỹ2)

)
dy1dy2
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Clearly the last two contributions are uniform O(ε) for V ∈ K and ε 6 εK small enough. Indeed,
the term P is at most quadratic with respect to yi (3.6), so Q+ θε2P is uniformly bounded below
by a positive quadratic form for ε small enough.

⊲ Proof of expansion (3.4). The first step is to compute the derivative of J with respect to g:

∂gJε(g, V ) = − 1

ε
√
2π

∫∫

R2

exp [−Q(y1, y2)− εg(y1 + y2) + 2Dε(V )(y1, y2, 0)]

× (y1 + y2) [Dε(∂zV )(y1, y2, 0)] dy1dy2.

Similar Taylor expansions as above yields:

∂gJε(g, V ) = − 1

ε
√
2π

∫∫

R2

exp [−Q(y1, y2)]
(
1− εP ′ exp(−θεP ′)

)

× (y1 + y2)

(
−ε(y1 + y2)

2
∂2
zV (0) − ε2

4
(y21∂

3
zV (εỹ1) + y22∂

3
zV (εỹ2))

)
dy1dy2,

where P ′ = g(y1 + y2) + y1∂zV (εỹ1) + y2∂zV (εỹ2). Interestingly, the leading order term does not
cancel anymore, and it remains:

∂gJε(g, V ) =
1

2
√
2π

(∫∫

R2

exp [−Q(y1, y2)] (y1 + y2)
2 dy1dy2

)
∂2
zV (0) +O(ε) .

The justification that the remainder is a uniform O(ε) is similar as above, except that now P ′ has
a linear part depending on g, but the latter is assumed to be bounded a priory by RK . �

4. Analysis of the perturbative term Iε
4.1. Lispchitz continuity of some auxiliary functionals. The function Iε is crucially involved
in the definition of the mapping Hε. Thus to prove any contraction property on this mapping we
will need Lipschitz estimates about Iε and the three first derivatives of its logarithm. But first
we show that Iε really plays the role of a perturbative term between problem (PUε) and problem
(PU0) that converges to 1 uniformly as ε→ 0.

Proposition 4.1 (Estimation of Iε).
For every K ball of Eα0 , for every δ > 0, there exists a constant εδ that depends only on K and δ,
such that for every ε 6 εδ and for every V ∈ K :

(∀z ∈ R) 1− δ 6 Iε(V )(z) 6 1 + δ .

Proof. Let V in K. For ε 6 εK , one can apply Proposition 2.4 which gives |γε(V )| 6 RK . Next it
is enough to write that :

Cε :=

∫∫

R2

exp [−Q(y1, y2)− 2εRK(|y1|+ |y2|)] dy1dy2
√
2π

∫

R

exp
(
−y2/2− 2εRK |y|

)
dy

6 Iε(V )(z), and

Iε(V )(z) 6

∫∫

R2

exp
(
−Q(y1, y2) + 2εRK(|y1|+ |y2|)

)
dy1dy2

√
2π

∫

R

exp
(
−y2/2− 2εRK |y|

)
dy

:= Cε.

We deduce from this lower and upper estimates that the whole Iε(V ) converges uniformly to 1 as
ε→ 0. �

Next, we show Lipschitz continuity of various quantities of interest.
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Proposition 4.2 (Lipschitz continuity of γε).
For every ball K ⊂ Eα0 , there exist constants LK(γ), and εK , depending only on K, such that for
all ε 6 εK , V1, V2 ∈ K

|γε(V1)− γε(V2)| 6 LK(γ) ‖V1 − V2‖α .

Proof. Let K be a ball of Eα0 , and let V1, V2 ∈ K. Let denote ΓI
ε = γε(Vi) for i = 1, 2. We argue by

means of Fréchet derivatives: let s ∈ (0, 1), γs = sγ1+(1− s)γ2, Vs = sV1+(1− s)V2, and consider
the following computation:

(4.1)
d

ds
Jε(γs, Vs) = ∂γJε(γs, Vs)(γ1 − γ2) +DV Jε(γs, Vs) · (V1 − V2) ,

where the Fréchet derivative of Jε with respect to V is:

DV Jε(γ, V ) ·H =
1

ε2
√
2π

∫∫

R2

exp [−Q(y1, y2)− εγ(y1 + y2) + 2Dε(V )(y1, y2, 0)]

×
(
2Dε(H)(y1, y2, 0)

)(
Dε(∂zV )(y1, y2, 0)

)
dy1dy2

+
1

ε2
√
2π

∫∫

R2

exp [−Q(y1, y2)− εγ(y1 + y2) + 2Dε(V )(y1, y2, 0)]
(
Dε(∂zH)(y1, y2, 0)

)
dy1dy2

We perform similar Taylor expansions as in (3.5),

2Dε(W )(y1, y2, 0) =

{
−ε(y1 + y2)O (‖∂zW‖∞)

−ε(y1 + y2)∂zW (0)− (ε2/2)
(
y21 + y22

)
O
(
‖∂2

zW‖∞
)

either for W = V,H ∈ Eα0 , or W = ∂zV, ∂zH. We deduce that

(4.2) DV Jε(γ, V ) ·H =
1

ε2
√
2π

∫∫

R2

exp [−Q(y1, y2)− εγ(y1 + y2)− ε(y1 + y2)O (‖∂zV ‖∞)]

×
[(
−ε2

2

(
y21 + y22

)
O
(
‖∂2

zH‖∞
))(

− ε(y1 + y2)O
(
‖∂2

zV ‖∞
) )

+
(
− ε(y1 + y2)∂

2
zH(0)− ε2

2

(
y21 + y22

)
O
(
‖∂3

zH‖∞
) )]

dy1dy2

We proceed as in the previous section for the exponential term: there exists θ = θ(y1, y2) ∈ (0, 1)
such that

exp(−εP ′) = 1− εP ′ exp(−θεP ′) , where P ′ = γ(y1 + y2) + (y1 + y2)O (‖∂zV ‖∞)

Again, the crucial point is the cancellation of the O(ε−1) contribution in (4.2), as in (3.7). What
remains is of order one or below, and one can easily show that there exists CK such that

|DV Jε(γ, V ) ·H| 6 CK

(
‖∂3

zH‖∞ + |∂2
zH(0)| (|γ + ‖∂zV ‖∞|)

+ ε‖∂2
zH‖∞‖∂2

zV ‖∞ + ε‖∂3
zH‖∞ (|γ + ‖∂zV ‖∞|)

)

6 CK‖H‖α ,

provided ε 6 εK is small enough.
On the other hand, we have already established that ∂γJε(γ, V ) = ∂2

zV (0)/2 + O(ε) in Lemma
3.1. Consequently, integrating (4.1) from s = 0 to 1, we find:

0 = Jε(γ1, V1)− Jε(γ2, V2) =

(
∂2
zV (0)

2
+O(ε)

)
(γ1 − γ2) +

(∫ 1

0
DV Jε(γs, Vs) · (V1 − V2) ds

)
.
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We deduce from the previous estimates and the local convexity condition in (1.7) that

|γ1 − γ2| 6 CK

(
2

∂2
zm(0)

+ CKε

)
‖V1 − V2‖α ,

for some CK and ε 6 εK small enough. �

In turn, Proposition 4.2 implies the Lipschitz continuity of Iε as a function of V .

Proposition 4.3 (Lipschitz continuity of Iε).
For every ball K of Eα0 , there exist constants εK , CK depending only on K, such that for all ε 6 εK ,
V1, V2 ∈ K,

(4.3) sup
z∈R
|Iε(V1)(z) − Iε(V2)(z)| 6 εCK ‖V1 − V2‖α .

Proof. The Lipschitz continuity of Iε with respect to V can be proven by composition of Lipschitz
functions. With the same notations as in the proof of Proposition 4.2, and with the shortcut
notation Iε = Aε/Bε to separate the numerator from the denominator in (2.12) we have,

d

ds
Aε(Vs)(z) = −

∫∫

R2

GV
ε (y1, y2, z)

(
ε
d

ds
γε(Vs)(y1 + y2)

+

∫ z+εy1

z
∂z(V1 − V2)(z

′)dz′ −
∫ z+εy2

z
∂z(V1 − V2)(z

′)dz′
)

dy1dy2 ,

where we have simply written V (z + εy1)− V (z) =
∫ z+εy1
z ∂zV (z′) dz′, and where GV

ε denotes the
exponential weight:

GV
ε (y1, y2, z) =

1√
2π

exp [−Q(y1, y2)− εγε(V )(y1 + y2) + 2Dε(V )(y1, y2, z)] .

We deduce that Aε is such that:

(∀z)
∣∣∣∣
d

ds
Aε(Vs)(z)

∣∣∣∣ 6 ε

∫∫

R2

GV
ε (y1, y2, z) (LK(γ)‖V1 − V2‖α + ‖V1 − V2‖α) (|y1|+ |y2|) dy1dy2 .

