
HAL Id: hal-01910220
https://hal.science/hal-01910220

Submitted on 31 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Labelled Port Graph – A Formal Structure for Models
and Computations

Maribel Fernández, Hélène Kirchner, Bruno Pinaud

To cite this version:
Maribel Fernández, Hélène Kirchner, Bruno Pinaud. Labelled Port Graph – A Formal Structure for
Models and Computations. The 12th Workshop on Logical and Semantic Frameworks, with Applica-
tions (LSFA 2017), Sep 2017, Brasília, Brazil. pp.3 - 21, �10.1016/j.entcs.2018.10.002�. �hal-01910220�

https://hal.science/hal-01910220
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Labelled Port Graph – A Formal Structure
for Models and Computations

Maribel Fernández1

King’s College London, UK

Hélène Kirchner2

Inria, France

Bruno Pinaud3

University of Bordeaux, CNRS UMR5800 LaBRI, France

Abstract

We present a general definition of labelled port graph that serves as a basis for the design of graph-based
programming and modelling frameworks (syntax and semantics). We show that this structure provides
the syntax for programs, which are composed of an initial graph, a set of rules and a strategy. Rules,
represented as labelled port graphs, apply to states, also represented as labelled port graphs, and compute
their successors according to the given strategy. The description of states, rules, and computations controlled
by strategies, using labelled port graphs, is detailed and illustrated with examples from Porgy, a strategic
port graph rewriting environment for the design of executable specifications of complex systems.

Keywords: labelled port graph, rewrite rule, strategy, rule-based modelling, Porgy

1 Introduction

Various notions of labelled graphs and attributed graphs can be found in the liter-

ature, but defining for these notions an appropriate theory of graph transformation

is not trivial, mainly because labels or attributes are interpreted in an algebraic

framework, not easily combined with the categorical framework usually used for

graphs. In the last 20 years however different approaches have been proposed to

overcome this difficulty: In [22], graphs are coded as algebras and the data algebra

1 Email: maribel.fernandez@kcl.ac.uk
2 Email: helene.kirchner@inria.fr
3 Email: bruno.pinaud@u-bordeaux.fr

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 338 (2018) 3–21

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.10.002

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto: maribel.fernandez@kcl.ac.uk
mailto:helene.kirchner@inria.fr
mailto: bruno.pinaud@u-bordeaux.fr
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.10.002
https://doi.org/10.1016/j.entcs.2018.10.002
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


is embedded in the graph. In [29], labelled graphs have labels which are elements

of an algebra and graph transformation rules involve computations on the labels.

In [25], symbolic graphs include variable nodes which represent the values of the

attributes together with a set of formulas that constrain the value of these variables.

Port graphs, i.e., graphs where edges are attached to nodes at specific points

called ports, have been used in various contexts. Ports permit to model in a nat-

ural way concepts such as binding or phosphorylation sites in protein interactions,

communication ports in computer networks, or users’ links in different social net-

works. Examples of port graphs used to model biochemical systems and to specify

generation and propagation algorithms for social networks can be found in [3,2,11].

Port graphs with attributes associated with nodes, ports and edges, called at-

tributed port graphs for short, are formally defined in [13], where a port graph

rewriting relation is specified using the single pushout approach to graph transfor-

mation. This formal structure is implemented since 2010 in Porgy [26], a visual

environment that allows users to define port graphs and port graph rewrite rules,

and to apply the rewrite rules in an interactive way, or via the use of strategies. To

control the application of rewrite rules, Porgy provides a strategy language. The

latest version of Porgy can be downloaded from http://porgy.labri.fr either

as source code or binaries for MacOS, Windows or Linux machines.

Building on these previous works, this paper focuses on the formal structure of

labelled port graph and explains its role in the design of executable specifications

of complex systems. Labelled port graphs are port graphs where ports, nodes

and edges carry a label, which is an expression from a formal language given as a

parameter together with its interpretation domain. The notion of attribute used in

Porgy to define properties of nodes, ports and edges can be seen as a particular

case of label, where a set of built-in function symbols and predicates are available

(for example, arithmetic operators, and predicates interpreted over a graph domain,

such as edge(n, n′), which holds if there exists an edge linking the nodes n and n′

in a given graph).

We show that all the ingredients of a graph transformation system can be spec-

ified as labelled port graphs. Port graph rewrite rules are labelled port graphs

consisting of two port graphs (the left- and right-hand sides) and a special node

(the arrow node) that links ports from the left-hand side and right-hand side. For-

mally, the arrow node defines a morphism which is used to give a single pushout

semantics for rewriting. Since there is usually more than one way to apply rules

to a graph to generate rewriting steps, a strategy expression is used to select the

rule to be applied and the position in the graph where rules should (or not) apply.

We define located graphs as labelled port graphs that include labels to specify the

rewriting position and the subgraphs that should be protected (i.e., not rewritten).

Rewriting derivations, controlled by a strategy, can also be represented as a labelled

port graph, whose nodes are labelled by graphs and strategies.

This approach to graph rewriting, where all the components of the system are

represented using a unique concept (namely, labelled port graphs), has advantages

both from a theoretical and a practical point of view: there is one main data struc-

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–214

http://porgy.labri.fr


ture to design and implement, so the implementation efforts can focus on this task,

and since the rewrite rules are themselves graphs, the formalism is by construction

reflective. Reflection is a key property in logical frameworks and facilitates the

design of extensions (see, e.g., rewriting logic [23]).

The paper is organised as follows: Section 2 introduces the concept of labelled

port graph as a generic structure, and presents the specific instance used in Porgy.

