
HAL Id: hal-01910216
https://hal.science/hal-01910216v2

Preprint submitted on 20 Sep 2019 (v2), last revised 18 Nov 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of cache analysis for different
replacement policies

David Monniaux, Valentin Touzeau

To cite this version:
David Monniaux, Valentin Touzeau. On the complexity of cache analysis for different replacement
policies. 2018. �hal-01910216v2�

https://hal.science/hal-01910216v2
https://hal.archives-ouvertes.fr

On the complexity of cache analysis for different

replacement policies

David Monniaux and Valentin Touzeau

Univ. Grenoble Alpes, CNRS, Grenoble INP∗, VERIMAG, 38000

Grenoble, France

September 20, 2019

Abstract

Modern processors use cache memory: a memory access that “hits”
the cache returns early, while a “miss” takes more time. Given a memory
access in a program, cache analysis consists in deciding whether this access
is always a hit, always a miss, or is a hit or a miss depending on execu-
tion. Such an analysis is of high importance for bounding the worst-case
execution time of safety-critical real-time programs.

There exist multiple possible policies for evicting old data from the
cache when new data are brought in, and different policies, though ap-
parently similar in goals and performance, may be very different from the
analysis point of view. In this paper, we explore these differences from a
complexity-theoretical point of view. Specifically, we show that, among
the common replacement policies, LRU (Least Recently Used) is the only
one whose analysis is NP-complete, whereas the analysis problems for the
other policies are PSPACE-complete.

1 Introduction

Most high performance processors implement some form of caching: frequently
used instructions and data are retained in fast memory close to the processing
unit, to avoid costly requests from the main memory. While the intuition is that
a cache retains the most recently accessed memory words, up to its size, reality
is far more complex: what happens depends on the number of cache levels, the
size of each level, the “number of ways” (also known as the associativity) of the
cache and the cache replacement policy, that is, the algorithm used for choosing
which memory block to evict from the cache to make room for a new block.

Reading a memory block not in cache can take 10 times to 100 times the
time needed to access it if it is cache. Thus, static analysis approaches for

∗Institute of Engineering Univ. Grenoble Alpes

1

bounding the worst-case execution time (WCET) of programs have to take into
account whether or not data are cached. Such analyses are used, for instance,
for proving that the execution time of software in a critical control loop (e.g.
in avionics) can never exceed the period of the loop. Not only does caching, or
lack of caching, directly influence execution time, it also complicates analysis
itself, as different microarchitectural execution paths may be taken inside the
processor depending on whether or not data are cached, and analysis has to
take all these paths into account.

For these reasons, all static analyses for bounding execution time include a
cache analysis, which determines which of the memory accesses made by the
program are hits, which are misses, and which cannot be classified. Analyses
depend on the cache replacement policy, and, in the literature, there is a clear
preference for the LRU (Least Recently Used) policy, from the well-known age-
based abstract analysis of Ferdinand [5] to recent work proved to be optimally
precise in a certain sense [14, 15].

In contrast, other policies such as PLRU (pseudo-LRU), NMRU and FIFO
(First-In, First-Out) have a reputation for being very hard to analyze [7] and for
having poor predictability [13]. A legitimate question is whether these problems
are intrinsically difficult, or is it just that research has not so far yielded efficient
analyses.

Issues of static analysis of programs under different cache policies are not
necessarily correlated with the practical efficiency of cache policies. Static anal-
ysis is concerned with worst-case behavior, and policies with approximately
equal “average”1 practical performance may be very different from the analysis
point of view. Even though PLRU and NMRU were designed as “cheap” (easier
to implement in hardware) alternatives to LRU and have comparable practical
efficiency [1], they are very different from the worst-case analysis point of view.

In this paper, we explore these questions as decision problems:

Definition 1 (Exist-Hit). The exist-hit problem is, for a given replacement
policy:

Inputs a control flow graph G = (V,E) with edges adorned with memory
block names
a starting node S in the graph
a final node F in the graph
the cache associativity (number of ways N), in unary
a memory block name a

Outputs a Boolean: is there an execution trace from S to F , starting with
an empty initial cache and ending with a cache containing a?

Definition 2 (Exist-Miss). The exist-miss problem is defined as above but with
an ending state not containing a.

1By “average” we do not imply any probabilistic distribution, but rather an informal
meaning over industrially relevant workloads, as opposed to examples concocted for exhibiting
very good or very bad behavior.

2

We shall also study the variant of this problem where the initial cache con-
tents are arbitrary:

Definition 3. The exist-hit (respectively, exist-miss) problem with arbitrary
initial state contents is defined as above, except that the output is “are there a
legal initial cache state σ and an execution trace from S to F , starting in σ and
ending with a cache containing (respectively, not containing) a?”.

