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Fair Resource Allocation in Systems with Complete
Information Sharing

Francesca Fossati, Sahar Hoteit, Member, IEEE, Stefano Moretti, Stefano Secci, Senior, IEEE

Abstract—In networking and computing, resource allocation is
typically addressed using classical resource allocation protocols as
the proportional rule, the max-min fair allocation, or solutions
inspired by cooperative game theory. In this paper, we argue
that, under awareness about the available resource and other
users demands, a cooperative setting has to be considered in
order to revisit and adapt the concept of fairness. Such a
complete information sharing setting is expected to happen in
5G environments, where resource sharing among tenants (slices)
needs to be made acceptable by users and applications, which
therefore need to be better informed about the system status
via ad-hoc (northbound) interfaces than in legacy environments.
We identify in the individual satisfaction rate the key aspect of
the challenge of defining a new notion of fairness in systems
with complete information sharing and, consequently, a more
appropriate resource allocation algorithm. We generalize the
concept of user satisfaction considering the set of admissible
solutions for bankruptcy games and we adapt to it the fairness
indices. Accordingly, we propose a new allocation rule we call
Mood Value: for each user, it equalizes our novel game-theoretic
definition of user satisfaction with respect to a distribution
of the resource. We test the mood value and a new fairness
index through extensive simulations about the cellular frequency
scheduling use-case, showing how they better support the fairness
analysis. We complete the paper with further analysis on the
behavior of the mood value in the presence of multiple competing
providers and with cheating users.

Index Terms—resource allocation games, fairness.

I. INTRODUCTION

In communication networks and computing systems, re-
source allocation (in some contexts also referred to as resource
scheduling, pooling, or sharing) is a phase, in a network
protocol or system management stack, when a group of
individual users or clients have to receive a portion of the
resource in order to provide a service. Resource allocation
becomes a challenging problem when the available resource is
limited and not enough to fully satisfy users’ demand. In such
situations, resource allocation algorithms need to ensure a form
of fairness. Such situations emerge in a variety of contexts,
such as wireless access [2]], [3]], competitive routing [4], traffic
transport control [3].

The common methodology adopted in the literature is to
determine, on the one hand, the allocation rules that satisfy
desirable properties [6], and to analyze, on the other hand,
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Fig. 1: A representation of strategic network setting without
and with complete information sharing. The amount ¢; is the
resource demand of user ¢ € {1,2,3}; E is the amount of
shared resource available.

the fairness of a given allocation through indices, the most
commonly used being the Jain’s index [7]. Allocation rules and
indices of fairness are commonly justified by some fairness
criteria. For instance, among two equivalent users demanding
the same amount of resource, it makes sense not to discrim-
inate and to give to each of them the same portion of the
resource. In some cases, it can be desirable to guarantee at
least a minimum amount of the resource so that the maximum
number of users can be served.

In the networking literature, the resource allocation problem
is historically solved as a single-decision maker problem in
which users are possibly not aware of the other users’ demands
and of the total amount of available resource. It follows that the
most natural and intuitive way to quantify the user satisfaction
is through the proportion of the demand that is satisfied by
an allocation. Large literature exists indeed in the networking
area on proportional resource allocations for many practical
situations, from wireless networks to transport connection
management [3]], [4]], [5].

Instead, in this paper, we are particularly interested in
novel networking contexts such that users can be aware of
other users’ demands and the available amount, as depicted in
Fig. 1: in legacy resource allocation models, users’ interaction
with the system only implies issuing a resource request and
receiving a resource allocation, therefore with an assessment of
user’s satisfaction only based on this information; in systems
with demand and available amount awareness, users are made
more conscious about the system setting with a signaling
channel from the system to the users providing information
about resource availability and other users’ demands. As such,
rational users shall compute their satisfaction also based on the
presence of other users and the system resource availability.

In fact, such networking contexts with demand and re-
source availability awareness are making surface in wired and
wireless network environments with an increasing level of



programmability, i.e., using software-defined radio and virtu-
alized network platforms on top of a shared infrastructure, as
predicated with 5G. Sharing an infrastructure logically implies
regular and possibly real-time auditability of the system, to
ensure that various tenants esteem they are fairly treated by
the infrastructure provider [8]. In fact, users in such scenarios
can be prone to change providers if their satisfaction can
improve with another provider. In existing SND/NFV sys-
tems, using north-bound Application Programming Interfaces
(API) tenant applications and policy manager applications
can already gather resource information and share data stores
with each-other. Besides forthcoming 5G systems, methods
allowing raising end-user awareness exist in current systems
such as those supporting spectrum sharing; for such systems,
a large number of auctions mechanisms are proposed in the
literature [8]], [9], [LO], assuming either a signaling channel
or a sensing solution allowing demand (bid) and available
resource awareness.

Our main motivation is reasoning toward a new notion of
user satisfaction for such resource allocation situations with
demand and resource awareness. Let us briefly clarify our
motivation with a basic allocation example. A user ¢ asks a
quantity of resource that is bigger than the resource itself (as
B in Fig. . Classical fairness indices [7)], [11], [12] tend
to qualify the user satisfaction as maximum when ¢ obtains
exactly what it asks. In the case where ¢ asks more than the
available amount, it cannot reach the maximum satisfaction
due to the fact that its demand exceeds the available resource.
Instead, under complete information sharing, it would be more
reasonable that its satisfaction is maximum when it obtains
all the available resource. Furthermore, if all the other users
together ask a quantity of good inferior to the resource, a
minimum portion of it, equal to the difference between the
resource and the sum of the demands of all the others, is
guaranteed to ¢. Under a dual reasoning, it also appears
more acceptable that the minimum satisfaction of a user is
reached when it receives the minimum portion of the available
resource, instead of when it receives zero. If users are in
complete information context the classical approach can lead
to unreasonable outcomes.

In this perspective, in order to better describe the user
satisfaction as a function of the available resource, and to
capture the interactions due to the networking context (e.g.,
networked users may be aware of respective demands, may
ally in the formulation of their demands, etc.), we propose to
model the resource allocation problem as a cooperative game.
Accordingly, we define a new satisfaction rate for users, able to
adapt to various configurations of the demands. Furthermore,
we define a new resource allocation rule, called the ‘Mood
Value’, based on the idea that the fairest allocation is the one
that equalizes the satisfaction of each player. Indeed, regardless
of the level of satisfaction, each player is not discriminated if
its satisfaction is equal to that of other players. Choosing this
allocation, users, who have the chance to recover information
about the other users and the available resource, have the
feeling to receive a fair portion of the resource. We also
provide an interpretation of this approach positioning it with
respect to classical traffic theory [L13].

The paper is organized as follows. Section [[I] presents the
state of the art. In Section [IIl a new satisfaction rate is
proposed. In Section the mood value and new fairness
indices are described. In Section we provide an inter-
pretation of the mood value with respect to conventional
traffic theory. Section [VI| presents some numerical examples.
Section further investigates dynamics in multi-provider
situations. Finally, in Section we analyze the cases where
users can cheat. Section concludes the paper.

II. BACKGROUND

A resource allocation problem can be characterized by a pair
(¢, E), in which c¢ is the vector of demands (claims) from n
users (claimants) and F is the resource (estate) that should be
shared between them. The set of users is N={1,...,n}. The
resource allocation is a challenging problem when E is not

enough to satisfy all the demands (> ¢; > E). An allocation

x € R™ is a solution vector that satigﬁés three basic properties:
e Non-negativity: each user should receive at least zero.
e Demands boundedness: each user cannot receive more
than its demand.
o Efficiency: the sum of all allocations should be E.
An allocation rule is a function that associates a unique
allocation vector z to each (¢, E).