Section 3 illustrates this structure with examples taken from various domains. Rules

and rewriting are defined in Section 4, where it is shown that rules are also labelled

port graphs and the rewriting mechanism on this structure is presented. Section 5

presents located port graphs as labelled port graphs. Derivation graphs, another

instance of labelled graphs, are defined in Section 6 and used as a mechanism to

visualise the dynamic behaviour of systems modelled by means of labelled port

graphs, rewrite rules and strategies. Section 7 describes related works and gives

directions for future work.

2 Definition of labelled port graphs

A port graph is a graph where nodes have ports, which are the points where edges

are attached. Nodes, ports and edges are labelled.

In this paper, we propose the notion of symbolic label that is a parameter of the

labelled port graph definition.

Definition 2.1 [Symbolic Label] A symbolic label (or just label for short) ll is an

element of a formal language L given by its syntax and semantics.

All labels have a name, are built using L ’s syntax and are interpreted in the

given semantic domain.

Definition 2.2 [Labelled port graph] A labelled port graph G = (V, P,E,D)F over

L is given by

• a 4-tuple (V, P,E,D) of pairwise disjoint sets, where:

· V is a finite set of nodes; n, n1, . . . range over nodes;

· P is a finite set of ports; p, p1, . . . range over ports;

· E is a finite set of edges between ports; e, e1, . . . range over edges; two ports

may be connected by more than one edge;

· D is a set of labels from L ;

• and a 3-tuple F of functions Connect, Attach and Label such that:

· for each edge e ∈ E, Connect(e) is the pair (p1, p2) of ports connected by

e;

· for each port p ∈ P , Attach(p) is the node n to which the port belongs;

· Label : V ∪ P ∪ E �→ P(D) is a labelling function that returns a finite set

of labels for each element in V ∪ P ∪ E.

If edges are not oriented, the order of the ports in the result of Connect can be

ignored.

Example 2.3 An example of labelled port graph is given in Figure 1. V is a set of

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–21 5



11 nodes, each of them labelled by a molecule name (Raf-1, PDE8A1, AKAP, PKA,

cAMP or S). P is a set of 21 ports, also labelled by their names (S1, S2,P1, . . . )

and the Attach function is visualised by drawing the port p as a red or green square

inside the node n when Attach(p) = n. Each node and port has also a Colour label

visualised by the colour of the element on the figure. E is a set of 7 edges, which are

not labelled in this example. The Connect function is visualised by a line between

two ports (p1, p2) if Connect(e) = (p1, p2).

Definition 2.2 is generic in the sense that the set D of labels is actually a pa-

rameter that can be instantiated in different ways. If D is empty, we obtain plain

(unlabelled) port graphs, consisting only of sets of nodes with ports and edges con-

necting nodes via ports; if D is a set of atomic labels, we obtain the notion of

labelled port graphs defined in [1,2,12]. Richer definitions of labels have been pro-

posed for graphs, which bring much more expressivity: for instance, in [25], the

labels of E-graphs are represented by label nodes connected to edges and nodes,

while in symbolic graphs, they are variables constrained by a set of formulas and

interpreted over an algebra; in [9], attributed graph labels are the values of a given

data algebra. Below we assume familiarity with basic notions of universal algebra

(we refer the reader to [10] for details).

Labels are implemented in Porgy as records, whose fields have values inter-

preted in algebras, as described in [13]. In Porgy, a label ll is a list of pairs

(a1 := v1, . . . , an := vn), where ai, called attribute, is a constant in a set A or

a variable in a set XA, and vi is the value of ai. The elements ai are pairwise

distinct. The first attribute in each label ll is its name and identifies the type

of the label in the following sense: for all ll = (Name := v1, . . . , an := vn),

ll′ = (Name := v′1, . . . , a′m := v′m), if v1 = v′1, then n = m and ak = a′k for

any 1 < k ≤ n. An example of record label is given in Figure 2.

Note that according to Definition 2.1, symbolic labels may be variables, first-

order terms and formulas involving variables. For instance in Porgy, records may

contain variables as values of attributes, and variables can be used to denote generic

attributes or generic records in port graph rewrite rules. These variables may be

instantiated in the given semantic domain. More precisely, values in Porgy’s labels

are either concrete values (numbers, Booleans, strings, etc.), or symbolic terms built

on a signature Σ = (S,Op) of an abstract data type and a set XS of variables of

sorts S. We denote by T (Σ,XS) the set of terms over Σ and XS . We use a set Pred

of predicates involving equality, disequality and ordering on numerical values.

Definition 2.4 [Ground and symbolic labelled port graph] Given a formal language

L defined by a signature Σ = (S,Op,Pred) and a set XS of variables of sorts S,
we call symbolic port graph a labelled port graph whose labels contain variables,

and ground port graph a labelled port graph without variables. Sorted variables are

instantiated in the sorted semantic domain associated to L .

In Porgy, labels with abstract values (i.e., expressions vi ∈ T (Σ,XS) that may

contain variables), allow us to define generic patterns in rewrite rules: abstract

values in left-hand sides of rewrite rules are matched against concrete data in the

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–216



graphs to be rewritten.

Below we may refer to labelled port graphs simply as port graphs.

3 Domains

Labelled Port Graphs have been used to describe complex models in various do-

mains: biology, social networks, interaction nets, capital markets, etc. We give

examples below, including visual representations of system states (port graphs),

obtained using Porgy. These examples illustrate the kind of labels supported in

the current version of Porgy.

3.1 A biochemical process

Molecular species are represented by labelled port graphs in a natural way: each

molecule is represented by a node whose ports correspond to its binding or, for

instance, phosphorylation sites. The attribute Name in each node identifies the

type of species represented by the node. Attributes Colour and Shape have the

same value for all nodes with the same Name. Ports have an attribute State

indicating whether it is bound or phosphorylated and a related attribute Colour

that reflects the value of the state.

