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In recent years, extended ESBL and carbapenemase producing Gram negative bacteria

have becomewidespread in hospitals, community settings and the environment. This has

been triggered by the few therapeutic options left when infections with these multi-drug

resistant organisms occur. The emergence of resistance to colistin, the last therapeutic

option against carbapenem-resistant bacteria, worsened the situation. Recently, animals

were regarded as potent antimicrobial reservoir and a possible source of infection

to humans. Enteric Gram negative bacteria in animals can be easily transmitted to

humans by direct contact or indirectly through the handling and consumption of

undercooked/uncooked animal products. In the Mediterranean basin, little is known

about the current overall epidemiology of multi-drug resistant bacteria in livestock,

companion, and domestic animals. This review describes the current epidemiology

of ESBL, carbapenemase producers and colistin resistant bacteria of animal origin

in this region of the world. The CTX-M group 1 seems to prevail in animals in this

area, followed by SHV-12 and CTX-M group 9. The dissemination of carbapenemase

producers and colistin resistance remains low. Isolated multi-drug resistant bacteria

were often co-resistant to non-beta-lactam antibiotics, frequently used in veterinary

medicine as treatment, growth promoters, prophylaxis and in human medicine for

therapeutic purposes. Antibiotics used in veterinary medicine in this area include mainly

tetracycline, aminoglycosides, fluoroquinolones, and polymyxins. Indeed, it appears that

the emergence of ESBL and carbapenemase producers in animals is not related to the

use of beta-lactam antibiotics but is, rather, due to the co-selective pressure applied

by the over usage of non-beta-lactams. The level of antibiotic consumption in animals

should be, therefore, re-considered in the Mediterranean area especially in North Africa

and western Asia where no accurate data are available about the level of antibiotic

consumption in animals.
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BACKGROUND

Antimicrobial resistance is an emerging and rapidly evolving
phenomenon. This phenomenon is currently observed in all
bacterial species including clinically important Gram negative
bacilli (GNB) (Rubin and Pitout, 2014). Gram negative bacilli,
“enterobacteriaceae and non-fermenters” are normal inhabitants
of the human intestinal microflora (Vaishnavi, 2013); they are
responsible for the most common hospital and community
acquired infections. Antibiotic resistance in GNB is mediated by
target drug modification (Lambert, 2005), changes in bacterial
cell permeability (Delcour, 2009) and, most importantly, the
production of hydrolyzing enzymes, namely beta-lactamases.
The most common beta-lactamases which are now widespread
include the extended spectrum beta-lactamases (ESBL) (SHV,
TEM, OXA, and CTX-M types), AmpC beta-lactamases,
and carbapenemases (MBL, KPC, and class D oxacillinases)
(Giedraitiene et al., 2011; Poirel et al., 2011). These enzymes
provide the bacterium with resistance toward the majority of
therapeutic options available in the clinical market. Furthermore,
resistance determinants of these enzymes are often located on
plasmids carrying resistance genes to other non-beta-lactam
antibiotics, thus further limiting treatment options (Guerra et al.,
2014).

The emergence of colistin resistance in GNB is another

concern. Colistin belongs to the polymyxin group of polypeptide
antibiotics (Olaitan et al., 2014a). Previously abandoned due
to its nephrotoxicity and neurotoxicity, it is now in use once
again and is considered to be the last resort antimicrobial agent
against carbapenem resistant GNB (Kempf et al., 2013). Colistin
resistance can be mediated either by the acquisition of the
plasmid mediated “mcr” gene or by chromosomal mutations that
lead to modification of the lipid A moiety of lipopolysaccharide
(LPS), which is considered the primary target of colistin in Gram

negative bacilli (Baron et al., 2016).
It is currently known that, in addition to the human intestinal

microflora, resistant GNB can be found in water, soil, and fecal
animal matter (Verraes et al., 2013). In fact, there is increasing
evidence that animals constitute a potent reservoir of resistant
GNB (Ewers et al., 2012). This is mainly due to the over-
and misuse of antibiotics in veterinary medicine (Guerra et al.,
2014): antibiotics are not only prescribed for treatment but are
also administered for disease prevention and growth promotion
(Economou and Gousia, 2015). Although studies have shown
that the direct threat of resistant GNB to human health is still
controversial (Olsen et al., 2014), the wide dissemination of these
resistant organisms is worrying due to their ease of transmission
(Rolain, 2013) and their high potential contribution to the spread
of bacterial resistance across all ecosystems (Pomba et al., 2017).
In this review, we attempt to describe the epidemiology of
ESBL, AmpC and carbapenemase producing GNB of animal
origin in the Mediterranean region. Colistin resistance in
GNB in the same area is also described. The Mediterranean
basin is a region of the world that compromises a wide
diversity of populations. It includes five Asian countries (Cyprus,
Israel, Lebanon, Syria, and Turkey), eleven European countries
(Albania, Bosnia, Croatia, France, Greece, Herzegovina, Italy,

Monaco, Montenegro, Slovenia, and Spain) and five African
countries (Algeria, Egypt, Libya, Morocco, and Tunisia).

DISTRIBUTION OF ESBLS AND AMPC
PRODUCERS IN ANIMALS

Chicken and Food of Poultry Origin
Poultry production is a complex system in the food and
agricultural industry. It includes breeding chickens for meat
and eggs. Chickens are kept either as a “breeding flock” or
as a “broiler flock” for human consumption. Along with eggs,
broilers are traded and transported across different countries
around the world (Dierikx et al., 2013). This trade results in a
vulnerable system that can be hacked by multi-drug resistant
organisms (MDRO), i.e., once a MDRO is introduced into the
production chain, it can be transferred internationally. This is
why the dissemination of ESBL and AmpC-producing GNB,
recently extensively reported in chicken farms (Blaak et al.,
2015) is worrying, as these can contribute to not only local
but global dissemination of antimicrobial resistance (Dierikx
et al., 2013). Studies have shown that the carriage of ESBL
and AmpC producers in chicken is persistent (Huijbers et al.,
2016). ESBL and AmpC producers are isolated from grandparent
breeding stock (Nilsson et al., 2014), broiler chickens (Reich et al.,
2013), retail meat (Choi et al., 2015), and at the slaughterhouses
(Maciuca et al., 2015).

In the Mediterranean basin, the first detection of ESBL in
chicken dates back to 2000 in Greece, when a CTX-M-32
harboring Salmonella enterica was isolated from poultry end
products (Politi et al., 2005). Since then, many studies have
reported the emergence of ESBL in poultry in the Mediterranean
area. In Italy for instance, the first ESBL reported was a
case of SHV-12 detected in Salmonella spp (Chiaretto et al.,
2008). Salmonella infantis species harboring CTX-M-1 were
later isolated in 2011 from broiler chicken flocks. These strains
led to human infection in Italy in 2013–2014 (Franco et al.,
2015). In both studies, isolated strains were co-resistant to
non-beta-lactam antibiotics, notably nalidixic acid, sulfonamide,
trimethoprim, and tetracyclines. According to the European
Food Safety Authority and the European Center for Disease
Prevention and Control recent report, S. infantis is the fourth
most common serovar detected in humans in the European
Union and that is mostly being observed in the turkey and broiler
chain. In this report, it has been stated that this serovar has been
able to extensively disseminate along the broiler production chain
(EFSA, 2017). Indeed it has been suggested that the consumption
of contaminated chicken meat is among the most common
sources of salmonellosis in humans (Antunes et al., 2016).
Furthermore, in Italy, opportunistic pathogen such as Escherichia
coli isolates producing CTX-M-32, CTX-M-1, and SHV-12 type
beta-lactamases were also reported (Giufrè et al., 2012). These
strains were retrieved from flocks which had no prior treatment
with cephalosporins. It is proposed that the prescription of other
antimicrobials such as enrofloxacin and tylosin is responsible
for the co-selection of the aforementioned resistant organisms
(Bortolaia et al., 2010). Reports on chicken feces (Giufrè
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et al., 2012), broiler chicken samples, and retail chicken meat
(Ghodousi et al., 2016) showed that these latter carried E. coli
producing CTX-M-grp-1, CTX-M-grp-2, and CTX-M-grp-9
enzymes in Italy. The co-existence of these enzymes with AmpC
beta-lactamases was also reported, including CTX-M-1/CMY-
2 (Accogli et al., 2013) and CIT-like/CTX-M (Ghodousi et al.,
2015) in E. coli of poultry origin. CTX-M and AmpC beta-
lactamase producers in the Italian poultry belong mostly to
the A and B phylogroups with the genes being carried mainly
on IncI1 plasmids. In France, the only report from poultry
was the detection of two CTX-M-1-producing E. coli isolates
(Meunier et al., 2006). CTX-M-1 was linked to the insertion
sequence ISEcp1 (Meunier et al., 2006). This insertion sequence
has been previously described as being a potent contributor to the
mobilization and insertion of blaCTX-M genes (El Salabi et al.,
2013). Although no studies described the emergence of ESBL in
the Slovenian animal sector, one study reported the presence of
CTX-M-1 and SHV-12-producing in Slovenian raw chickenmeat
samples sold on the Swiss market (Zogg et al., 2016).

In Spain, the Spanish Veterinary Antimicrobial Resistance
Surveillance Network (VAV) monitored antimicrobial resistance
of Salmonella enterica in healthy broilers in 2003–2004: two
CTX-M-9 producers were isolated (Riaño et al., 2006). During
the same period, ESBL-producing E. coli were also detected
(Mesa et al., 2006; Moreno et al., 2007). Indeed, it seems
that early monitoring systems often targeted resistance in
Salmonella species, as these are common causative agents of
human infections of food of animal origin (Antunes et al., 2016).
Thereafter, as bacterial resistance became widely disseminated
in all environments (Stoll et al., 2012), researchers began to
think of poultry as a reservoir of resistance in enteric organisms.
For instance, Egea et al. found that the prevalence of retail
poultry meat colonized by CTX-M and/or SHV producing
E. coli increased from 62.5% in 2007 to 93.3% in 2010 (Egea
et al., 2012). During these three years, a significant increase
was observed at the level of A0 and D1 phylogroups. Egea
et al. suggested that the rise of meat colonization is muli-
clonal since only 2 strains from the main phylogroup detected
in this study showed genetic relatedness by PFGE typing.
Thus, it appears that the diffusion of ESBL producers in retail
chicken meat is related rather to successful spread of one or
several plasmids carrying the blaCTX-M and blaSHV genes
(Egea et al., 2012). Apart from E. coli, ESBL production in
the poultry production system in Spain was also detected in
Klebsiella pneumoniae, Enterobacter cloacae, Proteus mirabilis,
and Serratia fonticola (Ojer-Usoz et al., 2013). In parallel, CMY-
2 is the only AmpC beta-lactamase type reported in E. coli
originating from chicken in this country (Blanc et al., 2006;
Cortés et al., 2010; Solà-Ginés et al., 2015b). Apart from chicken,
one study in Spain reported the detection of CTX-M-1, CTX-
M-9, CTX-M-14 harboring E. coli strains in flies surrounding
chicken farms (Solà-Ginés et al., 2015a). For instance, the
detection of ESBL producers in flies reflects on one side the
contamination status of the farm housing environment; and
on the other side, it contributes to the colonization of other
broilers with ESBL producing E. coli strains (Solà-Ginés et al.,
2015a).