A. Classical resource allocation rules

Many resource allocation rules are proposed in the literature
and each of them is characterized by a set of properties
that justify the use of the given rule in order to find a
solution of the allocation problem [6]. In computer networks,
the most well-known rules are: the proportional rule and the
weighted proportional rule [13]], the max-min fair allocation
(MMF) [[14], [15]] , and the a-fair allocation [[12]]. Each of these
allocation rules, result of an optimization problem and/or an
iterative algorithm, follows a fairness criterion.

The weighted proportional allocation rule is based on
the idea that a logarithmic utility function captures well the
individual evaluation of the worth of the resource [13]. One

way to compute it is via the maximization of Y w;logx;

subject to demand boundness and efficiency const;aTi}lts. When
w; is equal to 1 the resulting allocation is called simply
proportional and when w; is equal to ¢; we obtain the
allocation that actually produces allocations proportional to the
demands; hence in the following, we refer to the latter rule as
‘proportional’ instead of the previous one with w; equal to 1.
The max-min fairness (MMF) allocation rule is the only
feasible allocation such that, if the allocation of some users is
increased, the allocation of some other users with smaller or
equal amount is decreased [[14], [15]]. If we order the claimants
according to their increasing demand, i.e., c; < co < --- < ¢y,
then MMF allocation for user % is given by:
E— 352 MMF;(C, B)
n—i+1
Intuitively, MMF gives the lowest claimant (assuming
min; ¢; < £) its total demand and evenly distributes unused

- n

resources to the others.

MMF;(¢, E) = min | ¢;,




More generally, it is possible to obtain a family of allocation
rules maximizing a parametrlc utlllty function. The a-fair

utility function is defined as .If a — 1 the solu-

tion of the optimization problem 001n01des with the weighted
proportional allocation with w; equal to 1, if a« = 2 with
the minimum delay potential allocation, that is the allocation

obtained minimizing the total potential delay Z( -) [16], and

i=1

if o — oo with the max-min fair allocation.

The common point about classical resource allocation rule
is that a single decision-maker, typically the network operator,
takes a decision taking into consideration all users’ demand
and available resource, but users are not made aware of other
users’ resource and/or the available resource, and hence they
measure their satisfaction based only on their demand and the
received allocation by the decision-maker.

The evaluation of the fairness of the allocations, used as an
important system performance metric especially in network-
ing, can be useful to discriminate among allocation rules and
to evaluate the level of ‘justice’ in the resource sharing.
The axiomatic theory of fairness proposed in [17] shows that
it exists a unique family of fairness measures, satisfying a set
of reasonable axioms, which includes well-known measures
as the Jain’s index, the Atkinson’s index, the maximum or
minimum ratio and the a-fair utility. More details on general
measures of fairness are in Appendix A.

B. Allocation rules with complete information sharing

Among the various techniques adopted when addressing
resource allocation with complete information sharing, we can
identify cooperative game theoretical approaches and auction-
based approaches.

Game theory has been largely applied to communication
systems in order to model network interactions. In resource
allocation, for example, in [18] a cooperative game model is
proposed to select a fair allocation of the transmission rate
in multiple access channels and in [19] the authors studied,
using coalitional game theory, the cooperation between ra-
tional users in wireless networks. Generally, a conventional
game theoretical model works under hypothesis of complete
information, i.e., decision-makers (e.g., users) are aware of
others’ utility functions as a function of their strategies. This
stands for non-cooperative approaches, which can however be
simply dependent on own utility function when seeking simple
best-reply behaviors. This stands as well as for cooperative
game approaches, where the value of subcoalitions is supposed
to be a shared information.

Auction models for divisible goods exist as well [Wang,
Zender, 2002]; except sealed-bid auctions, in other auction
models bidders are made explicitly or implicitly aware of other
users’ bids [8]], [9], [10], and the outcome of an auction can
be driven toward resource sharing [20]], hence going beyond
simple good bidding. Recent studies, namely [8]], propose
the adoption of hierarchical auctions for virtualized network
resource allocation. A major impediment of auction-based
frameworks is that signaling is needed between users and
system, which implies a certain latency in the decision making,

which could not be acceptable for real-time allocation such as
spectrum or computing resource scheduling.

On the other hand, adopting a cooperative game approach,
a resource allocation situation with complete information
sharing can be modeled and solved at a single decision-making
point, while taking into consideration users’ perspective and
the fact that users are aware of all the problem inputs. A
resource allocation problem can be defined as a Transferable
Utility (TU) game [24], [21], [22]], [23]. The game is a pair
(N,v) where N={1,...,n} denotes the set of players and
v : 2N — R is the characteristic function, (by convention,
v(0)=0). Bankruptcy games [6], in particular, deal with sit-
uations where the number of claimed resource exceeds that
available. A Bankruptcy game is a TU-game (N, v) in which
the value of each coalition S of players is given by:

v(S) = max{F — Z ¢i, 0}
IEN\S
where E' > 0 represents the estate to be divided and ¢ € Rf
is a vector of claims satisfying the condition ),y ¢; > E
[24], [25]. The bankruptcy game is superadditive, that is:

v(SUT) >wu(S)+v(T), VS, TCNISNT=0
it is also supermodular (or, equivalently, convex), that is:
v(SUT)+v(SNT) >v(S)+v(T) VS, T CN

A classical set-value solution for a TU-game is the core
C(v), which is defined as the set of allocation vectors x € R
for which no coalition has an incentive to leave the grand
coalition N, that is the one formed by all the players, i.e.:

Cv)={zcR": le = U(N),in >v(S) VS C N}
iEN i€s

A one-point solution (or simply a solution) for a class CV of
TU games with NV as set of players is a function ¢ : CNV — RY
that assigns a payoff vector ¥)(v) € RY to every TU game in
the class. A well-known solution for TU-games is the Shapley
value [26] ¢(v) of a game (N,v), defined as the weighted
mean of the players’ marginal contributions over all possible
coalitions and computed as follows:

gilv) = D wilS)(w(S) —u(S\ {i})),
SCN:ieS
with w;(S) = w where s denotes the cardinality

of S C N. Another well studied solution for TU-games is
the nucleolus, based on the idea of minimizing the maximum
discontent [27]. Given a TU-game (N,v) and an allocation
z € RN lete(S, )= v(S)—>,cq i be the excess of coalition
S over the allocation x, and let <; be the lexicographic
order on R. Given an imputation z, 6(z) is the vector that
arranges in decreasing order the excess of the 2™-1 non-empty
coalitions over the imputation x. The nucleolus v(v) is defined
as the imputation x (i.e., ) ;. v;=v(N) and x; > v({i}) for
each i € N) such that §(z) <p 6(y) for all y imputations
of the game v. As compromise between the utopia and the
disagreement points, a third important solution for quasi-
balanced games is the tau-value. It is defined by

T7(v) = am(v) + (1 — a) M (v) (D



where o € [0, 1] is uniquely determined so that the solution is
efficient, M (v) is the utopia payoff, and m(v) is the minimum
right payoﬂﬂ

Given a bankruptcy game, many other solutions can be
proposed [6]. As already introduced in the previous section,
the proportional allocatton assigns to player ¢ an allocation

equal to E - ¢;/ Z ¢i. The Constrained Equal Loss (CEL)

allocation divides equally the difference between the sum
of the demands and E, under the constraint that no player
receives a negative amount. The CEA allocation gives equal
awards to all agents subject to no one receiving more than its
claim and it coincides with the MMF allocation rule.

