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Abstract

The Precision Neurology development process implements systems theory with system biology 

and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven 

investigation of systems dysfunction within distinct molecular, cellular and large-scale neural 

network systems in both animal models as well as through tests for the usefulness of these 

candidate dynamic systems biomarkers in different diseases and subgroups at different stages of 

pathophysiological progression. This translational research path is paralleled by an “omics”-based, 

hypothesis-free, exploratory research pathway, which will collect multimodal data from 

progressing asymptomatic, preclinical and clinical neurodegenerative disease (ND) populations, 

within the wide continuous biological and clinical spectrum of ND, applying high-throughput and 
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high-content technologies combined with powerful computational and statistical modeling tools, 

aimed at identifying novel dysfunctional systems and predictive marker signatures associated with 

ND. The goals are to identify common biological denominators or differentiating classifiers across 

the continuum of ND during detectable stages of pathophysiological progression, characterize 

systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems 

biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate 

endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate 

development of early and effective individualized treatment of ND, such as Alzheimer’s disease 

(AD).

The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as 

the Paris based core of the Sorbonne University Clinical Research Group “Alzheimer Precision 

Medicine” (GRC-APM) were recently launched to facilitate the passageway from conventional 

clinical diagnostic and drug development towards breakthrough innovation based on the 

investigation of the comprehensive biological nature of aging individuals. The APMI movement is 

gaining momentum to systematically apply both systems neurophysiology and systems biology in 

exploratory translational neuroscience research on ND.

INTRODUCTION

A dementia syndrome is caused by a range of neurological disorders; Alzheimer’s disease 

(AD) is the most common disease causing dementia, accounting for 50–70% of cases. 

Increasing age is the most important risk factor for AD and other dementias, and as life 

expectancy increases and demographic ageing occurs in populations around the world, the 

number of people with dementia is expected to continue to exponentially grow. In 2015, 

almost 47 million people worldwide were estimated to be affected by dementia, and the 

numbers are expected to reach 75 million by 2030, and 131 million by 2050, with the 

greatest increase expected in low-income and middle-income countries [1].

On May 29, 2017, at the 70th session of the World Health Assembly in Geneva, the World 

Health Organization (WHO) has unanimously adopted a global plan on dementia – the 

Global Plan of Action on the Public Health Response to Dementia 2017–2025 – that 

includes targets for the advancement of dementia awareness, risk reduction, diagnosis, care 

and treatment, support for care partners and research (available at https://www.alz.co.uk/

news/global-plan-on-dementia-adopted-by-who).

Recent years have witnessed an increasing understanding of the molecular mechanisms 

related to AD. The pathogenesis of this complex polygenic neurodegenerative disease (ND) 

involves sequentially interacting pathophysiological cascades, including both core events – 

i.e., accumulation of the forty-two-amino acid-long amyloid beta (Aβ42) peptide into 

amyloid plaques and self-aggregation of hyperphosphorylated tau protein to form 

intraneuronal neurofibrillary tangles – and downstream processes, such as generalized 

neuroinflammation [2, 3]. These events induce axonal degeneration [4–6] and disruption of 

synaptic integrity [7, 8], thus leading to synaptic dysfunction and, ultimately, deterioration of 

physiological neural connectivity [9].
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In spite of such advancements in understanding the disease, AD is characterized by a high 

degree of heterogeneity in its manifestation, progression, response to treatment, as well as 

susceptibility to risk factors. Phenotypic variability is currently considered one of the biggest 

challenges in clinical science and clinical trial design [10]. On the one hand, the same 

syndrome can be caused by substantially different pathophysiological mechanisms. In order 

to ensure more precise and definitive AD diagnosis, biomarkers are crucially needed to 

detect and track disease processes in the brain. On the other hand, similar pathophysiology 

can present itself with distinct symptomatology across patients, suggesting that additional 

factors can influence disease manifestation and progression. The identity and impact of such 

additional factors (including genetic, epigenetic, life-style, and phenotypic traits) deserve 

further investigation. Particularly, a growing body of evidence demonstrated that a factor 

such as an individual’s sex can modulate disease phenotype and drug response [11], thus 

substantially contributing to clinical heterogeneity. In AD patients, sex differences have been 

reported in the rate of cognitive deterioration [12, 13] and brain atrophy [14], in the absence 

of clear differences in amyloid or tau burden [15]. In addition, sex-genotype interaction in 

AD have been shown to affect both risk of onset and conversion [16] as well as response to 

pharmacological treatment [17, 18]. The socio-economic construct associated with the 

female and male position in the society (i.e. gender) can also influence disease onset and 

progression, as it affects education, salary, pension plans, and caregiving burden [19]. 

Therefore, sex and gender appear to be central drivers of phenotypic variability in AD and 

their role should be carefully considered when designing strategies for prevention, detection 

and treatment of the disease. Analysis of sex and gender effects – both alone and in 

combination with a variety of genetic, epigenetic, and phenotypic traits – should be the first 

step towards a more personalized and patient-centered approach to AD.

THE PRECISION NEUROLOGY PARADIGM IN ALZHEIMER’S DISEASE

Breakthrough conceptual shifts have recently commenced to emerge in the field of AD and 

other ND, highlighting the presence of risk and protection factors and the non-linear 

dynamic continuum of complex pathophysiologies along a wide spectrum of multi-factorial 

brain proteinopathies. Substantial advancements in detecting, treating, and preventing AD 

are expected to evolve through the generation and the systematic implementation of a 

strategy based on the precision medicine (PM) paradigm [20, 21], whose establishment 

requires the implementation of an array of integrated disciplines and technological 

developments such as the “omics” approaches, neuroimaging modalities, cognitive 

assessment tests, and clinical characteristics. These converge to several domains that need to 

be analyzed according to the systems theory paradigm [22]. This allows for the 

conceptualization of novel and original models to elucidate all systems levels – assessed by 

systems biology and systems neurophysiology (Figure 1) – and the different types of 

spatiotemporal data characterizing the genetically, biologically, pathologically, and clinically 

heterogeneous construct of “AD” [21]. Thus, systems biology and systems neurophysiology 

permit to delineate the multivariate and combinatorial profiles of genetic, biological, 

pathophysiological, and clinical markers reflecting the heterogeneity of this condition. 

Thanks to fundamental advances in research technology, we got new and better performing 

analysis tools to register and create comprehensive brains maps and record dynamic patterns 
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across different systems: from molecules, neurons to brain areas. Particularly, systems 

neurophysiology will aim at showing how computational network models can elucidate the 

relationship between structure and dynamic function in brain networks, as demonstrated by 

recent findings in time-dependent functional connectivity measured with non-invasive 

neuroimaging techniques.

The transition to PM from the traditional model does not occur overnight. But the more we 

build innovative and interdisciplinary networks with partners, the faster and more effectively 

we can see the changes happening. To fulfill on the promise of PM, there needs to be a new 

ecosystem with partnerships of multiple stakeholders who collaborate to find creative and 

novel solutions. Such a new ecosystem – comprised of academic and community providers, 

industry, professional societies, government, consumers, and patient advocacy groups — 

could advance the following pilot initiatives on a local, national and potentially international 

scale.

In order to advance the development of the PM paradigm in AD, the international Alzheimer 

PM Initiative (APMI) and its planned Cohort Program (APMI-CP) (Figure 2) have been 

recently launched by our consortium and thematically linked to the U.S. Precision Medicine 

Initiative (PMI) (available at https://www.whitehouse.gov/precision-medicine) and the U.S. 

“All of Us Research Program” – evolved from the U.S. PMI Cohort Program (available at 

https://www.nih.gov/research-training/allofus-research-program) (Table 1). Four pioneering 

translational neuroscience research programs – “MIDAS”, “PHOENIX”, “POSEIDON”, and 

“VISION” – have been developed and launched in an interdisciplinary local network by our 

group at the APMI and APMI-CP initiation site Paris, France, at the Sorbonne University 

(Sorbonne Université) and at the Pitié-Salpêtrière University Hospital, Institute for Memory 

and Alzheimer’s Disease (Institut de la Mémoire et de la Maladie d’Alzheimer, IM2A) and 

the Brain and Spine Institute (Institut du Cerveau et de la Moelle Épinière, ICM) in Paris to 

organize, combine, and integrate the components of systems biology and neurophysiology in 

order to facilitate the development of PM in AD, a model approach for other 

proteinopathies/ND of the brain. In this regard, following the APMI conceptual framework, 

mono-center pilot APMI subcohorts spanning from early asymptomatic preclinical 

populations to prodromal to dementia late stage populations – namely INSIGHT-preAD, 
Predict-MA PHRC, RESPIR, and SOCRATES – have been established at our central clinical 

recruitment site, the IM2A. These pilot APMI cohorts allow for the standardized academic 

university-based expert center inclusion of both cognitively intact individuals at risk for AD 

and patients with a full range of ND and provide an assortment of unique heterogeneous and 

multidimensional data. The research using these pilot AMPI cohorts is performed under the 

structural framework of the newly established Sorbonne University – “Clinical Research 

Group in Alzheimer Precision Medicine” (GRC n° 21), Sorbonne Université – “Groupe de 
Recherche Clinique - Alzheimer Precision Medicine”) (GRC-APM). The major objective of 

the Sorbonne Université GRC-APM is to accelerate the reformation of traditional 

Neurology, Psychiatry, and Neuroscience embracing the PM paradigm, based on complex 

systems theory, using systems biology and systems neurophysiology, big data science, and 

biomarker-guided integrative disease modeling (IDM) to improve detection, classification, 

and therapy development in AD and other ND.

Hampel et al. Page 5

J Alzheimers Dis. Author manuscript; available in PMC 2018 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.whitehouse.gov/precision-medicine
https://www.nih.gov/research-training/allofus-research-program


The implementation of PM in AD is expected to result into a novel, original scientific 

taxonomy and a distinguished working lexicon and terminology (see Table 2) for reality-

based medicine, which detects evidence from real-life scenarios.

An appropriately integrative understanding of AD will be propelled by advances in 

molecular technology and data processing that will allow generating, analyzing, interpreting, 

and storing huge amounts of heterogeneous and multidimensional data, termed big data. Big 

data in AD can be used to improve our current mechanistic understanding of the disease 

through the application of different computational and data science methods, under the 

theoretical framework of IDM [23]. Multimodal big data integration is essential to 

understand the link between elements from large-scale neurobiological systems such as 

protein interaction and genetic regulatory networks, synaptic connections and anatomical 

projections among brain areas. Usually, these data come from multiple levels of 

organizations or involve different domains of biology and data types (Figure 3).

To be effective, PM needs to exploit advanced tools for collecting/managing/examining big 

data. Particularly, thanks to outstanding progresses in information technology, the 

development and implementation of electronic health records (EHRs) enable gathering/

preserving longitudinal health-care records and clinical data at highly limited costs. 

Furthermore, the adoption of personal mobile technologies – namely phones, apps, 

wearables, in-home devices – as innovative ways to collect health information (mobile 

health or “m-health”) is becoming a common practice. These devices allow the accumulation 

of clinically relevant information in a more ecological/natural environment and the 

improvement of patient care. High-volume and dense data generated from progressively 

more sophisticated software applications can enrich self-reported information on both 

lifestyle and environment, thus providing researchers with a well-defined vision of these 

factors, previously difficult to obtain.

Being rooted in a multidimensional data-driven approach, PM is expected to upgrade the 

prevention and treatment of AD to a higher level of individualization, promoting a shift 

towards every single preclinical participant at risk rather than late stage patients and disease 

in general. This goal will be achieved mainly through the identification and validation of 

reliable biomarkers, which will allow better classifying patients by their probable disease 

risk, prognosis and/or response to preventive measures and treatment [20, 21]. To date, PM 

(in general) and biomarker-guided therapeutic strategies (in particular) have witnessed their 

broadest applications in the field of oncology. The Food and Drug Administration has 

recently approved for the first time a cancer treatment based on the presence of specific 

molecular aberrations rather than on the tumor’s anatomical origin. Pembrolizumab (a 

humanized antibody used in cancer immunotherapy) has been granted approval for adult and 

pediatric patients with metastatic or unresectable, microsatellite instability-high (MSI-H) or 

mismatch repair deficient (dMMR) solid tumors [24]. The implementation of PM in ND 

currently impels researchers to envision a cross-trans-fertilization from such more advanced 

fields of medicine. In this setting, the repurposing of some previously approved mechanistic 

anticancer drugs for ND may offer the potential to reduce both the cost and time to achieve 

licensed approval status. For instance, tyrosine kinase inhibitors like bosutinib [25] and 

masitinib [26] (which represent a standard approach for anticancer treatment) have shown 
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promising clinical results in patients with amyotrophic lateral sclerosis and can also exert 

neuroprotective actions in other ND through the activation of autophagy. The search basin 

for anticancer drugs repositionable for neurodegeneration will ultimately require data-driven 

approaches grounded on specific biomarker data; such a strategy is aimed at identifying 

pathophysiological commonalities, potentially common molecular alterations between 

cancer and ND [26].

Apart from treatment, another important aim of PM in AD will be the preclinical detection 

of pathophysiology at its earliest stage and related early disease initiation and the 

implementation of preventive interventions at the individual level. This goal may be 

achieved through an integrated analysis of genetic, biomarker, imaging, and clinical 

characteristics that distinguish one individual from others. To achieve this goal, the 

availability of reliable multimodal biological indicators – biomarkers – will be required [27–

34]. In this regard, several potential biological markers have been identified across the full 

spectrum of AD, from preclinical to prodromal to clinical stages [35–41]. This includes 

different categories, as follows: 1) neurogenetics/neuroepigenetics markers [42–45], 2) 

neurochemistry markers [4, 46–48], including both cerebrospinal fluid (CSF) [49–55] and 

blood (plasma/serum) markers [56–63], 3) markers derived from structural/functional/

metabolic neuroimaging [64–68], and 4) neurophysiology/neurodynamic markers [69]. 

Moreover, opinions of regulatory agencies and industry stakeholders in AD biomarker 

discovery area are regularly in discussion and development [70, 71]. The integration and 

recomposition of the experimental information obtained from biomarker studies through the 

systems biology and systems neurophysiology paradigms will ultimately allow to improve 

patient care and clinical outcomes through the PM paradigm [72] in line with the Institute of 

Medicine (IOM) Committee Recommendations for Advancing Appropriate Use of 

Biomarker Tests (companion diagnostics) for Molecularly Targeted Therapies [73].

Starting from these premises, PM can be conceptualized as a biomarker-guided medicine. 

According to the Food and Drug Administration (FDA) and the NIH Biomarkers, Endpoints, 

and other Tools (BEST) Resource, biomarker categories can be categorized as follows: 1) 

susceptibility/risk biomarker, 2) diagnostic biomarker, 3) monitoring biomarker, 4) 

prognostic biomarker, 5) predictive biomarker, 6) pharmacodynamic/response biomarker, 

and 7) safety biomarker [74]. Unfortunately, any attempt to provide such a clear-cut 

classification in the AD field remains problematic. For example, “amyloid positivity” is 

widely considered both a diagnostic and predictive biomarker; however, this may not be the 

case at an individual level [74]. To target “individual variability” will ultimately require 

analyzing multiple biological pathways inexpensively, quickly, and sensitively. The 

increasing adoption of next generation sequencing in clinical practice has been recently 

driven by reducing costs and high-throughput analytical methods. In this setting, unbiased 

whole-genome sequencing (WGS) and whole-exome sequencing (WES) represent major 

milestones in the area of genomic medicine since they allow the complete elucidation of the 

genomic determinants of a specific AD patient’s heritable make-up, and thus are among the 

most comprehensive tools for future clinical applications [74, 75]. Moreover, upcoming 

commercially available genetic tests, e.g. gene-based assays, implementing polygenic risk 

scoring for assessing AD onset risk, are currently in late stage clinical development. In 
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particular, a 90% maximum prediction accuracy via polygenic risk scoring can be 

accomplished by predictors of genetic risk based on genomic profiles [76].