Fig. 1. Example of port graph for a biochemical process

Figure 1 shows an example of a port graph used in a biological case study [2]

with two groups of complex molecules connected by many edges, and two simpler

molecule (two green “cAMPs” and one purple “A”). As explained earlier, labels

are used in the graphical interface to improve the visualisation of the graph. Each

node is shown with its Name and the ports attached to it are displayed inside; the

values of the attributes Colour and Shape are taken into account when displaying

the node.

3.2 Social networks

A social network is usually described as a graph where nodes represent users and

edges represent their relationships. Some real-world social relations involve mu-

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–21 7



tual recognition (e.g., friendship), whereas others present an asymmetric model of

acknowledgement (e.g., follower/followee). In a first approach, nodes representing

users have only one port gathering directed connections and edges are directed.

Multiple ports are useful, either to connect users according to the nature of their

relation (e.g., friend, parent, co-worker, . . . ) or to model situations where a user is

connected to friends via different social networks.

We present in Figure 2 an example of port graph studied in [14]. In this example,

nodes have attributes State, and Tau (used in an information propagation algorithm

to handle influence of users on each others), as well as an attribute Colour, for visual

purposes. The attribute Name is not mentioned because it has the same value for

all nodes (Name := user) and edges (Name := follower). An edge attribute

Marked is used to control iteration.

State := unaware
Tau := −1

State := unaware
Tau := −1

State := unaware
Tau := −1

State := informed

State := informed
Tau := −0.5

State := active
Tau := 1

State := active
Tau := 1

State := unaware
Tau := −1

State := informed
Tau := 0.2

�
��

Marked := 0

�
��

Marked := 1

Fig. 2. Example of port graph for a toy social network with some attributes.

3.3 Interaction nets

Interaction nets [21] are a graphical model of computation inspired by proof nets

from Linear Logic. In interaction net systems, programs consist of a net and a set

of interaction rules describing the possible interactions between agents. Nets are

graphs where nodes represent agents. Each agent has one principal port, where

interaction can take place, and a (possibly empty) set of auxiliary ports. Edges

connect agents by linking their ports. Interaction can only take place when two

agents are connected via their principal ports. In that case, if an interaction rule

for that pair of agents is provided, the pair of agents is replaced by the right-hand

side of the rule. In interaction rules, the left-hand side is restricted to a pair of

agents, and the right-hand side is a net with exactly the same number of free ports

as the left-hand side. Despite these restrictions, interaction nets are a universal

model of computation. Moreover, they are particularly suitable to analyse the cost

of computation, since the restrictions imposed on interaction rules ensure that all

steps of computation are represented as interaction steps.

Figure 3 shows an interaction net represented in Porgy. We use labels to

identify the name of the agent, and the kind of port (P for the principal port,

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–218



numbers for auxiliary ports).

Fig. 3. Example of an interaction net representing the arrithmetic expression 1 + 2.

4 Rules

To specify the dynamic behaviour of a modelled system, graph transformation rules

are a useful tool. In this section, we first give the general definition of port graph

rewrite rules with symbolic labels, which we illustrate using Porgy’s rewrite rules,

and then define the rewriting process, based on the notion of matching morphism.

4.1 Labelled port graph rewrite rule

A port graph rewrite rule is a labelled port graph consisting of two subgraphs L and

R together with an arrow node that links them. Each rule is characterised by its

arrow node, which delimitates left and right-hand sides of the rule; the arrow node

has a name, labels that express conditions restricting the rule’s matching, and ports

to control the rewiring operations at rewriting time.

Definition 4.1 [Labelled port graph rewrite rule] A labelled port graph rewrite rule

is a labelled port graph consisting of:

• two disjoint labelled port graphs L and R, called left-hand side and right-hand

side, respectively, such that all variables in R occur in L;

• an arrow node with a set of rewiring ports and a set of edges that each connect

a port of the arrow node to ports in L or R. Each port has a label Type

that can have one of three different values: bridge, wire and blackhole. The

value indicates how a rewriting step using this rule should affect the edges that

connect the redex to the rest of the graph.

(1) A port of type bridge must have edges connecting it to L and to R (one

edge to L and one or more to R): it thus connects a port from L to ports

in R.

(2) A port of type wire must have exactly two edges connecting to L and no

edge connecting to R.

(3) A port of type blackhole must have edges connecting it only to L (one edge

or more).

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–21 9



In addition, the arrow node has two ports, labelled Left and Right, and edges

connecting Left to all the nodes in L and Right to all the nodes in R, using

a distinguished port Side in nodes of L and R. The arrow node also has the

following predefined labels: a label Where that expresses a condition to trigger

rule application, and Saturated, whose value is the list of ports in L that are

not connected to a bridge, wire or blackhole port of the arrow node. These

two labels are used to select appropriate matching morphisms and to ensure

non-dangling conditions in the rewriting process.

Example 4.2 Figure 5 shows a rewrite rule in Porgy. In the visual representation

of the rule, the ports Left and Right in the arrow node and their associated edges

and ports Side in nodes of L and R are omitted, since this information is conveyed

by the position of the subgraphs L and R in the diagram, respectively to the left

and right-hand side of the arrow node. In this example, the arrow node has three

rewiring ports of type bridge, and the six associated edges are depicted in red (in

Porgy the user can choose whether to display these edges or not, for example in

Figure 4 some red edges have been omitted).

The Saturated attribute in the arrow node lists the ports in L not linked by an

edge to a rewiring port of the arrow node; for the rule in Figure 5, this list is empty,

since every port in L is connected to a bridge port in the arrow node.

The Where attribute in port graph rewrite rules is an optional user-defined

Boolean expression involving elements of L (edges, nodes, ports and their at-

tributes). Such a condition may be used to specify the absence of specific edges.

For instance, a condition Where := notEdge(p, p′) requires that no edge exists be-

tween the images of the ports p and p′. For the rule in Figure 5, this condition is

represented by a crossed edge between the ports in nodes A and C.