As the weight GV
ε is uniformly close to a positive quadratic form for small ε, we find that the

numerator has a Lipschitz constant of order ε uniformly with respect to z:

sup
z∈R
|Aε(V1)(z) −Aε(V2)(z)| 6 εCK ‖V1 − V2‖α .

The same holds true for the denominator Bε. In addition, a direct by-product of the proof of
Proposition 4.1 is that Aε and Bε are uniformly bounded above and below by positive constants
for ε small enough. Consequently, the quotient Iε = Aε/Bε is Lipschitz continuous. �

It is useful to introduce the probability measure dGV
ε induced by the exponential weight GV

ε :

dGV
ε (y1, y2, z) =

GV
ε (y1, y2, z)∫∫

R2

GV
ε (·, ·, z)

=
exp [−Q(y1, y2)− εγε(V )(y1 + y2) + 2Dε(V )(y1, y2, z)]∫∫

R2

exp [−Q(y1, y2)− εγε(V )(y1 + y2) + 2Dε(V )(y1, y2, z)] dy1dy2

.

As a consequence of the previous estimates, we obtain the following one:
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Lemma 4.4 (Lipschitz continuity of dGV
ε ).

For every ball K of Eα0 , there exist constants εK , CK depending only on K, such that for all ε 6 εK ,
V1, V2 ∈ K,

(4.4) sup
z∈R

∣∣dGV1

ε (y1, y2, z)− dGV2

ε (y1, y2, z)
∣∣

6 εCK ‖V1 − V2‖α (1 + |y1|+ |y2|) exp
(
−Q(y1, y2) + 2εRK(|y1|+ |y2|)

)
.

Furthermore, under the same conditions, we have the following bound, uniform with respect to
z ∈ R:

(4.5) dGV
ε (y1, y2, z) 6

1

4
exp [−Q(y1, y2) + 2εRK(|y1|+ |y2|)] .

Proof. We first prove (4.5): the function GV
ε is such that

GV
ε (y1, y2, z) ≷

1√
2π

exp [−Q(y1, y2)∓ 2εRK(|y1|+ |y2|)] .

Therefore, its integral over (y1, y2) ∈ R
2 converges to 1 as ε→ 0, and there exists εK depending on

K such that
∫∫

GV
ε (y1, y2, z) dy1dy2 > 4/

√
2π for ε 6 εK . This leads to (4.5).

In order to obtain (4.4), we proceed as in the proof of Proposition 4.3, as the denominator of
dGV

ε is the numerator Aε of Iε. For the Lipschitz continuity of the numerator of dGV
ε , we find:

(∀z)
∣∣∣∣
d

ds
GVs

ε (y1, y2, z)

∣∣∣∣ 6 εGVs

ε (y1, y2, z) (LK(γ)‖V1 − V2‖α + ‖V1 − V2‖α) (|y1|+ |y2|) .

We deduce that the quotient dGV
ε = GV

ε /Aε(V ) is also Lipschitz continuous:

∣∣dGV1

ε − dGV2

ε

∣∣ 6
∣∣∣∣
GV1

ε −GV2

ε

Aε(V1)
+

Aε(V2)−Aε(V1)

Aε(V1)Aε(V2)
GV2

ε

∣∣∣∣

6 εCK‖V1 − V2‖α (|y1|+ |y2|) exp
(
−Q(y1, y2) + 2εRK(|y1|+ |y2|)

)

+ εCK‖V1 − V2‖α exp
(
−Q(y1, y2) + 2εRK(|y1|+ |y2|)

)
.

This concludes the proof of (4.4). �

To conclude, we have established in this section that Iε is a perturbative term, both in the
uniform sense Iε(V )→ 1, and in the Lipschitz sense: LipV Iε = O(ε). In addition, we have proven
a similar Lipschitz smallness property for a probabilty distribution dGV

ε that will appear frequently
in our contraction estimates.

4.2. Contraction properties (first part). On the way to estimating the fixed point mapping
Hε (2.14), we need good estimates on the logarithmic derivatives of
Iε. For that purpose, we introduce the following quantities for i = 1, 2, 3:

(4.6) W (i)
ε (V )(z) =

∂i
zIε(V )(z)

Iε(V )(z)
.

For the sake of conciseness, we omit sometimes the dependency with respect to y1, y2 in the
notations, as for instance: dGV

ε (y1, y2, z) = dGV
ε (z). The following notation with a duality bracket

is useful:
〈
dGV

ε (z), f
〉
=

∫∫

R2

dGV
ε (y1, y2, z)f(y1, y2) dy1dy2.

Indeed, for any V ∈ Eα0 , we have:

(4.7) W (1)
ε (V )(z) =

〈
dGV

ε (z),Dε(∂zV )(z)
〉
.

17



Similarly:

W (2)
ε (V )(z) =

〈
dGV

ε (z),
1

2
Dε(∂

2
zV )(z) + (Dε(∂zV )(z))2

〉
.

And finally :

(4.8) W (3)
ε (V )(z) =

〈
dGV

ε (z),
1

4
Dε(∂

3
zV )(z) + (Dε(∂zV )(z))3 + 3Dε(∂zV )(z)

(
1

2
Dε(∂

2
zV )(z)

)〉
.

In order to obtain estimates on W (i) it seems natural from the previous pattern of differentiation
to begin with estimates on the symmetric difference of the derivatives of V .

Lemma 4.5. For any V ∈ Eα, and (y1, y2) ∈ R
2, we have:

sup
z

(1 + |z|)α |Dε(∂zV )(y1, y2, z)| 6 ε2α‖V ‖α
[
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

]
,(4.9)

sup
z

(1 + |z|)α
∣∣∣∣
1

2
Dε(∂

2
zV )(y1, y2, z)

∣∣∣∣ 6 ε2α−1‖V ‖α
[
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

]
,(4.10)

sup
z

(1 + |z|)α
∣∣∣∣
1

4
Dε(∂

3
zV )(y1, y2, z)

∣∣∣∣ 6 2α−1‖V ‖α
(
1 +

εα

4
[|y1|α + |y2|α]

)
.(4.11)

It is important to notice that the first two right-hand-sides (resp. first and second derivatives)
are of order ε. The third one is larger but controlled by 2α−1 < 1. This is the first occurrence of
the contraction property we are seeking. This is the main reason why we make the analysis up to
the third derivatives.

Proof. We introduce the additional notation ϕα(z) = (1 + |z|)α. First, since z = z/2, we have
ϕα(z) 6 2αϕα(z).

⊲ Proof of (4.9). By Taylor expansions, we have:

ϕα(z) |Dε(∂zV )(y1, y2, z)| 6 2αϕα(z)
∣∣∣εy1
2

∂2
zV (z + εỹ1) +

εy2
2

∂2
zV (z + εỹ2)

∣∣∣ ,

where |ỹi| 6 |yi|. Using the definition of ‖ · ‖α (1.5), we obtain

ϕα(z)
∣∣εy1∂2

zV (z + εỹ1)
∣∣ 6 ε|y1|ϕα(z)

ϕα(z + εỹ1)
‖V ‖α 6

ε|y1|(1 + |εỹ1|+ |z + εỹ1|)α
(1 + |z + εỹ1|)α

‖V ‖α

Since we chose α < 1, | · |α is sub-additive. Thus, we get

ϕα(z)
∣∣εy1∂2

zV (z + εỹ1)
∣∣ 6 ε|y1|

(
1 +

|εỹ1|α
(1 + |z + εỹ1|)α

)
‖V ‖α

6 ε|y1|(1 + |εy1|α) ‖V ‖α 6 ε(|y1|+ |y1|1+α).

By symmetry of the role played by y1 and y2, we have proven equation (4.9).

⊲ Proof of (4.10). The second estimate is a consequence of the first one, applied to the derivative
of V . Notice that it is allowed as Eα0 enables control of derivatives up to the third order.

⊲ Proof of (4.11). We must be a little more careful in the estimations of the third estimate (4.11),
because we cannot go up to the fourth derivative in the Taylor expansions. This is why we do not
have an O(ε) bound, but we gain a contraction factor instead. We have

ϕα(z)

∣∣∣∣
1

4
Dε(∂

3
zV )(y1, y2, z)

∣∣∣∣ 6 2αϕα(z)

∣∣∣∣
1

4
∂3
zV (z)− 1

8
∂3
zV (z + εy1)−

1

8
∂3
zV (z + εy2)

∣∣∣∣

6
2α

4
‖V ‖α + 2αϕα(z)

∣∣∣∣
1

8
∂3
zV (z + εy1) +

1

8
∂3
zV (z + εy2)

∣∣∣∣
18



We bound separately each term using again the sub-additivity of |·|α. For ε 6 1 :

ϕα(z)

∣∣∣∣
1

8
∂3
zV (z + εy1)

∣∣∣∣ 6
ϕα(z)

8ϕα(z + εy1)
‖V ‖α

6
‖V ‖α
8

(
1 +

(|εy1|)α
(1 + |z + εy1|)α

)
6 (1 + |εy1|α)

‖V ‖α
8

.