It is generally acknowledged that an individual’s health, response to environmental and 

lifestyle factors, susceptibility to pathophysiology/syndromes/diseases and tolerability/

response to treatments are indeed impacted to a varying degree by their own unique 

biological (genetic/genomic/molecular) profile. Thanks to progress in the area of personal 

genomics, it is possible to identify the genetic/genomic predisposition of an individual for 

some common diseases, carrier status for inherited diseases, and adverse reactions to 

common drugs. Personal genomics provides support in predicting the likelihood that an 

individual will be affected by a disease and may help personalize drug selection and 

treatment delivery to get the best possible care, thus playing a key role in predictive and 

personalized medicine, in the framework of the PM paradigm [77]. In this regard, the 

23andMe Personal Genome Service (PGS) Test (available at https://www.23andme.com/en-

gb/) uses a qualitative in vitro molecular diagnostic system used for detecting variants in 

genomic DNA isolated from human adults specimens (saliva) that will provide information – 

i.e. delivering and interpreting genetic health risk (GHR) reports – to users about their 

genetic risk of developing a disease to inform lifestyle choices and/or conversations with a 

healthcare professional. Specifically, GHR reports have already been authorized by the FDA 

for Late-onset AD and Parkinson’s disease and the following diseases: hereditary 

thrombophilia, alpha-1 antitrypsin deficiency, Gaucher disease, Factor XI deficiency, Celiac 

disease, G6PD deficiency, hereditary hemochromatosis, Early-Onset primary dystonia 

(available at https://www.accessdata.fda.gov/cdrh_docs/pdf16/DEN160026.pdf). Based on 

the gene expression profiles generated by GenomeDx Biosciences Decipher Genomics 

Resource Information Database (Decipher GRID®), a recent analysis showed that the 

genomic signature PAM50, normally applied to breast cancer patients to determine their risk 

of reappearance, can be used in prostate cancer as well for predicting which individual may 

take advantage from early initiation of post-operative androgen deprivation therapy (ADT), 

thus delivering a potential clinical tool to customize the treatment of prostate cancer. This 

personalized selection of patients will ameliorate treatment outcomes and prevent many 

patients from unnecessary risks of toxicity [78].

Differently from the invariable genetic/genomic information, an individual’s proteomics/

peptidomics and metabolomics/lipidomics profile may be modified and vary over time. 

Figure 4 provides an up-to-date summary of currently available “omics” technologies – 

genomics, transcriptomics, miRNomics, proteomics, metabolomics – and how they can be 

used to disentangle different systems biomarker categories [79]. At present, the majority of 

the documented candidate biomarkers originate from genomic and proteomic disciplines. 

This might be due to the higher stability of the signal and standardization achieved by using 

genomic and proteomic tools compared to other available “omic” methodologies. In 

addition, the better stability of proteins versus mRNAs might account for the greater 

availability and progress in discovery and validation of proteomic markers compared to e.g. 

transcriptomic approaches [79]. The appropriate interpretation of the obtained high-

throughput data in the context of the disease molecular pathophysiology and its specific 

treatment is considered the rate-limiting step in the biomarker discovery and validation 
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process. As a result, “omics” data sets need to be rigorously identified, extracted, and 

interpreted in order to deliver valuable biological information [79].

Within the PM framework, it has been proposed to screen and detect unsuspected age-related 

neurodegenerative diseases as early as possible in cognitively healthy potentially preclinical 

affected adults. As far as AD is concerned, it has been hypothesized that such a screening 

program – based on WGS combined with whole-body magnetic resonance imaging (WB-

MRI), metabolomics screening, constant heart monitoring, pedigree analysis, microbiome 

sequencing, and standard laboratory tests – could identify people at risk of developing 

clinical AD decades in advance. Controversies still exist, however, regarding both the high 

costs inherent to this approach and the potential risks of false-positive results and 

overdiagnosis [80].

Very recently, a pilot study has been conducted to investigate the impact of WGS in healthy 

subjects examined within a primary care context. Although several potentially pathogenetic 

variants were identified, only a fraction of the carriers demonstrated overt clinical signs or 

symptoms, indicating that the expected clinical phenotype would develop later during 

progression of pathophysiology. Although integrating genome sequencing and other 

sequencing methods into the day-to-day practice will undoubtedly provide unprecedented 

preventive opportunities, a careful sample size determination will be necessary for achieving 

a sufficient statistical power to detect a clinically meaningful effect size [81].

To aid PM fully coming to life in the field of ND, the interplay of “omics”-based techniques 

and sequencing methods is paramount, since the availability and increasing standardization 

of high-throughput big data will, through adequate IDM supported by advances in data 

science, allow creating new biomarker-guided targeted preventive and therapeutic 

opportunities [20, 21]. Therefore, the use of advanced sequencing methods and of “omics”-

based screening of pathophysiological disease states is anticipated to result in enhanced 

personalized and precise – both preventive and therapeutic – interventions by disclosing 

accurate patterns of pathophysiological biomarkers and molecular signatures underlying the 

biological mechanisms progressing non-linear dynamic in specific disease states in 

individual patients [82]. Extensive efforts are presently performed to explicate gene-protein 

links, key molecular pathways functions, protein-protein and signaling network 

organization, and organism-level responses via high-throughput biological data at different 

time points (e.g. global gene expression and comprehensive proteomic data) [83].

In this context, it is important to note that, so far, a major obstacle to our understanding and 

to the development of possibly novel stratification approaches for AD is, as mentioned, the 

fragmentation of previous research (single-center, single-method studies). Neuroscience has 

been highly productive, but its progress can also be somewhat unsystematic and remote to 

clinical practice. That said, so far conventional “big data” analytics techniques have failed to 

provide the qualitative change which is indispensable to provide a mechanistic (and not only 

statistical) understanding of AD pathophysiology, which in turn is instrumental to 

formulating personalized treatment strategies. A first step, as mentioned above, is the 

integration of complex and high-dimensional information from hundreds or thousands of 

patients contained in “big data” repositories. However, this alone is not sufficient; “big data” 
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need to be turned into “smart data” by injecting not only novel methodologies but also 

expert knowledge and targeted clinical hypotheses. This poses a major analytics challenge, 

as neither single national-level studies nor single biomedical or technical disciplines can 

tackle the problem on their own. A number of potentially disease-modifying clinical 

development programs in AD have failed so far [84], and in addition we are in serious need 

of novel out-of-the box preclinical models that can generate actionable knowledge, either in 

research or, eventually, therapy. This is why, while computational and statistical modeling 

are increasingly invaluable in AD research, it is necessary to go beyond purely descriptive 

data-analysis techniques (e.g., techniques that identify associations between certain data and 

phenotypes). Additional efforts are needed to inject specific domain competencies which can 

be formalized mathematically into predictive models that can disclose how specific 

components of pathogenic pathways interact within complex brain networks, across 

molecular to cellular and systems scales. Such predictive models should, as far as possible, 

include realistic representations of neurobiological processes and mechanisms that allow 

direct comparison to experimental settings and, ultimately, pave the way to discover new 

strategies for targeted control and intervention. In this respect, it is also essential to form 

additional private-public partnerships with a strong focus on data sharing and pathway-based 

analysis. With this type of integrative approach, successful real-world examples of advanced 

simulation have already generated tangible support for clinical trials in AD.

SYSTEMS BIOLOGY OF ALZHEIMER’S DISEASE

The polygenic multifactorial nature of AD and other complex proteinopathies of the brain 

with progression to ND is widely recognized. Although several mechanisms have been 

identified that may have a role in the pathogenesis of AD and other ND, the molecular and 

temporal dynamics of the biological processes that lead to onset and progression of diseases 

such as AD remain to be well-understood on a system level. Complex chronic diseases such 

as AD are thought to result from an interplay between environmental, genetic, and 

epigenetic factors. State-of-the-art “omics” techniques such as genomics, epigenomics, 

transcriptomics, proteomics, and metabolomics offer remarkable promise as research tools to 

decipher the dynamics and biological nature of the pathogenesis ultimately leading to 

neurodegeneration and a spectrum of clinical neurological phenotypes for which predictive 

markers and selective therapeutic tools are needed. Breakthrough advances in genetic and 

genomic technologies are making global genome sequencing possible, affordable and 

clinically practical through advanced NGS technologies. New genetic technologies, 

however, provide a crucial basis to the understanding of the complex pathophysiological 

pathways involved in proteinopathies/ND.

The concept of complex multiscale systems (consisting of macromolecules that reciprocally 

interact with each other in dynamic modular complexes and networks) as the underlying 

foundations of life has been first proposed more than 50 years ago [85]. Over the past 

decades, we have gained detailed insights into the structure, regulation, and function of 

different molecular and cellular systems, which are currently viewed as building blocks or 

inventories of working parts. However, the main challenge ahead is to clarify how these 

single agents are reciprocally associated by multiple interactions across distinct system 

levels and networks of structural and functional organization (e.g., DNA-protein; RNA-
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protein; protein-protein; protein-metabolite networks, interactomics). Major challenges exist 

for the development of reliable holistic models that are based on unbiased data-integration 

workflows and that could highlight the properties of complex biological structures, for 

which the whole is often greater than the sum of their parts. In this context, the main goals 

of systems biology in the field of ND research are as follows: 1) to characterize complex 

systems and/or networks in a straightforward, viable manner, by probing key layers of 

molecular regulation and expression on a genome-wide level and 2) to integrate different 

genome-wide data sets in a multidimensional manner – that is, across different layers of 

molecular regulation, timescales, cell types and so on – in order to generate comprehensive 

in silico models of ND that show the best balance between coverage and selectivity, reduce 

model space down to manageable numbers of highly-prioritized testable hypotheses, and are 

biologically precise. This will shed more light on how complex diseases may be 

conceptualized as a result of altered networks states [86] caused by multifactorial 

perturbations, which is expected to foster marker and target discovery. Under this theoretical 

framework, the dynamics and biology of ND processes scrutinized by systems modeling and 

systems biology can be more comprehensively understood. This may be achieved via a two-

step approach consisting of initial animal studies followed by confirmation and validation in 

clinical cohort programs [87] or via an approach consisting of molecular and clinical studies 

in cohorts, for example the search for predictive marker signatures, followed by studies in 

experimental models of ND of biological and therapeutical significance associated to such 

marker signatures. Numerous disease conditions in humans (including proteinopathies/ND, 

cardiovascular disorders, malignancies, the metabolic syndrome, and diabetes) have a highly 

complex biological nature that cannot be entirely and adequately captured through the 

investigation of single linear molecular alterations. Besides being multifactorial, such 

diseases are primarily caused by altered essential networks required for the correct 

functioning of basic physiological pathways. Such disease processes are fundamentally 

nonlinear dynamic, being the results of an evolving interplay between homeostatic defense 

mechanisms and impaired physiological networks through space and time [88]. Since cell 

survival mechanisms under the control of stress response factors may also be those that 

trigger cell death depending on the pathophysiological context in which they operate [89] 

identifying the critical phases that, at the molecular, cellular, or system levels, are associated 

with the dynamics of ND processes and could modify the capacity of individuals to maintain 

function and resist ND is essential for clinical discovery and therapeutic developments, 

especially in the context of the growing needs for PM.

Recent years have witnessed significant advances in our understanding of how human 

diseases are routed in altered molecular and cellular networks. Several genetic alterations 

and pathophysiological mechanisms – mainly involving the amyloid precursor protein (APP) 

processing and tau related networks – are considered to be significant aspects in the 

pathogenesis of AD [90]. Such network derangements can cause either loss or gain of 

specific molecular functions and an increased formation of neurotoxic molecular species 

(e.g., toxic amyloid or protein aggregates) that can in turn adversely affect supra-cellular 

levels. Another important factor that should not be overlooked in the conceptualization of 

complex diseases is the crucial counteracting role of homeostatic networks. In this regard, 

the interest into the potential protective role of resilience factors against neurodegeneration 
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(e.g., autophagy, proteostasis, endolysosomal networks, protein folding chaperone networks, 

disaggregates, and other stress-protective and clearance networks) is currently gaining 

momentum [90].

The causative pathways that lead to the onset of AD and its clinical phenotypes at the 

individual level are thought to consist of genetic/epigenetic susceptibility and/or protection 

coupled with a continuing dynamic interplay between altered brain networks and 

counteracting neural mechanisms of resilience. Integrative systems biology-based 

approaches are crucial to disentangling this intricate interplay. First, simple model organisms 

mimicking the main features of AD need to be developed in order to extensively apply 

different “omics” techniques. This approach may offer invaluable data to shed more light on 

the conserved pathways that modulate the onset and progression of AD, being ultimately 

useful for testing potential strategies that could delay and/or modify the natural course of 

disease [90]. However, the regulation of gene expression and pathway activity might differ 

between simple model organisms and humans, which calls for integrated use of simple 

model organisms and higher-order models such as mouse models and human cell models, 

e.g. induced-pluripotent-stem-cells coaxed into neurons or neurons obtained by direct 

conversion of fibroblasts [91].

New evidence from preclinical models needs to be duly replicated, with a special focus on 

subtle initial network alterations that can be visualized by neuroimaging, which could 

potentially become the targets of early therapeutic interventions [92–95]. Neuroimaging and 

biomarker data should be fully integrated and analyzed in a longitudinal manner through 

computational and integrative network biology tools within a systems biology-based 

framework. The increasing trend towards high-throughput techniques in AD research will 

generate multifactorial data that will require integration in a standardized, efficient, cost-

effective, and secure manner. The vast amount of data generated will cause new challenges 

for data science – mainly in terms of data storage, processing, and mining. As we are 

entering into the “era of big and deep data” in AD, computational systems biology 

approaches are continuously being optimized in order to support the approximate modeling 

of biological systems [90].

A holistic systems biology-based research strategy in AD research will likely rely on 

generating large and rich data sets, applying multi-layer network approaches for integration 

and comparative assessments of different datasets, and reckoning on the information 

generated for discovery of novel disease markers and targets. A translational approach from 

preclinical studies to bedside (complemented by reverse translational approaches) will be 

required to integrate and implement fundamental aspects of the systems theory and the 

systems biology concept into clinical practice – i.e., translational systems medicine – in the 

upcoming future [96–99]. Key to the success of these approaches is the use of robust data 

integration methods. There is a large array of methods that enable complex data sets 

collected in experimental models of ND or human cohorts to be analyzed and integrated on a 

system level [100, 101]. Methods based on graph theory (that is network approaches) such 

as spectral decomposition of the signal [102] weighted gene co-expression network analysis 

[103] and Bayesian causal inference [104] and those based on formal concept analysis [105] 

and tree induction [106, 107] likely hold strong promises for generating comprehensive in 
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silico models that accurately select for biological rules, disease targets, and risk factors with 

potential for clinical exploitation.

Application of systems biology in AD cohorts. The example of the European Prevention of 
Alzheimer’s Dementia (EPAD) Consortium

Implementation of systems biology into clinical and research practice requires a number of 

steps. First, molecular tests and biomarkers for matching individuals/patients to clinical 

trials and/or targeted therapies will require continuous refinements and validation of high-

throughput techniques, systems-level approaches, and computational tools. Second, all 

molecular tests to be used for AD, as well as all patient care-related molecular analyses, 

need to be performed using assays that are highly reproducible, accurate, and satisfy the 

U.S. Food and Drug Administration (FDA) clinical trials guidelines, with adherence to 

principles of Good Clinical Practice (GCP) (available at http://www.fda.gov/

regulatoryinformation/guidances/ucm122046.htm), the European Medicines Agency (EMA) 

(http://www.ema.europa.eu/ema/), and the European Clinical Trials Database (EudraCT) 

(https://eudract.ema.europa.eu/). In this scenario, the Alzheimer’s disease neuroimaging 

initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN) will provide 

collaborative large-scale longitudinal data on AD associated autosomal dominant mutation 

carriers that will be invaluable to systematize and make explicit the translation of 

neuroimaging and biochemical markers into clinical guidelines. Third, the era of big and 

deep data generation and the availability of comprehensive repositories has brought the need 

for collaboration, sharing, integration, normalization, and analysis of both data and 

metadata, with the ultimate goal to make effective translational use of this new knowledge. 

In this scenario, several clinical trials may benefit from the holistic approach provided by 

systems biology. Among them, interest in the European Prevention of Alzheimer’s Dementia 

(EPAD) program is gaining momentum.

The EPAD program [108] is a pan-European initiative that will establish a shared platform to 

design and conduct phase 2 Proof-of-Concept (PoC) clinical trials specifically aimed at 

developing new treatments for the secondary prevention of AD. To investigate different 

agents in the pre-AD population in the most efficient manner, a Bayesian adaptive design 

that learns from data accrued as the trial progresses will be used. Clearly disappointing 

results of recently completed phase 3 AD therapy trials may be explained by their 

exploratory (rather than confirmatory) nature, mostly caused by an incomplete exploration 

phase throughout phase 2 [109]. Hopefully, the EPAD program will be helpful to overcome 

previous pitfalls in the field by assuming that a correctly designed phase 2 trial can take 

several years to be completed. Other common issues that the EPAD Longitudinal Cohort 

Study (LCS) (available at https://clinicaltrials.gov/ct2/show/NCT02804789) will address 

include: 1) the high screen failure rates, 2) the unwillingness or inability to implement an 

adequate patient stratification, and 3) the lack of a pre-randomization run-in period. The 

EPAD LCS is expected to provide reliable disease models of the preclinical and prodromal 

periods of AD before the final implementation of a clinical trial. The EPAD LCS will be 

conducted in a large cohort of 5,000 subjects who had undergone a thorough assessment in 

terms of cognition [110, 111], neuroimaging, core CSF biomarkers (Aβ42, total tau [t-tau], 

and hyperphosphorylated tau [p-tau]), clinical outcomes, and genotyping. Annual 
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assessments will be performed with the goal of identifying different disease trajectories to 

provide an optimal stratification for trial inclusion. Risk stratification groups with similar 

biological underpinnings will be helpful to identify specific classes of subjects to be 

included (or excluded) from the clinical trial according to the PM paradigm.