The following example shows some of the most important
allocation rules and fairness indices.

Example 1. Let (¢, E) be the situation of Fig. |l with
¢=(3,2,13) and E=10. Table [I| shows the value of the Jain’s
index and the Atkinson’s index of fairness.

User demands | Prop. ‘ MMF ‘ Shapley ‘ Nucleolus | CEL
A:3 1.67 3 L5 L5 0
B: 2 1.11 2 1 1 0
C: 13 7.22 5 7.5 7.5 10

TABLE I: Allocation rules comparison (E£=10, cf. Fig.

III. MEASUREMENT OF USER SATISFACTION

We describe classical methods to evaluate the satisfaction of
a user for an allocation, and propose a new definition of user
satisfaction for scenarios with complete information sharing.

A. User satisfaction rate
A crucial issue in resource allocation is to jointly:

« find the best solution in terms of a certain goal;
« evaluate its fairness by referring to a fairness index.

With this purpose, it is important to evaluate the individual
satisfaction rates and to summarize the information given by
each of them with a global fairness index.

A natural way to quantify the satisfaction of a user, as
proposed by Jain, is through the proportion of the demand
that is satisfied by an allocation [7].

Definition 1 (Demand Fraction Satisfaction rate). Given the
user ¢ with demand ¢; and an allocation x;, the Demand
Fraction Satisfaction (DFS) rate of z is:

DFS; = —

¢

This rate takes a value between O and 1 since it represents
the percentage of the demand that is satisfied.

Measuring the fairness of a system where user demands are
bounded and differ among users, and using as satisfaction rate
the DFS rate, implies replacing z; with DF'S; in (§)-(7).

Unavoidably, this way to quantify the user satisfaction
makes the weighted proportional allocation the fairest one

IEfficiency is defined as >, x; = E. The utopia payoff is the marginal
contribution of player ¢ to the grand coalition N that utopistically could be
assigned to ¢. The minimum right payoff is maxg.;c s R(S, 7), where R(S, )
is the remainder (the amount which remain for player ¢ when coalition .S forms
and all the other player in S obtain their utopia payoff).

since it allocates proportionally to the demand. There are,
however, situations in which the common sense does not
suggest to allocate in a proportional way; e.g., if there is
a big gap between the demands, in order to protect the
‘weaker’ users and guarantee them a minimum portion of the
estate. For such cases, the MMF allocation can be preferable.
Furthermore, as mentioned in the introduction, the presence of
other users, aware of other users’ demand and of the available
resource, should rationally be considered not to distort the
evaluation of each user satisfaction.

For these reasons, we aim at defining an alternative satisfac-
tion rate that satisfies the following two properties we name
demand relativeness and relative null satisfaction:

e Demand relativeness: a user is fully satisfied when it re-
ceives its maximal right, based on the available resource;

e Relative null satisfaction: a user has null satisfaction
when it receives exactly its minimal right, based on other
users’ demands and the available resource.

The minimal right for a player is the difference between the
available amount and the sum of the demands of the other
users (i.e., taking a worst-case assumption that the others get
the totality of their demand), and the maximal right is equal
to the maximum available resource, i.e., ¢; if ¢; < E, or it
is equal to E otherwise. Remembering the definition of the
characteristic function of a bankruptcy game we have that:

is v(1)
is v(N) —v(N \ 9)

Thus we introduce the ‘player satisfaction (PS) rate’, which
satisfies the above two properties by considering the value of
the bankruptcy game associated to the allocation problem.

o the minimal right for player ¢
o the maximal right for player ¢

Definition 2 (Player Satisfaction Rate). Given a bankruptcy
game such that Y, ¢; > E and an allocation ;, the Player

Satisfaction (PS) ratq|for 7 is:
T; — MIn,
PSS = ————,
mazx; — min;

where: min; = v(i), maz; = v(N)—v(N\i).If >, ¢; = E
the player satisfaction rate is P.S; =1, Vi € V.

PS; € [0,1] if the allocation belongs to the core (see
Theorem [I)). Moreover it ‘corrects’ DF'S; since it replaces
the interval of possible values [0, ¢;] for x; with the interval
[min;, max;]). Consequently, if for the DFS rate the max-
imum satisfaction for ¢ is measured when it gets c¢; and
the minimum when it gets 0, with PS, 7 is measured to
be totally satisfied when it gets max; (i.e., ¢; if available,
otherwise F), and totally unsatisfied when it gets min,; (i.e.,

maX{E — ZJGN\{’L} Cj, 0}).

Example 2. Consider (c, E) of Example 1 (see Fig[l)) and the
corresponding bankruptcy game model. It holds:
Proportional allocation: DF'Sy; = 0.555 and P.S; = 0.444
MMF allocation: DF'Sy; = 0.3846 and PSy = 0.

In both cases the PS rate shows that player 2 is less satisfied

2it is possible to generalize the PS measure of fairness for all the quasi-
balanced game (i.e. if m(v) < M(v) and Y7 mi(v) < v(N) <
> 1 M;(v)), considering as minimum the minimum right payoff m;(v)
and as maximum the utopia payoff M;(v).



than what expected with the DFS rate. This is due to the fact
that the game guarantees player 2 to get at least 5.

Let us show some interesting properties of the PS rate.

Theorem 1. If the allocation = belongs to the core of the
bankruptcy game, PS; € [0,1] Vi € N.

Proof. If a solution z belongs to a core it holds: z; > v(i)
and z; < v(N)-v(N \ ). Thus v(i) and v(N)-v(N \ ¢) are
the minimum and the maximum value that an allocation in
the core can take. If x;=v(i)=min; then P.S;=0, if x,=v(N)-
v(N \ i)=maz; then PS;=1. O

Proposition 1. It is possible to summarize the bankruptcy
regimes of the PS rate in four possible cases as in Table

c < E c; > FE
PS | case PS | case
v(i) =0 “j—: GM = GG
; xi—v(i) zi—v(i)
v(i) #0 c—v() | MM B—o(l) MG

TABLE II: Value of PS in the four possible cases.

Proof. Let us treat each possible cases of Table

e Case GM: v(i) = 0, ¢; < E. Using the definition of
bankruptcy game, it holds: v(N) — v(N \ i) = E —
max{0,E —¢;} = E — E + ¢;. It follows PS; = x;/c;.

e Case GG: v(i) = 0, ¢; > E. Using the definition of
bankruptcy game, it holds: v(N) — v(N \ i) = E —
max{0,E —¢;} = E. It follows PS; = x;/E.

o Case MM: v(i) # 0, ¢; < E. As in case MG, v(N) —
v(N\i) = FE —maz{0,FE — ¢;} = ¢;. It follows PS; =
(@i — (i) /(ci = v(i)).

o Case MG: v(i) # 0, ¢; > E. As in case GG , v(N) —
v(N\i)=FE —maz{0,E —¢;} = E. It follows PS; =
(zi — v(i))/(E — v(3)). O

Case terminology: the PS rate differentiates four possible
cases we name GM, GG, MM, MG. If a player asks less than
E we call it moderate player (M) while if it asks more than
L' it is a greedy player (G). In similar way, if the sum of the
demand of a group of n — 1 players exceeds F, that means
v(i) = 0, the group is a group of greedy players (G) otherwise
if v(i) # 0 we have a group of moderate players (M). In the
terminology we have used, the first character refers to the
group of players while the second refers to the player itself.