Summing it all up, one ends up with:

ϕα(z)

∣∣∣∣
1

4
Dε(∂

3
zV )(y1, y2, z)

∣∣∣∣ 6 2α−1 ‖V ‖α
(
1 +

1

4
εα [|y1|α + |y2|α]

)
.

This is precisely equation (4.11). �

The following proposition is a first step towards contraction properties that will be established
in section 5. For convenience, we introduce the following notation:

(4.12)

{
△W

(i)
ε = W

(i)
ε (V1)−W

(i)
ε (V2)

△V = V1 − V2

Proposition 4.6 (Lipschitz continuity of Wε with respect to V ).
Let K a ball of Eα0 , and V1, V2 ∈ K. There exists constants εK , CK depending only on K such that
for all ε 6 εK , we have:

sup
z

(1 + |z|)α|△W (1)
ε (z)| 6 εCK‖△V ‖α(4.13)

sup
z

(1 + |z|)α|△W (2)
ε (z)| 6 εCK‖△V ‖α,(4.14)

sup
z

(1 + |z|)α|△W (3)
ε (z)| 6

(
2α−1 + εαCK

)
‖△V ‖α .(4.15)

It is also possible to get estimates on W
(i)
ε (V ) itself, with the same hypotheses. This is useful to

prove the invariance of certain subsets of Eα0 .
Proposition 4.7.
With the same setting as in Proposition 4.6, we also have:

sup
z

(1 + |z|)α|W (1)
ε (V )(z)| 6 εCK ‖V ‖α ,

sup
z

(1 + |z|)α|W (2)
ε (V )(z)| 6 εCK ‖V ‖α ,

sup
z

(1 + |z|)α|W (3)
ε (V )(z)| 6

(
2α−1 + εαCK

)
‖V ‖α .

We do not give the details of the proof of the latter Proposition, since it is a straightforward
adaptation of Proposition 4.6. Actually, we cannot readily apply Proposition 4.6 to (V1, V2) =
(V, 0) as 0 /∈ Eα0 , because of the additional condition on ∂2

zV (0) (1.7) which is required to prove
boundedness and Lipschitz continuity of γε.

Proof of Proposition 4.6. The proof of theses inequalities is quite tedious because of the numer-
ous non-linear calculations. However, the technique is similar for each inequality, and consists
in separating the fully non linear behavior from the quasi-linear parts of the left-hand-sides of
equations (4.13) to (4.15).

⊲ Proof of (4.13). This is the easiest part, because it is quasi-linear with respect to V . Indeed,
we have

△W (1)
ε (z) =

〈
dGV1

ε (z),Dε(∂zV1)(z)
〉
−
〈
dGV2

ε (z),Dε(∂zV2)(z)
〉
.
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We reformulate it in two parts, one involving V1 − V2, and the other involving dGV1

ε − dGV2

ε :

(4.16) △W (1)
ε (z) =

〈
dGV2

ε (z),Dε(∂z△V )(z)
〉
+
〈
dGV1

ε (z) − dGV2

ε (z),Dε(∂zV1)(z)
〉
.

For the first contribution in (4.16), we apply directly Lemma 4.5 to V1 − V2:

(1 + |z|)α
∣∣〈dGV2

ε (z),Dε(∂z△V )(z)
〉∣∣ 6 ε2α ‖△V ‖α

〈
dGV2

ε (z),
(
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

)〉

6 εCK ‖△V ‖α .

For the last inequality we used equation (4.5), which enables to bound uniformly the measure dGV
ε

with respect to z. From Lemmas 4.4 and 4.5, there exists εK and CK such that for ε 6 εK , the
second contribution in the right-hand-side (4.16) satisfies

(4.17) (1 + |z|)α
∣∣〈dGV1

ε (z)− dGV2

ε (z),Dε(∂zV1)(z)
〉∣∣

6 ε2CK ‖△V ‖α ‖V1‖α
〈
(1 + |y1|+ |y2|) exp(−Q(y1, y2) + 2εRK(|y1|+ |y2|)),

(
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

) 〉
.

The last integral is uniformly bounded for ε small enough, involving moments of a Gaussian dis-
tribution. Therefore, the whole quantity is bounded by ε2CK ‖△V ‖α, uniformly with respect to z.
This concludes the proof of equation (4.13).

⊲ Proof of (4.14). To begin with, we have

△W (2)
ε (z) =

〈
dGV1

ε (z),
1

2
Dε(∂

2
zV1)(z) + (Dε(∂zV1)(z))

2

〉

−
〈
dGV2

ε (z),
1

2
Dε(∂

2
zV2)(z) + (Dε(∂zV2)(z))

2

〉
.

We split the difference into two, as in the previous part,

△W (2)
ε (z) =

〈
dGV2

ε (z),
1

2
Dε(∂

2
zV1)(z) + (Dε(∂zV1)(z))

2 − 1

2
Dε(∂

2
zV2)(z)− (Dε(∂zV2)z))

2

〉

+

〈
dGV1

ε (z)− dGV2

ε (z),
1

2
Dε(∂

2
zV1)(z) + (Dε(∂zV1)(z))

2

〉

= A+B

The first contribution can be rearranged as follows, by factorizing the difference of squares:

A =

〈
dGV2

ε (z),
1

2
Dε(∂

2
z△V )(z) +Dε(∂z△V )(z)Dε(∂z(V1 + V2))(z)

〉
.

The term involving V1+V2 is bounded uniformly in a crude way: ‖Dε(∂z(V1+V2))‖∞ 6 2‖V1+V2‖α
(in fact it is bounded by a O(ε) uniformly with respect to z, but this detail is omitted here). Then,
we apply Lemma 4.5 twice with V1 − V2 to obtain:

(1 + |z|)α |A| 6 εCK‖△V ‖α
〈
dGV2

ε (z),
(
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

)〉

To estimate B, the term involving the difference of measures dGV
ε , we apply (4.4) and Lemma 4.5:

(4.18)

(1 + |z|)α |B| 6
〈∣∣dGV1

ε (z)− dGV2

ε (z)
∣∣ , εC

(
‖V1‖2α + ‖V2‖α

) (
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

)〉
.

We find, exactly as above, that the quantity (1+ |z|)α |B| is bounded by ε2CK ‖△V ‖α. Combining
both estimates on A,B, we deduce equation (4.14).
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⊲ Proof of (4.15). The full expression for △W
(3)
ε is as follows:

△W (3)
ε (z) =

〈
dGV1

ε (z),
1

4
Dε(∂

3
zV1)(z) + (Dε(∂zV1)(z))

3 + 3Dε(∂zV1)(z)

(
1

2
Dε(∂

2
zV1)(z)

)〉

−
〈
dGV2

ε (z),
1

4
Dε(∂

3
zV2)(z) + (Dε(∂zV2)(z))

3 + 3Dε(∂zV2)(z)

(
1

2
Dε(∂

2
zV2)(z)

)〉
.

We split again in two pieces, one involving V1 − V2, and the other involving dGV1

ε − dGV2

ε :

△W (3)
ε (V )(z) =

〈
dGV2

ε (z), A1 +A2 +A3

〉
+
〈
dGV1

ε (z)− dGV2

ε (z), B
〉
,

with

A1 =
1

4
Dε(∂

3
z△V )(z)

A2 = (Dε(∂zV1)(z))
3 − (Dε(∂zV2)(z))

3

= (Dε(∂z△V )(z))

[
(Dε(∂zV1)(z))

2 + (Dε(∂zV2)(z))
2 + (Dε(∂zV1)(z)) (Dε(∂zV2)(z))

]

A3 = 3Dε(∂
2
zV1)(z)

(
1

2

)
Dε(∂zV1)(z)− 3Dε(∂zV2)(z)

(
1

2
Dε(∂

2
zV2)(z)

)

= 3Dε(∂zV1)(z)

(
1

2
Dε(∂

2
z△V )(z)

)
+ 3Dε(∂z△V )(z)

(
1

2
Dε(∂

2
zV2)(z)

)

B =
1

4
Dε(∂

3
zV1)(z) + (Dε(∂zV1)(z))

3 + 3Dε(∂zV1)(z)

(
1

2
Dε(∂

2
zV1)(z)

)
.