The development of an EPAD site network across the European Trial Delivery Centers will 

be critical to the initiative success. Site certifications, continuing training, and commitment 

to the EPAD program is expected to reduce study site heterogeneity and will hopefully 

provide highly accurate estimates of treatment effects. Each TDC will assess approximately 

200 research participants, of whom 100 will be included in the clinical trial. This effort is 

unprecedented, as previous clinical trials involved numerous centers (up to 200), each 

enrolling a handful of patients. Conversely, the traditional methodology will be overturned 

by EPAD, inasmuch as a few centers will enroll numerous patients.

In general, the correct implementation of phase 3 trials preliminary requires more robust 

phase 2 outcomes. The EPAD program will improve the study methodology, ultimately 

favoring an optimal disease modelling and a better patient stratification before embarking on 

phase 3 confirmatory trials. The EPAD LCS was started in May 2016 at six sites, with a total 

of 400 participants having already been recruited. Disease modelling work is expected to be 

introduced as soon as an enrolment goal of 500 subjects will be achieved. It is anticipated 

that the EPAD PoC Study Platform trial will begin in 2018.

SYSTEMS NEUROPHYSIOLOGY OF ALZHEIMER’S DISEASE: 

UNDERSTANDING NEUROPHYSIOLOGY AND NEURODYNAMICS BEHIND 

AETIOLOGY

During the last two decades, the neuroscience field has entered a rapid phase of expansion 

characterized by the development of a large proportion of methodologies allowing the 

recording of neural data obtained from a wide range of modalities, from metabolic pathways 

to optical imaging to functional magnetic resonance imaging (fMRI). These data are 

collected through different spatiotemporal domains (Figure 5). Most of these techniques 

have been so far used one at a time [112, 113]. Recently, there is an attempt towards data 

integration in order to create comprehensive maps and record dynamic patterns across 

multiple levels of organization (neurons, circuits, systems, whole brain) and involving 

different domains of biology and data types (such as anatomical and functional connectivity, 

genetic/genomic patterns [112, 114]). This effort is in line with the new paradigm of systems 

neurophysiology aiming at integrating “big neuroscience data” recorded in a multimodal 

fashion to understand the role of the complex web of interconnections among several 

elements of large-scale neurobiological systems [115–118]. The ultimate goal of systems 

neurophysiology is to clarify how signals are represented within neocortical networks and 

the specific roles played by the multitude of the heterogeneous neuronal components. The 

new interdisciplinary field of network neuroscience proposes to overcome these enduring 

challenges by approaching brain structures and functions via an explicitly integrative 

perspective [112]. Here, we will present scientific advancements related to single 
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methodologies utilized by system neurophysiology, within wider context of the PM 

paradigm in AD.

An increasingly important integrative component in this endeavor is connectomics the 

emerging science of brain networks, which comprises studies of both anatomical and 

functional brain connectivity, across modalities and methodologies. The rise of 

connectomics has triggered several national and international consortia devoted to mapping 

patterns of brain connectivity across large subject cohorts, including the Human 

Connectome Project funded by the U.S. National Institutes of Health [119]. These projects 

have pushed the boundaries of data sharing, neuroinformatics and computational analysis. 

Similar connectomics efforts are underway to track lifespan development [120] as well as 

address patient populations, including people with ND. To deal with the mounting volume of 

connectome data, the field is developing basic network science tools and methodology that 

can be applied to brain data [121]. So far, broad exploratory analysis has revealed a number 

of architectural principles that underpin macro- and meso-scale maps of brain connectivity, 

including modular organization and the existence of prominent hub regions. Much is still to 

be learned about the contributions of connectome architecture to human brain function and 

its role in pathophysiological processes. Systems neurophysiology in combination with 

connectomics and computational network models has great promise to illuminate the 

relation of structure to dynamics in brain networks as shown, for example, in recent findings 

on time-dependent functional connectivity as measured with non-invasive neuroimaging 

techniques.

CONTRIBUTION AND ROLE OF STRUCTURAL MAGNETIC RESONANCE 

IMAGING (MRI)

Magnetic resonance imaging (MRI) is a widely, non-invasive, relatively non-expensive and 

versatile technology. Among MRI modalities, structural or anatomical MRI, using three-

dimensional T1-weighted sequences, is the most widely used [122, 123] and validated [124, 

125]. Structural MRI allows visualization and measurement of atrophy which is a 

macroscopic correlate of neurodegeneration, in particular of neuronal and dendritic loss. The 

progression of atrophy in AD approximately follows that of neurofibrillary tangles found in 

post-mortem AD cases and described by Braak and colleagues [126] and Delacourte and 

colleagues [127]. Moreover, previous studies showed that structural MRI alterations 

correlate with tau deposition, as described by Braak stages, and CSF tau biomarkers [128]. 

On the contrary, not all structural MRI measures are well correlated to measures of beta-

amyloid deposition, and atrophy patterns do not follow those of amyloid deposition [129, 

130]. Due to these reasons, it should be noted that brain atrophy in AD is descriptive of brain 

structural changes but not specific for underlying AD pathophysiology. Indeed, a given 

atrophy pattern can be associated with different pathophysiological processes. However, 

MRI atrophy measures are well correlated with cognitive and clinical functions [131, 132], 

and highly correlated with the concurrent rate of clinical decline [133–135]. Therefore, they 

constitute attractive tools to track disease progression and to monitor the effect of treatment.
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Automated image analysis approaches allow measuring distributed patterns of atrophy 

across the whole brain, using either region-of-interest measurements, voxel-based maps of 

gray-matter or cortical thickness measurements [136, 137]. Machine learning algorithms 

applied to whole-brain atrophy maps can automatically identify patients with AD and 

thereby support diagnosis [138–141].

The most widely studied and accepted structural MRI marker of AD is atrophy of the medial 

temporal lobe [142, 143]. Assessment of medial temporal atrophy can be performed in 

clinical routine using visual scales [144]. However, such approach is observer-dependent and 

only semi-quantitative. On the other hand, fully-automated segmentation approaches provide 

objective, quantitative, volumetric measurement of hippocampal atrophy [145–149]. 

Hippocampal volumetry can discriminate AD patients from controls with high sensitivity 

and specificity [150]. Moreover, numerous studies have shown that patients with higher 

hippocampal atrophy are at higher risk of rapid cognitive decline [151–155]. However, 

atrophy of the hippocampus was found in other types of dementia, suggesting low specificity 

of this marker for the identification of AD [156, 157]. Recent developments of ultra-high 

field MRI (7 Tesla and higher) allow the study of anatomical alterations with an 

unprecedented level of detail. In particular, using 7T MRI, it is possible to distinguish 

between different cellular layers and anatomical subregions within the hippocampus. Its 

application in AD has demonstrated that hippocampal subregions and layers are 

differentially affected by atrophy [158, 159]. These advanced techniques have the potential 

to provide more sensitive measures than global hippocampal volumetry.

Another region of interest for AD is the basal forebrain cholinergic system (BFCS) since it 

represents the region with the majority of cholinergic nuclei efferent to the cerebral cortex 

[160, 161]. The measurement of BFCS nuclei has been developed and validated as a highly 

relevant and robust region of interest for automatic structural MRI assessment of atrophy 

rate of change from the preclinical to the clinical AD stages [160, 162–167]. Evidence 

indicates that the BFCS may even degenerate before medio-temporal lobe structures, as 

early as at the preclinical stage [163, 168]. In contrast to the hippocampal volume, the 

atrophy of BFCS was significantly correlated to in vivo brain amyloid load in AD and non-

demented elderly individuals [169, 170].

Machine learning approaches based on whole brain atrophy patterns have been developed to 

predict the evolution of patients, in particular the progression to dementia of individuals with 

mild cognitive impairment (MCI) [171–173]. Nevertheless, most of these approaches have 

been validated on a single research dataset, most often provided by the ADNI. Therefore, 

their ability to generalize across datasets as well as their performance in a clinical routine 

context remain unclear and larger-scale validation studies are needed.

Its ability to track progression makes structural MRI also attractive to monitor the effect of 

treatment [29]. Of all outcome measures (including clinical, cognitive and fluid biomarkers), 

structural MRI measures seem to have the highest measurement precision [135]. They are 

thus an attractive outcome measure for clinical trials, as well as to monitor the effect of 

treatment in a clinical context. It should be noted that different types of treatment seem to 

result in different effects on atrophy measures. In a randomized placebo-controlled trial, 
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patients treated with donepezil, an acetylcholinesterase inhibitor, have a significantly lower 

rate of annual hippocampal atrophy and cortical thickness compared to those receiving 

placebo [174, 175]. Moreover, the treatment group demonstrated a significantly decreased 

annual rate of atrophy of the BFCS compared to MCI individuals that received placebo 

[176]. The BFCS complements hippocampal volumetry in assessing structural progression 

in AD and provides a promising outcome measure for clinical trials [161] Anti-amyloid 

therapies, however, seem to result in increased rate of atrophy [177]. Nevertheless, it may be 

hypothesized that such accelerated atrophy only occurs at the beginning of treatment, 

perhaps caused by a reduction in microglial activation associated with plaques, and that a 

reduction of atrophy may occur in the longer term. Overall, structural MRI remains an 

attractive tool to study the morphological effects of treatment, in particular if new molecules 

targeting other aspects of AD pathophysiology (e.g. anti-tau or neuroprotective treatments) 

become available. Furthermore, structural MRI plays an important role in monitoring safety 

of treatments. Indeed, microbleeds and transient cerebral edema (respectively called ARIAH 

and ARIAE) occur in some patients treated with active Aβ immunization [178].

In summary, structural MRI is an attractive marker for tailoring therapeutic interventions. Its 

most attractive features are its ability to precisely track cognitive decline, its potential for 

monitory the effect of treatment and to predict the evolution of patients. For prediction, the 

most promising avenue is that of machine learning approaches from whole-brain 

measurements. Such approaches require larger scale validation using multiple clinical 

routine cohorts. The integration of structural MRI analysis tools with other techniques such 

as those from functional MRI, electroencephalography (EEG), magnetoencephalography 

(MEG) or diffusion tensor imaging (DTI), in a multimodal fashion, will enable the 

investigation of temporal and topographical relationships between numerous pathological 

alterations and neurobiological systems related to AD. Such big data integration, will 

improve our understanding of the in vivo interacting pathophysiological mechanisms across 

brain related systems characterizing AD, as envisioned by the PM concept.

CONTRIBUTION AND ROLE OF DIFFUSION TENSOR IMAGING (DTI)

Diffusion tensor imaging (DTI), which employs a Gaussian approximation to model the MR 

signal attenuation due to net water molecule displacements in a de facto restricted cellular 

environment. This technique has become the mainstream strategy for examining white 

matter microarchitecture, connectivity as well as integrity both in an investigative and in a 

clinical setting, and it has been widely employed in studies focused on AD, MCI [179–181] 

as well as several other pathologies [182–185]. The apparent water diffusion tensor (which is 

termed apparent precisely because intracellular water diffusion is not truly free) can be 

estimated in brain parenchyma based on relatively fast echo planar imaging (EPI) techniques 

[186] which only pose moderate demand in terms of in-scanner subject time. From these 

tensor estimates, white matter tract-specific orientation information can be obtained through 

deterministic (based on the orientation of the main DT eigenvector) or probabilistic 

approaches [187]. Also, model free tractography approaches exist, a promising development 

of which is constrained spherical deconvolution [188–191], which has lately been extended 

to incorporate multi-tissue models anatomically based filtering [188, 189] (Figure 6). 

Further, scalar indices derived from the diffusion tensor are rotationally invariant and are 
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well known to be sensitive, albeit not specific, indicators of microstructural alterations. The 

single tensor eigenvalues as well as Mean Diffusivity (MD – mean of eigenvalues) and 

Fractional Anisotropy (FA – normalized variance of eigenvalues [192]) can aid in 

quantifying fiber integrity through region of interest (ROI), voxel- or Tract-Based Spatial 

Statistics based approaches [180]. A decrease in FA (possibly accompanied by an increase of 

MD or other directional diffusivities) is typically the hallmark of unspecific bundle 

degeneration, as seen in AD and MCI [193, 194]. Importantly, correlations between DTI-

derived indices in white matter (WM) and AD disease severity have been reported [195, 

196], suggesting that DTI measures may be used as indexes of disease progression. DTI may 

therefore provide unique information about WM integrity [66] in AD patients and MCI 

subjects. Indeed, several studies have demonstrated early WM changes within the 

parahippocampus, hippocampus, posterior cingulum, and splenium already at the MCI stage 

[197–200]. However, the majority of DTI studies indicate that the uncinate fasciculus, the 

entire corpus callosum and the cingulum tract are most involved in pathogenesis in both 

MCI and AD. In a recent study on AD and MCI subjects [201] the interpretation of a 

selective increase in FA in the MCI group was aided by the introduction tensor mode (MO) 

[202], a third invariant which distinguishes the type of anisotropy (planar, e.g. in regions of 

crossing or kissing fibers versus linear, in regions which exhibit one predominant 

orientation). This, in turn, led to the detection of a relative preservation of motor-related 

projection fibers crossing the association fibers of the superior longitudinal fasciculus in the 

early-stage MCI subjects before they degenerated to AD. Also, recent DTI data seems to 

point towards a reconstruction of the trajectory of progressive white matter degeneration in 

AD as it spreads with aging. In agreement with this so called retrogenesis model (cortical 

regions that mature earliest in infancy tend to degenerate last in AD) it has been shown that 

white matter abnormalities in specific brain regions such as prefrontal cortex white matter, 

inferior longitudinal fasciculus and temporo-parietal areas [180, 197, 203, 204] appear 

earlier. Also, DTI has been able to offer insight into asymptomatic “preclinical” at risk 

stages such as subjective cognitive decline, where DTI based scalar markers of diffusion 

properties were significantly associated with rates of cognitive decline and hippocampus 

atrophy at clinical follow up, with odds ratios up to 3 [205], and DTI indexes invariants were 

seen to be more sensitive than CSF biomarkers in predicting cognitive decline and medial 

temporal atrophy in subjective cognitive decline and MCI subjects [205].

Nevertheless, a recent meta-analysis indicates high variability in both the anatomy of regions 

studied and DTI-derived metrics [206] – a partial contribution to which may be the intrinsic 

limits of the DTI techniques. Determining the most robust acquisition parameters and 

processing strategies for DTI for a multicenter setting is still an active area of research, and 

initial clinical and physical phantom data, i.e. scans obtained from a volunteer as well as a 

physical object with defined diffusion properties, suggest that the variability of DTI-based 

diffusion metrics across a range of MRI scanners is at least 50% higher than that of 

volumetric measures [207]. For prediction of conversion from MCI into AD dementia, DTI 

reached an accuracy of about 77% – 95% at 2 to 3 years follow up [205, 208, 209] in 

monocenter studies, prediction accuracy for multicenter studies still needs to be studied. 

Also, all diffusion weighted imaging protocols suffer from the relatively low signal-to-noise 

ratio inherent in the necessarily fast EPI techniques. In this respect, the increase in signal-to-
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noise ratio afforded by moving to ultra-high field imaging (at e.g. 7T) is somewhat 

counteracted by the rapid shortening of transverse (T2) relaxation times with increasing field 

strength and consequent signal loss. Nevertheless, while ultra-high field diffusion weighted 

imaging therefore poses significant challenges, improved distortion correction techniques 

[210] coupled with monopolar acquisition schemes which allow a significant (about 30%) 

shortening of echo times, and the additional use of simultaneous multislice excitation 

strategies [211] may allow in vivo diffusion-weighted imaging to finally advance towards 

sub-millimeter imaging at ultra-high field. Accordingly, ex-vivo studies have already defined 

white matter lesions in aging and AD at 11.4T [212], and 7T imaging has been helpful in 

discriminating Parkinson’s disease [213] and amyotrophic lateral sclerosis [214]. Finally, it 

is well known that the assumption of a Gaussian propagator (which is at the root of DTI) is 

insufficient in regions with more intricate fiber architecture such as mixed tissue types 

and/or kissing or crossing fibers [215]. To this end, more advanced protocols such as 

Diffusion Spectrum Imaging [216], Diffusional Kurtosis Imaging [217–221], higher order 

tensor models [222], compartment models [223–225] and anomalous diffusion [226, 227], 

which can be optimized in order to enhance their suitability in a clinical setting [228], have 

been already been successfully employed in augmenting information about tissue 

degeneration in several ND, including AD [229–232].

Another avenue for DTI-based methodology is the construction and subsequent analysis of 

brain-wide maps of anatomical connections that can be summarized as structural networks 

or graphs [115]. Basically, these efforts proceed by first dividing the brain into a set of 

internally coherent gray matter parcels or regions (the nodes of the network) and then 

estimating the strengths of anatomical projections between these nodes (the edges of the 

network). While the reconstruction of such maps faces significant methodological issues, the 

resulting structural networks have been validated against classical histological techniques in 

non-human species. Human structural networks capture individual differences that relate to 

genetics [233] and various phenotypic variables, including indices of cognitive performance 

[234]. They also exhibit characteristic changes across the life span [120], during normal 

aging [235] and in the course of brain disorders [236]. For example, the loss of connectivity 

associated with the progression of AD results a loss of links between dense clusters of 

functionally-related regions and hence a decreased capacity for integration [237, 238].