Proposition [1| highlights that not only there is a relation
between the DFS rate and the PS rate, but that the satisfaction
of a user should be modified when it is considered as a player
inside a cooperative game. In particular, we can notice that
for case GM the PS rate coincides with the DFS one, i.e.,
PS; = DF'S;; for case GG, the user satisfaction measured
with the PS rate is higher than when it is measured with the
DFS rate, i.e., PS; > DF'S;; in the MM case, we have instead
that DF'S; > PS;. We can also notice that the denominator
of the PS rate is always different than zero. In cases GM and
GG this is obviously true, in case MM the denominator is zero
when >°" | ¢; = E but in this case we set PS; = 1 and in
case MG the denominator is zero when jen j2i € = 0 that

is impossible. Furthermore, from Proposition [] it follows that
if an allocation, i.e., a solution of an allocation problem that
satisfies efficiency, non-negativity and demand boundedness, is
an imputation, then PS; € [0, 1] for all the users. This holds
due to the fact that for an allocation, in each of the four cases
presented above, it is always verified that v(N) — v(N \ ) is
an upper bound for z;.

Looking at the possible combinations of scenarios it is
possible to characterize the players of an allocation problem,
and hence how they measure their satisfaction, as follows.

Proposition 2. Given an allocation problem with n = 2 users,
the following combinations are possible:
o GG: All the players are in scenario GG.
o« MM: All the players are in scenario MM.
e« GM-MG: One player is in scenario MG and the others
are in scenario GM.
If n > 3, 3 combinations are added to the previous ones:
e GM: All the players are in scenario GM.
e GM-GG: Two groups of players: some players are in
scenario GM and the others in scenario GG.
e GM-MM: Two groups of players: some players are in
scenario GM and the others in scenario MM.

Proof. In case of three users, example|3| validates the existence
of the six scenarios listed above. We prove that all the other
combinations of scenarios, i.e. MG, GG-MM, GG-MG, MM-
MG, are impossible.

e MG: all the user has a demand ¢; > FE. This implies
that for all user i it holds »_, ,, ¢; > E, but this is in
contradiction with the fact that v(7) # 0.

o GG-MM: for each user 7 of type MM it holds Zj# c; <
E but it exists at least one user of type GG such that ¢; >
E. This implies that ), ¢; > E that is in contradiction
with the fact that v(z) # 0.

¢ GG-MG: all the users has a demand bigger or equal to E
but it exists at least one user ¢ in configuration MG such
that i ¢j < E. This is impossible due to the fact that
each demand exceeds E.

« MM-MG: for each user ¢ it holds > ., ¢; < E but it
exists at least one user such that ¢; > FE. This produces
a contradiction.

In case GM-MGQG, if there exists two users ¢,j of type MG,
it holds that ¢; > F and ¢; > E and 3, ;¢ < E and
Zk 25 Ck < FE. This produces a contradiction because ¢; > F
implies Ek# cx > F and ¢; > F implies Zk# c, > FE.

In case of two users, also the following scenarios are

impossible:

o GM: both the users have a demand inferior to F (¢; < E,
¢y < E). Tt follows v(1) = E — ¢y > E and v(2) =
E — ¢; > E that contradicts v(1) = v(2) = 0.

e GM-GG the user 1 of type GM hasc; < E so v(2) =
E — ¢q > 0. This implies that 2 can not be of type GG.

e GM-MM: as in case GM both users have a demand
inferior to E. It follows v(1) = E —c¢; > E and
v(2) = E — ¢; > E, so none of the two user can not be
of type GM. [

Example 3. Six allocation examples are listed in Table



Problem Example

GM c=(5,55), E =10
GG c=(12,12,12), E = 10

MM c_(444)E:10
GM-GG | c¢=(3,8,12), E =10
GM-MM c=(2,6,6), E=10
GM-MG | c¢=(2,3,12), E=10

TABLE III: Allocation problems with three players.

B. Game-theoretical interpretation

To support and justify the use of the new satisfaction rate,
we show an interesting game-theoretic interpretation.

Gately [29] introduced the concept of propensity to disrupt
in order to remove the less fair imputations from the core.
The idea was to investigate the gain of the player from the
cooperation or, instead, its propensity to leave the cooperation,
and to eliminate the imputation for which the propensity to
leave the coalition for some players is excessively high. The
formal definition of the propensity to disrupt is given in [30].

Definition 3 (Propensity to disrupt). For any allocation vector
x, the propensity to disrupt d(x, S) of a coalition S C N (S #
(), N) is the ratio of the loss incurred by the complementary
coalition N \ S to the loss incurred by the coalition S itself
if the payoff vector is abandoned. That is:

z(S) — U(S)
An equivalent definition of d(z,.S) is
Z(5) —v(S )
A5 = 58 () -

where: Z(S) = v(N) — v(IN \ S) [29].

The propensity to disrupt of a coalition S quantifies its de-
sire to leave the coalition. When z(S) = v(S) the propensity
to disrupt of S is infinite and the desire of S to leave the
coalition is maximum; when z(S) > v(S) but z(S) — v(S)
is small, the value of d(x,S) is very high and again S does
not like the agreement; when z(S) = v(N) — v(N \ S) the
propensity to disrupt is zero and S has the propensity not to
destroy the coalition; when z(S) > v(N) — v(N \ S) the
index is negative and there is an hyper-enthusiasm for such
an agreement. It holds an interesting relationship between the
propensity to disrupt and the player satisfaction rate.

Theorem 2. The relationship between the player satisfaction
rate and the propensity to disrupt is: P.S; = (d(x,4) + 1)~}

Proof. Using the alternative definition of d(z,i) we have
d(z,i) = ”(N)fv(Ny))*”(l) 1 but 2=2AD v ¢ equal

z;—v(i)
to pg 50 d(z,i) = pg- — 1. O
It is worth noting that if d(z, ) goes to infinity, then P.S;
goes to 0 and if d(x,i) = 0 then PS; = 1. This gives another
interpretation of the PS rate. The higher the satisfaction is,
the bigger the enthusiasm of ¢, for being in the coalition, is.
On the contrary, the closer to zero the user satisfaction is, the
higher the propensity of user ¢ to leave the coalition is.

IV. THE M0OOD VALUE AND THE PLAYER FAIRNESS INDEX

In this section, we define a new resource allocation rule that
we call the Mood Value. The fairness idea behind this rule is
the same of the one behind the Jain’s index. A repartition

of a resource is fair when all the users have the same
satisfaction. Furthermore, we propose novel fairness indices
as a modification of the classical fairness ones.

A. The Mood Value

Using the proposed PS rate, we can define the mood value.

Definition 4 (Mood Value). Given an allocation problem
characterized by (¢, E), the allocation x such that PS; = PS,
Vi,j € N is called mood value.

Due to the relation between the propensity to disrupt and
the player satisfaction, the fairest solution corresponds to the
one in which every player has the same propensity to leave
the coalition. Equalizing the propensity to disrupt of the users,
this allocation equalizes the mood of each player. In particular,
given a game, it exists a unique mood such that the satisfaction
of each user is the same. The closer to zero the mood is, the
more unsatisfied user 7 is; the closer to one the mood is, the
more enthusiast the user ¢ is.