In Turkey, the first ESBL production in animals was
detected in K. pneumoniae and Klebsiella oxytoca in 2007–
2008 (Gundogan et al., 2011). In 2012–2014, E. coli producing
CTX-M-1, CTX-M-3, CTX-M-15, CTX-M-8 as well as SHV-
5 and SHV-12 were identified in raw chicken meat samples
in different areas across the country (Perrin-Guyomard et al.,
2016)-(Tekiner and Ozpinar, 2016). The A, D1 and D2
were the most common phylogroups detected. In the same
aforementioned study, ESBL was also detected in E. cloacae,
Citrobacter werkmanii, and K. pneumoniae (CTX-M-1) (Tekiner
and Ozpinar, 2016). Similarly, CMY-2 type beta-lactamase was
detected in E. coli (Pehlivanlar Onen et al., 2015) as well as
in E. cloacae (Tekiner and Ozpinar, 2016). In Lebanon, CTX-
M type beta-lactamase followed by CMY AmpC beta-lactamase
appear to dominate the Lebanese chicken farms (Dandachi et al.,
2018b). MLST typing of CTX-M positive E. coli strains revealed
the presence of different sequence types across the territory.
Furthermore, a significant resistance of ESBL producers toward
gentamicin was observed. The spread of ESBL producers in
Lebanon could be attributed in part to the co-selective pressure
applied by the heavy usage of gentamicin in the veterinary sector
as previously reported (Dandachi et al., 2018b). In Israel, only one
study showed the presence of CTX-M-producing E. coli of A, B,
and D phylogroups in liver samples of dead broiler chickens and
ready-to-market chicken meat (Qabajah et al., 2014).

Concerning Africa, ESBL was first detected in E. coli strains
isolated from foods of poultry origin in Tunisia in 2006. These
harbored SHV-5, CTX-M-8, CTX-M-14, and CTX-M-1 type
beta-lactamases (Jouini et al., 2007). It appears that in this
country, blaCTX-M-1 and blaCMY-2 are the dominant genes
responsible for ESBL and AmpC production in E. coli isolated
from chicken samples (Ben Slama et al., 2010; Ben Sallem
et al., 2012). This is in addition to blaCTX-M-15, blaCTX-M-
14 (Maamar et al., 2016), and blaCTX-M-9 that were detected
in E. coli isolated from the fecal samples of dead/diseased
chickens (Grami et al., 2014). ESBL genes in Tunisia appear
to be located on various plasmids carried by different E. coli
phylogroups. These include mainly IncI1 followed by IncF and
IncFIB (Table 2). blaCTX-M as well as CMYgenes in Tunisia
were found to be also associated to the ISEcp1 insertion sequence.
Furthermore, apart from the CMY gene, AmpC production in
E. coli strains in this country was found to be also mediated via
mutations in the promoter region of the chromosomal AmpC
gene (Ben Slama et al., 2010). In Algeria, CTX-M-like enzymes
were detected in E. coli (Mezhoud et al., 2015; Chabou et al., 2017)
as well as in other species such as ST15 Salmonella Heidelberg
(Djeffal et al., 2017). In their study, Djeffal et al. reported the
detection of the same sequence type “ST15” of Salmonella spp
isolated from both chicken and human. This emphasizes on the
hypothesis that the poultry production system could constitute
a potent contributor to the diffusion of multi-drug resistant
Salmonella in the human population (Djeffal et al., 2017). In
parallel, blaSHV-12 and CMY-2 genes were detected in E. coli
strains recovered from slaughtered broilers’ intestinal swabs
(Belmahdi et al., 2016).

In Egypt, E. coli producing CTX-M-15 and CMY-2 were
initially reported from blood samples from the hearts of
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septicemic broilers in 2011 (Ahmed and Shimamoto, 2013).
CTX-M-15 and CTX-M-14 were further detected in E. coli,
K. pneumoniae, K. oxytoca, and Enterobacter spp isolated from
chicken carcasses in the north of Egypt (Abdallah et al., 2015;
Ahmed and Shimamoto, 2015). E. coli isolates harboring SHV-12
have also been reported in Egypt; although they originated from
liver and heart samples of chickens affected with colibacillosis
(El-Shazly et al., 2017; Figure 1). Similarly to other countries
in the Mediterranean basin, ESBL producers in the Egyptian
poultry sector belong mainly to the A and B1 phylogroups
with the blaCTX-M genes being associated with ISEcp1
(Table 2).

Cattle and Sheep
Cattle and sheep are essential members of the human food and
agricultural system. For humans, cattle and sheep serve as a
source of meat and milk. In agriculture, their feces are commonly
used as manure for artificial fertilization (Nyberg et al., 2014). As
it is now widely recognized that animals’ intestines are a normal
habitat for wild type and resistant micro-organisms (Nelson
et al., 2013), it has been suggested that if resistant bacteria
contaminated animal manures are used without prior treatment,
there is a potential risk of transmitting this resistance to the
surrounding environment and to the human population (Hruby
et al., 2016). This transmission may occur through irrigation and

drinking water without treatment (Hruby et al., 2016) or through
animals grazing on contaminated lands (Bagge et al., 2009).

In France, the first identification of an ESBL producer in cattle
dates back to 2004 when E. coli strains harboring CTX-M-1 and
CTX-M-15 were isolated from cows (Meunier et al., 2006). E. coli
producing the CTX-M-15 type ESBL were later isolated from
the fecal sample of a dead calf (Valat et al., 2012) and from the
feces of cattle located in 10 different geographical areas in France
(Madec et al., 2012). In the aforementioned study, CTX-M-15
was carried on IncI1 plasmids but also on F31:A4:B1/IncFII and
F2:A–:B–/IncFII plasmids which has been extensively reported
in humans (Madec et al., 2012). Although CTX-M-15 appears
to be dominant in French cattle, other ESBL types were also
reported in E. coli (Hartmann et al., 2012) and Klebsiella species
(Dahmen et al., 2013b; Haenni et al., 2014a) such as CTX-M-
1, CTX-M-14, CTX-M-9, CTX-M-2, CTX-M-32, CTX-M-57,
CTX-M-3 (Dahmen et al., 2013b; Haenni et al., 2014a), and
TEM-71(Hartmann et al., 2012). These latter were carried by
E. coli strains of different sequence types such as ST23, ST58,
ST10, ST45, ST88, ST2210, ST2212-ST2215, ST2497, and ST2498
(Table 1); no epidemic clones such as ST101 were detected.
Moreover, two studies in France detected AmpC-producing
E. coli in calves. In both, AmpC beta-lactamase production was
suggested as being due to highly conserved mutations in the
promotor/attenuator region and to an over-expression of the

FIGURE 1 | Geographical distribution of ESBLs and their correspondent animal hosts in the Mediterranean Basin. N.B: only SHV and TEM genes confirmed by

sequencing as ESBL were included.
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TABLE 1 | Non Beta-lactam resistance in MDR of animal origin vs. antibiotic consumption in the Mediterranean Basin.

Country Animal host Species (number) blagene Type

(number)

Non beta-lactam

Resistance

Antibiotic usage References

Algeria Poultry E. coli (17) CTX-M (17) CMX,NAL,SXT Unknown Mezhoud et al., 2015

Poultry E. coli (16) CTX-M (2), SHV (14),

CMY (4)

AMK, CIP, KAN, NAL, STR,

TOB

Belmahdi et al., 2016

Poultry Salmonella spp (11) CTX-M (11) CIP Djeffal et al., 2017

Cattle A. baumannii (1) NDM (1) CIP Chaalal et al., 2016;

Yaici et al., 2016

Cattle E. coli (4) NDM (4), CTX-M (4),

CMY (4),

Yaici et al., 2016

Birds E. coli (11) CTX-M (11) CIP, NAL, NEO SXT, TET, Meguenni et al., 2015

Birds A. baumannii (4) OXA (4) Morakchi et al., 2017

Dogs E. coli (1) NDM (1) FLU, TET Yousfi et al., 2015

Dogs E. coli (15) CTX-M (13), SHV (3) CIP, GEN, NAL, SUL, SXT,

TET, TMP, TOB

Yousfi et al., 2016b

Dogs E. coli (3) CTX-M (1), CMY (1),

NDM (1), OXA-48 (2)

GEN, CIP, NAL, SXT, TEM,

TOB,

Yousfi et al., 2016a

Cats E. coli (2) CMY (1), OXA-48 (2) CIP, GEN, NAL, SXT, TEM,

TOB

Yousfi et al., 2016a

Cats E. coli (5) CTX-M (5) CIP, NAL, SUL, SXT, TET,

TMP, TOB

Yousfi et al., 2016b

Fish E. coli (22) CTX-M (16), TEM (6) AMK, CIP, CMX, GEN, KAN,

NAL, NET, OFX

Brahmi et al., 2016

Fish A. baumannii (2) OXA-23 (2) CIP, GEN, KAN, SXT Brahmi et al., 2016

Macaques K. pneumoniae (7) CTX-M (7) CIP, FOS, GEN, SXT Bachiri et al., 2017

Wild Boars E. coli (30) CTX-M (30) AMK, CIP, FOS, GEN, SXT,

TET

Bachiri et al., 2017

K. pneumoniae (10) CTX-M (10)

Tunisia Poultry E. coli (13) CTX-M (12), CMY (1) CIP, CHL, GEN, NAL, SXT,

SUL, STR, TET

Streptomycin, Tetracycline,

Sulphonamides,

Trimethoprim

Ben Slama et al., 2010;

Ben Sallem et al., 2012

Poultry E. coli (67) CTX-M (42), CMY (24) AMK, GEN, NAL, NOR,

SXT, TET

Mnif et al., 2012

Poultry E. coli (16) CTX-M (16) NAL, SXT, STR, SUL, TET Kilani et al., 2015

Poultry E. coli (7) CTX-M (7) NAL, STR, TET, SUL, TMP Grami et al., 2013

Poultry E. coli (10) CTX-M (8), TEM (1),

CMY (2)

NAL, SXT, SUL, TET, STR Ben Sallem et al., 2012

Poultry E. coli (48) CTX-M (35), CMY (13) AMK, CIP, GEN, MIN, NAL,

SXT, TET

Maamar et al., 2016

Poultry E. coli (5) CTX-M (4), SHV (1) Jouini et al., 2013

Cattle E. coli (1) CTX-M (1) GEN, TOB, TET Grami et al., 2014

Beef E. coli (1) CTX-M (1) CIP, NAL, SXT, SUL, TET Ben Slama et al., 2010

Beef E. coli (5) CTX-M (5) CHL, GEN, STR, SUL, SXT,

TET, TOB

Jouini et al., 2013

Sheep E. coli (3) CTX-M (5), TEM (1) CIP, GEN, NAL, SXT, SUL,

STR, TET

Ben Slama et al., 2010

Dogs E. coli (6) CTX-M (6) CHL, ENR. GEN, KAN,

NAL, NET, SUL, STR, TET,

TMP, TOB

Grami et al., 2013

Dogs E. coli (6) CTX-M (5), CMY (1) CIP, NAL, SXT, STR, SUL,

TET

Sallem et al., 2013

Cats E. coli (1) CTX-M (1) NAL, STR, SUL, TET, TMP, Grami et al., 2013

Cats E. coli (8) CTX-M (8) CIP, KAN, NAL, STR, SXT,

SUL, TET

Sallem et al., 2013

Dromedaries E. coli (1) CTX-M (1) SUL, TET Ben Sallem et al., 2012

(Continued)
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TABLE 1 | Continued