CONTRIBUTION AND ROLE OF FUNCTIONAL MAGNETIC RESONANCE 

IMAGING (fMRI)

Using fMRI in a PM-based paradigm to tailoring therapeutics for patient treatment would be 

a very innovative approach from current methods to developing therapeutics for patients. 

The diagnosis and classification of patients would be based on clinical criteria, where a 

patient would be classified according to predetermined criteria. Implementation of a PM 

paradigm would use fMRI as a biomarker of functional brain changes that would be part of 

defining the patient’s phenotype in combination with the other modalities. Thus, it would 

seek to integrate fMRI-based biomarkers within a systems neurophysiology context to 

provide an integrated picture of the patient’s status [21]. The biomarkers within a systems 

neurophysiology approach would inform the treatment approach that a patient would 
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receive. Given the complexity of AD and the other ND, the fMRI-based biomarkers would 

be integrated within a systems biology and neurophysiology approach with the other 

modalities (genetic, clinical, behavioral, cognitive, etc.) where the different biomarkers 

would reflect disease mechanisms, pathophysiology, clinical history and permit patient 

stratification for treatment [20, 21].

fMRI can be used to measure the vascular response to local neuronal activation due to 

stimuli or a cognitive task [239]. There are two broad approaches that may be utilized with 

fMRI data in defining PM-based biomarkers for AD detection and diagnosis – one would 

examine brain activation data in response to a stimulus or cognitive paradigm whereas 

another approach would examine the intrinsic connectivity networks measured using resting 

state fMRI. The first approach would lead to biomarkers that would be associated with the 

cognitive paradigm or stimulus class whereas examination of the intrinsic connectivity 

networks would provide a search for biomarkers over all brain networks.

In terms of a PM approach with tailoring therapeutics, the use of a cognitive task or stimulus 

would be a form of ‘stress test’ to a specific network, for example in asymptomatic at risk 

stages for preclinical and clinical AD, a memory task would typically activate the 

hippocampus, ventral- and dorsal-prefrontal regions, posterior cingulate regions [240–249], 

and a working memory task would primarily activate dorsal and ventral frontal regions and 

inferior and superior parietal regions [250–255]. A limitation of the cognitive paradigm 

approach is that the patient must be able to perform the task, and variability in task 

performance would alter the activation pattern [256–261]. An alternative approach in AD 

would be to implement cognitive paradigms outside of the memory domain that individuals 

may still be able to perform such as visual perception, attentional tasks or passive stimuli 

[262–273]. The changes found using this approach would be applicable to patients that may 

be clinically more advanced, but also provides an approach to measure the ‘downstream’ 

effects of the pattern of disease-related neuropathology. Current studies examined the 

differences between patients and healthy controls or among different risk groups by 

quantifying the average difference between the groups, where the groups are defined by 

clinical-descriptive phenotypes or risk groups based on genetics or family history. The 

proposed PM paradigm would instead examine the variability among the subjects to define 

phenotypes that are data-driven and may not necessarily reflect the underlying 

pathophysiology and clinical phenotypes. There is evidence of significant variability in brain 

activation from healthy status to MCI to mild AD stage, for example a using a face-name 

association paradigm, there was a nonlinear response in hippocampus, with higher activation 

in MCI subjects compared to healthy controls and AD dementia patients [242, 249, 274]. 

Similarly with the visual perception task the activation levels varied along the dorsal visual 

pathway as disease severity increased [262].

In addition to measuring brain function one would need to integrate the above biomarkers 

with results from fMRI studies of the mechanisms of action of the potential therapeutics – 

most studies have examined cholinergic drugs over an extended treatment period in either 

MCI subjects or mild AD patients (see for example [273, 275–278]). Another potential 

approach to be used within a PM paradigm is to measure the effects of a single dose [279–

282] and investigate the predictive power of the single dose over the effectiveness of the 
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therapeutic strategy for the biomarkers-characterized patient. The single dose approach has 

the potential to inform the tailoring of the therapeutic intervention by providing information 

about potential medium to long term effects of any treatment.

The various fMRI-based paradigms described above would provide information about a 

specific brain network or set of brain regions and any data-driven approach would be limited 

to data from the brain network or regions activated during the task. An alternative approach 

utilizing fMRI would be to use whole-brain resting state fMRI to measure so-called resting-

state networks or intrinsic connectivity networks (ICNs) [283–286]. These ICNs have been 

shown to be highly reproducible across individuals [287], exhibit characteristic dynamic 

fluctuations [288] as well as patterns of change across development, life span and in the 

course of brain disorders [236]. The topography of ICNs resembles other networks, such as 

those engaged during human behavior and cognition (for example, see [289–293]), derived 

from gene co-expression [294, 295], disease phenotypes and disease progression (for 

example [246, 296–303]), as well as brain activation level and cognitive performance (for 

example [293, 304–306]. The structure of ICN networks can be probed with a variety of 

network tools to reveal individual differences in their internal coherence and their mutual 

interactions. In combination with these advanced analytics, ICNs can potentially provide a 

rich set of biomarkers of brain function, including insights into which ICNs are specifically 

disturbed as a result of pathophysiology, and thus yield a more integrated perspective on 

system-wide changes within a patient. The tailoring of therapeutics could benefit from 

associations between biomarkers and the presence of the disease pathophysiology. Given the 

variability that is present in AD patients and MCI subjects, the ICN-based biomarkers and 

their relation to genetic profiles [68] may be able to provide an improved systems biology 

characterization of brain function. The use of ICNs for tailoring therapeutics still needs 

considerable development work, and there is currently only limited work on the effects of an 

AD-related drug on ICNs [307]. It should be noted that while the task-free design of resting 

fMRI lends itself to application in clinical cohorts, the sensitivity to motion artifacts and 

ongoing temporal fluctuations in the network structure of ICNs entail greater reproducibility 

as scan lengths are increased (for example, see [308]).

The potential of fMRI to assist in the PM-oriented targeting of therapeutics for AD patients 

is strong but also will require very significant development work. The integration of fMRI 

with the other domains such as genetics, cognition, clinical measures has so far mostly been 

attempted within a group analysis context, and a PM paradigm would need development of 

new statistical models to define potential therapeutic strategy on a single individuals basis 

[309].

CONTRIBUTION AND ROLE OF ELECTROENCEPHALOGRAPHY (EEG)

Candidate topographic neurophysiological (neurodynamic) biomarkers of AD can be derived 

from resting state eyes-closed electroencephalographic (rsEEG) rhythms recorded in 

subjects relaxed in quiet wakefulness (eyes closed, no sleep) with their mind freely 

wandering [310]. These rsEEG markers are non-invasive, cost-effective, available 

worldwide, and repeatable even in severe dementia. They may probe the neurophysiological 

“reserve” in AD patients, as one of the dimensions of the brain reserve [311]. This 
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neurophysiological “reserve” may reflect residual mechanisms for 1) “synchronization” of 

neural activity in a given cortical region and 2) the coupling of activity between nodes of a 

given brain neural networks as a sign of functional cortical “connectivity” [310, 312].

RsEEG markers in AD at the group level reflect the neurophysiological reserve of the 
disease over time and after cholinergic therapy

Previous rsEEG studies using “synchronization” markers showed that compared with groups 

of normal elderly (Nold) subjects, AD groups with dementia (ADD) exhibited lower power 

density in posterior cortical alpha (8–12 Hz) and beta (13–30 Hz) rhythms [313–319]. There 

was also higher power density in widespread delta (<4 Hz) and theta (4–7 Hz) rhythms 

[320–325]. Finally, ADD, dementia due to Parkinson’s (PDD), and dementia with Lewy 

bodies (DLB) groups were characterized by abnormally lower posterior alpha source 

activities [326]. The effect was dramatic in the ADD, marked in the DLB, and moderate in 

the PDD [326]. There were also abnormally higher occipital delta source activities with 

dramatic effects in the PDD group, marked in the DLB group, and moderate in the ADD 

group [326].

Concerning “connectivity” markers, ADD groups were characterized by abnormally lower 

spectral coherence in alpha and beta (13–20 Hz) rhythms between posterior electrode pairs 

[316, 327–339]. These effects were observed in temporo-parieto-occipital electrode pairs in 

some studies [316, 327, 333, 337] and in frontocentral electrode pairs in others [329, 332, 

340]. Other studies reported either a global decrease [327, 334] or increase [337, 341] of 

delta and theta coherences between electrode pairs in ADD groups. Another investigation 

pointed to a complex topographical pattern of coherence increase and a decrease in those 

groups [342]. Alternative techniques of “connectivity” unveiled a decrement of 

synchronization likelihood between electrode pairs in frontoparietal alpha rhythms in ADD 

and its prodromal stage of amnesic MCI [319, 343]. Finally, there were reduced cortical 

connectivity and “small-worldness” in ADD groups as revealed by graph theory indexes 

[344–347].

RsEEG rhythms deteriorate across time (e.g. about 12–24 months) in groups of aMCI 

subjects and ADD patients (see for a review [348]): 1) increased delta-theta and increased 

alpha-beta power density at parieto-occipital electrodes [349]; 2) increased theta power 

density, decreased beta power density, and decreased mean frequency at the temporal and 

temporo-occipital electrodes [316, 350, 351]; 3) increased delta and increased alpha 1 in 

parieto-occipital sources [352, 353]; and 4) reduced cortical connectivity as revealed by 

graph theory indexes [347].

In groups of ADD patients, Acetylcholinesterase inhibitor drugs (i.e. enhancing the 

cholinergic tone) showed beneficial or protective effects in delta [320, 354–356], theta [321, 

356, 357], and alpha rhythms [355, 358]. When observed at short-term, these effects 

predicted longer-term therapy efficacy [357, 359, 360](for a review see [352]). However, 

some contradictory findings suggest future more controlled cross-validation studies [361, 

362].
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Abnormal posterior cortical delta rhythms in ADD patients might reflect an upregulation of 

their generation mechanisms in quiet wakefulness, possibly due to cortical blood 

hypoperfusion and synaptic dysfunction in the same regions [363–366] and atrophy in the 

posterior cortex [312, 352, 367–369]. Furthermore, reduced posterior cortical alpha rhythms 

in ADD subjects might be due to an unselective tonic cortical excitation in populations of 

cortical pyramidal, thalamo-cortical, and reticular thalamic neurons generating those 

rhythms [370–372]. Such cortical over excitation might induce a background noise in the 

neural information processing interfering with vigilance and cognition [310].

RsEEG markers in AD at the individual level: classification accuracy and predictions

RsEEG markers allowed the discrimination of ADD patients from Nold individuals and 

others with neurodegenerative dementing disorders such as PDD and DLB persons. Global 

delta and alpha coherences between electrode pairs successfully classified ADD compared 

with DLB people with 0.75–0.80 (e.g. 1 = 100%; [373]). Furthermore, twenty discriminant 

scalp rsEEG power density and coherence variables showed a classification accuracy of 0.90 

in the discrimination of ADD versus Nold and ADD versus PDD subjects [374]. Another 

study in small populations of ADD, PDD/DLB, and frontotemporal dementia patients 

reached a classification accuracy of 1.0 using 25 discriminant scalp rsEEG power density 

and functional cortical connectivity (i.e. Granger causality) variables [375]. In another study, 

combining quantitative rsEEG variables (including those of functional cortical connectivity) 

with neuropsychological, clinical, neuroimaging, cerebrospinal fluid, and visual EEG data 

reached “only” a classification accuracy of 0.87 in the discrimination between ADD, PDD, 

and DLB persons [376]. Concerning cortical source space, resting state delta and alpha 

sources classified Nold subjects versus ADD/DLB/PDD patients and ADD versus PDD 

patients with 0.85–0.90 [326]. Milder classification effects were observed in PDD and ADD 

individuals with MCI [377].

RsEEG markers predicted cognitive decline in aMCI individuals at about 6–24 months (see 

[348] for a review). The main effects are summarized as follows: 1) combined alpha-theta 

power density and mean frequency from left temporal-occipital regions [316]; 2) anterior 

localization of alpha sources [315]; 3) high temporal delta sources [378]; 4) high theta power 

density [379]; and 5) low posterior alpha power density [380].

Concluding remarks on EEG implementation

Overall, it is suggested that resting state cortical delta and alpha rhythms might unveil more 

compromised neurophysiological reserve in AD, at the group and the individual level. These 

rsEEG markers predicted and tracked the AD progression as neurophysiological endpoints 

for therapeutic interventions. Future multi-centric longitudinal studies should provide a large 

open access database for a systematic comparison of rsEEG markers of “synchronization” 

and “connectivity” markers for a better definition of “neurophysiological reserve” for 

clinical applications and research.
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CONTRIBUTION AND ROLE OF MAGNETOENCEPHALOGRAPHY (MEG)

Magnetoencephalography (MEG) allows recording the magnetic signals of the order of 

10−12 Teslas, which are produced at the scalp surface by the activity of neuronal assemblies. 

It may provide information complementary to EEG for uncovering new neurodynamic 

biomarkers of AD, particularly in its very early asymptomatic at risk and preclinical stages, 

therefore before the prodromal and clinical stages..

MEG can be used to investigate cognitive functions in a way very similar to EEG. With this 

approach, impaired brain functional activities were characterized in AD and MCI stages 

during memory tasks for instance. Walla and colleagues [381] used a recognition memory 

task in which they manipulated the depth of encoding of verbal information. They showed 

alteration of temporo-parietal event-related responses to old—previously encoded—versus 

new items in AD patients relative to controls, after deep encoding. The mismatch negativity 

(MMN) was also shown to be a potential AD marker. The mismatch negativity is a well-

known component of the event-related potential response, which is associated with the 

detection of deviant stimuli in a stream of standard, repeated stimuli—classically in the 

auditory modality, hence allowing the assessment of the quality of sensory processing, 

memory, and predictive coding [382, 383]. Its magnetic counterpart, the MMNm, was shown 

to be delayed in latency in AD compared to healthy elderly controls [384] (see also [385]). 

Most interestingly, using memory tasks in pre-clinical stages of AD, e.g., in APOE ε4 
carriers, some studies pointed to the capacity of MEG for revealing neurophysiological 

markers of subjects’ decline, potentially predictive of pathology emergence [386, 387]. In 

sum, MEG can be used in the same way as EEG to investigate cognitive functions during 

various task performance; both these methods provide highly convergent and temporally 

detailed data on information processing and cognitive functions in normal and pathological 

aging.

However, the most unique potential of MEG for uncovering pathophysiological mechanisms 

and providing new neurodynamic biomarkers in the field of AD may lie in the study of 

functional brain networks, particularly of resting state networks (for review, [388]). As 

mentioned above, fMRI studies have shown that, in the absence of task demand, the resting 

brain exhibits spontaneous and highly structured, often oscillatory, fluctuations in activity 

[389]. MEG and EEG provide a richer view of these networks in the time and frequency 

domains [390–395]. Resting state networks are usually studied using time-frequency 

decomposition of MEG (or EEG) signals. This allows identifying a rich set of resting state 

networks in distinct frequency bands (e.g. [390, 392, 393, 396]). It was shown that AD 

patients show altered resting state network activity. This was revealed at the level of 

oscillatory activity characteristics, pointing to an overall slowing of brain rhythms with 

particular abnormalities in the delta (<4Hz) and beta (~20Hz) frequency ranges [397–402]. 

Moreover, alteration of resting state networks, correlated with memory impairment, was 

recently shown using a graph-theoretical approach applied to neuromagnetic data [403]. 

Important questions are: When do these changes emerge in the course of the disease and 

which changes are predictive of or specific for the development of molecular and clinical 

AD? There is particular potential in EEG and MEG methods to provide such a surrogate 

biomarker for clinical outcome. Moreover, there is evidence that some MEG markers of 
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functional brain networks may be predictive of the conversion from MCI to AD dementia 

[397, 400, 404].

On a practical note, it is important to underline that resting state studies have the advantage 

to be particularly adapted for elderly patients, because they require no cognitive effort and 

require relatively modest data acquisition time. It is worth mentioning that MEG – in 

comparison to most EEG systems – requires only a short time of subject’s preparation for 

recording. The whole-head MEG systems that are available at present comprise about 300 

sensors that are fixed in a rigid helmet. After head shape numeration and the installation of a 

few reference sensors, individuals are comfortably seated with their head placed in the 

helmet. The installation time takes as little as 20 minutes. Moreover, the total “innocuity” of 

MEG allows close follow-up and detailed longitudinal assessment of disease progression.