Note that the labels may involve variables, functions or predicates that are

interpreted in the port graph structure. This is the case for instance for the Boolean

expression notEdge(p, p′) where p, p′ are variables of a ground port graph and Edge

a predicate interpreted as the existence of an edge between these two ports.

4.2 Labelled port graph rewriting

Now, applying a rule to a ground labelled port graph requires first to find a port

graph morphism between the rule’s left-hand side and a subgraph of the target

graph.

If L and G are two port graphs, a port graph morphism f : L �→ G maps nodes,

ports and edges of L to those of G such that the attachment of ports to nodes and

the edge connections are preserved, as well as the labels. A detailed definition is

given in [13]. We just explain the intuition below.

A (partial) morphism f : L �→ G from L to G is a family of (partial) functions

fV , fP , fE , fD such that: fV , fP , fE are injective (the morphism does not identify

distinct nodes, ports or edges), and preserve the edge connections and the port

attachments; fD may instantiate variables in labels and for any label ll, fD(ll)

must be valid in the interpretation domain D.

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–2110



For instance, when a label ll is a formula, all its free variables are instantiated

by fD and the formula is interpreted in the domain D. The port graph morphism

exists only when fD(ll) is a valid formula in the domain D.

This definition ensures that L and f(L) have the same port graph structure, and

each corresponding pair of nodes, ports and edges in L and G have the same set of

labels (attributes and associated values in Porgy), except at positions where there

are variables. When using this definition to define rewriting below, L will be the

port graph on the left-hand side of the rewrite rule, which may include variables,

and G will be the ground port graph to be rewritten, without variables.

Definition 4.3 [Matching morphism] Let L ⇒ R be a port graph rewrite rule and

G a ground port graph. A redex g(L) of the left-hand side is found in G if there is

a total port graph morphism g, called matching morphism, from L to G such that

g(L) is a subgraph of G where for all labels ll of the arrow node ⇒, g(ll) is valid.

In Porgy, the graph morphism g is such that

- if the arrow node has an attribute Where with value B, then g(B) is true for g(L)

- if the arrow node has an attribute Saturated = (p1, . . . , pn), for each pk, 1 ≤ k ≤ n,

there are no edges between g(pk) and ports outside g(L) in G.

Definition 4.4 [Rewriting step] A rewriting step on G uses a rule L ⇒ R and a

total matching morphism g : L �→ G such that the two conditions expressed via

the labels Where and Saturated are satisfied. It transforms G into a new graph

G′ obtained from G by performing the following operations in three ordered phases

already described in [13]:

(i) In the build phase, after a redex g(L) is found in G, a copy Rc = g(R) is added

to G.

(ii) The rewiring phase then redirects edges from G to Rc in the following order:

for each port p in the arrow node:

(a) If p is a blackhole: for each port pL ∈ L connected to p, destroy all the

edges connected to g(pL) in G.

(b) If p is a bridge port and pL ∈ L is connected to p: for each port piR ∈ R

connected to p, find all the ports pkG in G that are connected to g(pL) and

are not in g(L), and redirect each edge connecting pkG and g(pL) to connect

pkG and piRc
.

(c) If p is a wire port connected to two ports p1 and p2 in L, then take all the

ports outside g(L) that are connected to g(p1) in G and connect each of

them to each port outside g(L) connected by an edge to g(p2).

(iii) The deletion phase simply deletes g(L). This creates the final graph G′.

Note that the order in which the rewiring is performed on the different types of

ports is important: for example, if an edge exists in G between a port p1 connected

to a bridge port and a port p2 connected to a blackhole port, priority is given to

deletion of this edge.

Figure 4 gives an example of two port graph rewrite rules defined for the bio-

chemical process of Section 3.1. Rule (a) has red edges connecting the port s2 in

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–21 11



PKA to a bridge port in the arrow node. This is because in the graph where this

rule is applied, there could be other edges arriving to s2 from the outside. However,

no edges can be connected to cAMP since its port is not connected to the arrow

node: if an edge arrives to cAMP from the outside the Saturated condition fails and

the rule does not apply.

(a) A rule that “eats” a “cAMP” node.

(b) Another rule that disconnects the “cAMP” and creates a “S”
node. The labels of several ports are also changed (the Colour
attribute changed from red to green).

Fig. 4. Two rules used to describe the biochemical process of Section 3.1

Figure 5 gives another example with a Where attribute, defined for the social

network model of Section 3.2.

The Where attribute can also specify the existence of an external edge between

the image in G of a port p in L and a port outside g(L), as required in Kappa [8],

written as Where := ExternalLinked(p) or Where := Arity(p) > n.

Figure 6 shows two rules in an interaction net system defining the operation of

addition on natural numbers represented by 0 and S (successor). In the left-hand

side of the first rule (a), the agents + and S are connected via their “principal

ports”, called P in the picture. The right-hand side of the rule shows the result of

the interaction: the auxiliary port of S (labelled 1) is now connected to +. Note

that there is a wire port in the arrow node of rule (b), to handle the fact that the

result of the addition of 0 and a number n is n.

In general, the behaviour of a system is modelled by several rules. A rewrite

system is then a port graph made of this set of rules. Structuring a rewrite system

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–2112



Fig. 5. A rule used to describe interaction in a social network. If A and C both know B and if A and C do
not know each other, then they should meet.

(a) Rule describing the interac-
tion between + and S.

(b) Addition with 0.

Fig. 6. Interaction net system defining addition of natural numbers. Rule (a) defines the interaction between
the agents + and S and represents the standard reduction n + S(m) → S(n + m)). Rule (b) specifies the
interaction between 0 and + and represents 0 + n → n.

is easily performed by adding new nodes with different names for each subset and

linking this node to the arrow node of each rule in the subset.