Country Animal host Species (number) blagene Type

(number)

Non beta-lactam

Resistance

Antibiotic usage References

Egypt Poultry E. coli (18) CTX-M (7), CMY (11) CHL, CIP, KAN, NAL, SPX,

STR, SXT, TET

Fluoroquinolones,

Tetracyclines,

Aminoglycosides,

Cefotaxime

Ahmed and

Shimamoto, 2013;

Dahshan et al., 2015

Poultry E. coli (9) CTX-M (2), SHV (1),

TEM (1), CMY (1)

CIP, CMX, DOX, GEN, STR El-Shazly et al., 2017

Poultry K. pneumoniae (15) NDM (15), KPC (14),

OXA (12)

- Hamza et al., 2016

Poultry K. pneumoniae (11) ,

K. oxytoca (1)

NDM (12) Abdallah et al., 2015

E. coli (8) CTX-M (8)

K. pneumoniae (40) CTX-M (40)

K. oxytoca (2) CTX-M (2)

Enterobacter spp (9) CTX-M (9)

Cattle E. coli (112) CTX-M (106), OXA (6) FOS, FLU, CMX, CHL, MLS,

TET,

Tetracycline, quinolones Braun et al., 2016

Cattle E. coli (8) CTX-M (2), SHV (5),

CMY (1)

NAL, SXT, STR, TET Ahmed et al., 2009

Beef E. coli (4) CTX-M (1), SHV (1),

CMY (2)

CHL, CIP, GEN, KAN, NAL,

SPX, STR, SXT, TET

Fluoroquinolones Ahmed and

Shimamoto, 2015

Cats E. coli (5) CTX-M (5) Abdel-Moein and

Samir, 2014

Dogs E. coli (11) CTX-M (11) Abdel-Moein and

Samir, 2014

K. pneumoniae (3) CTX-M (3)

P. mirabilis (1) CTX-M (1)

Palestine Cattle E. coli (287) CTX-M (287) SXT, STR, TET Chlortetracycline,

doxycycline,

Norfloxacin, Cephalexin,

Ceftiofur,

Sulfa agents, Gentamicin,

Monensin

Adler et al., 2015

K. pneumoniae (4) SHV (4) CHL, CIP, GEN

Poultry E. coli (9) CTX-M (9) Qabajah et al., 2014

Lebanon Poultry E. coli (217),

K. pneumoniae (8),

P. mirabilis (3),

E. albertii (2),

E. fergusonii (1),

E. cloacae (3),

CTX-M, CMY CIP, GEN, SXT Gentamicin, Tetracyclines Dandachi et al., 2018a

Cattle E. coli (27) CTX-M (27) CHL, ENR, GEN, KAN,

NAL, STR, SUL, TET, TMP

Penicillin G - Streptomycin,

Ampicillin,

Amoxicillin Oxytetracycline,

Gentamicin,

Gundogan et al., 2011;

Diab et al., 2016

Fowl A. baumannii (1) OXA-48 (1) AMK, GEN, TOB Unknown Al Bayssari et al.,

2015b

Horse A. baumannii (1) OXA-143 (1) Rafei et al., 2015

Rabbit A. pitii (1) OXA-24 (1)

Turkey Poultry CTX-M (60), SHV (4),

CMY (18)

CHL, KAN, NAL, STR, SUL,

TET, TMP

Tetracycline, Quinolones Politi et al., 2005;

Pehlivanlar Onen et al.,

2015

Cattle E. coli (3) CTX-M (2), CMY (1) NAL, SXT, STR, TET
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Country Animal host Species (number) blagene Type

(number)

Non beta-lactam

Resistance

Antibiotic usage References

Poultry E. coli (15) CTX-M (15) Tekiner and Ozpinar,

2016

Cattle E. coli (19) CTX-M (19)

Croatia Mussel Aeromonas. Caviae

(25)

CTX-M (11), SHV (11),

FOX (3)

Tetracycline, Amphenicol,

Penicillins,

Sulfonamides,

Trimethoprim,

Fluoroquinolones,

Aminoglycosides,

Polymixins

Maravić et al., 2013;

EMA/ESVAC, 2014

A. Hydrophila (8) CTX-M (8), SHV (2)

Greece Poultry Salmonella enteric (2) CTX-M (2) CHL, KAN, STR, SUL, TMP,

TET

Unknown Politi et al., 2005

Dogs E. coli (8) CMY (8) FLU Vingopoulou et al.,

2014

Slovenia Poultry E. coli (6) CTX-M (2), SHV (4) GEN, NAL, STR, SUL Ceftiofur Chiaretto et al., 2008

Italy Poultry,

Cattle, Swine

Tetracyclines, Amphenicol,

Penicillins,

3rd/4th Cephalosporins,

Sulfonamides,

Trimethoprim, Macrolides,

Lincosamides,

Fluoroquinolones,

Aminoglycosides,

Polymixins, Pleuromutilins,

Tylosin, Flumequine,

Poultry E. coli (8) CTX-M (7), SHV (1), CIP Giufrè et al., 2012

Poultry E. coli (60) CTX-M (45), CIT-like

(15)

CIP, GEN, SXT, TET Ghodousi et al., 2015

Poultry E. coli (67) CTX-M (24), SHV (43) CIP, NAL, SUL, TMP, TET Bortolaia et al., 2010

Poultry Salmonella spp (12) SHV (12) GENT, NAL, SUL, STR, TET Chiaretto et al., 2008

Poultry Salmonella infantis (30) CTX-M (30) CIP, NAL, SUL, TMP, TET Franco et al., 2015

Swine Salmonella infantis (2) CTX-M (2)

Cattle K. ozaenae (5) CTX-M (5), TEM (1) Stefani et al., 2014

Swine E. coli (15) CTX-M (10), TEM (7)

Dogs K. oxytoca (2) SHV (2), DHA (2) CIP, GEN, KAN, STR, SUL,

TET, TMP

Donati et al., 2014

K. pneumoniae (11) CTX-M (11), SHV (5),

DHA (1)

CIP, GEN, KAN, NAL, TET,

TMP

Dogs K. pneumoniae (1) CTX-M (1), SHV (1) CIP, LEV Bogaerts et al., 2015

E. coli (1) CMY (1) CIP, LEV

Cats K. oxytoca (2) CTX-M (2) CIP, SUL, TMP, TET Donati et al., 2014

K. pneumoniae (4) CTX-M (2), SHV (2),

DHA (1), CMY (1)

CIP, KAN, NAL, SUL, TET,

TMP

Cats E. coli (7) CTX-M (7), CMY (2) CHL, ENR, GEN, NAL, NIT,

SPX, STR, SUL, TET, TMP.

Nebbia et al., 2014

France Poultry,

Cattle, Swine

Tetracycline, Amphenicol,

Penicillins,

1st/2nd/3rd/4th

Cephalosporins,

Sulfonamides,

Trimethoprim, Macrolides,

Lincosamides,

Fluoroquinolones,

Aminoglycosides,

Polymixins, Pleuromutilins

EMA/ESVAC, 2014
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Frontiers in Microbiology | www.frontiersin.org 7 September 2018 | Volume 9 | Article 2299

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dandachi et al. Multi-Drug Resistance in Animals of the Mediterranean

TABLE 1 | Continued

Country Animal host Species (number) blagene Type

(number)

Non beta-lactam
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Cattle E. coli (26) CTX-M (21), TEM (5) CHL, GENT, SXT Hartmann et al., 2012

Cattle E. coli (3) CTX-M (3) CHL, ENR, FFC, GEN, KAN,

NAL, STR, SUL, TET, TMP

Meunier et al., 2006

Cattle A. baumannii (9) OXA-23 (9) FOS, KAN, TET Poirel et al., 2012

Cattle E. coli (9) CTX-M (9) CHL, ENR, GEN, KAN,

NAL, NET, OFX, STR, SUL,

TET, TOB, TMP

Madec et al., 2012

Cattle E. coli (5) CTX-M (5) APR, CHL, ENR, GEN,

KAN, NAL, NET, OFX, STR,

SUL, TET, TOB, TMP

Dahmen et al., 2013b

K. pneumoniae (1) CTX-M (1)

Sheep K. pneumoniae (3) CTX-M (3), DHA (3) NAL, SUL, SXT, TET Poirel et al., 2013

E. fergusonii CTX-M (1)

Veal calves E. coli (147) CTX-M (147) APR, CHL, ENR, FFC, GEN,

KAN, NAL, NET, SUL, STR,

TET, TOB, TMP

Haenni et al., 2014a

K. pneumoniae (3) CTX-M (2), SHV (1) FLU, SUL, STR, TET, TMP

Swine E. coli (3) CTX-M (3) CHL, NAL, STR, SUL, TET,

TMP

Meunier et al., 2006

Dog E. cloacae (11) CTX-M (10), SHV (1) FLU, GEN, KAN, QUI, TET,

SUL, STR, TMP

Haenni et al., 2016c

Dog E. coli (47) CTX-M (47), CMY (24) CHL, GEN, KAN, STR, TOB

ENR, FFC, NAL, NET, OFX,

SUL, TET, TMP

Haenni et al., 2014a

Dog E. coli (9) CTX-M (8), TEM (1) GEN, SUL, TET Poirel et al., 2013

K. pneumoniae (8) CTX-M (8), DHA (1) GEN, NAL, SUL, SXT, TET

K. oxytoca (2) CTX-M (2)

Dog P. mirabilis (14) CTX-M (1), CMY (7),

DHA (2), VEB (6)

APR, CHL, ENR, GEN,

KAN, NAL, NET, STR, SUL,

TOB, TMP

Schultz et al., 2017

Dog A. baumannii (2) OXA-23 (2) CIP, SXT Hérivaux et al., 2016

Dog E. coli (3) CMY (2), OXA-48 (1) GEN, NAL Melo et al., 2017

Cat A. baumannii (1) OXA-23 (1) GEN, NAL, SUL, STR, TET Ewers et al., 2016

Cat K. pneumoniae (3) CTX-M (3), DHA (3) NAL, SUL, SXT, TET Unknown Poirel et al., 2013

E. coli (3) CTX-M (3) GEN, SUL, TET Unknown

Cat P. mirabilis (1) CMY (1) ENR, NAL, SUL, TMP Schultz et al., 2017

P. rettgeri (1) CTX-M (1) ENR, NAL, SUL, TMP

Cat E. coli (2) CTX-M (2) STR, TMP Melo et al., 2017

Cat E. cloacae (11) CTX-M (10), SHV (1) FLU, GEN, KAN, QUI, SUL,

STR, TET, TMP

Haenni et al., 2016c

Companions E. coli (19) CTX-M (19) CIP, NAL, SUL, STR, TET Dahmen et al., 2013a

Hedgehog E. coli (1) CTX-M (1), DHA (1) NAL, SUL, SXT, TET Unknown Poirel et al., 2013

Tawny Owl E. coli (1) CTX-M (1)

Domestic

goose

E. coli (1) CTX-M (1)

Rock Pigeon E. coli (1) CTX-M (1)

Horse E. cloacae (14) CTX-M (8), SHV (6) FLU, GEN, KAN, QUI, SUL,

STR, TET, TMP

Haenni et al., 2016c

Horse P. mirabilis (14) VEB (2) ENR, CHL, KAN, NAL, NET,

SUL, STR, TOB, TMP

Unknown Schultz et al., 2017
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Country Animal host Species (number) blagene Type