We shall estimate all the contributions separately. Firstly, A1 yields the contraction factor:

(1+|z|)α
〈
dGV2

ε (z), |A1|
〉
6 2α−1 ‖△V ‖α

〈
dGV2

ε (z), 1 +
εα

4
[|y1|α + |y2|α]

〉
6
(
2α−1 + εαCK

)
‖△V ‖α .

The latter is the main contribution in (4.15). The remaining terms are lower-order contributions
with respect to ε. For A2, we have

(1 + |z|)α
〈
dGV2

ε (z), |A2|
〉
6 ε2α ‖△V ‖α

〈
dGV2

ε (z),
(
‖V1‖2α + ‖V2‖2α + ‖V1‖α ‖V2‖α

)

×
[
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

]〉

6 εCK ‖△V ‖α .

For A3, we have similarly

(1 + |z|)α
〈
dGV2

ε (z), |A3|
〉
6 εCK ‖△V ‖α .

It remains to control the term involving B. We argue as in (4.17) and (4.18):

〈∣∣dGV1

ε (z)− dGV2

ε (z)
∣∣ , (1 + |z|)α |B|

〉

6 εCK ‖△V ‖α
〈
(1 + |y1|+ |y2|) exp(−Q(y1, y2) + 2εRK(|y1|+ |y2|)),

2α−1 ‖V1‖α
(
1 +

εα

4
[|y1|α + |y2|α]

)
+Cε

(
‖V1‖3α + ‖V1‖2α

) (
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

)〉
.

The latter is controlled by εCK ‖△V ‖α for the same reasons as usual.
Combining all the pieces together, we obtain finally (4.15). �
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5. Analysis of the fixed point mapping Hε

In this section we focus on the fixed point mappingHε (2.14), which is defined through an infinite
series. We are first concerned with the convergence of the series for V ∈ Eα0 .
5.1. Well-posedness of Hε on balls. Consider the following decomposition of each term of the
series (2.14) in two parts, with the corresponding notations:

Γε(z) = log

(Iε(V )(0) +m(z)

Iε(V )(0)

)
− log

(Iε(V )(z)

Iε(V )(0)

)
= Γm

ε (z)− ΓI
ε(z).

They have the following properties :

Lemma 5.1.
For every ball K ⊂ Eα0 , there exists εK such that for any ε 6 εK , and V ∈ K, we have Γm

ε ∈ Eα0 .
Moreover, we have (1 + |z|)α∂zΓm

ε ∈ L∞.

The proof of Lemma 5.1 is a straightforward consequence of Proposition 4.1 and the assumptions
on m made in definition 1.2, particularly (1.6).

Lemma 5.2.
For every ball K ⊂ Eα0 , there exists εK such that for any ε 6 εK , and V ∈ K, we have ΓI

ε ∈ Eα,
and ∂zΓ

I
ε(0) = 0. Moreover, we have (1 + |z|)α∂zΓI

ε ∈ L∞.

Proof. We begin by verifying the condition ∂zΓ
I
ε(0) = 0. This is in fact equivalent to the choice of

γε(V ), as can be seen on the following computation:

∂zΓ
I
ε(0) =

∂zIε(V )(0)

Iε(V )(0)
= W (1)

ε (V )(0).

Now, comparing (3.1) with (4.7), we see that ∂zΓ
I
ε(0) = 0 is equivalent to J(γε(V ), V ) = 0, provided

ε is small enough (for the quantities to be well defined).
Secondly, we need to get uniform bounds on the derivatives of ΓI

ε to prove that it belongs to

Eα. The following formulas relate the successive logarithmic derivatives of Iε(V ) to the W
(i)
ε (V )

introduced in equation (4.6):

∂zΓ
I
ε(z) = W (1)

ε (V )(z)(5.1)

∂2
zΓ

I
ε(z) = W (2)

ε (V )(z)−
[
W (1)

ε (V )(z)
]2

,(5.2)

∂3
zΓ

I
ε(z) = W (3)

ε (V )(z) + 3W (1)
ε (V )(z)W (2)

ε (V )(z) + 2
[
W (1)

ε (V )(z)
]3

.(5.3)

We can use directly the weighted estimates in Proposition 4.7, which include the algebraic decay
of the first order derivative. Algebraic combinations are compatible with those estimates because

W
(i)
ε (V ) ∈ L∞(R). A fortiori those terms are all uniformly bounded and so we obtain that ΓI

ε ∈
Eα. �

The main result of this section is the following one:

Proposition 5.3 (Convergence of the series Hε(V )).
For every ball K ⊂ Eα0 , there exists εK such that for any ε 6 εK , and V ∈ K, the sum Hε(V ) is
finite.

Before proving this statement, we first establish an auxiliary technical lemma about the following
summation operator S:

S : Λ 7−→


h 7→

∑

k>0

2kΛ(2−kh)


 .
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Lemma 5.4 (Existence of the sum).
Take any function Λ ∈ Eα such that ∂zΛ(0) = 0. Then S(Λ)(h) is well-defined for every h ∈ R .

Proof. We perform a Taylor expansion: there exists h̃k, such that Λ(2−kh) = 1
2 (2

−kh)2∂2
zΛ(2

−kh̃k).
Therefore, we have immediately

∣∣∣∣∣∣

∑

k>0

2kΛ(2−kh)

∣∣∣∣∣∣
6


h2

∑

k>0

2−k


∥∥∂2

zΛ
∥∥
∞ <∞.

�

One can now proceed to the proof of the finiteness of the sum of Hε in definition 2.6.

Proof of Proposition 5.3. Let K be the ball of Eα0 of radius ‖K‖α and take V ∈ K, z ∈ R. To use
the previous lemma, we first notice the identity by definition:

(5.4) Hε(V ) = S(Γε).

There are two conditions to verify in order to apply Lemma 5.4:

∂zΓε(0) = 0, and Γε ∈ Eα.

Those properties are verified thanks to Lemmas 5.1 and 5.2. The Proposition 5.3 immediately
follows. �

So far, we have not used the algebraic decay condition which is part of the definition of Eα. In
the following lemma, we refine the estimate on S(Λ) ∈ Eα. This foreshadows the same result for
the function Hε(V ), as stated in the next section.

Lemma 5.5 (Better control of the series).
Assume that Λ ∈ Eα, that ∂zΛ(0) = 0, and that (1 + |z|)α∂zΛ ∈ L∞. Then, S(Λ) belongs to Eα,
with a uniform estimate:

(5.5) ‖S(Λ)‖α 6 Cmax

(
‖Λ‖α, sup

z∈R
(1 + |z|)α|∂zΛ(z)|

)

There is some subtlety hidden here. In fact, we were not able to propagate the algebraic decay
at first order from Λ to S(Λ). What saves the day is that we gain some algebraic decay of the first
order derivatives somewhere in our procedure (see e.g. Proposition 4.7).

Proof. Recall the notation ϕα(h) = (1 + |h|)α. We begin with the uniform bound on the first
derivative, which is the main reason why we have to impose algebraic decay in our functional
spaces.

⊲ Step 1: ∂zS(Λ) is uniformly bounded. We split the sum in two parts. Let h ∈ R, and let
Nh ∈ N be the lowest integer such that |h| 6 2Nh . We consider the two regimes: k > Nh and
k 6 Nh. In the former regime, a simple Taylor expansion yields

(5.6)

∣∣∣∣∣∣

∑

k>Nh

∂zΛ(2
−kh)

∣∣∣∣∣∣
6
∑

k>Nh

2−k|h|
∥∥∂2

zΛ
∥∥
∞ 6

∥∥∂2
zΛ
∥∥
∞ ,
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by definition of Nh. In the regime k 6 Nh, we use the algebraic decay which is encoded in the
space Eα. If |h| > 1, we have Nh > 1, and

∣∣∣∣∣∣

∑

k6Nh

∂zΛ(2
−kh)

∣∣∣∣∣∣
6
∑

k6Nh

‖ϕα∂zΛ‖∞
(1 + 2−k|h|)α

6


∑

k6Nh

2kα

|h|α


 ‖ϕα∂zΛ‖∞ =

(
1

|h|α
2(Nh+1)α − 1

2α − 1

)
‖ϕα∂zΛ‖∞.

By definition of Nh, we have 2Nh−1 < |h|, so that the right-hand-side above is bounded by a
constant that get arbitrarily large as α→ 0 (hence, the restriction on α > 0):

(5.7)

∣∣∣∣∣∣

∑

k6Nh

∂zΛ(2
−kh)

∣∣∣∣∣∣
6

(
4α

2α − 1

)
‖ϕα∂zΛ‖∞.

The case |h| 6 1 is trivial as the sum is reduced to a single term ∂zΛ(h) since Nh = 0.