5 Located graphs and rules

Located port graphs have been introduced in Porgy to indicate explicitly the

positions in a graph where rewriting should be performed [2]. They can also specify

parts of the graph that should be protected (i.e., sub-graphs where rewriting is

banned).

Definition 5.1 [Located graph] [13]. A located graph GQ
P consists of a port graph

G and two distinguished subgraphs P and Q of G, called respectively the position

subgraph, or simply position, and the banned subgraph.

At this point, it is easy to see located graphs as labelled port graphs: we may

introduce two labels Pos and Ban taking two possible Boolean values on (true) and

off (false).

In a located graph GQ
P , P is the subgraph of G made of nodes where the Pos

label has value on, and related edges. This is the focus of the next step(s). Q is a

protected subgraph, made of nodes with a Ban label on, where transformations are

forbidden. We put the additional restriction that initially it is not possible to have

the same node in the position and in the banned subgraph. P and Q are disjoint.

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–21 13



This property is then maintained by the rewriting process we are defining below.

When applying a port graph rewrite rule, not only the underlying graph G but

also the position and banned subgraphs are updated. A located rewrite rule, defined

below, specifies two disjoint subgraphs M and M ′ of the right-hand side R that are

respectively used to update the position and banned subgraphs. If M (resp. M ′) is
not specified, R (resp. the empty graph ∅) is used as default. A subgraph W in the

left-hand side specifies which nodes are expected to be in the position subgraph P

of G. If W is not specified then the requirement is that at least one node from L

should be in the position subgraph.

As above, nodes in L and R have labels Pos and Ban either being a variable x

or taking one of the two possible values on and off. We give details below, where

we use the operators ∪,∩, \ to denote union, intersection and complement of port

graphs. These operators are defined on port graphs from the usual set operations

on sets of nodes, ports and edges, except for \ where edges attached to ports are

dropped when the ports are not in the difference to avoid dangling edges.

Definition 5.2 [Located rewrite rule] A located rewrite rule is given by a port

graph rewrite rule L ⇒ R, together with two disjoint subgraphs M and M ′ of R
where: the labels Pos and Ban for any node n in M have respectively the values

on and off, for any node in M ′ values off and on respectively, and optionally, a

subgraph W of L where node labels Pos have value on and labels Ban have value

off; for the rest of the nodes in L, the labels Pos are variables (different for each

node) and Ban labels have value off. It is denoted LW ⇒ RM ′
M .

We write GQ
P →g

LW⇒RM′
M

G′Q′
P ′ and say that the located graph GQ

P rewrites to

G′Q′
P ′ using LW ⇒ RM ′

M at position P avoiding Q, if G →L⇒R G′ with a morphism

g satisfying the condition: there exists at least one node n in L such that the label

Pos in n is matched by the value on in g(n), that is, g(n) ∈ P .

In other words, in a located rewrite rule LW ⇒ RM ′
M , W is the subgraph of L

made of nodes with a Pos label equal to on and a Ban label equal to off, and related

edges. M is the subgraph of R made of nodes with a Pos label equal to on and a

Ban label equal to off, with related edges. M ′ is the subgraph of R made of nodes

with a Ban label on and a Pos label off. The morphism g used in a rewriting step

with a located rule LW ⇒ RM ′
M is such that g(L)∩P = g(W ) or simply g(L)∩P 
= ∅

if W is not provided, and g(L)∩Q = ∅. The new position subgraph P ′ and banned

subgraph Q′ are defined as P ′ = (P \ g(L)) ∪ g(M), and Q′ = (Q ∪ g(M ′); if M
(resp. M ′) are not provided then we assume M = R (resp. M ′ = ∅).

Located graphs have been used in [14] to model propagation in social networks.

In the linear threshold propagation model for instance, propagation is specified with

two rules given in Figure 7. When applying the first rule LT influence trial, the

active green node in the left-hand side must correspond to a node in the position

subgraph P and the informed blue node in the right-hand side has a label Pos equal

to on, so that its image belongs to the updated P in the transformed network. It

can then be selected to apply the second rule LT activate.

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–2114



State := active

Marked := 0

State �= active

State := active

Marked := 1

State := informed
Tau := JointInf − θ

(a) LT influence trial : Joint influence com-
putation from an active neighbour on
an inactive node (either unaware or just
informed).

State := informed
Tau ≥ 0

State := active

(b) LT activate: an informed node be-
comes active when sufficiently influenced.

Fig. 7. Rules used to express the Linear Threshold model LT. Active nodes are green, informed nodes are
blue and unaware nodes are red. A bi-colour red/blue node can be in either of the two states unaware or
informed.

6 Derivation graph and strategies

A sequence of rewriting steps is called a rewriting derivation. This is illustrated in

Figure 8 where the initial interaction net of Figure 3 is rewritten in two steps with

the rules of Figure 6.

Fig. 8. Example of a rewriting derivation

Although the rewriting process naturally generates a derivation tree, some nodes

may be isomorphic, for instance in case of confluent rewrite systems. So in gen-

eral, we consider derivation graphs. Starting from an input state formalised as an

attributed port graph, rewriting steps (applied sequentially, concurrently or proba-

bilistically) build a graph consisting of derivations, which correspond to sequential

transformations. In this graph, nodes are states and edges represent transitions

(e.g., rewriting steps).

Labels are quite useful in this graph too. Edges have labels recording information

on the rewriting step: the rule applied, the redex(es); in case of a probabilistic

choice of transitions, the probability associated to the choice of this rule. Different

types of edges can be visually distinguished thanks to labels Colour and Shape.

For example, additional edges can be created as shortcuts between two states, for

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–21 15



instance to represent a derivation in a more concise way. Such a shortcut has a

label that records the sequence of steps involved in the shortcut. Figure 9 gives an

example of a derivation graph, where shortcut edges are depicted in green.

Fig. 9. A derivation graph built from a toy biochemical process example. Shortcuts are green edges. Red
nodes are failure states.