The recent development and promising results of neuromagnetic imaging methods has led to 

the Magnetoencephalography International Consortium of Alzheimer’s Disease (MAGIC-

AD) initiative. This initiative aims at advancing the use of MEG for AD and pre-AD 

research, combining data from resting state and simple memory and MMN tasks, in a multi-

centric study [405]. While still in its burgeoning with regard to clinical applications, MEG 

has the potential to provide new tools for patient stratification – in order to better target 

patient population for clinical trials – and for treatment evaluation [406, 407], and to shed 

new light on the neurodynamic pathophysiological mechanisms of AD. It allows to foresee 

the identification of individualized signatures of disease progression in the form of temporal 

profiles of early adaptive, compensatory and decompensatory brain network changes. 

Moreover, it is clear that the full power of MEG will come from its combination with other 

methods to allow multimodal assessment of individuals and IDM of multi-modal big data. 

For example, the combination of genetic data, such as the APOE polymorphism 

characterization with MEG resting state analysis has revealed promising in identifying MCI 

subjects at high risk of conversion to AD dementia as well as asymptomatic subjects at high 

risk of developing significant cognitive deterioration [408]. Multifactorial characterization of 

MCI subjects, including neuropsychological assessment, structural and functional brain 

measures, APOE genotyping, demonstrated very high sensitivity and specificity for 

predicting conversion to AD [409].

In conclusion, the advances in the characterization of the dynamics of functional brain 

networks based on MEG stands the chance to provide new insights into the 

pathophysiological mechanisms of AD. In doing so, it shall constitute a powerful tool to 

bridge the gap between what is known from the cellular and molecular pathways of the 

disease – its start and its progression – and the cognitive dysfunctions constituting its clinical 

and behavioral hallmark. This is likely to be key for developing new biomarker-guided 

targeted treatments and PM, based on the characterization of the individual genetic patterns 

and pathophysiological pathways towards neurodegeneration and dementia.

CONTRIBUTION AND ROLE OF NEUROMODULATION

Neuromodulation refers to forms of more or less invasive targeted and reversible electrical 

stimulation of discrete brain regions; it usually assists – but not replaces – traditional 
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pharmacological treatments, with the aim to induce long-lasting changes of firing neural 

properties, both in the target region and connected networks, thereby modifying behavior or 

diseases’ symptoms. Therefore, neuromodulation fits well with the broad paradigm of PM 

that is the customization of healthcare tailored on the individual patients’ demands and 

disease’s pathophysiology.

Invasive neuromodulation in AD

Neuromodulation through deep brain stimulation (DBS) is an emerging opportunity in AD, 

being already an established therapy for advanced neurological and psychiatric diseases 

[410]. Several subcortical and cortical targets of stimulation have experimentally shown 

improvements in learning and memory, reinforcement of synaptic strength and restoring of 

physiological patterns of oscillatory brain activity, especially in the theta band, a rhythm that 

is functional to memorization [411]. DBS of the entorhinal cortex [412] enhanced memory 

of spatial information when applied during learning. DBS of the nucleus basalis of Meynert 

was studied in six patients with mild to moderate AD in a 12-month pilot study [413]. DBS 

was well tolerated and 4 of 6 patients were considered stable or improved at 12 months 

based on cognitive scores. The fornix – a deep white matter tract interconnecting 

hippocampus with mammillary bodies, and a central node of the Papez circuitry which is 

integral to memory function [411] – has been the most investigated, human DBS target for 

AD [414–417].

A 12-month follow-up of the first implanted 6 patients in the bilateral fornix showed a 

possible slowing of cognitive decline in some of them, accompanied by increase of 

metabolism in memory-related neural network structures [418], and by a reversal of the 

usual hippocampal atrophy found in AD [416]. These promising results prompted the first 

multicenter, 12-month, double-blind, randomized, controlled study of bilateral DBS of 

bilateral fornix in 42 patients with mild probable AD [419, 420]. The study showed no 

differences between those patients who received stimulation compared to controls who were 

not stimulated in cognitive measures. However, patients who received stimulation showed an 

increase in glucose metabolism in pre-selected brain regions at 6 and 12 months whereas 

those who were not stimulated showed decreased metabolism as expected. In a post-hoc 

regression analysis age was associated with outcome. Patients with late onset disease (≥65 

years old) receiving stimulation showed a slowing of decline in cognitive measures when 

compared to those not stimulated. Improvement in glucose metabolism in this subgroup was 

greater in magnitude compared to the group as a whole. Stimulation of the fornix appeared 

to be safe. The overall perioperative adverse effects of the procedure, despite the cortical 

atrophy and the trans-ventricular trajectories of the electrodes towards the deep target, were 

comparable in DBS in other ND and there was no evidence of mortality or neurological 

morbidity at three months from the implant [419].

Non-invasive neuromodulation in AD

A different, non-invasive yet still experimental in AD, research approach for 

neuromodulation is the targeting of neocortical regions relevant to AD pathophysiology-

through the scalp by applying repetitive transcranial magnetic stimulation (rTMS) or weak 

currents via transcranial direct current stimulation (tDCS), in repeated daily sessions of 
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stimulation [421]. Mechanisms of action are different, as rTMS makes cortical neurons to 

fire trans-synaptically [422], while tDCS shifts the level of their firing probability in a 

polarity-dependent manner [423]. Both stimulation techniques induce controllable excitatory 

or inhibitory after effects: high-frequency rTMS and anodal tDCS generally increase cortical 

excitability, while low-frequency rTMS and cathodal tDCS do the opposite [424, 425]; these 

effects are either local or involve the cortico-subcortical network to which the targeted 

region belongs [426]. In case of AD, the mere “stimulation” of a cortical target, even if 

prolonged for several daily sessions, does not help so much in preventing the decline of 

memory and other cognitive functions [421]. However, there are few controlled studies for 

rTMS in AD and even less for tDCS, for a total of a few dozens of patients treated so far 

[421]. What is emerging as a possible role for non-invasive neuromodulation is the coupling 

of stimulation with cognitive therapy, with the aim to promote plastic associative learning 

mechanisms to synergically improve the effects of cognitive rehabilitation only [427–429]. 

This approach, while still in need of quantitative characterization [430–432] seems 

promising only in mild AD, when the severity of neurodegeneration makes still available a 

residual neural substrate to possibly intervene on [433].

From the bench to the patient: a future way of non-invasive neuromodulation?

Physiological cerebral activity is composed of oscillatory activity across a wide range of 

frequencies, ranging from 0.05 up to 500–600 Hz: oscillations in the 30–80 Hz range are 

known as “gamma” activity. A relative attenuation of gamma activity is a consistent finding 

in patients with AD [315]. Moreover, dysregulation of hippocampal theta/gamma coupling 

may precede amyloid deposit activity in animal models of AD [434]. A seminal recent study 

in pre-symptomatic and amyloid pre-depositing AD mice, showed that exogenously-induced 

flickering lights oscillating at 40 Hz reduce Aβ concentrations and amyloid plaques, as well 

as tau concentrations, in a mouse model of AD [435], preventing subsequent 

neurodegeneration and behavioral deficits, thus suggesting that gamma induction may 

represent a novel therapeutic approach for AD. This opens translational perspectives, as the 

possibility of modulating gamma activity in humans, potentially leading to the same 

beneficial effects observed in mouse models. The possibility of modulating brain oscillatory 

patterns in AD patients has been recently shown, with EEG changes in brain connectivity in 

the gamma band following the administration of antiepileptic drugs [436].

A viable way to interact with brain oscillations is transcranial alternating current stimulation 

(tACS), where low intensity (max 2 mA) alternating sinusoidal currents are applied via scalp 

electrodes. Due to the safety [437] and controllability (in terms of stimulation frequency and 

the possibility to target almost any cortical region) of the procedure, tACS has gained 

consensus as one of the most promising techniques to modulate brain oscillations in the 

healthy and pathological brains. Empirical evidence using neurophysiological markers, 

demonstrate that tACS modulates brain oscillatory activity via network resonance, 

suggesting that a weak stimulation at a resonant frequency could cause large-scale 

modulation of network activity and amplify endogenous network oscillations in a frequency-

specific manner [438–441]. The application of tACS in the gamma band (specifically 40Hz) 

has been shown effective in transiently modulating various abilities in humans, including 

those related to higher-order cognition [442, 443] and sensorimotor performance [444]. The 
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repeated administration of tACS in AD patients, if individually tailored on cortical regions 

with higher concentration of Aβ, might constitute a timely, disease-transforming, 

personalized therapeutic application worth to be tested in patient populations.

CONTRIBUTION AND ROLE OF POSITRON EMISSION TOMOGRAPHY (PET)

Positron Emission Tomography (PET) has the potential to make a major contribution to 

selection for treatment in AD. This is of particular interest at very early asymptomatic stages 

of the disease, when clinical symptoms are still absent. In addition, it may also turn out as 

important at later stages as it is increasingly being recognized that several distinct 

pathophysiological processes can contribute to the development and manifestation of first 

symptoms and dementia. They vary considerably among patients, and one would therefore 

want to target the leading cause in individual patients.

At preclinical or prodromal disease stages identification of fibrillary amyloid deposits by 

PET currently is of obvious importance as an approved imaging biomarker for clinical trials. 

Use of a conservative cut-point has been suggested to minimize inclusion of elderly subjects 

with beginning amyloid deposition but without subsequent worsening [445]. Depending on a 

positive outcome of trials, amyloid PET might become a theragnostic procedure to select 

patients for anti-amyloid treatment.

In individuals with manifest dementia, differential diagnosis between AD and other diseases, 

such as FTD and vascular dementia, is important for selecting symptomatic treatment. 
18F-2-fluoro-2-deoxy-D-glucose PET (18F-FDG-PET) has repeatedly been demonstrated to 

provide reliable differentiation between AD and FTD [446]. Beyond its relevance in the 

differential diagnosis, 18F-FDG-PET is a topographic marker of AD that can be used to 

measure disease progression and help identifying clinical subtypes [447]. Thus, it has a 

mediational effect between the neuropathological hallmarks of the disease (NFT and Aβ) 

and the cognitive symptoms [448]. It has also been used successfully to study mechanisms 

underlying cognitive reserve, which delays the onset of dementia [449]. Identification of in 
vivo AD pathology has also proven to be relevant in disease identification. Indeed, some AD 

clinical phenotypes can be underlain by several neurodegenerative disorders (e.g. primary 

progressive aphasia, corticobasal syndrome), including the classical amnestic AD [450]. In 

such cases amyloid PET can identify fibrillary amyloid as an indicator of AD. Fibrillary 

amyloid can also coexist with other pathologies, which is frequently the case in patients with 

DLB and vascular dementia (which might be termed mixed dementia), but is also possible 

with FTD and may possibly contribute to more rapid progression [451, 452]. Thus, if anti-

amyloid therapy did eventually show clinical benefit in AD patients, patients with non-AD 

dementia and positive amyloid PET might also benefit.

Amongst the large variety of possible pathophysiological contributors to AD, many are 

accessible by specific PET tracers. The most prominent are fibrillary tau deposits. The 

current generation of PET tau tracers has been demonstrated to reflect the pathological 

staging of tau deposits in AD, but there is also evidence of some off-target binding that 

complicates the interpretation of scans. Next generation tracers are being developed to 

overcome these limitations [453].
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Neuroinflammation is another major factor which has been shown to accelerate disease 

progression. It is associated with activation of microglia, which can be imaged by PET using 

the translocator protein (TSPO) tracers. 11C-(R)-PK11195 has been the first of those, and in 

spite of some limitations due to a relatively high level of non-specific binding is still widely 

used. A large number of second generation tracers with higher specificity has been 

developed but their binding is subject to a genetic polymorphisms that blurs the advantage of 

these tracers [454]. Nonetheless, beyond these limitations, the development of these tracers 

could provide relevant biomarkers and offer new insights in the variability of evolution of 

AD [455]. There are also tracers for imaging of astrogliosis, and markers for cytokines and 

inflammatory endothelial changes are being developed. Further translational research will 

investigate the molecular characteristics and the effects of targeted interventions on 

microglial and astrocytic activation.

Deficits in cholinergic transmission play a major role for deficits in memory and attention in 

patients with dementia. Tracers have been developed for nicotinic and muscarinic receptors, 

for vesicular transporters and acetylcholinesterase. Clinical studies have provided 

preliminary evidence that such tracers could be used to identify responders to 

acetylcholinesterase inhibitor therapy, and further research into this issue is required [456].

There are well established Single Photon Emission Computed Tomography (SPECT) and 

PET tracers for identification in dopaminergic transmission, which is most severely affected 

in DLB. This is providing a useful diagnostic tool for differentiation between AD and DLB, 

while research is ongoing to identify the cognitive deficits associated with that deficit and 

potential targeted therapeutic interventions [457].

There is also current research into PET imaging of glucose energy metabolism, 

mitochondrial damage, glutamatergic and GABAergic dysfunction, blood-brain barrier 

damage and defects in transcriptional regulation and protein synthesis. They may play an 

important role in AD pathophysiology and offer windows for targeted intervention.

In conclusion, there is a huge potential of PET to contribute development of the PM 

paradigm in AD. Currently, amyloid imaging has been progressed most as a biomarker in 

clinical trials towards that goal. 18F-FDG-PET and tau-PET imaging are also involved in 

multiple trials, while a large variety of other tracer for specific targets in AD 

pathophysiology are still at earlier stages of translational research.

CONTRIBUTION AND ROLE OF RETINAL IMAGING

Over the past three decades, growing evidence indicates that AD is not confined to the brain 

but also affects the eye. Patients with AD and subjects with MCI experience a wide spectrum 
of visual deficits [458–464], sleep disturbances [465–471], and ocular abnormalities [472] 

[466, 472–489]. Historically, these visual and circadian rhythm disturbances were attributed 

to pathology in the brain yet are now being revisited and explored as a potential direct 

outcome of ocular pathologies. Among ocular tissues, studies have shown that the retina is 

massively impacted by AD [466, 472, 474–479, 482, 484, 486, 487, 490–507]. The retina of 

MCI subjects and AD patients displays a host of abnormalities including nerve fiber layer 
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(NFL) thinning, optic nerve and retinal ganglion cell (RGC) degeneration, macular volume 

changes, retinal angiopathy involving reduced blood flow and vascular structural alterations, 

astrogliosis, and abnormal electroretinogram patterns [472]. Given these findings, it is no 

surprise that attention has begun shifting towards the neuro-retina as a site of AD 

manifestation.

As a CNS tissue derived from the embryonic diencephalon, the retina shares many structural 

and functional features with the brain [508], including the presence of neurons, astroglia, 

microglia, pericytes, microvasculature with similar morphological and physiological 

properties, and a blood barrier [509–511]. Axons of the optic nerve directly connect the 

retina and brain, facilitating vesicular transportation of APP synthesized in RGCs [512]. 

Further, retinal neurons and glia secrete proteins associated with the amyloid cascade 

including γ-secretase, BACE1, Apolipoprotein E, and clusterin [511, 513, 514]. However, 

the skull-encased brain is shielded by bone, whereas the retina is accessible for direct, non-

invasive high-resolution imaging.

The converging evidence denoting retinal abnormalities related to nerve degeneration and 

vascular changes, common to various neurological and ocular diseases, have long been 

described in MCI subjects and AD patients. Yet, the AD-specific pathophysiological 

hallmark, Aβ plaques, was only recently identified in post-mortem retinas of AD patients 

and early-stage cases [490]. Subsequent studies corroborated these findings of retinal Aβ 
deposits and further indicated the presence of p-tau in retinas of AD patients [466, 485, 489, 

515, 516]. These studies provided evidence for elevated retinal Aβ40 and Aβ42 peptides 

using biochemical assays on whole retinal extracts and revealed diverse retinal Aβ plaque 

morphology in flatmounts, often associated with blood vessels or co-localized with sites of 

cell degeneration (Figure 7A–H) [466, 485, 489, 490, 515, 516]. Recent data showed that 

retinal Aβ deposits were found in clusters and frequently mapped to peripheral regions in 

the superior quadrant in AD patients (Figure 7C and 7F). The load of Aβ42-containg retinal 

plaques in the superior quadrant was substantially elevated by 4.7-fold in patients compared 

to age- and gender-matched controls (Figure 7C–D) [485]. While two groups were unable to 

detect Aβ or p-tau in the human AD retina [489, 517], they relied on analysis of cross 

sections prepared from narrow strips spanning horizontally from nasal to temporal quadrants 

- regions scarce in Aβ pathology. In contrast, a recent study provided in-depth 

characterization of retinal Aβ deposits in larger cohorts of definite AD patients via scans of 

large retinal areas in flatmounts and in cross sections derived from geometrical regions 

abundant with Aβ pathology [485]. The discovery of classical, dense-core (compact), and 

neuritic-like plaques in these patients, albeit smaller in average size compared to plaques in 

the brain, along with neurofibrillary tangles, Aβ42 fibrils, protofibrils, and structures 

resembling oligomers, suggests that the specific signs of AD are shared between the retina 

and the brain (Figure 7G). A correlation analysis in a subset of patients has validated 

positive relationships between retinal and respective cerebral Aβ plaque burden, with a 

tighter association to plaques in the primary visual cortex (Figure 7H) [485]. Notably, retinal 

regions in AD patients where abundant Aβ pathology was detected – the periphery of the 

superior quadrant and the innermost retinal layers – also showed a significant decrease in 

retinal neuronal cells (Figure 7E–F), in agreement with previous studies showing a marked 

RGC loss and NFL thinning in the superior quadrants [466, 476, 484, 491, 498, 502, 518, 
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519]. A recent clinical study identified circadian abnormalities in AD patients along with a 

significant loss of melanopsin RGCs (mRGCs), photoreceptors known to drive circadian 

photoentrainment [520], and discovered Aβ accumulation within and around these 

degenerating cells. The loss of mRGCs may therefore result from their increased 

susceptibility to toxic Aβ forms and offers a plausible retina-based explanation for sleep 

disturbances in AD [466].