⊲ Step 2: ϕα

∣∣∂2
zS(Λ)

∣∣ is uniformly bounded. This bound and the next one are easier. For any
h ∈ R, we have

ϕα(h)

∣∣∣∣∣∣

∑

k>0

2−k∂2
zΛ(2

−kh)

∣∣∣∣∣∣
6


∑

k>0

2−k ϕα(h)

ϕα(2−kh)


 ‖ϕα∂

2
zΛ‖∞.

Since 1 > 2−k, one obtains

ϕα(h)

∣∣∣∣∣∣

∑

k>0

2−k∂2
zΛ(2

−kh)

∣∣∣∣∣∣
6


∑

k>0

2k(α−1)


 ‖ϕα∂

2
zΛ‖∞ =

(
2

2− 2α

)
‖ϕα∂

2
zΛ‖∞.

The latter sum is finite since α < 1.

⊲ Step 3: ϕα

∣∣∂3
zS(Λ)

∣∣ is uniformly bounded. The proof is similar to the previous argument. �

5.2. Contraction properties (second part). In this section we prove that Hε stabilizes some
subset of Eα0 . We first show that Hε maps balls into balls with incremental radius that do not
depends on the initial ball (Proposition 5.8). This property immediately implies the existence of
an invariant subset for Hε (corollary 5.9). Finally, we prove that the mapping Hε is a contraction
mapping for ε small enough (Theorem 5.10). To completely justify the definition of Hε, it remains
to show that Hε(V ) ∈ Eα0 . We begin with the lower bound on the second derivative, which is for
free.

Lemma 5.6 (Lower bound on ∂2
zHε(V )(0)).

For every ball K ⊂ Eα0 , there exists εK such that for any ε 6 εK , and V ∈ K, we have:

∂zHε(V )(0) = 0, ∂2
zHε(V )(0) > ∂2

zm(0).

Proof. The identity ∂zHε(V )(0) = 0, and more particularly ∂zΓ
I
ε(0) = 0 is a consequence of the

choice of γe(V ) in Proposition 2.4. Indeed, we have, by (5.4),

∂zHε(V )(0) =
∑

k>0

∂zΓε(V )(0) = 0.
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For the second estimate, a simple computation yields, using m(0) = ∂zm(0) = 0:

∂2
zHε(V )(0) =

∑

k>0

2−k

[
∂2
zm(0)

Iε(V )(0)
−W (2)

ε (V )(0) −W (1)
ε (V )(0)2

]

But since V ∈ Eα0 , one can use again the uniform estimates of Proposition 4.7 to write that for
ε 6 εK , that depends only on the ball K :

(5.8) ∂2
zHε(V ) = 2

∂2
zm(0)

Iε(V )(0)
+O(ε),

where O(ε) that depends only on the ball K. Then, we use Proposition 4.1 with δ = 1/3 to deduce
that for ε small enough, we have Iε(V ) 6 4/3. Then (5.8) can be simplified into

∂2
zHε(V )(0) >

3∂2
zm(0)

2
+O(ε).

Recall that ∂2
zm(0) > 0 by assumption. Therefore, for ε small enough, we get as claimed

∂2
zHε(V )(0) > ∂2

zm(0).

�

Remark 5.7. Considering the proof, another way to interpret the result is that automatically for
any function V ∈ Eα such that ∂zV (0) = 0, the function Hε prescribes a lower bound on ∂2

zV (0).
Since we are seeking a fixed point Hε(V ) = V , we may as well put this condition in the subspace
Eα0 without loss of generality.

Finally, we can establish a first useful estimate on ‖Hε(V )‖α, showing more than just its finite-
ness:

Proposition 5.8 (Contraction in the large).
For every ball K ∈ Eα0 , there exists an explicit constant κ(α) < 1, as well as Cm, CK and εK that
depend only on K such that, for all ε 6 εK , and for every V ∈ K,

‖Hε(V )‖α 6 Cm + (κ(α) + εαCK) ‖V ‖α .(5.9)

Proof. Let K be the ball of Eα0 , and take V ∈ K. For clarity we write respectively Iε(h) and

W
(i)
ε (h) instead of Iε(V )(h) and W

(i)
ε (V )(h). Combining various estimates derived in Section 5.1,

and particularly Lemma 5.5 together with Lemmas 5.1 and 5.2, we find that Hε(V ) = S(Γε) =
S(Γm

ε ) − S(ΓI
ε) belongs to Eα. However, the associated estimate (5.5) is not satisfactory, at least

for the S(ΓI
ε) and we need to re-examine the dependency of the constants upon ε and α.

The first and second derivatives of ΓI
ε involve W

(1)
ε and W

(2)
ε which are both of order εCK ‖V ‖α

thanks to Proposition 4.7. Back to the proof of Lemma 5.5, the quantities ‖ϕα∂zΓ
I
ε‖∞ and

‖ϕα∂
2
zΓ

I
ε‖∞ are in fact of order ε ‖Λ‖α, and so are ‖∂zS(ΓI

ε)‖∞ and ‖ϕα∂
2
zS(ΓI

ε)‖∞.
This cannot be extended readily to the third derivative as we lose the order ε at this stage.

However, Proposition 4.7 provides an explicit constant that is going to be used. From (5.3), we
have:

∂3
zS
(
ΓI
ε

)
(h) =

∑

k>0

4−k
[
W (3)

ε (2−kh) + 3W (2)
ε (2−kh)W (1)

ε (2−kh) + 2W (1)
ε (2−kh)3

]
.

The contributions involving W
(1)
ε and W

(2)
ε are of order ε, and can be handled exactly as above.

However, the linear term involvingW
(3)
ε requires a careful attention. We obtain from Proposition 4.7
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that ϕαW
(3)
ε is bounded uniformly by

(
2α−1 + εαCK

)
‖V ‖α. Therefore,

(5.10) ϕα(h)

∣∣∣∣∣∣

∑

k>0

4−kW (3)
ε (2−kh)

∣∣∣∣∣∣
6
(
2α−1 + εαCK

)

∑

k>0

4−k ϕα(h)

ϕα(2−kh)


 ‖V ‖α

6
(
2α−1 + εαCK

)

∑

k>0

2k(α−2)


 ‖V ‖α =

(
2α+1

4− 2α
+ εαCK

)
‖V ‖α .

In view of the latter estimate, we define the explicit constant κ(α) as

(5.11) κ(α) =
21+α

4− 2α
.

A simple calculation shows that κ(α) < 1 if and only if α < 2 − log2(3) ≈ 0.415. The choice of
α 6 2/5 gives some room below this threshold. We conclude that

∥∥S(ΓI
ε)
∥∥
α
6 (κ(α)+εαCK) ‖V ‖α.

The other contribution to Hε(V ), namely S(Γm
ε ) can be bounded in an easier way. Indeed, we

have
(5.12)

Γm
ε = log(1 +m) + log

(
1 +

m

Iε(0)

)
− log(1 +m) = log(1 +m) + log

(
1 +

m

1 +m

(
1

Iε(0)
− 1

))
.

We define accordingly

(5.13) Cm = max
k=1,2,3

(∥∥∥∥ϕα
∂k
zm

1 +m

∥∥∥∥
∞

)
,

Moreover, Proposition 4.1 can be easily refined into |Iε(0) − 1| 6 εCm‖V ‖α, using the definition
of RK in (2.11). Straightforward computations show that the last contribution in (5.12) can be
estimated by εCm ‖V ‖α.

Combining the estimates obtained for S(Γm
ε ) and S(ΓI

ε), we come to the conclusion:

‖Hε(V )‖α 6 Cm + (κ(α) + εαCK) ‖V ‖α ,
�

Proposition 5.8 calls an immediate corollary.

Corollary 5.9 (Invariant subset).
There exist K0 a ball of Eα0 , and ε0 a positive constant such that for all ε 6 ε0 the set K0 is
invariant by Hε:

Hε(K0) ⊂ K0.

Proof. Let K0 be the ball of radius R0 = 2Cm/(1 − κ(α)). We deduce from Proposition 5.8 that,
for all V ∈ K0,

‖Hε(V )‖α 6 Cm + (κ(α) + εαCK0
)R0 = Cm

(
1 +

2κ(α)

1− κ(α)

)
+ εαCK0

R0

= Cm

(
2

1− κ(α)
− 1

)
+ εαCK0

R0

= R0 + Cm

(
−1 + 2εαCK0

1− κ(α)

)
.
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Therefore, the choice ε0 =

(
1− κ(α)

2CK0

) 1

α

guarantees that K0 is left invariant by Hε. �

We are now in position to state the more important result of this section:

Theorem 5.10 (Contraction mapping). There exists a constant CK0
such that for any ε 6 ε0,

and every function V1, V2 ∈ K0, the following estimate holds true

(5.14) ‖Hε(V1)−Hε(V2)‖α 6 (κ(α) + εαCK) ‖V1 − V2‖α .
Proof. We denote by △V the difference V1 − V2, again. The proof is analogous to Proposition 5.8.