Theorem 3. Let (¢, E) characterize an allocation problem.
There exists a unique mood m such that PS; = m Vi € N:
E —min

m=—— 2

maxr —min

where: min =Y.' v(i) = >, min;, max =Y . [E —

v(N \4)] = >, maz;. The mood value is:
x* = min; + m(max; — min;). 3)
Proof. Let PS; = m Vi € N. It follows:
z; =m(E —v(N\1i))+ (1 —m)v(i). 4)

Due to the efficiency property it holds:
S m(E—v(N\1%))+ (1 —m)v(i)] = E. Thus @). Since z;
i=1
is the mood value iff PS; = m Vi € N:

x; — v(i)
=m
E—o(N\4) — (i)
Vi € N and (3) remains proved. 0

From (2) we can notice that the mood depends only on the
game setting, thus, given a bankruptcy game, we can know a
priori the value of the mood that produces a fair allocation.
Knowing m, on can easily calculate the mood value z".

The formula (3) shows that each user receives the minimum
possible allocation v(i) plus a portion m of the quantity
maxz; — min;. The nearer to 1 the mood m is, the greater
the happiness of each user is, and the closer to the maxi-
mum the allocation is. In fact, when m is equal to 1, the
player receives exactly F — v(N \ i), that is the maximum
portion of resource that it can get, being inside a bankruptcy
game. Depending only on the value of the minimum and
the maximum payoff, the mood value coincides with the 7-
value solution for bankruptcy games, also called adjusted
proportional rules (AP-Rule) [31]. Before detailing this re-
lationship, let us mention that in the bankruptcy games the
core is C(v) = {x € RN : Y. vai = v(N),v(i) <
x; < v(N)—o(N\i) ViC N} [31]. Moreover, the core
cover CC(v) is defined as the set of z € RY such that
Y ien Ti = v(N) and m(v) <z < M(v).



Theorem 4. The mood value coincides with the 7-value
solution for bankruptcy games, where the « value of the 7-
value coincides with 1 — m.

Proof. The T-value is the linear combination of the minimal
and the utopia payoff (I) and, given the alternative definition
of the mood value @), we have to simply prove that the utopia
payoff for each player is given by F—uv(N\¢) and the minimal
one by v(i). o multiplies the minimal payoff in (I) while m
the utopia one in @), so trivially &« = 1—m. As already argued
in [31]], the core C(v) coincides with the core cover CC'(v). It
follows that m;(v) = v(i) and M;(v) = v(N)—v(N\4). O

The mood value owns some interesting properties. It is an
allocation thus it satisfies non-negativity, demand boundedness
and efficiency property; it is stable, that means it belongs to
the core of the game (prop. [5) and it guarantees more than
minimal right to each player (2" > v(¢)). Furthermore, it
satisfies the following property: if v(i) = v(j) and v(N \ i) =
v(N \ j) then zi* = 27". This implies the equal treatment
of equals (¢; = ¢; = 27" = z7") and equal treatment of
greedy claimants (given a bankruptcy game, let G be the set
of greedy players, i.e. such that ¢; > E: if |G| > 2 then
zi" =z Vi,j € G). This last property guarantees that even
if a user has a cheating behavior, its demand is bounded by the
available amount of resource E. Furthermore, the mood value
is a strategy-proof allocation because a user has no advantages
in splitting his demand and Curiel et al. in [31] prove that the
T-value solution for bankruptcy games can be characterized
by (i) minimal right property, (ii) equal treatments of equals
and (iii) strategy proofness property.

Theorem 5. The mood value belongs to the core of (N, v).

Proof. We should prove that %% > v(S), VS C N.

If v(S) = 0 the condition holds due to the fact that z7* < 0,
Vi € N. Now consider the case v(S) > 0. Suppose that 2% <
v(S)=FE -3 w\s Ci- For the efficiency property it holds
E = 2§ a7 . implying 277, o > >_ien\s Ci» which yields
a contradiction with the fact that, according to the mood value
solution, each user receives at most its demand. O

In case of two players, it holds the following proposition.

Proposition 3. In a game with two players, the mood value
coincides with the Shapley value and the mood is equal to 0.5.

Proof. Using () and () we have m = 0.5 and
m = Ly(i) + (B — (N \i)) fori = {1,2}.

Ty =3 2

The Shapley solution for a game with two players is:
¢(1) = 50(1) + 5(E —v(2)). ¢(2) = 50(2) + 5(E —v(1))
and it coincides with ™. O

When the number of players is bigger than two, the mood
value does not coincide any longer with the Shapley value as
it is shown in the following example.

Example 4. Let ¢; = [6,2,5] and let £ = 10. The mood
value is 2™ = [4.875,1.25,3.875] and the Shapley value is
2° = [4.833,1.333, 3.833].

It is important to note that the mood value solution for a
resource allocation problem produces an interesting solution

also in the case in which the sum of the demands is inferior to
the resource. This is a desirable property with an application
perspective to systems in which bankruptcy situations can
dynamically alternate with situations that are not bankruptcy
situations. In such cases, each user receives the demand ¢; and
the excess E — " | ¢; is divided equally between them.
Proposition 4. Let (c, E) such that ) ., ¢; < E. The mood
. . E "o

value solution for user i is x; = ¢; + i=1 7
n

Proof. In order to calculate x;, it is necessary the value of v(¢)
and v(N\9). Itholds: v(i) = E—3",; ¢;, v(N\i) = E—c;.
Using the formula (2) and (@), we have m = (n — 1)/n and
xTr; = EiZj;éi CrFL_l(Z?:l Ci*E) = Ci+7E7%:l ci . O

n

Mood Value Computation Complexity: Differently from the
other allocation solutions inspired by game theory, in order to
calculate this new allocation, only the value of 2n coalitions,
i.e., the ones formed by the single players and the ones
containing n — 1 players, is needed. The time complexity of
mood value computation is dominated by the complexity of
computing v (%) that is @O(n). In dynamic situations, i.e., when
the value of each of the n coalitions has to be updated at each
slot of time, the complexity is therefore O(n?), but it can
be reduced to O(n) when v(i) pre-computation is possible.
This makes the mood value the best allocation rule in terms
of time complexity together with the proportional allocation:
the Shapley value has a time complexity of O(n!), while
iterative algorithms for the computation of MMF and CEL
allocations have a O(n? log n) time complexity; the Nucleolus
computation that in general is a NP-hard problem, in case of
bankruptcy games can reduced to O(nlogn) [32], [33].

In terms of spatial complexity, the mood value, proportional,
MMF and CEL allocations can be considered as equivalent
and in the order of O(n). Instead, the Shapley value and the
Nucleolus computations have a spatial complexity of O(2™).

B. The Player Fairness Index

In our next analysis, we consider the Jain’s index and its
modification we called Player fairness index.

Definition 5. Given an allocation problem (¢, E) and an
allocation x, the Jain’s fairnegs index 1is:
SIGINIDC]
i=1 i=1

The Jain’s index is bounded between % and 1 [7]. The
maximum fairness is measured when all the users obtain
the same fraction of demand and the minimum fairness is
measured when it exists only one user that receives all the
resource. The Jain’s index has the following good properties:

e Population size independence: applicable to any user set,

finite or infinite.

o Scale and metric independence: not affected by the scale.

o Boundedness: can be expressed as a percentage.

o Continuity: able to capture any change in the allocation.
As we argued in the previous section, the appropriate metric
to rationally measure the satisfaction of the users, in complete
information sharing settings, is the PS rate. Consequently, we



replace in the Jain’s index the DFS rate with the PS rate and
we obtain a new measure of fairness, we call players fairness
index.