In line with the above findings, numerous studies examining the retina of transgenic and 

sporadic animal models of AD have reported Aβ deposits, vascular Aβ, p-tau, and paired 

helical filament-tau (PHF-tau), often in association with RGC degeneration, local 

inflammation (i.e. microglial activation), and impairments in retinal structure and function 

[472] [485, 490, 515, 516, 520–537]. These investigations, which included a variety of 

transgenic rat and mouse models (ADtg) as well as the sporadic rodent model of AD, O. 
degus, demonstrated abundant Aβ deposits, mainly in the GCL and NFL [490, 516, 521, 

525, 528, 530, 533]. Furthermore, several publications have described positive responses to 

therapies in reducing retinal Aβ plaque burden in ADtg mice, often reflecting the reactions 

observed in the respective brains [490, 524, 527, 528, 532, 536].

To visualize retinal Aβ pathology in live subjects, a non-invasive retinal amyloid imaging 

approach was initially developed in ADtg mice, utilizing curcumin as a fluorescent probe 

[490, 527]. Curcumin is a natural and safe fluorochrome that crosses the blood-brain and -

retinal barriers and binds to Aβ fibrils and oligomers with high affinity [490, 527, 538–551], 

with the ability for ex vivo and in vivo visualization when specifically bound to retinal Aβ 
plaques (Figure 7A–B) [485, 490, 527]. This approach enabled non-invasive detection and 

monitoring of desecrate retinal Aβ deposits in live animal models of AD [490], including the 

capability to track the dynamic appearance and clearance of individual plaques and their 

substantial reduction after glatiramer acetate (GA) immunotherapy [527, 552, 553].

In a proof-of-concept clinical trial, the safety and feasibility to non-invasively detect and 

quantify retinal amyloid deposits in live human patients was demonstrated using a modified 

scanning laser ophthalmoscope and a proprietary oral curcumin formulation (Longvida®) 

with increased bioavailability (Figure 7I–M) [485]. Corresponding to the pattern reported in 

histological examinations, retinal amyloid deposits in living AD patients were frequently 

concentrated in the mid- and far-periphery of the superior hemisphere (Figure 7K). A 

significant 2.1-fold increase in retinal amyloid index (RAI), a quantitative measure 

developed to assess numerical value of amyloid burden in the retina of living patients, was 

revealed in AD patients versus matched controls (Figure 7L–M) [485]. Recent studies 

applying non-invasive retinal imaging in live AD patients, which detected NFL thinning 

[466, 477], increased inclusion bodies [554, 555], reduced blood flow, microvasculature 

alterations, and oxygen saturation in arterioles and venules [479, 556, 557], and importantly, 

hallmark Aβ deposits [485], are encouraging first steps towards the development of practical 

tools for predicting disease risk and progression. Since the retina in other ND such as 

multiple sclerosis, ischemic stroke, and Parkinson’s disease also exhibits pathophysiological 

processes similar to those detected in the brain [501, 558–561], retinal imaging may also 

facilitate differential diagnosis for different proteinopathies, neurodegenerative and 

neurological diseases.
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As research exploring AD in the brain, the possibility that the easily accessible retina may 

faithfully reflect AD neuropathology warrants further investigation. The preliminary 

evidence of retinal Aβ accumulation in early-stage cases together with the indication of 

amyloid-related neurodegeneration in the AD retina [466, 485, 490] suggests that AD is both 

a cerebral and an ocular disease, and may support retinal imaging as a screening tool even 

during the asymptomatic at risk stage. Future studies are needed to assess the nature of the 

relationship between cerebral and retinal amyloid burden in larger cohorts and in specific 

anatomical regions, and perhaps also to determine the potential link among cerebral amyloid 

angiopathy and retinal vascular amyloid. Given that retinal amyloid pathology could foretell 

brain disease and cognitive decline, it may prove essential for early detection of AD, 

predicting disease progression, and monitoring response to therapy.

In addition, non-invasive functional tests of pupil reactivity to light may complement the 

characterization of retinal abnormalities with imaging techniques [562]. Indeed, pupil 

responses to light stimulations are abnormal in AD patients [563], who show hypersensitive 

pupil-dilation to tropicamide, an acetylcholine receptor antagonist, as well as a diminished 

pupil light reflex [564, 565]. Although the retinal abnormalities mentioned above could 

account for these pupillary effects, the Edinger-Westphal nucleus, a major relay involved in 

pupil control where early signs of AD (cell loss and amyloid plaques) have also been 

observed, could also contribute to pupillary abnormalities. Conducting focal tests in different 

regions of the visual field to probe the pupil response can help identifying the functional 

consequences of the retinal amyloid imaging results. If the results of retinal imaging and 

functional tests were strongly correlated, pupil reactivity could be used as a proxy for AD 

severity, with the advantage that functional tests of pupil reactivity are easy, cheap and fast 

to perform, do not require a strong involvement of the patients, and can routinely be 

conducted to detect and track the evolution of AD, as well as the response to therapy.

In this regard, the “VISION” pilot translational neuroscience research program – belonging 

to the previously mentioned Sorbonne Université GRC-APM (GRC n° 21) – has been 

developed and launched in an early asymptomatic preclinical population to assess retinal 

amyloid imaging for 1) screening of amyloid and tracking its progression as well as 2) 

predicting pathophysiological disease progression, cognitive decline, and conversion to 

prodromal AD. The non-invasive nature, easy accessibility and generalizability are 

appealing features regarding a potential context of use.

SPATIOTEMPORAL MODELING OF MULTIMODAL LONGITUDINAL DATA 

ANALYSIS

Nowadays, deepening our understanding of AD pathophysiology is made possible by the 

following biomarkers that can be derived in-vivo from the subject: “fluid” from blood (e.g., 

genetic risk factors) and CSF (e.g., abnormal Aβ42 and p-tau dosing); “structural” (e.g., 

brain atrophy as a sign of neurodegeneration) and “functional” (e.g., brain disconnection 

syndrome) from MRI, “molecular” (e.g., brain hypometabolism and deposition of Aβ42 and 

p-tau) from PET, and “neurophysiological” (e.g., abnormal cortical neural synchronization 

and coupling). Furthermore, fine neuropsychological and clinical scales allow a detailed 
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measurement of cognitive impairment, self-care, independence in living in a community, and 

mental disorders (e.g. anxiety, mood, psychosis, and behavior). All these measurements 

allow a personalized evaluation of cerebral residual capacity and function over time by the 

repetition of the recording sessions.

Keeping in mind this premises, a major issue is the identification of the best statistical and 

mathematical procedures, from computational neurosciences, weighting the information 

value of the above biomarkers and clinical indices for early diagnosis (even in preclinical or 

prodromal stages preceding dementia), monitoring, therapy response, and prediction of the 

disease evolution.

To this aim, digital brain models have been developed in recent years, as a way to synthetize 

a 3D geometrical model summarizing the anatomical invariants in a group of subjects [566–

569]. This model has been extended recently to functional data [570, 571]. The main interest 

of such models is that they do not only illustrate the effects of the AD on brain structure and 

function at the group level but also include information about individual variability allowing 

the computation of the difference between a given patient and the reference groups of 

healthy subjects and patients with other dementing disorders to provide diagnostic 

information as sensitivity (detection of AD patients), specificity (detection of healthy 

subjects or patients with other diseases), and global classification accuracy.

These diagnostic models are based on the Bayesian inference of non-linear mixed-effects 

models, which complement the usual linear mixed-effects models typically used in 

biostatistics [569, 572]. This combination of statistical and geometric approaches accounts 

for the inherent structure in the data such as the specific organization of the brain anatomy as 

prior knowledge. It allows the rendering of the inter-individual variability as a realistic and 

interpretable change of the 3D model. Individual characteristics are summarized by a 

multivariate descriptor, which may be used in turn to explore the distribution of the 

individuals in different clusters, to correlate it with external factors, or to use as input in 

machine learning algorithms to make individual predictions [568].

Ideally, such a static model should be adapted to account for the disease progression over 

time and provide prognosis of clinical evolution in individual AD patients. Digital models of 

brain ageing are constructed as dynamical models showing the complex spatiotemporal 

patterns of changes in the above biomarkers while the disease progresses. Inter-individual 

variability is expressed in terms of changes in individual spatiotemporal trajectories. The 

construction of such models of disease progression results from several key components 

[570, 571, 573–576]: 1) artificial intelligence approaches that are used to combine several 

short-term data sequences in longitudinal data sets to synthetize a long-term scenario of 

disease progression; 2) different data modalities that are integrated in the model by 

converting them into a common abstract mathematical space – called a Riemannian 

manifold – where statistical distributions of spatiotemporal trajectories may be rigorously 

defined; 3) variability in trajectories accounting for the direction of the trajectories and the 

dynamics at which these trajectories are followed.
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Each individual disease trajectory is now positioned in a spatiotemporal coordinate system, 

where a multivariate descriptor encodes the variability in the direction of the trajectory, and 

dynamical parameters encode for the variability in age at disease onset and pace of disease 

progression. Given the observation of a new subject at one or few time-points, one may 

personalize the scenario of disease progression by adjusting model parameters, thus 

transferring the knowledge gained from the automatic analysis of a longitudinal data set to 

this new individual. This personalized model may be utilized then to predict the future state 

of the subject, for instance the time to the onset of a specific symptom. We have employed 

such an approach to predict the time-to-diagnosis in mild cognitive impaired subjects using a 

model of cognitive decline from neuropsychological assessments [577], and to predict the 

future map of cortical thickness for the same subjects using structural imaging [571]. This 

approach opens up the way to build efficient decision support systems for monitoring 

disease progression and selecting patients in clinical trials with a specific biomarker-based 

diagnosis of AD, at a specific disease stage (e.g. preclinical, prodromal or manifest 

dementia) and with an expected pattern of progression.

In addition, such a personalized scenario may offer a new way to assess treatment efficacy 

by evaluating to which extend it changes the disease trajectory, that is the complex non-

linear spatiotemporal patterns of changes. This approach evolves the standard procedure 

based on annual percentage rate of an outcome measure since: 1) it does not assume a linear 

variation of the outcome at all disease stage but account for the non-linear dynamics of 

changes across disease stages, and 2) it makes use of a multivariate descriptor of disease 

trajectory and not only a univariate outcome measure.

THE EMERGING FIELD OF SYSTEMS PHARMACOLOGY IN ALZHEIMER’S 

DISEASE

The consequences of the highly complexity of AD pathophysiology can be clearly observed 

in the results of drug development pipeline for the disease: out of 413 clinical trials 

conducted during the 2002 to 2012 period, 99.6% failed [578]. Moreover, a review of AD 

drug development pipeline in 2016 showed that although the pipeline has increased in size, it 

is significantly smaller compared to the cancer field, and that the most common target (76%) 

is still amyloid, reflecting the urgent need for deeper understanding the pathophysiology of 

the disease [579]. In fact, disappointing results of anti-amyloid drug candidates can be 

attributed to three major factors relating to drug discovery and development, namely 1) inter-

species mechanistic differences between animal models and human, 2) complex biology of 

amyloid-beta in relation to disease staging, and 3) ignorance of non-amyloid pathways. 

Thus, it is imperative to delineate the complexity of AD pathophysiology using systems 

biology-based approaches, which take advantage of computational analysis and modeling of 

both quantitative (e.g. “omics”-based) and qualitative (e.g. literature-based) data. The goal of 

systems biology methods is to aid researchers develop hypotheses regarding the disease 

system and gain better mechanistic insights into the pathophysiology and progression of 

disease across multiple biological scales and time. Mechanistic systems models are either 

mathematical representations of pathophysiologic processes or computable cellular networks 

but the latter has gained more attention for analysis of drug action [580]. Since these models 
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use networks instead of single transduction pathways, complex patterns of drug action 

within the target biological context can be studied in more details, a field that has emerged 

as systems pharmacology.

According to the American Association of Pharmaceutical Scientists (AAPS), systems 

pharmacology is “the science of advancing knowledge about drug action at the molecular, 
cellular, tissue, organ, organism, and population levels” (available at http://www.aaps.org/

Systems_Pharmacology/). To obtain full understanding of drug action at the systems level, 

we need to combine disease mechanism, pharmacodynamics and pharmacokinetic data into 

a single model. However, incorporation of quantitative parameters and measurements 

increases the model complexity so that special mathematical techniques are required to 

reduce the number of parameters without affecting the behavior of the system; thus, disease 

mechanistic models are considered as the first substrate for building full-fledged systems 

pharmacology models [581]. Disease mechanistic models are molecular and cellular 

networks that aim to elucidate the impact of therapeutics or new drug candidates on 

impaired biological functions under disease conditions. The key to usefulness of disease 

models is context-sensitivity, meaning that disease network models should represent the 

real-world context in terms of cell and tissue type (spatial dimension), disease sub-type 

(functional dimension), and progression stages (temporal dimension). It is only in the right 

context that correct inferences, interpretations, and predictions can be made out of the 

model. The focus of earlier models was to relate drugs to proteins in the form of drug-target 

networks where protein-protein interaction networks were used as the fundamental model 

for interpretation of drug mode-of-action [582]. Interestingly, these models also revealed an 

important aspect of systems pharmacology paradigm, which was conceptualized and coined 

as “polypharmacology” [583]. This concept changed the single-target approach to designing 

new drugs in the discovery phase because topological analysis of drug targets in network 

models demonstrated that a compound binds to multiple targets. As a consequence, a drug 

hits additional targets, known as off-targets, which leads to side effects. Campillos and 

colleagues (2008) used drug-drug and drug-target networks enriched with side-effect 

phenotype information for all approved drugs across many disease indications and based on 

side-effect similarities predicted and experimentally validated novel drug-target relations 

[584]. This approach enables researchers to predict off-targets and thereby probable side 

effects for candidate drugs in preclinical settings. The so-called structural systems 

pharmacology aims at modeling energetic and dynamic modifications of genomic 

macromolecules including proteins, DNA, and RNA by drug candidates [585]. This strategy 

has been implemented by Nikolic and colleagues (2016) to predict both primary target and 

off-target profiles of several anti-neurodegenerative compounds based on their chemical 

structures [586]. Their analysis resulted in identification of novel compounds that hit 

multiple targets and inhibited acetylcholinesterase, butyrylcholinesterase, monoamine 

oxidases A and B in the context of AD pathophysiology. Moreover, knowing which drug 

properties distinguishes Central Nervous System drugs from others can help drug designers 

select those properties in the new drug candidates that confer the least side effects and the 

best efficacy. To this end, Shahid and colleagues (2013) developed a computational method 

that identified and classified neurodegenerative drugs from non-neurodegenerative drugs 

with 80% accuracy [587]. DrugGenEx-Net is a computational platform that predicts disease-
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specific drug polypharmacology based on multi-tiered network analysis of drug-target, 

disease-target, pathway-target and target-target interactions [588]; the model revealed that 

Sunitinib, an approved drug for renal cell carcinoma, hits multiple targets associated with 

AD pathways and thus can be considered for repurposing.

With advancements in systems biology modeling languages – such as Systems Biology 

Markup Language (SBML) and Open Biological Expression Language (OpenBEL) – drug-

mode-of-action can now be investigated in a context-sensitive, rich environment that goes 

beyond simple representation of protein-protein interactions by including various types of 

biological entities covering genotype to phenotype scales. For instance, Fujita and 

colleagues (2014) developed a comprehensive molecular interaction map of Parkinson’s 

disease that included major signaling pathways in Parkinson’s disease, modeled and 

presented in SBML format; however, they did not include drug information in their model 

[589]. AlzPathway is the result of an early initiative that attempted to systematically collect 

AD-related signaling pathways from literature and bring them together within the first map 

of cellular AD signaling pathways, represented in SBML [590]. Recently, Iyappan and 

colleagues (2016) identified all signaling pathways reportedly involved in the human ND, 

mapped them back onto their corresponding anatomic sites on the human brain, and used 

these pathways for explaining the mode-of-action of the AD approved drug, Rasagiline 

[591].