(number)

Non beta-lactam

Resistance

Antibiotic usage References

Spain Poultry,

Cattle, Swine

Tetracycline, Amphenicol,

Penicillins, 3rd/4th

Cephalosporins,

Sulfonamides,

Trimethoprim, Macrolides,

Lincosamides,

Fluoroquinolones,

Quinolones,

Aminoglycosides,

Polymixins, Pleuromutilins

Abreu et al., 2014;

EMA/ESVAC, 2014

Poultry E. coli (64) CTX-M (44), SHV (6),

TEM (2), CMY (13)

CHL, CIP, FUR, GEN, KAN,

NAL, SUL, SXT, TET, TOB,

TMP

Blanc et al., 2006

Poultry S. enterica (2) CTX-M (1), SHV (1) NAL, SXT, STR, SUL, TET, Riaño et al., 2006

Poultry E. coli (116) CTX-M (116) CIP, NAL, SXT Abreu et al., 2014

Poultry E. coli (11) CTX-M (6), SHV (2),

CMY (2)

CHL, CIP, FFC, GEN, KAN,

NAL, STR, SUL, TET, TMP

Solà-Ginés et al.,

2015b

Poultry E. coli (50) CTX-M (40), CMY (10) NAL Cortés et al., 2010

Poultry E. coli (62) CTX-M (20), SHV (42) CIP, NAL Egea et al., 2012

Swine E. coli (20) CTX-M (20) Solà-Ginés et al.,

2015b

Swine S. enteric (1) SHV (1) SUL, STR, TET Riaño et al., 2006

Swine E. coli (39) CTX-M (27), SHV(12) CIP, CHL, FUR, GEN, KAN,

NAL, SUL, SXT, TET, TMP,

TOB

Blanc et al., 2006

Swine E. coli (20) CTX-M (8), SHV (12) APR, CIP, GEN, NAL, STR,

SUL, TET, TMP

Escudero et al., 2010

Dog E. coli (1) SHV (1) CHL, CIP, NAL, SUL, TET,

TMP

Teshager et al., 2000

Dog E. coli (1) CMY (1) Bogaerts et al., 2015

P. mirabilis (2) CMY (2) DOX, MIN

Dog K. pneumoniae (2) CTX-M (1), VIM (1),

DHA (1)

González-Torralba

et al., 2016

E. cloacae (1) SHV (1)

Deer E. coli (1) CTX-M (1) CIP, CHL, NAL, SXT, TET Unknown Alonso et al., 2016

Rabbit E. coli (1) CMY (1) Unknown Blanc et al., 2006

E. cloacae (3) CTX-M (3)

*APR, refers to apramycin; AMK, amikacin; CIP, ciprofloxacin; CHL, chloramphenicol; CMX, co-trimoxazole; DOX, doxycycline; ENR, enrofloxacin; FFC, florfenicole; FLU, fluoroquinolones;

FOS, fosfomycin; FUR, furazolidone; GEN, gentamicin; KAN, kanamycin; LEV, levofloxacin; MIN, minocycline; MLS, Macrolides; NAL, nalidixic acid; NET, netilmicin; NIT, nitrofurantoin;

NOR, norfloxacin; OFX, oxofloxacin; QUI, quinolones; SPX, spectinomycin; SXT, trimethoprim-sulfamethoxazole; TEM, temocillin; TET, tetracycline; TMP, trimethoprim; TOB, tobramycin.

chromosomal AmpC gene, respectively (Haenni et al., 2014a,c).
In sheep, only one study was conducted in France in which one
CTX-M-1 E. fergusonii and three K. pneumonia harboring both
blaCTX-M-15 and DHA genes were detected (Poirel et al., 2013).
The three K. pneumoniae were co-resistant to nalidixic acid,
sulfonamides, trimethoprim-sulfamethoxazole and tetracycline
and belonged to the same sequence type ST274. In Spain, ESBL-
producing Gram-negative bacilli were isolated from beef samples
collected from different geographical locations (Doi et al., 2010;
Ojer-Usoz et al., 2013). In Italy, Stefani et al. reported the isolation
of five Klebsiella ozaenae harboring CTX-M-1, CTX-M-1/TEM-
24 and CTX-M-15 ESBL types from cattle (Stefani et al., 2014).

In Turkey, a study conducted in 2007–2008, showed the
presence of ESBL-producing K. pneumoniae and K. oxytoca in

raw calf meat (Gundogan et al., 2011). Later on, CTX-M-3 and
CTX-M-15 harboring E. coliwere isolated from beef samples sold
in a market in the south of Turkey (Conen et al., 2015). Recently,
a study conducted by Tekiner et al. reported the isolation of
ESBL-producing E. coli, E. cloacae, and Citrobacter brakii from
raw cows’ milk collected from different cities of Turkey. In these
areas, CTX-M-1 was dominant (Tekiner and Ozpinar, 2016). In
Lebanon the situation differs, in that unlike Turkey but similarly
to other Mediterranean countries, blaCTX-M-15, blaSHV-12,
and blaCTX-M-14 are the dominant ESBL genes prevailing in
E. coli in the Lebanese cattle (Diab et al., 2016). In this latter
study, various sequence types were detected. Of special interest is
the detection of ST10. ST10 was heavily reported in the literature
as being shared between animal and human isolates all over
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the world: Chile (Hernandez et al., 2013), Denmark (Huijbers
et al., 2014), Vietnam (Nguyen et al., 2015), Germany (Belmar
Campos et al., 2014). Indeed, it has been suggested that ST10
became associated with the production and dissemination not
only of CTX-M-type ESBLs but also ofmcr-1 in animals, humans
and environment (Monte et al., 2017). In Israel, Adler et al.
reported the identification of CTX-M-1/CTX-M-9 and SHV-
12 beta-lactamase producing E. coli and K. pneumoniae strains
respectively, which were isolated from cattle farms situated in the
main farming locations across the country (Adler et al., 2015).

In Egypt, SHV-12 (Ahmed et al., 2009) in addition to CTX-M-
1/15 and CTX-M-9 were detected in E. coli strains isolated from
cattle (Braun et al., 2016). On study targeting raw milk samples
reported the detection of SHV-12 /CTX-M-3, in addition to
CMY-2-producing E. coli strains (Ahmed and Shimamoto, 2015).
In Tunisia, E. coli strains producing CTX-M-1 and TEM-20 were
isolated from beef and sheep situated in different areas across the
country (Jouini et al., 2007; Ben Slama et al., 2010). Furthermore,
blaCTX-M-15 was detected in an ST10 E. coli isolate recovered
from the milk sample of cattle affected with mastitis (Grami et al.,
2014). Similarly, In Algeria, Yaici et al. reported the detection of
four ST1284 E. coli strains carrying CTX-M-15, CMY-42, and
NDM-5 in raw milk samples (Yaici et al., 2016).

Swine
Meat from pigs is used by humans for consumption and their
feces are used asmanure for land fertilization. Studies have shown
that antibiotics are usually detected in higher concentrations in
pig manures compared to that of other farm animals (Hou et al.,
2015). This finding reflects high and uncontrolled antimicrobial
usage in swine farms (Woolhouse et al., 2015). Heavy antibiotic
usage creates a selective pressure that contributes to the
emergence and spread of bacterial resistance; in this regard, pigs
are suggested as a potential source of resistant bacteria.

Reports concerning the prevalence of ESBL of swine origin in
the Mediterranean area are very scarce with the majority being
reported from Spain where a blaSHV-12 positive Salmonella
enterica was isolated in the early 2000s (Riaño et al., 2006).
Furthermore, CTX-M-grp-9 (Doi et al., 2010; Ojer-Usoz et al.,
2013), SHV-5 and CTX-M-grp-1 carried by A phylogroup E. coli
strains and SHV-12 carried by B1 E. coli and blaSHV-5 were
detected (Blanc et al., 2006; Cortés et al., 2010). One study
conducted in 13 different Spanish provinces found seven AmpC-
producing E. coli. In these cases, AmpC production was due to
a mutation in the promoter region of the chromosomal AmpC
gene (Escudero et al., 2010). In Italy, TEM-52, CTX-M-1, CTX-
M-15, and CTX-M-1/TEM-201 carrying E. coli were reported in
pigs (Stefani et al., 2014). Franco et al. reported also the presence
of Salmonella infantis carrying CTX-M-1 in swine (Franco et al.,
2015). In France, only one study conducted at the beginning of
the Twenty-first century reported the detection of CTX-M-1-
producing E. coli strains in pigs (Meunier et al., 2006). Similarly
to what is widely observed in the Mediterranean basin, the CTX-
M-1 was associated with the insertion sequence ISEcp1(Meunier
et al., 2006). In Algeria, CTX-M-15 harboring E. coli and
K. pneumoniae strains were isolated in 2014 from wild boars
(Bachiri et al., 2017). MLST typing showed the K. pneumoniae

belongs to the ST584 while on the other hand several sequence
types (ST617, ST131, ST648, ST405, ST1431, ST1421, ST69,
ST226) were observed among E. coli strains (Bachiri et al., 2017).
The aforementioned study was the only one to investigate the
epidemiology of ESBL-producing Gram-negative bacilli in the
African and Asian countries lining the Mediterranean Sea.

Companion Animals
Unlike food producing animals, companion animals are not used
as consumption source of human food, nor are their feces used
as manure for land fertilization. Instead, these animals are kept
for the individual’s protection, entertainment and company. The
number of companion animals has significantly increased in
modern society in recent decades (Pomba et al., 2017). Despite
regular close contact with people, little attention has been given to
the prevalence of antimicrobial resistance in these animals (Scott
Weese, 2008). The close contact between companion animals
such as dogs, cats, and horses and their owners makes the
transmission of resistant organisms more likely to occur (Dierikx
et al., 2012). As such, it is essential to investigate the prevalence of
resistant bacteria in companion animals as well as to identify the
possible risk factors for the transmission of resistant organisms to
humans (Rubin and Pitout, 2014).

In the Mediterranean basin, the first detection of ESBL in
companion animals was in Spain where an E. coli harboring
SHV-12 was isolated from a dog with a urinary tract infection
(Teshager et al., 2000). Subsequently, between 2008 and 2010,
three strains carrying CMY-2 (one ST2171 E. coli and two
P. mirabilis) were recovered from dogs infected with respiratory,
urinary tract and skin and soft tissue infections, respectively
(Bogaerts et al., 2015). In all three strains, the CMY-2 genes were
associated with the ISEcp1. More recently, one K. pneumoniae
and one E. cloacae producing CTX-M-15/DHA and SHV-12,
respectively, were isolated from the fecal swabs of healthy dogs
in this same country (González-Torralba et al., 2016).