We shall here prove that

• for policies LRU, FIFO, pseudo-RR, PLRU, and NMRU, the exist-hit and
exist-miss problems are NP-complete for acyclic control flow graphs;

• for LRU, these problems are still NP-complete for cyclic control flow
graphs;

• for PLRU, FIFO, pseudo-RR, PLRU, and NMRU, these problems are
PSPACE-complete for cyclic control flow graphs

• for LRU, FIFO, pseudo-RR, and PLRU, the above results extend to exist-
miss and exist-hit problems from an arbitrary starting state

Under the usual conjecture that PSPACE-complete problems are not in NP,
this may justify why analyzing properties of FIFO, PLRU and NMRU caches is
harder than for LRU.

Real-life CPU cache systems are generally complex (multiple levels of caches)
and poorly documented (often, the only information about replacement policies
is by reverse engineering). For our complexity-theoretical analyses we need
simple models with clear mathematical definitions; thus we consider only one
level of cache, and only one “cache set” per cache.2

In this paper, we consider that the control-flow graph carries only identifiers
of memory blocks to be accessed, abstracting away the data that are read or
written, as well as arithmetic operations and guards. Therefore, we take into
account executions that cannot take place on the real system. This is the
same setting used by many static analyses for cache properties. Some more
precise static analyses attempt to discard some infeasible executions — e.g.
an execution with guards x < 0 and x > 0 with no intervening write to x is
infeasible. In general, however, this entails deciding the reachability of program
locations, a problem that is undecidable if the program operates over unbounded
integers, and already PSPACE-complete if the program operates on a finite
vector of bits [4];. Clearly we cannot use such a setting to isolate the contribution
of the cache analysis itself.

2A real cache system is composed of a large number of “cache sets”: a memory block
may fit in only one cache set depending on its address, and the replacement policy applies
only within a given cache set. For all commonly found cache replacement policies except
pseudo-round-robin, and disregarding complex CPU pipelines, this means that the cache sets
operate completely independently, each seeing only memory blocks that map to it; each can
be analyzed independently. It is therefore very natural to consider the complexity of analysis
over one single cache set, as we do in this paper.

3

2 Fixed associativity

In a given hardware cache, the associativity is fixed, typically N = 2, 4, 8, 12 or
16. It thus makes sense to study cache analysis complexity for fixed associativity.
However, such analysis can always be done by explicit-state model-checking
(enumeration of reachable states) in polynomial time:

Theorem 4. Let us assume here that the associativity N is fixed, as well as the
replacement policy (among those cited in this article). Then exist-hit and exist-
miss properties can be checked in polynomial time, more precisely in O(|G|N+1)
where |G| is the size of the control-flow graph.

Proof. Let (V,E) be the control-flow graph; its size is |G| = |V |+ |E|. Let B the
set of possible cache blocks. Without loss of generality, for all policies discussed
in this article, the only blocks that matter in B are those that are initially in
the cache (at most N) and those that are found on the control edges. Let us
call the set of those blocks B′; |B′| ≤ |E|+N .

The state of the cache then consists in N blocks chosen among |B′| possible
ones, plus possibly some additional information that depends on the replacement
policy (e.g. the indication that a line is empty); say b bits per way. The number
of possible cache states is thus (2b|B′|)N .

Let us now consider the finite automaton whose states are pairs (p, σ) where
p is a node in the control-flow graph and σ is the cache state, with the tran-
sition relation (p, σ) → (p′, σ′) meaning that the processor moves in one step
from control node p with cache state σ to control node p′ with cache state σ′.
The number of states of this automaton is |V |.(2b|B′|)N , which is bounded by
|G|.(|G|+N)N .2bN , that is, O(|G|N+1).

Exist-miss and exist-hit properties amount to checking that certain states
are reachable in this automaton. This can be achieved by enumerating all
reachable states of the automaton, which can be done in linear time in the size
of the automaton.

It is an open question whether it is possible to find algorithms that are prov-
ably substantially better in the worst-case than this brute-force enumeration.
Also, would it be possible to separate replacement policies according to their
growth with respect to associativity? It is however unlikely that strong results
of the kind “PLRU analysis needs at least K.|G|N operations in the worst case”
will appear soon, because they imply P 6= NP or P 6= PSPACE.

Theorem 5. Consider a policy among PLRU, FIFO, pseudo-RR (with known
or unknown initial state) or NMRU with known initial state (respectively, LRU),
and a problem among exist-miss and exist-hit. Assume (H): for this pol-
icy, for any algorithm A that decides this problem on this policy, and any
associativity N , there exist K(N) and e(N) such that for all g0 there exists
g(N, g0) ≥ g0 such that the worst-case complexity of A on graphs of size g is at
least K(N).g(N, g0)

e(N). Assume also e(N) → ∞ as N → ∞, then P is strictly
included in PSPACE (respectively, NP).