Definition 6 (Players fairness index). Given a problem (¢, E)
and an allocation z, the players fairness index is:

n 2 n
2
gy = [Z(psi)} / 3 (PS)
i=1 i=1
The resulting new fairness index we propose takes value 1

when all the users have the same satisfaction, i.e., when the
allocation is the mood value.

Theorem 6. The players fairness index takes value in the
interval [1, 1] when the allocation belongs to the core.

Proof. From Theorem [1] follows that P.S; belongs to [0, 1] and
that Y P.S; is always not negative. The maximum fairness is

mealeIrled when all the users have the same PS rate, i.e.:
(S0, (PS)) = (nPS))* = n 30, (PS) = nn(PS,)°.
Thus J, = 1. The minimum fairness is measured when
Nk st. PS, # 0 and PS; = 0 Vj # k. In this case:
[Z?:l(PSi)]Q = (PSk)2 = nZ?:l(PSi)Q = "(Psk)2 =
P = % O

For core allocations, J, takes value in the same interval
of J making possible a comparison between the two indices.
Furthermore, this index maintains all the good properties of
the Jain’s index: the population size independence, the scale
and metric independence, the boundedness and the continuity.

It is worth mentioning that our proposed fairness index,
as well as other indices from the literature that we recall
in the paper, are used in the context of resource allocation
frameworks where the satisfaction rate of the users is not
boolean (either satisfied or unsatisfied) and there are no strict
service level agreements to be fully satisfied.

V. INTERPRETATION WITH RESPECT TO TRAFFIC THEORY

In the already cited seminal works about the definition of
proportional and weighted proportional allocations in network
communications, network optimization models are defined
using as goal the maximization of a utility function. A typical
application is the bandwidth sharing between elastic applica-
tions [13]], i.e., protocols able to adapt the transmission rate
upon detection of packet loss. In this context, we show how it
is possible to revisit the mood value as a value resulting of the
sum of the minimum allocation and the result of a weighted
proportional allocation formulation where the weights are not
the original demands, but new demands re-scaled accordingly
to the maximum possible allocation knowing the available
resource, and the minimum allocation under complete informa-
tion sharing. More precisely, it holds the following proposition:

Proposition 5. The mood value can be computed as the result
of the following 4-step algorithm.

Step 1: We assign to each user the minimal right v(z).

Step 2: We set the new value of the estate B/ = F — min =
E — "  v(i) and the new demands ¢; = max; — min,.
Step 3: We solve the following optimization problem

n
/
g c¢;log z;
i=1

maximize
xT
subjectto z; < ¢, i=1,...,n
z; >0,1=1,...,n

ixi = El

i=1
Step 4 The mood value coincides with the sum of the min-
imal right and the allocation given by step 3: zI* = v(¢) + ;.

Proof. We should prove that the result of the optimization
problem is x; = mc}. The lagrangian of the problem is

Liw,u ) = Y0y dlogar — T (C— Aw) - A(E'— Y0, )
where the vector p and A are the lagrangian multipliers (or
shadow prices), C is the vector of the demands [¢], ...c, and

a
A is the identity matrix of dimension n. Then, 9& = & —

> dz; T m
i; — . The optimum is given by x; = MC_L\ when p > 0,
Ay < C, 3> "  x; = E"and p”(C — Az) = 0. This coincides
with the case in which u7 = 0 and X\ # 0. In fact, we have

S S =1yl g =FE1t follows that A = =3

7 =11

is greater or equal to 1 and z; = % is less or equal to ¢,
that is an admissible solution. We can now notice that A =
maxr—min

1 n / _ 1 J— /
T D ie € = T — Tt follows x; = mc;. O

Example 5. Let (¢, E) be the allocation problem Example
Following the algorithm we have:

Step 1: v(i) = [0, 0, 5]. Step 2: E' =5, ¢, = [3,2,5].
Step 3: x = [1.5,1,2.5] Step 4: " =[1.5,1,7.5].

The algorithm shows that the mood value firstly assigns
the minimal right (step 1) and secondly, considering the new
allocation problem resulting after the first assignment (step 2),
it allocates in a proportional way the resources (step 3). Then
the proportion of allocated resource is the mood.

We provide two ways to compute the mood value: (3)
and the 4-step algorithm of Section It is clear that the
computation of the mood value through the formula (3 is
less complex than the one using the 4-step algorithm.

VI. NUMERICAL EXAMPLES
A. OFDMA scheduling use-case

In this section, we want to test the mood value and the
new fairness index and to compare them with the classical
allocations and the Jain’s index. We run numerical simula-
tions of the cellular OFDMA (Orthogonal Frequency-Division
Multiple Access) spectrum scheduling problem.

In OFDMA scheduling, a base station unit or controller
dynamically receives new users and decides which spectrum
portion to allocate to which users, as a function of (i) their
signal power and interference levels (aspects that characterize
their demands), (ii) the other users to manage concurrently
(i.e., users that arrive together during a OFDMA frame time
or still in the scheduler queue) and (iii) the spectrum already
allocated to existing users. The number of users to manage
concurrently is basically limited to few (up to a dozen), except
in high mobility environments. It is worth mentioning that
in OFDMA, the unit of spectrum for the allocation is the
Resource Block (RB).
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Fig. 3: Fairness w.r.t. the available resource (10 users, uniform)

We suppose that the maximum number of available resource
blocks is equal to 100; this coincides, in LTE standard, with the
number of resource blocks for a bandwidth of 20 MHz. Fur-
thermore, we consider a range for demand generation between
0 and 100 RBs using two different distributions: (i) a uniform
distribution between 0 and 100, and (ii) a Zipf’s distribution
flk,s,N) = [X]/[X, L] where the parameters k and
s are equal to 100 and 0.4, respectively. We choose these
values for the two parameters of the Zipf’s distribution because
as shown in []], they permit to fit well a realistic demand
distribution. As a matter of fact, we show in [I]] that the
continuous extension of OFDMA demand generation process
leads to a distribution that well fits a Weibull distributionf]

We run different instances varying the available resource
(i.e., E) from 5 to 95, with the interpretation of being the
available number of resource blocks at the instant the OFDMA
scheduling problem is faced. We simulate 300 bankruptcy
games with 3 and 10 users in the scheduler.

Fig. 21 B] [ and [3] show the results of the simulations. We
consider the six allocations discussed before: Proportional,
Shapley, Nucleolus, Mood Value, MMF and CEL. We cal-
culate the Jain’s fairness index and the players fairness index

3The Zipf’s distribution can be seen as a discrete variation of the Pareto
distribution, that belongs to the same distributions family of the Weibull one.

Fig. 5: Fairness w.r.t. the available resource (10 users, Zipf)

and we plot, for each value of E and each index, the mean
value in between the first and third quartile lines.

In the 3-user cases (Fig. [ and Fig. [) the fairest allocation
accordingly to the Jain’s index is the proportional rule, and
accordingly to the players’ fairness index is the mood value.
For both allocations, the value of the respective fairness index
is equal to 1 for almost all the values of the available resource;
only when the resource is scarce the value decreases due to
the fact that the solutions are rounded. We can also notice
that the mood value allocation has a behavior similar to the
Shapley value and to the nucleolus and that it is close to the
proportional allocation when the resource is between 50 and
80, and to the MMF allocation when the resource is scarce.
For this last allocation the PF index has high value when the
available resource is small (high congestion), i.e., when there
are many greedy users. In fact, the MMF allocation and the
mood value are close: in such cases, both have the property
of treating equally the greedy claimant, giving them the same
portion of resource, independently of their demands.