In Italy, a study conducted by Donati et al. on 1,555
dog samples of clinical cases and necropsy specimens with
suspicious bacterial infections, between the center and the north
of Italy found two K. oxytoca harboring SHV-12/DHA-1 and
11 K. pneumoniae carrying the following genes: blaCTX-M-
15 (six strains), blaCTX-M-15/DHA-1, blaCTX-M-15/SHV-28,
blaCTX-M-1/SHV-28, and blaCTX-M-1 (Donati et al., 2014). In
this same study, 429 cats’ samples were also investigated revealing
the presence two K. oxytoca producing CTX-M-9 and four
K. pneumoniae producing CTX-M-15 (two isolates), CTX-M-
15/ DHA-1 and SHV-28/CMY-2 beta-lactamases (Donati et al.,
2014). The beta-lactamase and AmpC genes in K. oxytoca strains
isolated from dogs and cats were located on different plasmid
types: IncL/M versus IncHI2 respectively. This is unlike the
K. pneumoniae strains where the blaCTX-M-15 was localized on
the same plasmid IncR and both strains in dogs and cats shared
the same ST340. ST15 and ST101 were also common between
dogs and cats in this study. ST15 and ST101 are among the most
international clones carrying ESBL as well as carbapenemase
genes which became highly detected recently worldwide (Donati
et al., 2014). Another study conducted reported the detection of
CTX-M-1-producingK. pneumoniaewas further reported from a
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dog with urinary tract infection and an E. coli carrying the CMY-
2 type beta-lactamase associated to ISEcp1 also in a diseased cat
with a urinary tract infection (Bogaerts et al., 2015). Infections in
pets with E. coli strains carrying CTX-M-14 (three isolates), CTX-
M-15, CTX-M-1, and CTX-M-14/CMY-2 (two isolates) were also
reported in Italy (Nebbia et al., 2014). The strains also showed
different sequence types and phylogroups (A “ST3848, ST3847,”
B2 “ST131, ST155, ST555, ST4181,” B1 “ST602”) emphasizing
that apparently the dissemination of ESBL and AmpC beta-
lactamase producers is most likely due to the successful spread
of various plasmids carrying these resistance genes (Nebbia et al.,
2014).

In France, the highest number of studies addressing the
prevalence of extended-spectrum-cephalosporin resistance in
companion animals in the Mediterranean was conducted. In
dogs, CTX-M-grp 1 (CTX-M-1, CTX-M-15, CTX-M-3, CTX-
M-32) and CTX-M-grp 9 in addition to CMY-2 and TEM-52
prevail in E. coli (Dahmen et al., 2013a; Poirel et al., 2013;
Haenni et al., 2014b; Bogaerts et al., 2015; Melo et al., 2017).
These genes were mostly carried on IncI1, IncFII, and IncHI2
plasmid types and were harbored by strains of different sequence
types and phylogroups. Furthermore, K. pneumoniae isolated
from dogs showed to produce the CTX-M-15, CTX-M-32, SHV-
12, and DHA-1 have been reported (Poirel et al., 2013; Haenni
et al., 2014b). In parallel, P. mirabilis showed to produce CMY-2,
DHA-16, VEB-6, and CTX-M-15 have been described (Schultz
et al., 2017) and E. cloacae the CTX-M-15, CTX-M-14, CTX-
M-3, and SHV-12 have been identified (Haenni et al., 2016c).
In addition, CTX-M-15 and CMY-2 were also decribed in K.
oxytoca and Salmonella enterica, respectively isolated from dogs
in this same country (Poirel et al., 2013; Haenni et al., 2014b). On
the other hand, in cats, the following distribution was observed:
in E. coli (CTX-M-1, CTX-M-15, CTX-M-32, CTX-M-3, CTX-
M-14) (Poirel et al., 2013; Melo et al., 2017), in K. pneumoniae
(CTX-M-15/DHA) (Poirel et al., 2013), in E. cloacae (CTX-M-
15, SHV-12) (Haenni et al., 2016c), in P. mirabilis (CMY-2)
and in Proteus rettgeri (CTX-M-1) (Schultz et al., 2017). The
dissemination of extended-spectrum-cephalosporin resistance in
companion animals in France necessitates studies addressing the
risk factors responsible for the acquisition of these strains in pets
as well as novel approaches to control the spread of resistance
in these animals. Furthermore, the contribution of the pet
animals to the spread of resistance in the common population in
France should be also investigated. Moreover, France is the only
Mediterranean country in which studies reporting ESBL and/or
AmpC-producing bacteria in horses are available. Between 2010
and 2013, E. cloacae harboring CTX-M-15, CTX-M-1, and SHV-
12 were isolated from clinical samples of horses. These genes
were located on IncHI2 and IncP plasmids and were harbored by
strains of various sequence types such as ST127, ST372, ST145,
ST114, ST135, ST118, ST268, ST107 (Haenni et al., 2016c). Later
on, VEB-6 carrying P. mirabiliswere isolated from healthy horses
(Schultz et al., 2017). In Greece, CMY-2 carried on IncI1 plasmid
and harbored by ST212 E. coli strains were isolated from diseased
canines in 2011 (Vingopoulou et al., 2014). More recently, a
study conducted in Greek households revealed the detection of
extended-spectrum-cephalosporin-resistant E. coli isolates. The

strains presented with different sequence types including the
human pandemic ST131 clone which suggests a possible from
humans to animals and vice-versa (Liakopoulos et al., 2018).

In Egypt, CTX-M beta-lactamases have been detected in E. coli
recovered from cats’ rectal swabs. In this same study, CTX-M-
producing E. coli, K. pneumonia, and P. mirabilis were isolated
from dogs (Abdel-Moein and Samir, 2014). In Algeria, only one
study reported the detection of E. coli strains carrying blaCTX-
M-1, blaCTX-M-15 in cats and blaCTX-M-1, blaCTX-M-15,
blaSHV-12 in dogs (Yousfi et al., 2016b). In Tunisia, CTX-M-1
carrying E. coli were isolated from cats; while from dogs CTX-
M-1, CTX-M-15, and CMY-2-producing E. coli were detected
(Grami et al., 2013; Sallem et al., 2013). CTX-M-1 was mostly
carried on IncI1 plasmid whereas CTX-M-15 on IncFII (Grami
et al., 2013). The blaCTX-M-1 and CMY-2 genes were also found
associated with the ISEcp1. Indeed it appears that the insertion
sequence ISEcp1 might be also responsible for the dissemination
of CMY-2 AmpC genes apart from the blaCTX-M ones.

Wild Birds and Domestic Animals
Besides companion and food producing animals, scattered
reports exist on the isolation of ESBL from domestic animals
such as wild birds and dromedaries in the Mediterranean. For
instance, CTX-M-producing E. coli was isolated from wild birds
in Algeria (Meguenni et al., 2015), Turkey (Yilmaz andGuvensen,
2016), blaCTX-M-1 in addition to blaCTX-M-15 carrying E.
cloacae in France (Bonnedahl et al., 2009). Furthermore, in
France, CTX-M-1 and CTX-M-15 were detected in ST93, ST124,
and ST10 E. coli strains recovered from tawny owls/rock pigeons
and domestic geese, respectively. In addition, a CTX-M-15/DHA-
producing ST274 K. pneumoniae was isolated from a hedgehog
living in the same city (Poirel et al., 2013). Rooks carrying CTX-
M-14 type ESBL in E. coli have been described in Italy and
Spain (Jamborova et al., 2015). Furthermore, in Spain, E. coli
and K. pneumoniae harboring CTX-M-14, CTX-M-1, CTX-M-
32, CTX-M-9, CTX-M-15, CTX-M-14b, CTX-M-3, and CTX-
M-8 were recovered from the fecal samples of gulls (Stedt et al.,
2015). In rabbits, CMY-2-producing E. coli and CTX-M-14,
CTX-M-9-producing E. cloacae were isolated (Blanc et al., 2006;
Mesa et al., 2006). More recently, blaCTX-M-1 was identified
in E. coli isolated from the fecal sample of a deer living in
the Los Alcornocales natural park in southern Spain (Alonso
et al., 2016). In Algeria, blaCTX-M-15 and blaCTX-M-9 genes
were detected in E. coli isolated from the gut and gills of
fish caught in the Mediterranean across Bejaia city (Brahmi
et al., 2016). In this study, it has been suggested that the
presence of beta-lactamase producers is due to contamination
of the fish from river water and the rising amount of untreated
waste that is released into the Mediterranean Sea from the
agricultural as well as the industrial operations (Brahmi et al.,
2016). These findings emphasizes on the importance of the
natural environment in the dissemination of resistance from
humans to animals and vice versa. Furthermore, Bachiri et al.
also reported the detection of CTX-M-15-producing ST584
K. pneumoniae in Barbary macaques situated in national parks
in the north of Algeria (Bachiri et al., 2017). In both Tunisia
and Egypt, CTX-M beta-lactamases were detected in E. coli
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and Pseudomonas aeruginosa recovered from dromedaries and
camels, respectively (Ben Sallem et al., 2012; Elhariri et al., 2017).
In Croatia, the only study investigating the prevalence of ESBL
in animals was conducted in 2009–2010 in mussels caught in the
Adriatic Sea. In this study, 18 Aeromonas species carrying SHV-
12, CTX-M-15, FOX-2, and PER-1 were identified (Maravić et al.,
2013).

Prevalence of Carbapenemase Producers
in Livestock and Domestic Animals
Carbapenems are beta-lactam antibiotics often considered as
the last resort antimicrobial agent against multi-drug resistant
organisms (Temkin et al., 2014). Carbapenems are active against
ESBL and AmpC-producing Gram negative bacilli. Due to the
wide dissemination of multi-drug resistant organisms, these
antimicrobials recently became heavily used in human medicine.
As a result, the emergence of carbapenem resistance has
accelerated and it is now a normal phenomenon encountered
in hospital settings and, to a lesser extent, community settings.
The production of hydrolyzing enzymes called “carbapenemases”
is one of the mechanisms by which carbapenem resistance is
mediated in Gram negative bacilli. These include (a) class A
carbapenemases (KPC, GES, SME, IMI, NMC-A), (b) class B
metallo beta-lactamases “MBL” (NDM, VIM, IMP and TMB),
and (c) class D oxacillinases (Martínez-Martínez and Gonzalez-
Lopez, 2014).

In the Mediterranean basin, in Egypt, OXA-48 and OXA-
181 carbapenemases were detected in E. coli strains recovered
from dairy cattle farms (Braun et al., 2016). In the poultry
production system, one study reported the isolation of K.
pneumonia and K. oxytoca harboring NDM metallo beta-
lactamases (Abdallah et al., 2015). Another study described
the identification of K. pneumoniae carrying OXA-48, NDM
and KPC type carbapenemases. Isolated strains were recovered
from the liver, lungs, and trachea of broiler chicken (Hamza
et al., 2016). In Algeria, NDM-1 and NDM-5 were observed,
respectively, in ST85 Acinetobacter baumannii and ST1284 E. coli
originating from raw milk in the west and north of the country
(Chaalal et al., 2016; Yaici et al., 2016). In E. coli, NDM-5 was
located on an IncX3 plasmid (Yaici et al., 2016). In broilers,
OXA-58 was identified (Chabou et al., 2017) while in pigeons,
in addition to OXA-58 and OXA-23 were detected (Morakchi
et al., 2017). In terms of companion animals, NDM-5 and OXA-
48-producing E. coli were reported from healthy dogs Algeria
(Yousfi et al., 2015, 2016a). The NDM-5 was harbored by an
E. coli strain having the same sequence type ST1284 previously
described in cattle (Yousfi et al., 2015; Yaici et al., 2016). OXA-48
was further detected in healthy and diseased cats in the same city
(Yousfi et al., 2016a). Furthermore, in this same country, two A.
baumannii producing OXA-23 were isolated from fish (Brahmi
et al., 2016). In Lebanon, A. baumannii with different sequence
types (ST294, ST491, ST492, ST493) were detected in a horse’s
mouth carrying OXA-143 (Rafei et al., 2015), and in pigs and
cattle carryingOXA-23(Al Bayssari et al., 2015a). Furthermore, in
cattle, a VIM-2-producing P. aeruginosawas isolated (Al Bayssari
et al., 2015a). In fowl, Bayssari et al. reported the detection of

OXA-23 and OXA-58 harboring A. baumannii and OXA-48-
producing E. coli as well as VIM-2 producing P. aeruginosa (Al
Bayssari et al., 2015b). VIM-2 producers in fowl and cattle were
of different sequence types suggesting the presence of plasmid
that is mediating the spread of this resistance gene. In France,
OXA-23-producingAcinetobacter species were described in cows
and dogs (Poirel et al., 2012; Hérivaux et al., 2016). Melo et al.
reported the detection of OXA-48 located on an IncL plasmid and
carried by an ST372 E. coli strain from dogs in France (Melo et al.,
2017). In contrast, in Spain, only one study reported the isolation
of a VIM-1-producing ST2090 K. pneumoniae from a dog’s rectal
swab (González-Torralba et al., 2016; Figure 2).