Strategies are used to control the application of rules (including probabilistic

application) and to focus on points of interest: strategies define which rule(s) should

be applied and where (see [17,5,18] for general definitions). They may also express

shortcuts between two states as shown in Figure 9. The language used in Porgy

to write strategies for port graph rewriting is defined in [13].

Given graphs, rules and strategies, we can now introduce a more abstract notion

of symbolic derivation port graph, closely connected to the operational semantics of

graph programs.

Definition 6.1 [Graph program] A (strategic rewrite) graph program consists of

a finite graph of located rewrite rules R, a strategy expression SR (built from R
using the strategy language L) and a located graph GQ

P . When R is clear from the

context, we write simply (S,GQ
P ) to denote a strategic rewrite graph program and

call it a graph program.

Formally, the semantics of a graph program (S,GQ
P ) is specified in [13] using

a transition system, defining a small step operational semantics in SOS style [27].

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–2116



Here, we introduce symbolic derivation graphs to represent graph programs and

their execution.

Definition 6.2 [Symbolic derivation graph] A symbolic derivation graph for a strat-

egy language L is a labelled port graph where nodes have two distinguished labels:

Current graph is a located port graph, and Strategy is an expression of the strategy

language L. Edges are labelled by strategy expressions. Each node has two ports,

named Parent and Successors, respectively.

Nodes in symbolic derivation graphs represent graph programs, and edges rep-

resent transition steps. Looking at the transition rules of the small step operational

semantics in [13] that apply to a node labelled by a strategy S and the current

graph G, the application condition of each step is expressed either through a new

expression of the strategy S′ or a new port graph G′ (that may result from the

execution of another graph program).

A symbolic derivation graph is valid if whenever two nodes labelled by (S,GQ
P )

and (S′, G′Q′
P ′) are linked by an edge, there is a transition between the graph pro-

grams (S,GQ
P ) and (S′, G′Q′

P ′) in the operational semantics for the strategy language.

It is complete if for every transition (S,GQ
P ) �−→ (S′, G′Q′

P ′) according to the oper-

ational semantics, there exists an edge between the nodes labelled by S,GQ
P and

S′, G′Q′
P ′ . The latter implies that all the graphs that can be derived from GQ

P accord-

ing to S can be found in the derivation graph by following the paths starting from

(S,GQ
P ). In this sense, the derivation graph represents the execution of the graph

program (S,GQ
P ).

7 Conclusion

We have presented in this paper the concepts underlying the Porgy framework

using the structure of labelled port graphs with symbolic labels. This point of view

is also reflected at the implementation level: Porgy is implemented on top of the

visualisation framework Tulip [4], which is based on a notion of labelled graph

where labels are properties. More precisely, a Tulip graph is basically made of

three sets: a set of nodes, a set of edges and a set of properties that are defined for

every node and edge. The notion of property in Tulip is close to Porgy’s notion

of attribute in a record.

Before looking at the perspectives opened by this work, let us first mention a

few other systems or approaches closely related to ours.

7.1 Related works

Graphs are used in many forms and contexts in computer science and the need

to generate, visualise and transform them led to the development of a variety of

tools implementing labelled graph transformation and rewriting. With the aim of

promoting these concepts in the software developers community using UML and

Java, the language of Story diagrams [15], embedded in the Fujaba Tool Suite [24],

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–21 17



adopts most of the features of Progres [31] but avoids the backtracking mechanism

related to the non-determinism of graph rewriting. GROOVE [30] is another graph

transformation system closely-related to Porgy. It uses labelled graphs, and trans-

formations are specified by rules and control. GROOVE has been used to model and

analyse complex systems in various domains as illustrated in [16]. It is a versatile

tool; however, it does not provide the visualisation and animation features available

in Porgy. GP [28] is also a closely related rule-based, non-deterministic program-

ming language, where programs are defined by sets of graph rewrite rules and a tex-

tual strategy expression. The strategy language has three main control constructs:

sequence, repetition and conditional. Since the aim is to execute graphs programs

efficiently, GP builds only one rewriting derivation, although early versions of GP

used a Prolog-like backtracking technique to explore the whole derivation graph.

GP does not provide mechanisms to visualise the derivation tree, unlike Porgy,

where users can interactively navigate on the tree, visualise alternative derivations,

follow the evolution of specific redexes, etc. None of the languages above has Po-

sition constructs. Compared to these systems, Porgy’s strategy language clearly

separates the issues of selecting positions for rewriting and selecting rules, with

primitives for focusing as well as traditional strategy constructs.

Graph rewriting is also widely used in chemistry and biology. Systems such

as BioNetGen [11], RuleBender [32], Mosbie [33] address the problem of modelling

huge graphs. They integrate visualisation with modelling and simulation of rule-

based intracellular biochemistry, but do not provide a strategy language. However

the rules are quite similar to Porgy’s and BioNetGen uses port graphs.

The graph transformation approach developed in [20] encapsulate in ”units”

rules and control conditions as in our strategic rewrite graph programs. Control is

expressed through regular expressions in a less powerful language than our strategy

language. But their independence approach applying to all kinds of graphs, rules,

rule applications and control conditions is somehow close to our concern of generic

structure provided by labelled port graphs.

7.2 Perspectives

The generic notions of symbolic label and corresponding labelled port graphs seem

to offer a lot of expressivity but raise several questions that need to be further

explored.

Semantic considerations for labelled port graph rewriting as defined in this paper

need to be addressed. In [13], we show that a large subclass of labelled port graphs

are attributed graph structures as defined in [22], and explore the correspondence

between the operational notion of rewriting given above and the construction of

single pushout (SPO) objects. However these first results have to be extended to

the whole class of labelled port graphs and graph rewriting as defined in this paper

and covering for instance node duplication and port graph cloning, in the direction

proposed by [7].