In the 10-user cases (Fig. [3] and Fig. [5), we can observe a
similar trend for the two indices, but their values decreases, in
particular in case of scarce resource, due to the discretization
of the solution. Again, the mood value has a behavior similar
to the Shapley value, but it is no more close to the nucleolus.

For each scenario, we can notice that the mood value solu-
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tion gives a better performance in term of fairness, measured
with both indices, with respect to the MMF allocation, that is
the one mostly used in this type of problems. In particular,
the difference in term of fairness between the two allocations
increases when the number of users in the system increases.

B. Continuous allocation example

Differently from the previous analysis around the OFDMA
scheduling use-case where to a user can be given a discrete and
limited number of RBs, we now consider divisible resources
as caches or link bandwidths (i.e., a quasi-continuum situation
with the bit granularity but with millions of bits for a single
allocation). In the supplementary materials, we provide the
same type of results than the previous section comparing rules
and fairness indices, which lead to similar conclusions.

The continuous allocation allows us to better stress the
situations different users fall in, as discussed in Prop. and
and that as a function of the congestion level computed as
the global demand over the available resource. Due to its non-
informative nature, we consider a uniform distribution of the
demands between O and 100 units of resource (e.g., Mega-
bytes or Mega-bit/s) and we run different instances with a
ratio of E (available resource) ranging from 5% to 95% of
the global demand. We simulate 300 bankruptcy games with
3 and 10 users in the system waiting for an allocation.

Fig. [6] shows the users configuration as a function of the
available resource. With 3 users (Fig. [6p), for low value of E
almost all are greedy players (GG case) due to the fact that
the resource is small; increasing E' the number of moderate
players (GM) increases but also some users in configuration
MG appear. In fact, increasing F, some greedy players become
moderate while the others remain greedy; some of them are
greedy inside a group of greedy users (GG), while some others
greedy inside a group of moderate ones (MG). When the
available resource is higher than half of the global demand,
greedy players GG disappear and the number of moderate
players increases. In particular, users MM appear and they
become the majority when the resource is large. With 10
users (Fig. [6b), we find a similar trend than with 3 users in
the number of moderate players that increases increasing E.
However, MG users disappear; in fact, it holds that it can exist
at most one MG user in a game (see Prop. [2)) and, due to the
higher number of users in the system, it is very unlikely that
there exists only a player MG in the system such that the sum
of the demands of the other n — 1 players exceeds F.

To support the analysis of the user cases distribution, we
plot the ratio of the four user types increasing the number
of users from 3 to 15 and setting the demands in a uniform
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way between 0 and 100 (Fig. [7). As we already noticed, the
number of MG users is small and it becomes negligible starting
from a number of users higher than 5 (Fig. [7d). Furthermore,
increasing the number of users, the range of available resource
in which all the users are of type GM increases. In fact, if in
3-users scenarios a user can be of each possible type, in 15-
user scenarios we find users different from type GG only if the
ratio of the available resource is less than 0.2 or higher than
0.8. When users are of type GG, their satisfaction is measured
in the classical way with the DFS rate; it follows that with a
sufficiently high number of users, the new proposed approach
gives different results from the classical one only in case of
high congestion or in case of low congestion. In order to
capture all the possible scenarios, we choose a low number
of users for the simulations.

Summarizing, the simulations show how the proposed Mood
Value produces different results with respect to the classical
approach; in particular, in case of few users or, if the number
of users is sufficiently high, in case of high or low congestion.
The Mood Value is able to nicely weight the nature (greedy
or moderate) of users; in particular, it is close to the MMF
allocation when the resource is scarce and to the proportional
allocation when the resource is close to the global demand.
Furthermore, it is worth noticing that with respect the Shapley
value, the results show that the Mood Value has a similar good
behavior in terms of fairness, with the key advantage of having
a much lower computation time complexity.

VII. DYNAMICS IN MULTI-PROVIDER CONTEXTS

We test the behavior of the different resource allocation
rules in a strategic context with multiple competing providers.
We run this analysis to (i) study the global system efficiency
under the different allocation rules, and to (ii) qualify the
motivation in adopting the mood value for a network provider.

A. Impact on system efficiency

For the first analysis we consider two providers, provider
1 and provider 2, providing the same service on a competitive
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market. Each of them has its own capacity (E'1, E2) and its
own way to allocate resources. We consider only the MMF,
the mood value and the proportional allocation rules.

Users are selfish and they have no binding agreements with
the provider thus they can move from one provider to the other
in order to reach a better satisfaction with respect of their
allocation. The satisfaction is calculated using the demand
fraction satisfaction rate (DFS rate) with the consequence that
users prefer to move if their allocation is strictly bigger.

We set up a simulation in order to investigate the equilib-
rium configuration of the user to provider choices. We are
particularly interested in the percentage of time in which the
simulation produces ‘agglomerated’ configurations, i.e., when
the equilibrium configuration coincides in having all the users
served by only one provider. This is the worst configuration
in terms of efficiency: the equilibrium is globally inefficient
because the entire resource of one operator gets wasted.

In order to find the equilibrium configuration we randomly
choose one of the two providers and we calculate the solution
when all the users are served by this provider. Having the
initial state, we calculate, for each player, the gain in moving
to the other provider: if the gain is positive, it has propensity
to move to the other provider, otherwise it prefers to stay in
the currently provider. We choose randomly one user between
the users that have positive gain and we move it in the
other provider. We repeat the algorithm until we reach an
equilibrium configuration.

For our simulations we generate F'1 randomly between 0
and 20 units and we consider fixed ratios between E1 and
E2 (E2=}%E1, E2=3F1, ..., E2=F1, .., E2=10F1). For
each scenario, we generate 200 resource allocation problem
instances with 3 users, choosing the demands uniformly be-
tween 0 and F'1 + E2 (CASE 1). We repeat the simulations
adding the constraints that both E'1 and E2 are bigger than
the smaller demand, i.e., we avoid situations in which all the
demands are bigger than the estate (CASE 2). This second
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case makes more sense in some configurations and it follows

the trivial idea that usually a provider owns enough resource to

completely satisfy at least the user with the smallest demand.
For both cases, we plot the results in three scenarios:

MMF-MOQOD: the first provider allocates the resource
using the MMF rule and the second with the mood value.
MME-PROP: the first provider allocates using the MMF
rule and the second with the proportional rule.
MOOD-PROP: the first provider allocates using the mood
value rule and the second with the proportional rule.

Fig. [§ and Fig. [0 show the result of the analysis. In
CASE 1 (Fig. B) we can notice that in each scenario the
percentage of agglomerated equilibria is high when the gap
between the quantity of available resource in the two providers
is considerable; for instance, if one provider’s resource is
four times higher than that of the other provider. In these
cases, there is a high probability that all the users, including
the one with the smaller demand, reach a better allocation
choosing the provider with the widest resource. In this case,
the percentage of agglomerated equilibria slightly differs from
one allocation to the other and in particular it is slightly
higher when the provider allocates using the MMF rule;
differently, in CASE 2 (Fig.[9) the percentage of agglomerated
equilibria differs a lot with respect to the allocation that the
providers adopt. In particular, we can notice that the number
of agglomerated equilibria produced by the MMF allocation
slightly decreases with respect to CASE 1, while the number of
the ones produced by the proportional and mood value solution
drastically decreases. We can report that in this case there is
a resource waste that goes up to 26% (case E2=%E1) of
the global resource with the MMF allocation, and it does not
exceed 1,7% (case E2=12—0E 1) with the mood value allocation.