Clonal Relationship of Beta-Lactamase
Producers and Plasmid Types of
Beta-Lactamase Genes Isolated From All
Animal Sources
The different phylogroups and sequence types of beta-lactamase
andmcr-1 positive strains as well as the type of plasmids carrying
ESBL, AmpC, carbapenemase, and mcr-1 genes detected in all
animal sources in the Mediterranean region are summarized in
Table 2. In this area of the world, it appears that multi-drug
resistance in the veterinary sector is mediated by the spread of
different phylogroups and sequence types with the main ones
being A, B, and D phylogroups (Table 2). The detection of
ST10 in CTX-M producers in poultry, cattle, pets, and domestic
animals in Algeria, Tunisia, Lebanon, and France is of special
interest. ST10 was often described in the literature as being
common to ESBL E. coli strains of human and avian origin
worldwide such as in Germany (Belmar Campos et al., 2014),
Denmark (Huijbers et al., 2014), Vietnam (Nguyen et al., 2015),
and Chile (Hernandez et al., 2013). ST10 was suggested as being
associated with the spread of CTX-M ESBL types and mcr-1
genes in humans, animals and environments (Monte et al., 2017).
Another distinct finding is the detection of ST101 in dogs and
cats in Italy. ST101 is an international sequence types frequently
detected in pigs (El Garch et al., 2017), broilers (Solà-Ginés et al.,
2015b) as well as in the clinical settings. In several countries,
ST101 was associated to NDM-1 E. coli strains isolated from the
clinical settings of Germany, Canada, Australia, UK, and Pakistan
(Yoo et al., 2013) implying thus that ST101 is a candidate for the
zoonotic transmission to the human population.

More deeply speaking, ESBL and AmpC encoding genes were
mostly carried on conjugative IncI1, IncFIB, IncN, and IncK
plasmids (Table 1). ISEcp1 was the most common insertion
sequence associated with the CTX-M ESBL types with the
main ones being blaCTX-M-1 and blaCTX-M-15 genes. ISEcp1
has been previously described as a potent contributor to the
mobilization and insertion of blaCTX-M genes worldwide (El
Salabi et al., 2013). As for the carbapenemase encoding genes,
these latter were found to be carried by IncX3 and IncL plasmids
detected in E. coli strains isolated from cattle, swine and dogs in
Algeria, Italy, and France, respectively. Overall, the detection of
a variety of sequence types and phylogroups in ESBL and AmpC
producers isolated from animals of all origins within and among
countries’s animals suggests that the dissemination of multi-drug
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FIGURE 2 | Geographical distribution of carbapenemases and mcr colistin resistance gene with their hosts in the Mediterranean. N.B: only OXA genes confirmed by

sequencing as carbapenemases were included.

resistance in the Mediterranean is multi-clonal and related rather
to the diffusion of conjugative plasmids carrying beta-lactamase
genes.

Prevalence of Colistin Resistance in
Livestock and Domestic Animals
Polymyxin E (colistin) and polymyxin B are polycationic
antimicrobial peptides that are considered as the last-line
antibiotic treatment for multi-drug resistant (MDR) Gram-
negative bacterial infections (Olaitan and Li, 2016). From
the 1960s until the 1990s, colistin was considered as an
effective treatment for MDR-GNB (Olaitan et al., 2014b).
However, due its nephrotoxicity within the human body, the
clinical use of this antimicrobial was abandoned (Olaitan
and Li, 2016). Recently, the emergence of carbapenem
resistance in clinically important bacteria such as P.
aeruginosa, A. baumannii, K. pneumonia, and Escherichia
coli, necessitated the re-introduction of colistin into clinical
practice as a last-resort treatment option (Olaitan and Li,
2016).

Colistin is not only administered in humans, its use has
been also described in veterinary medicine. Indeed, it has
been suggested that the uncontrolled use of colistin in animals

has played an important role in the global emergence of
colistin-resistant bacteria (Collignon et al., 2016). The World
Health Organization recently added polymyxins to the list
of critically important antibiotics used in food producing
animals worldwide (Collignon et al., 2016). The main use for
colistin in animals includes the treatment of gastrointestinal
infections caused by E. coli in rabbits, pigs, broilers, veal,
beef, cattle, sheep, and goats; and, in particular, gastrointestinal
infections caused by E. coli (Poirel et al., 2017). Colistin is
mainly administered orally using different formulations such
as premix, powder and oral solutions (Catry et al., 2015). In
European countries, several epidemiological studies reported the
use of colistin in veterinary medicine. In fact, Kempf et al.
reported that colistin is mainly used to inhibit infections caused
by E. coli, a Gram-negative bacillus known as a common
causative agent of diarrhea, septicemia, and colibacillosis in
animals (Kempf et al., 2013). In Spain, Casal et al. revealed
that colistin is among the most frequent administered drug
for the treatment of digestive diseases in pigs (Casal et al.,
2007).

Epidemiologically speaking, the worldwide prevalence of
resistance to polymyxins accounts for 10% of Gram-negative
bacteria with the highest rates being observed in Mediterranean
countries and Southeast Asia (Al-Tawfiq et al., 2017). For many
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TABLE 2 | ST/phylogroups, IS and plasmid types associated with beta-lactamase and mcr genes in the Mediterranean.

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

Algeria Poultry E. coli CTX-M 1 ST38, ST2179 Belmahdi et al., 2016

SHV-12 ST1011, ST5086

CMY-2 ST744

Poultry S. Heidelberg CTX-M-1 ST15 Djeffal et al., 2017

Cattle A. baumanii NDM-1 ST85 Chaalal et al., 2016

Cattle E. coli NDM-5/ CMY-42/

CTX-M-15

ST1284 IncX3 (NDM-5) Yaici et al., 2016

Swine K. pneumoniae CTX-M-15 ST584 Bachiri et al., 2017

E. coli CTX-M 15 ST617, ST131, ST648,

ST405, ST1431, ST1421,

ST69, ST226

Dog E. coli CTX-M-15 A, B1, E Yousfi et al., 2016b

CTX-M-1/SHV-12 E

SHV-12 A, B1

Dog E. coli NDM-5 ST1284 Yousfi et al., 2015

Dog E. coli OXA-48 A, D Yousfi et al., 2016a

NDM-5/

CTX-M-15/

CMY-42

A

Cat E. coli CTX-M-1 B1 Yousfi et al., 2016b

CTX-M-15 A, U, E

Cat OXA-48 / CMY-1 U Yousfi et al., 2016a

OXA-48 D

Barbary

Macaques

K. pneumoniae CTX-M-15 ST584 Bachiri et al., 2017

Fish A. baumanii OXA-23 ST2 Brahmi et al., 2016

Fish E. coli CTX-M-15 ST471, ST132, ST398,

ST37,ST477, ST131, ST31

Brahmi et al., 2015

CTX-M-9 ST8

TEM-24 ST31, ST471, ST66, ST21,

ST74

Tunisia Poultry E. coli CTX-M-1 A, B1, D ISEcp1 Ben Sallem et al., 2012

CMY-2 B2 ISEcp1

D ISEcp1D-IS10

Poultry CTX-M-1 ISEcp1/IS26 Jouini et al., 2007

Poultry E. coli CTX-M-1 B1, A Ben Slama et al., 2010

CMY-2 B1

Poultry E. coli CTX-M-1 A, B1, D, B2 IncI1 Mnif et al., 2012

CTX-M-15 A, B1

CTX-M-1/CMY-2 B2 IncI1

CMY-2 A, D, B1 IncI1

Poultry E. coli CTX-M-1 IncI1 Grami et al., 2013

CTX-M-9 IncI1

Poultry E. coli CTX-M-1 A0, A1, D2, B2 Kilani et al., 2015

Poultry E. coli CMY-2 A, B1, D IncI1, IncF, IncFIB,

IncFIA

Maamar et al., 2016

CTX-M-14 B1 IncF ISEcp1-IS903

CTX-M-1 B1, D, A IncI1, IncF, IncFIB,

IncK,

IncY, IncP, IncN

CTX-M-15 D ISEcp1and

ISEcp1-IS5

(Continued)
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TABLE 2 | Continued

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

Poultry E. coli CTX-M-1/mcr-1 D, H, K IncHI2/ST4 Grami et al., 2016

Poultry E. coli CMY-2/mcr-1 A (ST2197) IncP (mcr-1) ISApl1 Maamar et al., 2018

IncI1 (CMY-2)

Cattle E. coli CTX-M-1 A, B1 Ben Slama et al., 2010

CTX-M-1/ TEM-20 B1

Cattle E. coli CTX-M-1 ISEcp1/IS26 Jouini et al., 2007

CTX-M-14 ISEcp1 and IS903

Cattle E. coli CTX-M-15 ST10 ISEcp1 Grami et al., 2014

Dog E. coli CTX-M-1 IncI1 Grami et al., 2013

CTX-M-15 IncFII

Dog E. coli CMY-2 B1 ISEcp1 Sallem et al., 2013

CTX-M-1 D, B1, A ISEcp1

Cat E. coli CTX-M-1 B1, A, D ISEcp1 Sallem et al., 2013

CTX-M-1/

TEM-135

A ISEcp1 (CTX-M-1)

Cat E. coli CTX-M-1 IncI1 Grami et al., 2013

Dromedaries E. coli CTX-M-1 B1 ISEcp1 Ben Sallem et al., 2012

Egypt Poultry E. coli CTX-M-15 clonal group O25b-ST131 ISEcp1 Ahmed and

Shimamoto, 2013

Poultry E. coli CTX-M A, B1, B2, D Abdallah et al., 2015

Poultry E. coli CTX-M-14 D El-Shazly et al., 2017

SHV-12 D

CMY-2 A, B1, D

Poultry E. coli mcr-1 phylotype A, F, B1 IncFIB; IncI1; IncI2 Lima Barbieri et al.,

2017

Cattle E. coli mcr-1 ST10 Khalifa et al., 2016

Lebanon Poultry E. coli CTX-M ST156, ST5470, ST354,

ST155,

ST3224

Dandachi et al., 2018a

Poultry E. coli mcr-1 ST515 Dandachi et al., 2018b

Cattle E. coli CTX-M-15 A (ST1294, ST2325,

ST1303,

ST4623, ST5204)