For clarity we write respectively I iε(h) instead of Iε(Vi)(h) and △W
(i)
ε (h) instead of W

(i)
ε (V1)(h)−

W
(i)
ε (V2)(h). We decompose △Hε(V ) as above:

(5.15) △Hε = △
(
S(Γm

ε )− S(ΓI
ε)
)
= △Hm

ε −△HI
ε .

We deal with △Hm
ε in the following lemma :

Lemma 5.11. There exists a constant C0 such that for any ε 6 ε0, and every function V1, V2 ∈ K0,
we have

‖△Hm
ε ‖α 6 εC0 ‖△V ‖α .

Proof. Recall the following definition:

(5.16) △Γm
ε = log

(
I1ε (0) +m

)
− log

(
I2ε (0) +m

)
− log

(I1ε (0)
I2ε (0)

)
.

The first derivative has the following expression,

(5.17) ∂z△Γm
ε = − ∂zm

(I1ε (0) +m)(I2ε (0) +m)
△Iε(0) .

Clearly, I2ε (0) +m is bounded below, uniformly for ε small enough. Therefore, we can repeat the
arguments of Lemma 5.5, with Λ = log(I1ε (0) +m) in order to get

(5.18) ‖∂zS(△Γm
ε )‖∞ 6 Cm|△Iε(0)|.

However, Proposition 4.3 yields that |△Iε(0)| 6 εC0 ‖△V ‖α.
The next order derivatives can be handled similarly. Indeed, the following quantities must be

bounded uniformly by εC0 ‖△V ‖α:

ϕα(h)

∣∣∣∣∣∣

∑

k>0

2−k

[
∂2
zm(2−kh)

I1ε (0) +m(2−kh)
− ∂2

zm(2−kh)

I2ε (0) +m(2−kh)

]∣∣∣∣∣∣
6 εC0 ‖△V ‖α

ϕα(h)

∣∣∣∣∣∣

∑

k>0

2−k

[
∂zm(2−kh)2

(I1ε (0) +m(2−kh))2
− ∂zm(2−kh)2

(I2ε (0) +m(2−kh))2

]∣∣∣∣∣∣
6 εC0 ‖△V ‖α

ϕα(h)

∣∣∣∣∣∣

∑

k>0

4−k

[
∂3
zm(2−kh)

I1ε (0) +m(2−kh)
− ∂3

zm(2−kh)

I2ε (0) +m(2−kh)

]∣∣∣∣∣∣
6 εC0 ‖△V ‖α

ϕα(h)

∣∣∣∣∣∣

∑

k>0

4−k

[
∂zm(2−kh)3

(I1ε (0) +m(2−kh))3
− ∂zm(2−kh)3

(I2ε (0) +m(2−kh))3

]∣∣∣∣∣∣
6 εC0 ‖△V ‖α ,

ϕα(h)

∣∣∣∣∣∣

∑

k>0

4−k

[
∂2
zm(2−kh)∂zm(2−kh)

(I1ε (0) +m(2−kh))2
− ∂2

zm(2−kh)∂zm(2−kh)

(I2ε (0) +m(2−kh))2

]∣∣∣∣∣∣
6 εC0 ‖△V ‖α .
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The first and the third items are handled similarly as for the first derivative. The three other items
are handled analogously. For the sake of concision, we focus on the second line: We have,

∂zm(z)2

(I1ε (0) +m(z))2
− ∂zm(z)2

(I2ε (0) +m(z))2

=

[
∂zm(z)

I1ε (0) +m(z)
+

∂zm(z)

I2ε (0) +m(z)

] [ −∂zm(z)△Iε(0)
(I1ε (0) +m(z))(I2ε (0) +m(z))

]

The first factor is uniformly bounded by assumption (1.6), for ε small enough. The second factor
is the same as above, so we can conclude directly. �

It remains to handle△HI
ε. We have the following formulas for the two first derivatives (5.1)–(5.3):

∂z△HI
ε(h) =

∑

k>0

△W (1)
ε (2−kh),

∂2
z△HI

ε(h) =
∑

k>0

2−k
[
△W (2)

ε (2−kh)−△
(
W (1)

ε (2−kh)2
)]

Finally the formula for the third derivative is:

(5.19) ∂3
z△HI

ε(h) =
∑

k>0

4−k
[
△W (3)

ε (2−kh) + 3△
(
W

(2)
1 W

(1)
1 (2−kh)

)
+ 2△

(
W (1)

ε (2−kh)3
)]

.

The combination of Proposition 4.6 and Lemma 5.5 yields

(5.20) ‖∂z△HI
ε‖∞ 6 εC0 ‖△V ‖α .

In the same way, we get the bound for the second derivative, using the factorization

(5.21) △
(
W (1)

ε (z)2
)
=
(
W (1)

ε (V1)(z) +W (1)
ε (V2)(z)

)
△
(
W (1)

ε (z)
)
,

together with the uniform bound in Proposition 4.7.
As in the proof of Proposition 5.8, the third order derivative must be handled with care, as it

does not yield a O(ε) bound.

Exactly as above, the contribution involving△W
(3)
ε in (5.19) is the one that yields the contraction

factor, the remaining part being of order O(ε) ‖△V ‖α. Actually, we have precisely:

ϕα(h)

∣∣∣∣∣∣

∑

k>0

4−k△W (3)
ε (2−kh)

∣∣∣∣∣∣
6 (κ(α) + εαC0) ‖△V ‖α

as in (5.10). This concludes the proof of the main contraction estimate. �

6. Existence of a (locally) unique Uε, and convergence as ε→ 0.

6.1. Solving problem (PUε) – Theorem 1.4(i). First of all, Theorem 5.10 immediately implies
Theorem 2.7, that is the existence of a unique fixed point Hε(Vε) = Vε in the invariant subset K0,
for ε 6 ε0. Note that ε0 could possibly be reduced to meet the requirement of the last estimate in
(5.14).

However, due to the peculiar role played by the linear part γε(Vε), it is convenient to enlarge
slightly the set K0. More precisely, after corollary 5.9 we define K ′

0 the ball of radius

(6.1) R′
0 = R0 + sup

V ∈K0

|γε(V )| .

It is clear that, up to reducing further ε0 to ε′0 in order to control the new constant CK ′

0
, the

set K ′
0 is also invariant for ε 6 ε′0. The same contraction estimate as in Theorem 5.10 holds,
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obviously. Furthermore, the fixed point on K ′
0 coincides with the fixed point on the smaller ball

K0, by uniqueness.
Next, we show that finding this fixed point is equivalent to solving problem (PUε), as claimed

in Proposition 2.8. We prove in fact the two sides of the equivalence.
⊲ The easy part consists in saying that, being given Vε the unique fixed point in K0, the func-

tion Uε = γε(Vε) · +Vε belongs to K ′
0 by definition of K ′

0 (6.1), and it solves problem (PUε) by
construction.

⊲ On the other side, suppose that (λε, Uε) ∈ R ×K ′
0 is a solution of the problem (PUε). As in

section 2, evaluating (PUε) at z = 0 yields the following necessary condition on λε, since m(0) = 0:

λε = Iε(Uε)(0).
1

Then, we focus on Uε. We decompose it as Uε = γU · +VU , with γU = ∂zUε(0), and ∂zVU (0) = 0.
Our purpose is threefold: (i) first, we show that γU = γε(VU ), then (ii) we prove that VU ∈ Eα0 ,
and finally (iii), we prove that Hε(VU ) = VU .

We can reformulate problem (PUε) as follows:

(6.2) Iε(γU ·+VU)(0) +m(z) = Iε(γU ·+VU) exp (VU (z) − 2VU (z) + VU (0)) .

Since we assume Uε ∈ Eα, we can differentiate the previous equation, and evaluate it at z = 0 to
get :

∂zIε(γU ·+VU )(0) = 0.

As in Section 2, a direct computation shows that γU and VU are linked by the following relation:

(6.3) 0 = Jε(γU , VU ),

In order to invert this relationship, and deduce that γU = γε(VU ), it is important to prove that
Vε ∈ Eα0 , which amounts to showing that ∂2

zVε(0) > ∂2
zm(0), the other conditions being clearly

verified.
Differentiating the problem (PUε) twice, and evaluating at z = 0, we get:

∂2
zm(0) = ∂2

z Iε(Uε)(0) + Iε(Uε)(0)
∂2
zUε(0)

2
.

= Iε(Uε)(0)

(
∂2
zIε(Uε)(0)

Iε(Uε)(0)
+

∂2
zUε(0)

2

)
.