Another research direction is to consider as symbolic labels first-order formulas

as in [25]. They show that their grounded symbolic graphs coincide with attributed

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–2118



graphs, which justifies to consider DPO/SPO rewriting semantics for labelled port

graphs. Symbolic labels may in particular allow us to take into account constraint

satisfiability. In this line, we plan to consider a more abstract notion of constraint

where graph structures and labels interpreted in semantic domains are used to

generate graphs. Such a generic notion of constraint-based labelled port graph may

be interesting for reasoning on graph rewriting, narrowing and completion.

In this work, strategies are expressions in a formal language to control rule

application. An open question is to represent strategies as labelled port graphs, in

a way similar to the representation of strategies as rho-terms in rho-calculus [6].

The first step is already achieved since a strategy reduced to one rule is already a

labelled port graph and preliminary work in this direction is provided in [3]. This

would open the way to design a reflective logical framework based on a rho-graph

calculus.

Another direction for further work is to introduce structuring mechanisms on

strategic rewrite programs and labelled port graphs. A promising direction we want

to explore is the concept of multilayer graph, inspired by multilayer networks [19].

Acknowledgement

We thank Oana Andrei, Guy Melançon and Olivier Namet for their work in the

initial Porgy project (2009–2012); their ideas and enthusiasm were invaluable dur-

ing the early stages of development of this tool. We also thank Jason Vallet for

implementing several features of Porgy, writing the documentation and develop-

ing the social network propagation influence example. Our thanks also go to the

anonymous referees whose valuable remarks and suggestions helped us to improve

the first version of this paper.

References

[1] Andrei, O., “A Rewriting Calculus for Graphs: Applications to Biology and Autonomous Systems,”
Ph.D. thesis, Institut National Polytechnique de Lorraine (2008).

[2] Andrei, O., M. Fernández, H. Kirchner, G. Melançon, O. Namet and B. Pinaud, PORGY: Strategy-
Driven Interactive Transformation of Graphs, in: R. Echahed, editor, 6th Int. Workshop on Computing
with Terms and Graphs, Electronic Proceedings in Theoretical Computer Science 48, 2011, pp. 54–68.
URL http://hal.inria.fr/inria-00563249/en

[3] Andrei, O. and H. Kirchner, A Higher-Order Graph Calculus for Autonomic Computing, in: Graph
Theory, Computational Intelligence and Thought. Golumbic Festschrift, Lecture Notes in Computer
Science 5420 (2009), pp. 15–26.

[4] Auber, D., D. Archambault, R. Bourqui, M. Delest, J. Dubois, A. Lambert, P. Mary, M. Mathiaut,
G. Mélançon, Bruno Pinaud, B. Renoust and J. Vallet, TULIP 5, in: R. Alhajj and J. Rokne, editors,
Encyclopedia of Social Network Analysis and Mining, Springer new-York, 2017 pp. 1–28.

[5] Bourdier, T., H. Cirstea, D. J. Dougherty and H. Kirchner, Extensional and intensional strategies, in:
Proceedings Ninth International Workshop on Reduction Strategies in Rewriting and Programming,
Electronic Proceedings in Theoretical Computer Science 15, 2009, pp. 1–19.

[6] Cirstea, H. and C. Kirchner, The rewriting calculus — Part I and II, Logic Journal of the Interest
Group in Pure and Applied Logics 9 (2001), pp. 427–498.

[7] Corradini, A., D. Duval, R. Echahed, F. Prost and L. Ribeiro, The pullback-pushout approach to
algebraic graph transformation, in: J. de Lara and D. Plump, editors, Graph Transformation (2017),
pp. 3–19.

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–21 19

http://hal.inria.fr/inria-00563249/en


[8] Danos, V., J. Feret, W. Fontana, R. Harmer, J. Hayman, J. Krivine, C. Thompson-Walsh and
G. Winskel, Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models, in: S. D. L.-Z. fuer
Informatik, editor, FSTTCS 2012 - IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, LIPIcs 18, Hyderabad, India, 2012, pp. 276–288.
URL https://hal.archives-ouvertes.fr/hal-00809065

[9] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science. An EATCS Series),” Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[10] Ehrig, H. and B. Mahr, “Fundamentals of Algebraic Specification 1: Equations and Initial Semantics,”
Monographs in Theoretical Computer Science. An EATCS Series, Springer Publishing Company, 1985.

[11] Faeder, J., M. Blinov and W. Hlavacek, Rule-based modeling of biochemical systems with bionetgen,
in: I. V. Maly, editor, Systems Biology, Methods in Molecular Biology 500, Humana Press, 2009 pp.
113–167.
URL http://dx.doi.org/10.1007/978-1-59745-525-1_5

[12] Fernández, M., H. Kirchner and O. Namet, A strategy language for graph rewriting, in: G. Vidal,
editor, Logic-Based Program Synthesis and Transformation, Lecture Notes in Computer Science 7225,
Springer Berlin Heidelberg, 2012 pp. 173–188.
URL http://dx.doi.org/10.1007/978-3-642-32211-2_12

[13] Fernández, M., H. Kirchner and B. Pinaud, Strategic Port Graph Rewriting: an Interactive Modelling
Framework, Research report, Inria ; LaBRI - Laboratoire Bordelais de Recherche en Informatique ;
King’s College London (2017).
URL https://hal.inria.fr/hal-01251871

[14] Fernandez, M., H. Kirchner, B. Pinaud and J. Vallet, Labelled Graph Strategic Rewriting for Social
Networks, Journal of Logical and Algebraic Methods in Programming (2018).
URL https://hal.archives-ouvertes.fr/hal-01664593

[15] Fischer, T., J. Niere, L. Torunski and A. Zündorf, Story diagrams: A new graph rewrite language based
on the unified modeling language and java, in: H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg,
editors, Theory and Application of Graph Transformations (2000), pp. 296–309.