Diab et al., 2016

B1 (ST58, ST162, ST4252,

ST155, ST196, ST540)

D (ST69)

CTX-M-14 D (ST457)

CTX-M-15/SHV-

12

A (ST10, ST2450, ST5442)

CTX-M-14/SHV-

12

D (ST457)

SHV-12 A (ST218, ST617, ST5204,

ST1303,ST5728,ST1140,

ST746)

Cattle A. baumanii OXA-23 ST2 Al Bayssari et al.,

2015a

P. aeroginosa VIM-2 ST1762, ST1759

Swine A. baumanii OXA-23 ST491 Al Bayssari et al.,

2015a

Fowl A. baumanii OXA-23 ST492, ST493 Al Bayssari et al.,

2015b

(Continued)
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TABLE 2 | Continued

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

OXA-58/OXA-23 ST20

P. aeroginosa VIM-2 ST1760, ST1761

Fowl E. coli OXA-48 ST38 Al Bayssari et al.,

2015b

Horse A. baumanii OXA-143 ST294 Rafei et al., 2015

Rabbit A. pitii OXA-24 ST221 Rafei et al., 2015

Palestine Poultry E. coli CTX-M A, B, D Qabajah et al., 2014

Turkey Poultry E. coli CMY-2 A0, B2 D1, D2 Pehlivanlar Onen et al.,

2015

CTX-M-1/CMY-2 A0

CTX-M-1 A1, A0, D1, D2

CTX-M-1/SHV-5 D1

CTX-M-3 A0, D1

CTX-M-15 B1, D1, D2

SHV-12 D1

CTX-M-15/SHV-

12

D2

Italy Poultry E. coli SHV-12 IncI1, IncFIB Bortolaia et al., 2010

CTX-M-1 IncI1, IncFIB, IncN

CTX-M-32 IncN

Poultry E. coli CTX-M-1 IncI1 Accogli et al., 2013

CMY-2 IncI1

Poultry E. coli CTX-M A, B1, B2, D Ghodousi et al., 2015

CIT like B1, B2, D

Poultry E. coli CTX-M B2, ST131 Ghodousi et al., 2016

Swine E. coli OXA-181 B1 (ST359), A (ST641) IncX3 Pulss et al., 2017

mcr-1 A (ST641) IncX4

CMY-2 A (ST641) IncI1

Cat E. coli CMY A ISEcp1/IS26 Bogaerts et al., 2015

Dog K. oxytoca SHV-12, DHA-1 N.I IncL/M Donati et al., 2014

K. pneumoniae CTX-M-15,DHA-1 ST340 IncR (CTX-M-15)

CTX-M-15 ST101

SHV-28, ST15

CTX-M-15,SHV-

28,

ST15

CTX-M-1,SHV-28 ST15 CTX-M-1 in IncN

and IncR

CTX-M-1 ST11

Cat K. oxytoca CTX-M-9 N.I IncHI2 Donati et al., 2014

K. pneumoniae CTX-M-15, DHA-1 ST340 CTX-M-15/DHA-1

on IncR

SHV-28, CMY-2 ST15 CMY-2 on InCI1

CTX-M-15 ST101

Cat E. coli CTX-M-14/CMY-2 A (ST3848, ST3847) Nebbia et al., 2014

CTX-M-14 B2 (ST555, ST4181), B1

(ST602)

CTX-M-1 B2 (ST155)

CTX-M-15 B2 (ST131)

(Continued)
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TABLE 2 | Continued

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

Slovenia Poultry E. coli CTX-M-1 D Zogg et al., 2016

SHV-12 B1 and D

Spain Poultry E. coli CTX-M-14 ST101, ST156,ST165,

ST350,

ST889, ST1137

IncK Solà-Ginés et al.,

2015b

SHV-12 ST350, ST533 IncI1

CMY-2 ST429, ST131 IncK

Poultry E. coli CMY-2 A, D Cortés et al., 2010

CTX-M-14 A, B1, B2

CTX-M-32 A

CTX-M-9 B1

SHV-12

TEM-52 B1

Poultry E. coli CTX-M-9 O25b:H4-B2-ST131. Mora et al., 2010

Poultry E. coli CTX-M, SHV A, B1, D1 Egea et al., 2012

Poultry,

Swine, Cattle

E. coli CTX-M, SHV B2, D Doi et al., 2010

cattle E. coli mcr-1 /mcr-3/

CTX-M-55

ST533 non mobilizable

IncHI2

Hernández et al., 2017

Swine E. coli CTX-M-1 A Cortés et al., 2010

SHV-5 A

SHV-12 B1

Dog E. coli (1) CMY (1) ST2171 IncK ISEcp1 Bogaerts et al., 2015

P. mirabilis (2) CMY (2)

Dog K. pneumoniae VIM-1 ST2090 González-Torralba

et al., 2016

Deer E. coli CTX-M-1 ST224 IncN IS26 Alonso et al., 2016

Croatia Mussel Aeromonas

spp

CTX-M-15 IncFIB Maravić et al., 2013

France Poultry E. coli CTX-M-1 ISEcp1 Meunier et al., 2006

Cattle E. coli CTX-M-1 ISEcp1 Meunier et al., 2006

CTX-M-15 ISEcp1

Cattle E. coli CTX-M-15 B1 ISEcp1 Valat et al., 2012

Cattle E. coli CTX-M-1 ST2497, ST2498 Hartmann et al., 2012

TEM-71 ST178

Cattle E. coli CTX-M-15, ST2212, ST2213, ST2210,

ST2214,ST2215, ST88

F31:A4:B1/IncFII

F2:A–:B–/IncFII

and IncI1

Madec et al., 2012

Cattle K. pneumoniae CTX-M-14 ST45 F2:A-:B-IncFII Dahmen et al., 2013b

E. coli CTX-M-14 ST23, ST58, ST10, ST45 F2:A-:B-IncFII

CTX-M-1 ST23, ST58 IncI1/ST3

Sheep K. pneumoniae CTX-M-15, DHA all ST274 Poirel et al., 2013

Swine E. coli CTX-M-1 ISEcp1 Meunier et al., 2006

Dogs E. coli CTX-M-15 A (ST410, ST617) IncFII Dahmen et al., 2013a

CTX-M-1 A (ST10), B1 (ST1303,

ST1249)

IncFII

IncFII

Dog A. baumanii OXA-23 ST25 Hérivaux et al., 2016

Dogs E. coli CTX-M-1 ST345, ST1001, ST124 IncI1 Poirel et al., 2013

CTX-M-15 NEW ST N.T

(Continued)
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TABLE 2 | Continued

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

TEM-52 ST359

K. pneumoniae CTX-M-15, DHA-1 ST274

CTX-M-15, ST15

Dogs E. coli CTX-M-1 A, B1,D blaCTX-M-

1/IncI1/ST3

Haenni et al., 2014b

CTX-M-grp9 B2

CMY-2 A, B1, B2, D CMY-2/IncI1/ST2

Dog E. cloacae CTX-M-15 ST114,ST136,ST270,ST100 IncHI2 Haenni et al., 2016c

CTX-M-14 ST102 N.T

CTX-M-3 ST408 N.T

SHV-12 ST268 IncHI2

Dog E. coli CMY ST55 N.T Melo et al., 2017

CMY ST963 N.T

OXA-48 ST372 IncL

Cat K. pneumoniae CTX-M-15, DHA ST274 Poirel et al., 2013

E. coli CTX-M-1 ST124, ST641

CTX-M-14 ST141

Cats E. coli CTX-M-15 A (ST617, ST410) Dahmen et al., 2013a

CTX-M-32 B1 (ST224)

CTX-M-3 B2 (ST493)

CTX-M-14 B1, (ST359), B2 (ST131)

Cat E. cloacae CTX-M-15 1 ST136, others ST114 IncHI2 Haenni et al., 2016c

SHV-12 N.T IncA/C

Cat E. coli CTX-M-14 ST68 IncF Melo et al., 2017

CTX-M-1 ST673 IncFIB

Cat A. baumanii OXA-23 ST1/ST231 Ewers et al., 2016

Hedgehog K. pneumoniae CTX-M-15, DHA ST274 Poirel et al., 2013

Tawny Owl E. coli CTX-M-1 ST93 Poirel et al., 2013

Domestic

goose

E. coli CTX-M-15 ST10 Poirel et al., 2013

Rock pigeon E. coli CTX-M-1 ST124 Poirel et al., 2013

Horse E. cloacae CTX-M-15 ST127, ST372, ST145,

ST114

IncHI2 Haenni et al., 2016c

SHV-12 ST135,ST145,ST118 IncHI2

CTX-M-1 ST268 N.T

ST107 IncP

Greece Dog E. coli CMY-2 ST212 IncI1/ST65 Vingopoulou et al.,

2014

Bla, beta-lactamase; ST, sequence type; IS, insertion sequence; N.T, non typeable.

years, colistin resistance was thought to be mainly mediated by
chromosomic mutations, with no possibility of horizontal gene
transfer. However, the emergence of themcr-1 plasmid mediated
colistin resistance gene (Liu et al., 2016) has thoroughly altered
the view of colistin resistance as a worldwide problem (Baron
et al., 2016). The current epidemiology of colistin resistance is
poorly understood.

In the Mediterranean area (Figure 2), the first detection of
mcr-1 was in an E. coli strain isolated from chickens in Algeria
(Olaitan et al., 2016). This same isolate was further detected in

sheep in another region of this country in 2016 (Chabou et al.,
2017). In Tunisia, Grami et al. reported a high prevalence of
multi-clonal E. coli carrying the mcr-1 gene in three chicken
farms imported from France (Grami et al., 2016). Isolated strains
were found to co-harbor the blaCTX-M-1 ESBL gene along with
mcr-1 on an IncHI2/ST4 plasmid (Table 1; Grami et al., 2016).
Apart from colistin resistance, these strains were also co-resistant
to tetracyclines, quinolones, fluoroquinolones, trimethoprim,
and sulfonamides (Grami et al., 2016). The co-existence of ESBL
andmcr-1 genes on the same plasmid facilitates the dissemination
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of colistin resistant strains by the co-selective pressure applied
via the use of colistin as well as possibly the utilization of
non-beta-lactam antibiotics. Molecular analysis targeting the co-
localization of ESBL andmcr genes along with the onesmediating
resistance toward non-beta-lactams is however warranted in
order to validate this hypothesis. Also in Tunisia, two colistin
resistant E. coli strains positive formcr-1 and harboring the CMY-
2 gene were recently detected in chicken. Both strains shared the
same sequence type “ST2197” in addition to their PFGE patterns.
Themcr-1 gene in these latter was associated with the ISApl1 and
was carried by IncP plasmid while the CMY-2 gene was located
on an IncI1 plasmid type (Maamar et al., 2018). Furthermore, in
this same country, a recent study revealed the absence of mcr-
1 and mcr-2 positive Gram-negative bacilli in camel calves in
southern Tunisia (Rhouma et al., 2018). Likewise, in Egypt, mcr-
1 was detected in E. coli isolated from diseased chickens as well
as from cows displaying subclinical mastitis (Khalifa et al., 2016;
Lima Barbieri et al., 2017). The emergence of mcr-1 in Egypt
can be related to the use of colistin in animal agriculture, and
its ready application as a therapeutic agent for colibacillosis as
well as other infections, in rabbits and calves (Lima Barbieri et al.,
2017). In Southeast Asia, Dandachi et al. reported the detection
of the mcr-1 plasmid mediated colistin resistance gene in E. coli
in poultry in the south of Lebanon (Dandachi et al., 2018a).
This strain had a sequence type of ST515 that was not reported
before in mcr-1 E. coli strains of poultry origin (Dandachi et al.,
2018a).