Then, using straightforward adaptations of Propositions 4.1 and 4.7, where V should be replaced
with VU ∈ Eα and γε(V ) should be replaced by γU , we find that

∂2
zm(0) 6

3

2

(
εCK ′

0
+

∂2
zUε(0)

2

)
.

for ε sufficiently small. We deduce that the missing condition is in fact a consequence of the
formulation (PUε):

∂2
zUε(0) > ∂2

zm(0).

By definition, ∂2
zUε(0) = ∂2

zVε(0), so we have established that Vε ∈ Eα0 .
Hence, we can legitimately invert (6.3), so as to find γU = γε(VU ), where the function γε is

defined in Proposition 2.4. Since Uε ∈ K ′
0 by assumption, we have in particular ‖VU‖α 6 R′

0. Of
course, VU is the candidate of being the unique fixed point of Hε in K ′

0 (but also in K0). The proof
of this claim follows the lines of section 2.2, checking that all manipulations are justified.

1 We use the notation Iε(Uε) introduced in equation (1.4), that should not be confused with Iε(Vε). It is the
purpose of the present argument to show that the two quantities do coincide.
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First, we divide (6.2) by IU = Iε(γU · +VU ) = Iε(γε(VU ) · +VU ) = Iε(VU ). According to
Proposition 4.1, this quantity is uniformly close to 1 for ε small, so it does not vanish. Taking the
logarithm on both sides, we get for all z ∈ R :

VU (z)− 2VU (z) + VU (0) = log

(
IU (0) +m(z)

IU (z)

)
.

We differentiate the last equation to end up with the following recursive equation for every z ∈ R

∂zVU (z) − ∂zVU (z) = ∂z log

(
IU (0) +m

IU (z)

)
(z).

One simply deduces, that for all z ∈ R, we necessarily have:

∂zVU (z) = ∂zVU (0) +
∑

k>0

log

(
IU (0) +m(2−kz)

IU (2−kz)

)
.

Note that the C1 continuity at z = 0 is used here. Moreover, ∂zVU (0) = 0 by definition of VU . The
analysis performed in Proposition 5.3 guarantees that this sum is indeed finite. Finally, integrating
back the previous identity yields

VU (z) =
∑

k>0

2k log

(
IU (0) +m(2−kz)

IU (2−kz)

)
=
∑

k>0

2k log

(Iε(VU )(0) +m(2−kz)

Iε(VU )(2−kz)

)
.

The last expression is nothing but Hε(VU ), by definition (2.14). Therefore, VU = Hε(VU ) is the
unique fixed point of Hε in K ′

0.

6.2. Convergence of (λε, Uε) towards (λ0, U0) – Theorem 1.4(ii). As previously, we decom-
pose Uε = γε · +Vε, where γε stands for γε(Vε). Firstly, we have λε = Iε(Vε)(0) → 1, using
Proposition 4.1. Secondly, using an argument of diagonal extraction, there exists a subsequence
εn, and a limit function V0 such that

lim
ε→0

∂zVε = ∂zV0 , in L∞
loc,(6.4)

lim
ε→0

∂2
zVε = ∂2

zV0 , in L∞
loc.(6.5)

We have used the Arzela-Ascoli theorem and the uniform C3 bound in order to get the convergence
up to the second derivative. However, there is no reason why the convergence should hold for the
third derivative, due to the lack of compactness.

Looking at (PUε), we see that Iε(Uε) converges uniformly to 1, and, for every given z ∈ R, (6.4)
implies that

Uε(z) − 2Uε(z) + Uε(0) = Vε(z)− 2Vε(z) + Vε(0) −−−→
ε→0

V0(z) − 2V0(z) + V0(0).(6.6)

Passing to the pointwise limit in problem (PUε), we get that V0 solves the following problem:

1 +m(z) = exp (V0(z)− 2V0(z) + V0(0)) .

Then, we have necessarily:

(6.7) V0(z) =
∑

k>0

2k log
(
1 +m(2−kz)

)
.

This completes the proof of Theorem 1.4(ii), up to the identification of the limit of γε, if it exists.
In our approach, this goes through the characterization of the functional Jε (2.10). This was indeed
the purpose of Lemma 3.1. Here comes an important difficulty, as compactness estimates are not
sufficient to pass to the limit in Jε(0, Vε) as ε→ 0 (3.3), as it would formally involve the pointwise
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value ∂3
zV0(0) which is beyond what our compactness estimates can provide. Note that passing to

the limit in ∂gJε(g, Vε) as ε→ 0 is not an issue, as it can be encompassed by (6.5), see (3.4).
It remains to prove that the following limit holds true

(6.8) lim
ε→0

1

4
√
2π

∫∫

R2

exp(−Q(y1, y2))
[
y21∂

3
zV (εỹ1) + y22∂

3
zV (εỹ2))

]
dy1dy2 =

1

2
∂3
zm(0) .

Indeed, this would directly imply that

(6.9) lim
ε→0
Jε(g, Vε) = −

1

2
∂3
zm(0) + g∂2

zm(0) ,

as ∂2
zV0(0) = 2∂2

zm(0) as a consequence of (6.7). We could deduce immediately that the root γε(Vε)
converges to the expected value (1.11).

In the absence of compactness, we call the contraction argument, in order to prove the following
key result:

Lemma 6.1. For every δ > 0, there exists R1(δ) > 0, such that, for every R > R1(δ), there exists
ε1(δ,R) such that for all ε 6 ε1(δ,R), we have:

sup
|z|6εR

∣∣∣∣∂
3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣∣ 6 δ .(6.10)

Proof. To begin with, we differentiate the problem (PUε) three times:

∂3
zVε(z)−

1

4
∂3
zVε(z) = ∂3

z log (λε +m(z))− ∂3
z log (Iε(Uε)(z)) .

We expand the right hand side as usual:

∂3
zVε(z)−

1

4
∂3
zVε(z) =

∂3
zm(z)

λε +m(z)
+

3∂2
zm(z)∂zm(z)

(λε +m(z))2
+

2∂zm(z)3

(λε +m(z))3

−W (3)
ε (z)− 3W (2)

ε (z)W (1)
ε (z)− 2W (1)

ε (z)3.

We subtract ∂3
zm(z) on each side, and we reorganize the terms in order to conjure the difference

∂3
zVε(z)− (4/3)∂3

zm(z) we are interested in:

(6.11) ∂3
zVε(z)−

4

3
∂3
zm(z)− 1

4

(
∂3
zVε(z)−

4

3
∂3
zm(z)

)
+

1

3

(
∂3
zm(z)− ∂3

zm(z)
)
=

∂3
zm(z)

(
1

λε +m(z)
− 1

)
+

3∂2
zm(z)∂zm(z)

(λε +m(z))2
+

2∂zm(z)3

(λε +m(z))3

−W (3)
ε (z)− 3W (2)

ε (z)W (1)
ε (z)− 2W (1)

ε (z)3.

We estimate below each term of (6.11). First, the terms involving m and its derivatives on the
right hand side of (6.11) converge to zero, uniformly for |z| 6 εR, as ε → 0, simply because
m(0) = ∂zm(0) = 0, and λε → 1. Actually, the same holds true for the difference of ∂3

zm(z)−∂3
zm(z)

by continuity of ∂3
zm at the origin.

Second, from Proposition 4.7, we know that

(6.12) max
(∥∥∥W (1)

ε

∥∥∥
∞
,
∥∥∥W (2)

ε

∥∥∥
∞

)
= O(ε).

The remaining term, W
(3)
ε (z) is more delicate to handle. In fact, it will result in a contraction

estimate, exactly as in section 5. We recall the expression of W
(3)
ε (4.8):

W (3)
ε (z) =

〈
dGVε

ε (z),
1

4
Dε(∂

3
zVε)(z) + (Dε(∂zVε)(z))

3 +
3

2
Dε(∂zVε)(z)Dε(∂

2
zVε)(z)

〉
.
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As in the proof of equations (4.13) to (4.15), we get that the last two contributions involving the

non-linear and lower order terms (Dε(∂zVε))
3 and Dε(∂zVε)Dε(∂

2
zVε) are O(ε). It remains the term〈

dGVε

ε , (1/4)Dε(∂
3
zVε)

〉
, which is a double integral in variables (y1, y2) that we split in two regions

of integration: Ω = {|y1| 6 R/2, and |y2| 6 R/2} and Ωc = {|y1| > R/2, or |y2| > R/2}.
Let δ > 0. We can choose R1(δ) large enough so that, for all R > R1(δ), we have

1

4

∣∣〈dGVε

ε (z)1Ωc(y1, y2),Dε(∂
3
zVε)(z)

〉∣∣ 6 1

2

〈
dGVε

ε (z)1Ωc(y1, y2), 1
〉
‖K0‖α 6

δ

10
.(6.13)

In the region where y1 and y2 are both below R/2, we introduce the difference with ∂3
zm, as in

(6.10): 〈
dGVε

ε (z)1Ω,
1

4
∂3
zVε(z)−

1

8
∂3
zVε(z + εy1)−

1

8
∂3
zVε(z + εy2)

〉
= A+B,

where

A =

〈
dGVε

ε (z)1Ω,
1

4

(
∂3
zVε(z)−

4

3
∂3
zm(z)

)

−1

8

(
∂3
zVε(z + εy1)−

4

3
∂3
zm(z + εy1)

)
− 1

8

(
∂3
zVε(z + εy2)−

4

3
∂3
zm(z + εy2)

)〉

and

B =
1

6

〈
dGVε

ε (z)1Ω,
(
∂3
zm(z)− ∂3

zm(z + εy1)
)
+
(
∂3
zm(z)− ∂3

zm(z + εy2)
)〉

.