In the past years, with the availability of increasing amount of data and knowledge on the 

one hand, and emergence of new computational biology methods on the other, the IDM 

framework has increasingly drawn more attention by academic and pharmaceutical research 

groups. The models generated by this approach combine data-driven and knowledge-driven 

models into a single integrative model and represent signaling pathways with cause and 

effect relations [23]. However, a major challenge for this approach is integration of 

heterogeneous datasets and information that come from various data sources. For instance, 

the ADNI provides big neuroimaging data along with genetic and biomarker data from AD 

and MCI subjects [592]. If integrated into predictive models, ADNI data will have maximal 

impact on the AD drug research. But, the first step towards IDM is standardization and 

harmonization of different datasets so that they are semantically compatible. Ontologies are 

semantic frameworks that provide a reference for standardization and harmonization of 

diverse datasets. For instance, AD ontology (ADO) has been developed to provide such a 

reference for AD knowledge domain [593]. ADO was used by Kodamullil and colleagues 

(2015) to represent scientific findings in a computable, cause-and-effect model of AD 

pathology, which was designed and coded in Open Biological Expression Language 

(available at http://openbel.org/) [594]. This model contains causal and correlative 

relationships between biomolecules, pathways, and clinical readouts and was used for 

model-guided interpretation of genetic variation data for a comorbidity analysis between AD 

and type 2 diabetes mellitus. Similarly, drug-target interactions and drug mode-of-action can 

be investigated and predicted using these models. Indeed, integrative models that encompass 

data from genome to phenome across biological scales from cells to clinical outcomes, 

enable us to predict the mode-of-action of candidate drugs within the right 

pathophysiological context and in a multidimensional space of human biology. Perhaps one 

of the most fundamental works in this area is the study by Emon and colleagues (2017) who 
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systematically analyzed the brain chemical space and identified drug candidates for 

repositioning in AD [595]. They first generated a large model in BEL containing genes, 

proteins, drugs and chemicals, biological processes, and disease concepts in the context of 

neurodegeneration. Then, by mechanistic analysis of this model, they not only suggested 

Donepezil as repurposing candidate for amyotrophic lateral sclerosis, but also found a 

mechanism of action by which Riluzole, a drug used in amyotrophic lateral sclerosis, could 

be predicted to interfere with several pathophysiological pathways in AD. Moreover, the 

mode-of-action analysis of other drugs in the context of AD using this model predicted that 

Cyclosporine, a drug used for treatment of rheumatoid arthritis, which shares common 

targets with 5 approved drugs for AD, can exert neuroprotective effects. Several lines of 

evidence that experimentally proved its anti-AD effects supported this prediction.

Currently, several initiatives have undertaken the effort to facilitate systems pharmacology 

studies in the field of ND in general and AD in particular. The AETIONOMY project, 

funded by the Innovative Medicine Initiative (see http://www.imi.europa.eu/), has already set 

up a specialized knowledgebase for ND with focus on AD and Parkinson’s diseases, and 

takes an integrative modeling approach to computationally predict and clinically validate 

mechanistic signatures that stratify AD and Parkinson’s patients (see http://

www.aetionomy.eu/). The mission of this project is to lay foundation for development of 

new drugs targeting patient subgroups and thus promoting personalized medicine. The Brain 

Health Modeling Initiative (BHMI) is another project that takes advantage of integrative 

mechanism-based computational models and simulations using big data with the aim of 

matching right targets and biomarkers for optimal drug design in AD [596]. The European 

commission-funded project SysPharmAD proposes a systems pharmacology approach to the 

discovery of novel therapeutics in AD using an integrative network model that combines 

“omics” data with stage-specific clinical data. The aim of this project is to design and 

validate a systems pharmacology strategy based on AD staging that helps researchers 

identify synergistic multi-targeting compounds modifying the disease path (available at 

http://cordis.europa.eu/project/rcn/185567_en.html).

CONCLUSIONS

The multidimensional nature of all ND, AD included, is well established to-date, along with 

the fact that their onset and progression arise from dysregulation processes which evolve at 

both intracellular and extracellular levels. At the cellular level, ND are characterized by 

dystrophic neuronal structural changes leading to loss of function and, eventually, cell death. 

These phenomena spread in a “cell-to-cell” fashion in which intraneuronal protein 

misfolding affects structural plasticity in a nearby neuron by self-propagation of pathogenic 

protein aggregates. This, in turn, leads to decreased dendritic spines and synaptic sites 

density, and, eventually, loss of brain connections.

At the subcellular and molecular level, the core pathophysiological phenomenon is 

represented by failure of proteostasis cellular pathways [597, 598], from protein misfolding 

and aggregation to decreased clearance, mitochondrial dysfunction, loss of cell homeostasis, 

and, consequently, enhanced cell signaling pathways related to apoptosis. Therefore, ND are 

initially characterized by several alterations of subcellular frameworks, mostly concerning 
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proteostasis, on which both the anatomy and physiology of neurons and glial cells are 

founded.

The genome, through mutual interactions with endogenous and exogenous factors, leads to a 

wide spectrum of variations at the level of proteome and metabolome that, incontrovertibly, 

account for both intracellular and extracellular integrity. As a result, the systems biology and 

systems neurophysiology paradigms can provide a conceptual model where structural and 

functional networks are dynamically interconnected across different dimensional levels into 

accounting a multiscale dynamical system which has already been seen to manifest also into 

peripheral branches like the autonomic nervous system in health and disease [599, 600].

At present, there is an urgent need to identify a large array of reliable biomarkers to in vivo 
identify the above mentioned interacting multidimensional levels which characterize ND. 

Such biomarkers need to be able to chart the spatio-temporal trajectories of complex brain 

pathophysiological mechanisms, at the same time taking into account interindividual 

variables. Complex, time varying higher order statistics as well as structural model should 

also be considered within the systems neurophysiology modeling approach [601–604]. 

Pathophysiological biomarkers are required to track the pathophysiological mechanisms 

underlying ND (Figure 8). For instance, cerebral amyloid-PET is commonly considered as a 

molecular proxy of the Aβ metabolism impairment rather than a conventional biomarker of 

neocortical deposition of neuritis plaques. In this context, biomarkers are the appropriate 

tools for developing receptor-tailored drugs, as already demonstrated and currently practiced 

in the field of oncology. Both structural and functional brain markers are expected to 

elucidate the link between clinical phenotypes and molecular pathophysiological 

mechanisms.

Notably, cerebral 18F-FDG-PET is commonly used as prognostic indicator in several clinical 

trials on AD and other ND. Indeed, the early recovery of specific brain functions or 

networks is crucial to identify downstream effects of disease therapies, even before 

measuring the clinical benefit. As another example – in the context of identifying brain 

biomarkers from non-invasive imaging within a more individually tailored, PM-based 

approach – recent developments have pointed out the concept and added value of “dense 

sampling of individual brains” [605–607]. This interesting development is based on the 

realization that, while a large body of research is accustomed to averaging neuroimaging 

data across individuals and, hence, implicitly assuming a high degree of functional 

homology, by definition there must be a finer scale at which this homology breaks down - 

possibly the scale which encodes the individual idiosyncrasies at the base of a unique 

individual’s disease trajectory and/or therapy response. By sampling relatively few brains for 

several hours, the authors demonstrate how individual differences in well-known networks, 

e.g. the default mode and the salience network, are clearly visible. Therefore, it is possible 

that future developments in neuroimaging will shift more toward longer (several hours/days) 

sampling of individual brains/patients, thus providing more solid bases for the 

implementation of the “precision neuroscience” paradigm that will likely be needed to 

understand ND.
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Interestingly, functional and topographic biomarkers could also be employed in identifying 

the adequate target. In particular, they could be valuable in detecting specific brain areas for 

potential trials of targeted neuromodulation, thus providing comprehensive information on 

regional atrophy, impaired connectivity, metabolic alterations, and regional decrease of 

cerebral blood flow. Finally, both clinical examination and full psychometric evaluation still 

remain the first-line approach in identifying pathological phenotypes supporting the whole 

diagnostic workout. For instance, to date, the identification of hippocampal-like amnestic 

impairment supports the clinical diagnosis of AD, thus justifying an anticholinesterase 

inhibitor-based treatment. Notably, in the context of a systems biology- and systems 

neurophysiology-based interpretation of ND phenotype, clinical markers should be 

considered the highest level “descriptors” of the disease and represent the ultimate measures 

to identify effective therapies.

In summary, the future implementation of the systems biology and systems neurophysiology 

paradigms – based on the integrated analysis of big and deep heterogeneous data sources – 

will be crucial to reach a deeper understanding of the pathophysiology of AD and other ND. 

The main challenges ahead will certainly lie in the development of analytical applications 

capable of processing massive quantities of stored laboratory and clinical data. Against this 

backdrop, the big data approach should be leveraged to maximize the information that can 

be extracted from preclinical and clinical records, ultimately augmenting our knowledge 

regarding the molecular, cellular, and systems processes underlying AD development. As we 

unravel the dynamic and longitudinal changes of the biomarker landscape in AD, we will 

make a further step towards a holistic understanding of the natural course of the disease. 

Integrating different sources of information will enable researchers to obtain a new 

integrated picture of the pathophysiological process of the disease that will span from 

molecular alterations to cognitive manifestations. In this scenario, the Big Data Research 

and Development Initiative (available at https://obamawhitehouse.archives.gov/blog/

2012/03/29/big-data-big-deal), promoted by the previous Obama Administration under the 

“Big Data is a Big Deal” motto, is expected to accelerate progress towards a new era of PM 

in AD. This ultimate mission will be accomplished by assembling, linking, and harmonizing 

big data to facilitate high-impact, multidisciplinary, and collaborative research efforts. After 

a decade of failed clinical trials in AD, the adoption of “big data science” within an IDM 

theoretical framework by the international APMI allowed us to enter into a transformative 

research scenario. It is currently expected that PM will underpin most, if not all, of the 

prevention and treatment advances yet to come. Significant breakthroughs in our 

understanding of the early phases of AD and other ND and the rapid advent of new 

laboratory technologies are providing unprecedented opportunities to make a major impact 

on the natural history of AD at the earliest preclinical asymptomatic stage [608]. We are 

currently standing at the edge of a new frontier that will thoroughly explore the molecular 

and cellular events that drive the development of the disease before cognitive symptoms are 

evident. New preventive approaches and therapies developed through PM may improve 

compliance and increased level of trust and confidence among all stakeholders and reduce 

the number of failures. In this context, we are expected to move swiftly from the traditional 

“one-size-fits-all – magic bullet therapies” scenario to a personalized PM-based approach. 

The unprecedented effort promoted by the APMI is ultimately tailored to implement a 
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paradigm shift in AD research which will be backboned by large, international, and 

interdisciplinary collaborative academic, private and industry networks.

The field of PM does not lack for enthusiastic, dedicated pioneers who are moving forward 

expeditiously to clinical adoption. As the evidence base supported by the APMI expands, 

much more can and should be done to accelerate the process for the benefit of individual 

patients, the healthcare system, and society overall.
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Abbreviations
18F-FDG-PET 18F-2-fluoro-2-deoxy-D-glucose PET

Aβ42 42-amino acid-long amyloid beta peptide

AD Alzheimer’s disease

ADD Alzheimer’s disease dementia

ADNI Alzheimer’s Disease Neuroimaging Initiative

ADO Alzheimer’s disease ontology
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APMI Alzheimer Precision Medicine Initiative

APMI-CP Alzheimer Precision Medicine Initiative Cohort Program

APP amyloid precursor protein

BFCS basal forebrain cholinergic system

CSF cerebrospinal fluid

DBS deep brain stimulation

DLB Dementia with Lewy bodies

DTI diffusion tensor imaging

EEG electroencephalography

EHRs electronic health records

EPAD European Prevention of Alzheimer’s Dementia consortium;

EPAD LCS EPAD Longitudinal Cohort Study

EPI echo planar imaging

FA fractional anisotropy

FMRI functional magnetic resonance imaging

FTD frontotemporal dementia

ICNs intrinsic coherent networks

IDM integrative disease modeling

MCI mild cognitive impairment

MD mean diffusivity

MEG magnetoencephalography

MMN mismatch negativity

MRI magnetic resonance imaging

ND neurodegenerative diseases

NFL nerve fiber layer

p-tau hyperphosphorylated tau

Nold normal elderly subjects

PDD dementia due to Parkinson’s

PET Positron Emission Tomography
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PM Precision medicine

PMI Precision Medicine Initiative

PoC Proof-of-Concept

RGC retinal ganglion cell

ROI region of interest

RTMS repetitive transcranial magnetic stimulation

SBML Systems Biology Markup Language

SPECT Single Photon Emission Computed Tomography

t-tau total tau

TACS transcranial alternating current stimulation

TDCS transcranial direct current stimulation

WB-MRI whole-body magnetic resonance imaging

WES whole-exome sequencing

WGS whole-genome sequencing

WM white matter.
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Figure 1. Cohorts stratified according to different neuroimaging modalities and methods are 
integrated in the disease modeling for classification and prediction of subsets of AD and other 
ND patients
The paradigm of systems neurophysiology aims at studying the fundamental principles of 

integrated neural systems functioning by integrating and analyzing neural information 

recorded in multimodal fashion through computational modeling and combining data-

mining methods. This paradigm may be used to decode the information contained in 

experimentally-recorded neural activity using analysis methods that are able to integrate the 

recordings of simultaneous, single-modality brain cell activity such as fMRI or EEG to 

generate synergistic insight and possibly infer hidden neurophysiological variables. The 

ultimate goal of systems neurophysiology is to clarify how signals are represented within 

neocortical networks and the specific roles played by the multitude of different neuronal 

components.

Abbreviations: AD, Alzheimer’s disease; DTI, diffusion tensor imaging; EEG, 

electroencephalography; MEG, magnetoencephalography; fMRI, functional magnetic 

resonance imaging, sMRI, structural magnetic resonance imaging; ND, neurodegenerative 

diseases; PET, positron emission tomography; TMS, transcranial magnetic stimulation
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Figure 2. Translational bench-to-bedside data flow within the conceptual framework of the 
Alzheimer Precision Medicine Initiative (APMI)
The IDM-based “Data Sciences Lifecycle” takes advantage of both data-driven and 

knowledge-driven approaches so that both quantitative data (biomolecular, neuroimaging/

neurophysiological, and clinical data) and qualitative data (collected from scientific 

literature and on-line media) – generated through the application of systems biology and 

systems neurophysiology paradigms – are represented in a harmonized, standardized format 

to be prepared for proper management within an integrative computational infrastructure. 

Indeed, the resulting heterogeneous, multidimensional big and deep data are harmonized, 

standardized, and integrated via computational and data science methods in the form of 

mechanistic disease models, according to the IDM conception.

Disease-specific integrative computational models play a key role in the IDM paradigm and 

represent the foundations for “actionable” P4M measures in the area of AD and other ND. 

As a result, the integrative disease models are anticipated to support decision making for: 1) 

early diagnosis of brain disease progression with mechanistic biomarkers (predictive), 2) 

screening populations and stratifying individuals at high risk of developing ND based on 

mechanistic co-morbidities in order to reduce the likelihood of disease and disability 

(preventive), 3) tailoring treatment to the right patient population at the right time 

(personalized), and 4) optimizing “actionable” plans for the benefit of patients based on 

patient-oriented information gathered in EHRs and on patients’ feedback reported in social 

media. Internet has greatly enabled the participation of individual patients in the healthcare 

through sharing their experiences in various social media and other online resources 

(participatory). The output is anticipated to be an “actionable” model that permits the 

prediction of the trajectory of individual patient-centric detection or treatment within the 

implementation of the P4M paradigm.

Abbreviations: APMI, Alzheimer Precision Medicine Initiative; EHRs, electronic health 

records; IDM, integrative disease modeling; ND, neurodegenerative diseases; P4M, 

Predictive, Preventive, Personalized, Participatory Medicine. Modified from [21].
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Figure 3. Model of non-linear dynamic temporo-spatial progression of neural network 
disintegration and complex brain systems failure in relation to pathophysiology of AD. Four 
dimensions of pathophysiological processes in AD
Dimension 1 occurs at the level of neuronal networks (coded green to red). Dimension 1 can 

begin extremely early in form of synaptic dysfunction and/or synaptotoxic molecular agents, 

thus altering the balance of the neuronal network.

Dimension 2 & 3 can be regarded as the temporal and spatial spreading from almost 

exclusively default mode to episodic memory networks to temporal, parietal and frontal 

neocortical associative areas responsible for working memory, language and/or visual 

processes. Every one of these complex systems can experience a variable degree of 

decompensation (see Dimension 1), from adaptation to compensation to massive 

decompensation and widespread dysorganisation.

Dimension 4 is essentially the integration of Dimensions 1 and 2 and 3 into late-stage 

clinically symptomatic and syndromatic cognitive and later behavioral and 

psychopathological dysfunction and decline. It is therefore clear how this complex, multi-

scale and multilayer association of networks can be partially robust to “insults” if sufficient 

compensatory mechanisms are in place, but also extremely and randomly fragile if 

adaptation and compensation fails at any level. Sufficient decompensation in Dimension 1 

will turn into a malfunction in Dimension 2 and 3 and, in turn, substantial decompensation 

in Dimension 2 and 3 will turn into malfunction in Dimension 4 (i.e. mild cognitive 

impairment, clinical dementia syndrome).