[16] Ghamarian, A. H., M. de Mol, A. Rensink, E. Zambon and M. Zimakova, Modelling and analysis using
groove, International Journal on Software Tools for Technology Transfer 14 (2012), pp. 15–40.
URL https://doi.org/10.1007/s10009-011-0186-x

[17] Kirchner, C., F. Kirchner and H. Kirchner, Strategic computations and deductions, in: Reasoning
in Simple Type Theory. Studies in Logic and the Foundations of Mathematics, vol.17, College
Publications, 2008 pp. 339–364.

[18] Kirchner, H., Rewriting strategies and strategic rewrite programs, in: Logic, Rewriting, and Concurrency
(LRC 2015), Festschrift Symposium in Honor of José Meseguer, Lecture Notes in Computer Science
(2015), pp. 380–403.
URL https://hal.inria.fr/hal-01143486

[19] Kivela, M., A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno and M. A. Porter, Multilayer networks,
Journal of Complex Networks 2 (2014), pp. 203–271.
URL http://comnet.oxfordjournals.org/content/2/3/203.abstract

[20] Kreowski, H.-J., S. Kuske and G. Rozenberg, “Graph Transformation Units – An Overview,” Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008 pp. 57–75.
URL https://doi.org/10.1007/978-3-540-68679-8_5

[21] Lafont, Y., Interaction nets, in: Proceedings of the 17th ACM Symposium on Principles of Programming
Languages (POPL’90) (1990), pp. 95–108.

[22] Löwe, M., M. Korff and A. Wagner, An algebraic framework for the transformation of attributed graphs,
in: M. R. Sleep, M. J. Plasmeijer and M. C. J. D. van Eekelen, editors, Term Graph Rewriting, John
Wiley and Sons Ltd., Chichester, UK, 1993 pp. 185–199.
URL http://dl.acm.org/citation.cfm?id=167817.167848

[23] Meseguer, J., Twenty years of rewriting logic, The Journal of Logic and Algebraic Programming 81
(2012), pp. 721 – 781, rewriting Logic and its Applications.
URL http://www.sciencedirect.com/science/article/pii/S1567832612000707

[24] Nickel, U., J. Niere and A. Zündorf, The FUJABA environment, in: Proccedings of International
Conference on Software Engineering-ICSE, 2000, pp. 742–745.

[25] Orejas, F. and L. Lambers, Symbolic attributed graphs for attributed graph transformation, ECEASST
30 (2010), pp. 1–33.

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–2120

https://hal.archives-ouvertes.fr/hal-00809065
http://dx.doi.org/10.1007/978-1-59745-525-1_5
http://dx.doi.org/10.1007/978-3-642-32211-2_12
https://hal.inria.fr/hal-01251871
https://hal.archives-ouvertes.fr/hal-01664593
https://doi.org/10.1007/s10009-011-0186-x
https://hal.inria.fr/hal-01143486
http://comnet.oxfordjournals.org/content/2/3/203.abstract
https://doi.org/10.1007/978-3-540-68679-8_5
http://dl.acm.org/citation.cfm?id=167817.167848
http://www.sciencedirect.com/science/article/pii/S1567832612000707


[26] Pinaud, B., G. Melançon and J. Dubois, PORGY: A Visual Graph Rewriting Environment for Complex
Systems, Computer Graphics Forum 31 (2012), pp. 1265–1274.
URL http://hal.inria.fr/hal-00682550

[27] Plotkin, G. D., A structural approach to operational semantics, Journal of Logic and Algebraic
Programming 60-61 (2004), pp. 17–139.

[28] Plump, D., The Graph Programming Language GP, in: S. Bozapalidis and G. Rahonis, editors, Algebraic
Informatics CAI, Lecture Notes in Computer Science 5725 (2009), pp. 99–122.

[29] Plump, D. and S. Steinert, The semantics of graph programs, in: Proceedings Tenth International
Workshop on Rule-Based Programming, RULE 2009, Braśılia, Brazil, 28th June 2009., 2009, pp. 27–
38.
URL http://dx.doi.org/10.4204/EPTCS.21.3

[30] Rensink, A., The GROOVE Simulator: A Tool for State Space Generation, in: Applications of Graph
Transformations with Industrial Relevance (AGTIVE), Lecture Notes in Computer Science 3062
(2003), pp. 479–485.

[31] Schürr, A., A. J. Winter and A. Zündorf, The PROGRES Approach: Language and Environment., in:
H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg, editors, Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 2: Applications, Languages, and Tools, World Scientific,
1997 pp. 479–546.

[32] Smith, A. M., W. Xu, Y. Sun, J. R. Faeder and G. Marai, Rulebender: integrated modeling, simulation
and visualization for rule-based intracellular biochemistry, BMC Bioinformatics 13 (2012).
URL http://dx.doi.org/10.1186/1471-2105-13-S8-S3

[33] Wenskovitch, J. E., L. A. Harris, J.-J. Tapia, J. R. Faeder and G. E. Marai,Mosbie: a tool for comparison
and analysis of rule-based biochemical models, BMC Bioinformatics 15 (2014).
URL http://dx.doi.org/10.1186/1471-2105-15-316

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 3–21 21

http://hal.inria.fr/hal-00682550
http://dx.doi.org/10.4204/EPTCS.21.3
http://dx.doi.org/10.1186/1471-2105-13-S8-S3
http://dx.doi.org/10.1186/1471-2105-15-316

	Introduction
	Definition of labelled port graphs
	Domains
	A biochemical process
	Social networks
	Interaction nets

	Rules
	Labelled port graph rewrite rule
	Labelled port graph rewriting

	Located graphs and rules
	Derivation graph and strategies
	Conclusion
	Related works
	Perspectives

	References