By construction, we have |z + εyi| 6 εR/2 + εR/2 6 εR. Therefore, we have

|A| 6
〈
dGVε

ε (z)1Ω,
1

4
sup

|z|6εR

∣∣∣∣∂
3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣∣+
2

8
sup

|z|6εR

∣∣∣∣∂
3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣∣

〉

6
1

2
sup

|z|6εR

∣∣∣∣∂
3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣∣ .

As for B we find:

|B| 6 1

3

〈
dGVε

ε (z)1Ω, osc
|z|6εR

(∂3
zm)

〉
6

1

3
osc

|z|6εR

(
∂3
zm
)
−−−→
ε→0

0.

Going back to (6.11), we have shown that for R > R1, there exists ε1 > 0 small enough such that
for all ε 6 ε1 we have:

sup
|z|6εR

∣∣∣∣∂
3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣∣ 6
δ

4
+

1

4
sup

|z|6εR

∣∣∣∣∂
3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣∣+
1

2
sup

|z|6εR

∣∣∣∣∂
3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣∣

6
δ

4
+

3

4
sup

|z|6εR

∣∣∣∣∂
3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣∣ .

As a consequence, we find that

sup
|z|6εR

∣∣∣∣∂
3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣∣ 6 δ.

This completes the proof of Lemma 6.1. �

Back to (6.8), we recall that |ỹi| 6 |yi|+1, as a by-product of Taylor expansions. Let δ > 0, and
take R sufficiently large such that

(6.14)
1

4
√
2π

∫∫

Ωc

exp(−Q(y1, y2))

(
‖K0‖α +

1

2
∂3
zm(0)

) [
y21 + y22

]
dy1dy2 6

δ

10
,
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where Ω = {|y1| 6 R− 1, and |y2| 6 R− 1}. The other part of the double integral is:

(6.15)
1

4
√
2π

∫∫

Ω
exp(−Q(y1, y2))

[
y21∂

3
zV (εỹ1) + y22∂

3
zV (εỹ2))

]
dy1dy2.

Using Lemma 6.1 and the continuity of ∂3
zm at z = 0, we can find ε1 > 0 such that for all ε 6 ε1,

∣∣∣∣
1

4
√
2π

∫∫

Ω
exp(−Q(y1, y2))

[
y21

(
∂3
zV (εỹ1)−

4

3
∂3
zm(0)

)
+ y22

(
∂3
zV (εỹ2)−

4

3
∂3
zm(0)

)]
dy1dy2

∣∣∣∣

6

(
1

4
√
2π

∫∫

Ω
exp(−Q(y1, y2))

[
y21 + y22

]
dy1dy2

)
δ

10
.

Putting all the pieces together, and using that 1√
2π

∫∫
R2 exp(−Q(y1, y2))

[
y21 + y22

]
dy1dy2 =

3
2 (2.2),

we deduce that:

(6.16)

∣∣∣∣
1

4
√
2π

∫∫

R2

exp(−Q(y1, y2))
[
y21∂

3
zV (εỹ1) + y22∂

3
zV (εỹ2))

]
dy1dy2 −

1

2
∂3
zm(0)

∣∣∣∣ 6 δ .

Hence, the limit announced in (6.8) holds true. This completes the proof of the asymptotic behavior
(λε, Uε)→ (λ0, U0) as described in Theorem 1.4(ii).

7. Extension to higher dimensions

Our methodology can be extended to higher dimension, without too much effort. This section
is devoted to the generalization of the elements of proof that were specific to the one-dimensional
case.

All the estimates on the operator Hε and its constitutive pieces are still operational in higher
dimension. The only part of our proof that requires some specific attention is the construction of
the linear part γε(Vε) which was performed in Section 3. Indeed, we used a monotonicity argument
to show that γε(Vε) can be defined in a unique way.

We proceed as in Section 3. First we show formally how to obtain the expression of the vector
γ0 (1.11) via suitable Taylor expansions. Then, we justify these Taylor expansions, and we exhibit
a monotonic function that enables to conclude, exactly as in dimension 1.

7.1. The formal expression of the linear part γ0. Following the very same heuristics as in
section 3.1, but being careful during the Taylor expansions, we formally end up with the following
matrix valued identity:

(7.1) D2V (0)

(
1

(
√
2π)d

∫∫

R2d

e−Q(y1,y2)(y1 ⊗ y1 + y1 ⊗ y2)dy1dy2

)
γ0

=
1

2
D3V (0)

(
1

(
√
2π)d

∫∫

R2d

e−Q(y1,y2)y1 ⊗ y1dy1dy2

)
.

The quadratic form Q yields the multivariate centered gaussian distribution associated with the
following covariance matrix Σ ∈ M2d(R):

Σ =
1

4

(
3 Id − Id
− Id 3 Id

)
.

The Kronecker product y1 ⊗ y1 yields a matrix of moments, and so the relation (7.1) can be
simplified, similarly to the one dimensional case, so as to obtain:(

D2V (0)

(
3

4
− 1

4

)
Id

)
γ0 =

1

2
D3V (0)

3

4
Id,

1

2
D2V (0)γ0 =

3

8
D3V (0) Id .
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The righ hand side is a tensor applied to a matrix yields a vector that can be simplified even further
using tensorial properties: D3V (0) Id = D(∆V )(0). Then, provided that D2V (0) is non degenerate,
we obtain the limited expected value of γ0 in dimension higher than 1, that is a generalization of
(3.2):

γ0(V ) =
3

4

(
D2V (0)

)−1
D(∆V )(0).

In the case where V0 is given by (1.11) through the fixed point procedure, we obtain

(7.2) γ0(V0) =
1

2

(
D2m(0)

)−1
D(∆m)(0).

7.2. Extension of the proof of Proposition 2.4 (section 3.2). We now fix V ∈ K, where
K is a ball of Eα0 . The purpose is to prove that there is a unique solution in R

d of the following
problem:

Jε(γ, V ) = 0.(7.3)

We insist upon the fact that the variable γ belongs to R
d and the function Jε(·, V ) is now defined

as a vector field on R
d, Jε : Rd × Eα → R

d.
As in section 3.2, we can obtain the following estimate

(7.4) Jε(g, V ) = Jε(0, V ) +
1

2
D2V (0)g +O(ε) ,

by means of refined Taylor expansions, where Jε(0, V ) is bounded a priori, independently upon
ε > 0 for V ∈ K. To prove the existence of a root γε, we used the mean value theorem in the
proof of Proposition 2.4. The analogous statement in higher dimension is the Brouwer fixed point
theorem. Indeed, (7.3) can be recast as follows:

g =

(
Id+

1

2
D2V (0)

)−1

(g − Jε(0, V ) +O(ε)) = Tε(g).

Thus, we are led to finding a fixed point of a continuous function. As in the one-dimensional case,
thanks to the lower bounded D2V (0) > µ0 Id encoded in the definition of Eα0 (1.7), we can show
easily that there exists RK such that the ball of radius RK in R

d is left invariant by T . Brouwer’s
fixed point theorem guarantees that there exists a fixed point γε to T , which is also a root of (7.3).

For the uniqueness part, we can use strict monotonicity, similarly as in the one dimensional case.
This is possible, thanks to (3.4) :

DgJε(g, V ) =
1

2
D2V (0) +O(ε).(7.5)

We deduce from this strong estimate that the vector field Jε(·, V ) is locally uniformly monotonic,
in the sense that there exists µK such that the following inequality holds true for all ε sufficient
small, and every g1, g2 ∈ B(0, RK):

(Jε(g1, V )− Jε(g2, V )) · (g1 − g2) >
1

2
µK ‖g1 − g2‖2 .(7.6)

This monotonicity condition is clearly satisfied, as it is equivalent to the following first order
condition,

1

2

(
DgJε(g, V ) +DgJε(g, V )⊤

)
> µKId,(7.7)

It is immediate that any strictly monotonic vector field admits at most one root. This completes
the proof of uniqueness of γε(V ).
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