Abbreviations: AD, Alzheimer’s disease.
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Figure 4. Overview of the currently available technologies and the resulting biological marker 
categories used for biomarker discovery in preclinical and clinical research
Abbreviations: CNV, copy number variations; FISH, fluorescence in situ hybridization; 

GCMS, gas chromatography mass spectrometry; HPLC, high-performance liquid 

chromatography; LCMS, liquid chromatography–mass spectrometry; NMR, nuclear 

magnetic resonance; PCR, polymerase chain reaction; SNPs, single nucleotide 

polymorphisms; SVs, structural variations. Reproduced with permission from [79].
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Figure 5. Systems neurophysiology and network neuroscience: schematic representation of how 
structural levels within the nervous system integrate over multiple spatial and temporal scales
Network neuroscience encompasses the study of very different networks encountered across 

many spatial and temporal scales; however, the network ideas clearly extend down to the 

level of neuronal circuits and populations, individual neurons and synapses, as well as 

genetic regulatory and protein interaction networks. In network neuroscience and systems 

neurophysiology in general, the overall aim is to bridge information encoded in the 

relationships between genes and biomolecules to the information shared between neurons 

across to the brain level while integrating the additional information provided from the time 

dimension. This could eventually allow access to mechanistic understanding and models 

which faithfully reproduce and possibly predict both brain structure and function. 

Interestingly, above the single brain level, the social network level should still be considered 

a network neuroscience domain and, albeit with different measurement techniques, can be 

studied with the same paradigms with the aim to understand the larger “brain” that 

interacting brains give rise to (i.e. economies and cultures).

Adapted from [112] and [609].
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Figure 6. 
Sagittal slab visualisation of a fibre tractogram obtained from WM fODFs estimated with 

SSST-CSD (left) and MSMT-CSD (right) with different fODF amplitude thresholds (top, 

bottom).

Abbreviations: fODF, fibre orientation distribution function; MSMT-CSD, multi-shell, 

multi-tissue constrained spherical deconvolution; SSST-CSD, state-of-the-art single-shell, 

single-tissue constrained spherical deconvolution; WM, white matter. Reproduced with 
permission from [188].
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Figure 7. Retinal amyloid imaging: from histological examination to clinical trials
A. Spectral analysis of Aβ plaque in AD human flatmount retina via specific curcumin 

labeling. Representative image and spectra curves of retinal Aβ plaque double-labeled with 

curcumin [region of interest (ROI) 1; orange line] and anti-Aβ40 antibody-Cy5 conjugate 

(ROI2; purple line) and corresponding background areas (ROI3 and ROI4; dashed lines) at 

excitation wavelengths of 550nm (for curcumin spectra) and 640nm (for Ab-Cy5 conjugate). 

Sudan black B (SBB) was applied to quench autofluorescence. Peak emission wavelengths 

captured for the same individual Aβ plaque (605nm for curcumin when bound to Aβ plaque 

and 675nm for anti-Aβ Ab conjugated Cy5) are distinct, indicating specific fluorescent 

signals for each fluorochrome and signifying the detection of Aβ plaque by curcumin. B. 
Representative z-axis projection images of flatmount retinas from AD patients. Retinal Aβ 
plaques (yellow spots) co-labeled with curcumin (green) and anti-Aβ40 monoclonal antibody 

(11A50-B10; red) are detected. Analysis included definite AD (n=8), probable/possible AD 

(n=5), and age-matched controls (n=5). High-magnification image (right) showing an 

extracellular Aβ plaque. Images A–B are adopted from [490]. C. Representative 

microscopic images from flatmount retinas of a healthy control individual (CTRL; 71 years) 

and a definite AD patient (74 years) stained with anti-Aβ42 C-terminal-specific antibody 

(12F4) and visualized with peroxidase-based labeling. High-magnification image showing 

different Aβ42 plaques including classical morphology. Analysis included definite AD 

patients (n=5) and matched controls (n=5). Images reproduced from [466] and [472]. D. 
Quantitative analysis of retinal Aβ42-containing plaques (12F4-immunoreactive area) in the 

superior quadrant shows a significant increase in AD patients versus matched controls. E. 
Quantitative Nissl+ neuronal area in retinal cross sections indicated a significant reduction in 

AD patients compared to CTRLs, which is associated with retinal neuronal loss. D–E. Data 

reprinted from [485](n=23 AD patients and n=14 controls). F. Retinal flatmount illustration 

demonstrating the geometric distribution of pathology in AD retina by quadrant, with more 

consistent findings of nerve fiber layer thinning, neuronal degeneration and retinal Aβ 
deposits mapped to peripheral regions of the superior quadrant. Adopted from [472]. G. 
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Representative images of a frontal cortex section and a flatmount retina from AD patients 

stained with 12F4 monoclonal antibody (brown) showing different Aβ42 plaque morphology 

including classical plaques (inserts). Clusters of Aβ42-containing plaques are often 

associated with blood vessels (bv; right image). H. Correlation analyses using Pearson’s 

coefficient (r) test between retinal 12F4+-plaque burden in the superior-temporal (ST) 

quadrant and cerebral plaque burden (Thioflavin-S staining) in a total of seven brain regions 

(Brain; black) and in the primary visual cortex alone (PV Ctx.; green) in a subset of AD 

patients and matched CTRLs. I–J. Illustration displaying non-invasive retinal amyloid 

imaging using Longvida® curcumin and a modified scanning laser ophthalmoscope in 

human trials. K–M. In vivo retinal imaging in AD patients and age-matched controls. K–L. 
Increased curcumin fluorescent signal (red dots) in superior hemisphere in AD patient vs. 

CTRL. Color-coded spot overlay images: red spots are above threshold and considered 

curcumin-positive amyloid deposits; green spots exceed 1:1 reference but not threshold; blue 

spots fall below reference. Heat map images with red spot centroids (lower panel) showing 

regions of interest with more amyloid plaques in the retina. L. Automated calculation of 

retinal amyloid index (RAI). Blue line is 1:1 reference; green line represents the threshold 

level, determined at 500 counts and above; red spots are above the threshold. The same 

automated image processing and analysis was applied on all human subjects (n=16). M. RAI 

scores showing significant increase in AD patients compared to age-matched CTRLs. G–M. 
Republished with permission of American Society for Clinical Investigation from [485]; 
permission conveyed through Copyright Clearance Center, Inc. Group means and SEMs are 

shown. **p < 0.01, unpaired two-tailed Student’s t-test.
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Figure 8. Evolving spectrum of biomarkers and modalities
A. The ideal biomarker should be minimally-invasive, unexpansive, practical, rapid and 

reliable with low level of expertise required. Therefore, in the clinical-setting, biomarkers 

should be assessed in a multi-stage diagnostic workout carried-out along four steps (blood 

biomarkers, structural MRI, lumbar puncture, PET scans) according to the overall balance 

among the following factors: cost-effectiveness, time-effectiveness, invasiveness and 

accessibility. B. Biomarkers represent one strategy to tailor therapy. The idealistic markers 

for ND would enable their implementation in screening, diagnosis, progression of the 

disease, and monitoring of the response to therapy. Therefore, in clinical trials, biomarkers 

can be used for several purposes:

1) to identify people eligible for the trial, i.e. those considered at high risk for ND (screening 

biomarkers),

2) to guide clinical diagnosis (diagnostic markers),

3) to optimize treatment decisions, providing information on the likelihood of response to a 

given drug (predictive biomarkers),

4) to detect and quantify the response rate to treatment (response markers).

Abbreviations: MRI, magnetic resonance imaging; PET, Positron Emission Tomography; 

ND, neurodegenerative diseases.
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Table 1
The five pillars of the Alzheimer Precision Medicine Initiative (APMI)

The mission of APMI is to transform Neurology and Neuroscience embracing Precision Medicine (or 

Precision Neurology) based on complex systems theory using integrative disease modeling (IDM) to 

facilitate health care solutions for brain proteinopathies, protein misfolding disorders and neurodegenerative 
diseases, such as Alzheimer’s disease (AD). This is facilitated through five breakthrough theoretical 
scientific advances, as follows:

Concept Comment

(1) The emergence of the 
“precision medicine” 
paradigm

Discovery and development of treatments targeted to the needs of individuals on the basis of systems biology 
technology using genomic biomarker, phenotypic, or psychosocial characteristics that distinguish a given 
individual from others. Inherent in this definition is the goal of impacting pathophysiological progression at 
early disease stages and clinical outcomes at later stages and minimizing unnecessary side effects for those less 
likely to have a response to a particular treatment supported by pharmacogenomics. The convergence of 
genetics/genomics/transcriptomics, bioinformatics, neurodynamics, neuroimaging and connectomics along with 
other technologies such as cell sorting, epigenetics, proteomics, lipidomics and metabolomics, is rapidly 
expanding the scope of precision medicine by refining the staging and classification of disease, often with 
important prognostic and treatment implications. Among these new technologies, genetics and next-generation 
DNA sequencing methods are having the greatest effect.

(2) The emergence of the 
“systems biology” 
paradigm

Systems biology represents an integrated and deeper investigation of interacting biomolecules within cells or 
organisms. This approach has only recently become feasible as high-throughput technologies including cDNA 
microarrays, mass spectrometric analyses of proteins and lipids together with rigorous bioinformatics have 
evolved. High-content data point to convergent pathways among diseases, which transcend descriptive studies to 
reach a more integrated understanding of neurodegenerative disease pathogenesis and, in some instances, 
highlighting ‘druggable’ network nodes.

(3) The emergence of the 
“systems neurophysiology 
and complex network” 
paradigm

This is due in large part to advances in mathematics, computer science and statistical methods applied to 
neuroimaging and neurophysiology; instead of thinking of the brain as a set of modules (i.e., individual brain 
regions) that perform specific cognitive functions, the network paradigm argues that cognitive functions are 
performed by dynamic interactions among different brain areas - i.e., by dynamically formed complex structural 
and functional networks of brain regions.

(4) the emergence of 
“neural modeling” 
paradigm

This paradigm is required by the complex network paradigm, since, in order to deal with the large complexity of 
the dynamic interactions among multiple brain regions, one must employ advanced mathematical and 
computational methods.

(5) The emergence of 
“integrative disease 
modeling” (IDM) 
paradigm

This is an evolving knowledge-based paradigm in translational research that exploits the power of advanced 
computational methods to collect, store, integrate, model, and interpret accumulated disease information across 
different biological scales, i.e. from molecules to phenotypes. IDM is a new paradigm at the core of translational 
research, which prepares the ground for transitioning from descriptive to mechanistic representation of disease 
processes. Given the tremendous potential of IDM in supporting translation of biomarker and drug research into 
clinically applicable diagnostic, preventive, prognostic, and therapeutic strategies, it is anticipated that computer-
readable disease models will be an indispensable part of future efforts in the P4 medicine research area.
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Table 2

Evolving lexicon and terminology within the Alzheimer Precision Medicine Initiative (APMI) framework.

Concept Abbreviation Definition

Big Data A repository of large amounts of data sets generated by data mining tools. Big Data 
includes information obtained through systems theory- and, knowledge-based approaches 
and clinical records.

Biomarkers BMs A defined characteristic that is measured as an indicator of normal biological processes, 
pathogenic process, or response to an exposure or intervention, including therapeutic 
interventions. Molecular, histologic, radiographic, or physiological characteristics are 
types of biomarkers. A biomarker is not an assessment of how an individual feels, 
functions or survives. Categories of biomarkers include: susceptibility/risk biomarker, 
diagnostic biomarker, monitoring biomarker, prognostic biomarker, predictive biomarker, 
pharmacodynamics/response biomarker and safety biomarker.

Data Science Interdisciplinary field about processes and systems to extract knowledge from data in 
different forms – either structured or unstructured – which is a continuation of some of the 
data analysis fields including statistics, artificial intelligence, machine learning, data 
mining, and predictive analytics.

e-Health Term indicating healthcare practice supported by electronic processes and 
communication. It can also include health applications and links on mobile phones, 
referred to as mobile health (“m-health”: smart personal mobile devices, such as phones, 
wearables, in-home devices and Apps, collecting health information aimed at improving 
patient care).
The term can also encompass a range of services or systems that are at the edge of 
medicine/healthcare and information technology, including: electronic health records 
(EHRs). These indicate a systematized gathering of population electronically-stored 
health information and clinical data in a digital format. These registries can be shared 
across different health care settings through network systems.

European Prevention of 
Alzheimer’s Dementia 
Consortium

EPAD Pan-European initiative whose objective is to establish a shared platform to design and 
conduct phase 2 Proof-of-Concept (PoC) clinical trials specifically aimed at developing 
novel treatments for the secondary prevention of AD.

Genomic Medicine Discipline utilizing personal genomic information (see also the definition of “Personal 
Genomics”) for diagnostic characterization and the development of therapeutic plans.

Integrative Disease Modeling IDM Multidisciplinary approach to standardize, manage, integrate, and interpret multiple 
sources of structured and unstructured quantitative and qualitative data across biological 
scales using computational models that assist decision making for translation of patient-
specific molecular mechanisms into tailored clinical applications.

“Omics” or “Omic” disciplines High-throughput screening tools aimed at fully collecting, characterizing and quantifying 
pools of biological molecules (DNA sequences, transcripts, miRNAs, proteins/peptides, 
metabolites/lipids) that translate into the structure, function, and dynamics of an organism 
and/or whole organisms.

“One-size-fits-all” approach Traditional approach used for the development of early detection, intervention, and 
prevention options, where biomarker candidates are being validated against the plethora of 
heterogeneous clinical operationalized syndromes, rather than against genetically (risk 
profile) and biologically (i.e., based on molecular mechanisms and cellular pathways) 
determined entities.

Ontology Formal naming and designation of the types, properties, and interactions of the entities 
that really or fundamentally exist for a specific domain of discourse.

P4 (Predictive, Preventive, 
Personalized, and 
Participatory) Medicine

P4M Translational medicine component of the Precision Medicine paradigm. It is a clinical 
practice model aimed at applying knowledge, tools, and strategies of systems medicine. It 
involves generation, mining, and integration of enormous amounts of data on individual 
patients to produce predictive and “actionable” models of wellness and disease.

Personal Genomics Branch of genomics that provides support in predicting the likelihood that an individual 
will be affected by a disease. It helps personalize drug selection and treatment delivery to 
get the best care, thus playing a crucial role both in predictive and personalized medicine, 
according to the PM paradigm.

Personalized Medicine Component of the P4M aiming at tailoring treatment for individual patients in contrast 
with “one-size-fits-all” or traditional “magic bullet drug” approach.

Precision Medicine PM Translational science paradigm related to both health and disease. PM is a biomarker-
guided medicine on systems-levels taking into account methodological advancements and 
discoveries of the comprehensive pathophysiological profiles of complex polygenic, 
multi-factorial neurodegenerative diseases (proteinopathies of the brain). It aims at 
optimizing the effectiveness of disease prevention and therapy, by considering 
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Concept Abbreviation Definition

(customized) an individual’s specific “biological make-up” (e.g. genetic, biochemical, 
phenotypic, lifestyle, and psychosocial characteristics) for targeted interventions through 
P4M implementation.

Systems Biology SB Evolving hypothesis-free, exploratory, holistic (non-reductionistic), global, integrative, 
and interdisciplinary paradigm using advances in multimodal high-throughput 
technological platforms that enable the examination of networks of biological pathways 
where elevated amounts of structurally and functionally different molecules are 
simultaneously explored over time at a system level (i.e., at the level of cells, group of 
cells, tissues, organs, apparatuses, or even whole organisms).

Systems Medicine SM Holistic paradigm applying systems biology-based strategies to medical research. It aims 
at integrating a variety of considerable biomedical data at all levels of the cellular 
organization (by employing global, integrative, and statistical/mathematical/computational 
modeling) to explicate the pathophysiological mechanisms, prognosis, diagnosis, and 
treatment of diseases.

Systems Neurophysiology SN Paradigm aimed at studying the fundamental principles of integrated neural systems 
functioning by integrating and analyzing neural information recorded in multimodal 
fashion through computational modeling and combining data-mining methods. This 
paradigm may be used to decode the information contained in experimentally-recorded 
neural activity using analysis methods that are able to integrate the recordings of 
simultaneous, single-modality brain cell activity such as functional magnetic resonance 
imaging or electroencephalography to generate synergistic insight and possibly infer 
hidden neurophysiological variables. The ultimate goal of systems neurophysiology is to 
clarify how signals are represented within neocortical networks and the specific roles 
played by the multitude of different neuronal components.

Systems Pharmacology SP Science of advancing knowledge about drug action at the molecular, cellular, tissue, 
organ, organism, and population levels” (http://www.aaps.org/Systems_Pharmacology/).

Systems Theory ST Translational research theory of the Precision Medicine paradigm. It is an 
interdisciplinary conceptual framework allowing for the conceptualization of novel/
original models to extract and explicate all systems levels and different spatiotemporal 
data types of complex polygenic diseases.

Modified from [21].
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