B. Impact on user retention

In a second analysis, we aim to assess which type of users
are attracted by which allocation rule. In this case we consider
that operators have equal resources to avoid the presence of
inefficient equilibria and we set two scenarios; we randomly
generate 200 times El equal to E2 and 10 users such that in
average the level of congestion in first scenario is 10% and in
second is 90%.

Fig. [10] and Fig. [IT] show the distribution of the four types
of users previously discussed, for the three different pairs of
allocation rules among the two providers, and for the two
congestion scenario§’} We can notice that in case of high
congestion there are only GM and GG users, while without
congestion there are GM and MM users. In the former case,
the mood value and the proportional allocation attract the
users with high demand when the allocation of the other
provider is MMF, while in the MOOD-PROP case there is a
symmetric distribution in the users’ type. We can also notice
that in the MMF-MOOD case the mood value gives a median

‘e.g., in Fig. the first provider uses the MMF rule and the user
distribution is given by the first four boxplots, the fifth one giving the sum;
the remaining boxplots give the same numbers for the second provider. Each
boxplot reports, from bottom to top, the minimum, first quartile, median, third
quartile, and maximum.
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number of users 20% higher than with the MMF allocation.
Moreover, in the high congestion scenario (Fig. [IT), the MMF
mostly attracts MM users, i.e., users with a demand lower than
the available resource and such that the sum of other users
demands is less than E; this means that if one of them leaves
the provider, there is no more congestion on that provider and
there is an excess of resource that gets wasted.

Therefore, the mood value and the proportional allocation
have a similar impact on user retention from a provider
perspective: they appear better than the MMF allocation in a
multi-provider strategic context because they can better use the
resource of the providers, avoid resource waste. In particular,
the gain of using these two allocations is conspicuous when
we avoid (unlikely) situations in which all the users ask more
than the resource available in one provider. Furthermore, in
case of high congestion, the mood value attracts more users
and users of higher demands, with respect to the MMF; in case
of low congestion, similarly to the proportional allocation, it
reduces the resource waste due to provider change.

VIII. ANALYSIS OF CHEATING BEHAVIORS

Let us investigate the consequences of users’ cheating be-
haviors and in particular the relationship with the mood value,
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which, while it allows cheating behaviors, limits the gain of
the cheating userﬂ Figure shows the proportional allocation
and the mood value when users cheat on their demands. The
figure refers to an allocation problem where the available
resource is 10 and the real demands of the users are 6 and
8. For the proportional allocation, the value of each allocation
is the intersection between the black line, that is the Pareto-
efficient frontier, and the line with angular coefficient given
by the ratio between the demand of user 2 and the demand
of user 1; for the mood value, the value is the intersection
between the frontier and the line connecting the minimum
and the maximum allocation of the two users. We can notice
that, with the proportional allocation, a user is stimulated in
asking more in order to obtain a bigger allocation. The mood
value does not avoid cheating behavior as well: asking more,
users can receive more if their real demand is smaller than
the available resource; nevertheless, when the demand goes
beyond the available resource F, the mood value limits it at
the available resource amount so that users have no incentive in
asking more than E. In our example the first user can increase
at most its allocation from 4 to 6 and the second one from 6
to 7. We formalize this aspect as follows:

Proposition 6. A user has no incentive in asking more than
the available resource if the allocation rule is the Mood value.

Proof. If a user ¢ has a demand ¢; > FE then the interval
of value considered to calculate the mood value is [min;, F:
increasing the demand the interval does not change because
min; depends only on E and on the demands of the other
users. So it trivially follows that the mood value allocation for
the user is not increasing. O

51t is worth mentioning that, in order to introduce mechanisms to guarantee
truthful demands, a pricing scheme like the one proposed in [23] can be
applied. Such a pricing scheme encourages the users to declare their truthful
demands by maximizing their utilities for real declarations.
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‘ U.1-prop ‘ U.2-prop U.1-mood value ‘ U.2-mood value

max gain

max lost

80% 50% 40% 12%
67% 60% 18% 27%

TABLE IV: Maximum gain and lost: comparison

We test now the gain of users in cheating for a 2-user alloca-
tion problem in which both users have a demand, expressing
their real need, inferior to the available resource (c=(6,8),
FE=10). In order to obtain a better allocation users can declare
a need superior than how much they really need; in particular
in our example from 10% to 400% more than the demand c;.

Fig. shows the heat map of the users gain as a function
of the percentage of cheating of both users; we use the
DFS satisfaction and the gain for user ¢ is calculated as
G; = “i="+, where x§ is ¢’s allocation when there is cheating
and 27 is the allocation when both users declare the true needs.

Being c¢; and cp bigger than %, the MMF allocation is
always equal to g for both users thus cheating brings no gain
to users, otherwise a proportional or a mood value allocation
allow users to gain or to lose. We can notice that with a
proportional allocation the gain or the loss of user can be very
high (see Table[[V)), depending on the percentage (importance)
of cheating, while the mood value allocation limits the gain
or the loss. This follows from the property of equal treatment
of greedy claimants, and from the fact that the mood value
solution coincides with the MMF fair allocation when the
resource is scarce with respect to the demands of the users.

IX. CONCLUSION

We proposed a game-theoretical approach to analyze and
solve resource allocation problems, going beyond classical
approaches that do not explore the setting where users can
be aware of other users’ demand and the available resource.

In particular, we proposed a new way of quantifying the
user satisfaction taking into account the deeper knowledge of
the users with respect to the resource allocation problem, and
a new fairness index as enhancement of the family of fairness
measures, describing and comparing their mathematical prop-
erties in detail. According to these new concepts, we propose
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a new resource allocation rule called the ‘Mood Value’ that
meets the goal of providing the fairest resource allocation and
we position it with respect to game theory metrics as well the
common theory of fair allocation in networks.

Finally, we test our ideas via numerical simulations of
representative demand distributions and we provide two further
analysis showing the advantages of the mood value allocation
in a strategic multi-provider context and in the presence of
cheating users. Besides the properties we analytically prove,
the results of our simulations can be summarized as follows:

o the mood value allocation is able to take into account
the nature of the users and the level of congestion of the
system and consequently to choose the fairest solution;
in case of high congestion, the mood value allocates the
resources in way similar to the MMF allocation, while
in case of low congestion similarly to the proportional
allocation; this implies that if users cheat on their de-
mand, they have a limited gain because the mood value
converges to a MMF allocation under high congestion;
the mood value has lower computational complexity than
other game theoretical solutions as the Shapley value;
in case of strategic contest, the mood value guarantees
the efficiency of the equilibrium, except, with a low
percentage, in case of strong resource imbalance between
the two providers and it attracts more users and with
higher demands in case of high system congestion.

APPENDIX A
FAIRNESS INDICES

The axiomatic theory of fairness proposed in [[17] shows
that it exists an unique family of fairness measures given by:

1
Faa(z) = f(x) (Zx) (5)
where z is the allocation, % and [ are parameters belonging
to R and f(x) is a symmetric fairness measure as fg(z) or

an asymmetric one as fz(z, q):
1-67 1
(£=) | o

ot = sgnt=rt1-+ ) [S a5 e

where ¢; is user ¢ specific weight and » € R is a constant
exponent.

This family of measures unifies different fairness indices
belonging to different fields as networking, economy and
political philosophy. The most common fairness indices are
described with their (5)-(7) parameters in Table [V]

bN
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