Of the European countries bordering the Mediterranean,
Spain was the first to report the detection of mcr-1 in E. coli and
Salmonella enterica isolated from farm animals (Quesada et al.,
2016). This could be related to the fact that Spain is one of the
countries were colistin is extensively used in veterinary medicine
(de Jong et al., 2013). More recently, mcr-1 co-existing with mcr-
3 on the same non mobilizable IncHI2 plasmid was detected in
an E. coli strain recovered from cattle feces in a slaughterhouse
(Hernández et al., 2017). In France, as part of routine surveillance
by the French agricultural food sector, mcr-1 was identified in
four Salmonella spp isolated from sausage, food of poultry origin,
and boot swabs taken from broiler farms (Perrin-Guyomard
et al., 2016; Webb et al., 2016). E. coli harboring mcr-1 was
also isolated in France from pig, broiler and turkey samples
(Haenni et al., 2016a). Haenni et al. reported the identification of
unique IncHI2/ST4 plasmid co-localizing mcr-1 and ESBL genes
in an E. coli strain isolated from French veal calves (Haenni
et al., 2016b). In Italy, Carnevali et al. reported the detection of
mcr-1 in Salmonella spp strains isolated from poultry and pigs
(Carnevali et al., 2016). Subsequently,mcr-1 was further detected
in E. coli of swine origin. In the aforementioned report, mcr-1
was co-existent with the carbapenemase OXA-181 in the same
bacterium and was carried on an IncX4 plasmid type (Pulss et al.,
2017). In the Mediterranean basin, likewise ESBL producers,
mcr positive strains belong to different phylogroups and appear
to be not clonally related; however, they were not associated
to a common plasmid or an insertion sequence type. This
questions the molecular mechanism by which the mcr genes are
being disseminating in this region of the world. More molecular
work is warranted in this area especially that mcr genes are

often located on plasmids carrying ESBL and/or carbapenemase
genes.

Antibiotic Use in Animals and Potential
Impact on Public Health
For many years, the use of antibiotics in the veterinary
medicine has increased animal health via lowering mortality
and the incidence of infectious diseases (Hao et al., 2014).
However, in view of the heavy dissemination of resistant
organisms namely ESBL, AmpC, and carbapenemase producers
in addition to the emergence of colistin resistance in livestock
and animals with frequent contacts with human; the efficiency
of antibiotic administration to animals has been reconsidered.
Indeed, antibiotic use in animals is not controlled, in that
these latter are not only prescribed for treatment, but are also
given for prophylaxis and as growth promoters (Economou
and Gousia, 2015). In its recent publication, the world health
organization recommended a reduction but an overall restriction
of the use of medically important antibiotics for prophylaxis and
growth promotion in farm animals (WHO, 2017). According
to the world health organization list of Critically Important
Antimicrobials for Human Medicine (WHO CIA list), these
include mainly extended spectrum cephalosporins, macrolide,
ketolides, glycopeptides and polymixins (WHO CIA, 2017). The
control of antibiotic use in the veterinary sector aims to reduce
the emergence of resistance in addition to preserving the efficacy
of important classes for treatment in the human medicine.

In the Mediterranean region, tetracyclines, aminoglycosides,
sulfonamides, fluoroquinolones, and polymixins are the most
common antimicrobial classes prescribed in the veterinary
sector (Table 1). The usage level of each antibiotic class in
addition to its real purpose of administration apart from
treatment is limited and not well understood in this area of
the world. In fact, it is nowadays accepted that the over-use of
antibiotics in animals is the main driven for the dissemination
of multi-drug resistance (Barton, 2014). As shown in Table 1,
ESBL, AmpC, and carbapenemase producers are often co-
resistant to non-beta-lactam antibiotics with the most common
being gentamicin, streptomycin, tetracycline, trimethoprim-
sulfamethoxazole, nalidixic acid, and ciprofloxacin. One study
conducted in healthy chicken in Tunisia showed the presence
of tetA, tetB, sul1, and sul2 on the same plasmids carrying
the blaCTX-M genes (Maamar et al., 2016). Another study in
Egypt, reported the detection of tetB, qnrB2, qnrA1, aadA1
on the same gene cassette along with the blaCMY-2 AmpC
beta-lactamase gene (Ahmed and Shimamoto, 2013). In Italy,
strA/B, tetD, qnrB, aadA1, sulI genes were associated with
the blaCTX-M and blaSHV ESBL genes types in companion
animals (Donati et al., 2014). Furthermore, in this same country,
aminoglycoside modifying enzymes (aadA1, aadA2), quinolone
resistance genes (qnrS1), florfenicol/chloramphenicol resistance
gene (floR), in addition to tetracycline and sulfonamide resistance
genes (tetA, sul1, sul2, sul3) were found associated with OXA-
48/181 and OXA-48/181/ CMY-2 /mcr-1 positive E. coli strains
isolated from pigs (Pulss et al., 2017). In Salmonella enterica,
Franco et al. reported the detection of a megaplasmid harboring
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the blaCTX-M-1 ESBL gene along with tetA, sulI, dfrA1, and
dfrA14 conferring thus additional resistance toward tetracycline,
sulfonamide, and trimethoprim (Franco et al., 2015). Beta-
lactamase producing Gram-negative bacilli appear thus to be
selected by the co-selective pressure applied by the use of non-
beta-lactam antibiotics in livestock and companion animals.
Surveillance studies addressing the types, purpose and level of
antibiotic classes’ administration in animals of theMediterranean
region are warranted in order to develop approaches that control
the use of antibiotics while preserving animal’s health. This
is especially in Syria, Cyprus, Albania, Montenegro, Bosnia,
Herzogovina, Monacco, Morocco, and Libya where even no data
exists on the prevalence and epidemiology of multi-drug resistant
organisms in animals.

The spread of multi-drug resistant organisms of animal origin
is sparked by the concern of being transmitted to humans;
these latter can then be causative agents for infections with
limited therapeutic options (Bettiol and Harbarth, 2015). The
transfer of resistant organisms from animals to humans can
occur either via direct contact or indirectly via the consumption
of under/uncooked animals products (Dahms et al., 2014).
Recent studies have also highlighted the importance of the farms
surrounding environment in the transmission chain. Air (von
Salviati et al., 2015), dust (Blaak et al., 2015), contaminated
waste waters (Guenther et al., 2011), and soil fertilized with
animal manures (Laube et al., 2014) are all potential sources
from which resistant organisms can be transferred to the
general population. In their study, Olaitan et al. demonstrated
the transfer of a colistin resistant E. coli strain from a pigs
to its owner (Olaitan et al., 2015). This was documented
by both strains (in the pig and its owner) having the same
sequence types and sharing the same virulence as well as
same PFGE patterns (Olaitan et al., 2015). The increased risk
of ESBL fecal carriage in humans with frequent contact with
broilers has been further taken as an evidence of transmission
(Huijbers et al., 2014). Furthermore, sharing the same sequence
types, virulence and PFGE patterns in addition to common
plasmids/ESBL genes are all proofs for the possible transfer of
resistant organisms and/or genes from the veterinary sector to the
human population (Leverstein-van Hall et al., 2011). In Algeria,
Djeffal et al. reported the detection of a common sequence
type (ST15) in Salmonella spp producing ESBL isolated from
both humans and avian isolates (Djeffal et al., 2017). In Egypt,
Hamza et al. showed an abundance of carbapenemase genes
namely blaOXA-48, blaKPC and blaNDM in chicken, drinking
water, and farm workers suggesting a possible transmission of
carbapenemase encoding genes from broilers to farmers and
the surrounding environment (Hamza et al., 2016). Another
study conducted in Italy reported the spread of a multi-
drug resistant clone of “Salmonella enterica subsp. enterica
serovar Infantis” that was first detected in 2011 in broiler
farms and few years later led to human infections most likely
via transmission from the broiler industry (Franco et al.,
2015). In Spain, common blaCTX-M-grp1 and blaCTX-M-
grp9 ESBL genes were detected in retail meat as well as in
E. coli strains isolated from infected and colonized patients
in the same region (Doi et al., 2010). In France, Hartmann

et al. showed a clonal relationship among CTX-M carrying
E. coli strains in cattle and farm cultivated soils (Hartmann
et al., 2012). Another study in cattle, demonstrated that CTX-
M-15 harboring plasmids in non-ST131 E. coli strains are
highly similar to those detected in humans suggesting thus
a multi-clonal plasmidic transmission of multi-drug resistant
organisms from livestock to the humans (Madec et al., 2012). The
detection of common genes and sequence types among animals
and humans and the surrounding environment emphasizes
the need to have a global intervention measures to avoid
the dissemination of multi-drug resistance in the one health
concept.

CONCLUSION

Antimicrobials have been used in veterinary medicine for more
than 50 years. The use of antibiotics proved to be crucial for
animal health by lowering mortality and incidence of diseases,
in addition to controlling the transmission of infectious agents
to the human population. Recently, the dissemination of ESBL,
carbapenemase, and colistin resistant Gram negative bacteria in
food producing animals brought into question the real efficacy
of antibiotic administration in animals in terms of treatment,
prophylaxis and growth promotion. Indeed, the emergence
of MDR in food producing animals has been suggested to
be largely linked to the over and misusage of antibiotics in
veterinary medicine. The level of antibiotic consumption in
animals varies between countries. Although, cephalosporins
are not often prescribed in veterinary medicine, the use of
other non-beta-lactams could account for the co-selection
of multi-drug resistant bacteria. As shown in Table 1, ESBL
and carbapenemase producers were frequently co-resistant to
aminoglycosides, tetracyclines and fluoroquinolones, with these
latter being mostly used in the veterinary field. Furthermore,
the aforementioned antibiotics are classified by the World
Health Organization as critically important antibiotics for human
medicine that should be restricted in the animal field (Collignon
et al., 2016). That said, the direct public health effect of the
transmission of MDR bacteria from animals to humans is still
controversial. Several studies have demonstrated a direct link of
transmission between these two ecosystems. Resistant bacteria
once transmitted to humans can be further selected by the
over-use of antimicrobial agents in the clinical and community
settings. This spread will promote the global dissemination of
bacterial resistance across all ecosystems. The level of antibiotic
consumption in animals in the European countries lining the
Mediterranean is available in the European Surveillance of
Veterinary Antimicrobial Consumption report (EMA/ESVAC,
2014), however this is not the case for the countries in
North Africa and western Asia, where no accurate data are
available. Therefore, surveillance studies investigating the levels
of antibiotic prescription should be conducted in these areas.
Antimicrobial prescriptions in animals should be re-considered
and controlled to limit the spread of bacteria which are cross
resistant to the antibiotics used in human medicine. In addition,
a risk assessment of other factors contributing to the emergence
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of antimicrobial resistance in animals should be conducted
in future studies. Poor sanitary conditions, overcrowding and
poor infection control practices in animals are all possible
contributors to the robust emergence of MDR in food-producing
animals.
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