4

Proof. Suppose (H ′): there exists a polynomial-time algorithm A solving the
analysis problem for arbitrary associativity, meaning that there exist a constant
K ′ and an exponent e′ such that A′ takes time at most K ′.(N + g)e

′

on a graph
of size g for associativity N .

Let N be an associativity. From (H) there is a strictly ascending sequence
gm such that the worst-case complexity of A on graphs of size gm is at least

K(N).g
e(N)
m . From (H ′), K(N).g

e(N)
m ≤ K ′.(N + gm)e

′

. When gm → ∞ this is
possible only if e(N) ≤ e′.

Since e(N) → ∞ as N → ∞, the above is absurd. Thus there is no
polynomial-time algorithm A for solving the analysis problem for the given
policy. We prove later in this paper that these analysis problems are PSPACE-
complete for PLRU, FIFO, NMRU, pseudo-RR, and NP-complete for LRU; the
result follows.

3 LRU

The “Least Recently Used” (LRU) replacement policy is simple and intuitive:
the data block least recently used is evicted when a cache miss occurs. The
cache is thus a queue ordered by age: on a miss, the oldest block is discarded
to make room for a new one, which has age 0; the ages of all other blocks are
incremented. If a block is already in the cache, it is “rejuvenated”: its age is
set to zero, and the ages of the blocks before it in the queue are incremented.

In other words, the state of an LRU cache with associativity N is a word
of length at most N over the alphabet of cache blocks, composed of pairwise
distinct letters; an empty cache is defined by the empty word. When an access
is made to a block a, if it belongs to the word (hit), then this letter is removed
from the word and appended to the word. If it does not belong to the word
(miss), and the length of the word is less than N , then a is appended to the
word; otherwise, the length of the word is exactly N — the first letter of the
word is discarded and a is appended.

LRU has been used in Intel Pentium I, MIPS 24K/34K [12, p.21], among
others. Notably, for Kalray processors K1a and K1b, LRU caches are advertised
as advancing “timing predictability”.

In this section, we shall extend our recent NP-hardness results [15] to NP-
completeness, and also prove NP-hardness for exist-hit on a restricted class of
control-flow graphs.

3.1 Motivation and fundamental properties

LRU caches are appreciated by designers of static analysis tools that bound the
worst-case execution time of the program, since an analysis based on abstract
interpretation by Ferdinand and Wilhelm [5] (basically, an interval for the age of
each possible block) has long been known. The analysis classifies each access in
the program as “always hit” (all execution traces leading to that access produce
a hit there), “always miss” (all execution traces leading to that access produce

5

start S
x

ba

bā

bb

bb̄

bc

bc̄
F

ba

bb

bc̄

bā

bb̄

bc̄

bā

bb

bc

Figure 1: There is a path from q0 to F with at most 3 different labels if and
only if the formula (c̄ ∨ b∨ a)∧ (c̄∨ b̄∨ ā) ∧ (c ∨ b∨ ā) has a model. Thus, for a
LRU cache with associativity N = 4, there is an execution from S to F ending
in a cache state containing x if and only if this formula has a model.

a miss there), or “unknown”. When it answers “unknown”, it may be that it
is in fact “always hit” or “always miss”, but the analysis is too weak to come
to a conclusion about it, or that there is at least one execution leading to a hit
there and one leading to a miss there (“definitely unknown”).

In recent work [14, 15], we closed that loophole and proposed an analysis
that completely decides whether a given access is “always hit”, “always miss”,
or “definitely unknown”: the classical abstract interpretation is applied, along
with another age-based abstract interpretation capable of concluding, in some
cases, that an access is “definitely unknown”; the remaining cases are decided
by an exact but expensive (exponential worst-case) analysis. These analyses
solve both the exist-hit and the exist-miss problems; was such an exponential
cost unavoidable? This motivated the studies in this paper.

Our analyses, as well as all our results on LRU in this paper, are based on
the following easy, but fundamental, property of LRU caches:

Proposition 6. After an execution path starting from an empty cache, a block
a is in the cache if and only if there has been at least one access to a along that
path and the number of distinct blocks accessed since the last access to a is at
most N − 1.

Example 7. Assume a 4-way cache, initially empty. After the sequence of ac-
cesses bcabdcdb, a is in the cache because bdcdb contains only 3 distinct blocks
b, c, d. In contrast, after the sequence bcabdceb, a is no longer in the cache
because bdceb contains 4 distinct blocks b, c, d, e.

Remark 8. In definitions 1 and 2, it does not matter if the associativity is
specified in unary or binary. An associativity larger than the number of different
blocks always produces hits, thus the problems become trivial. This also applies
to FIFO, PLRU, NMRU caches and, more generally, to any cache analysis
problem starting from an empty cache with a replacement policy that never
evicts cache blocks as long as there is a free cache line.

3.2 Exist-Hit

Theorem 9. The exist-hit problem is NP-complete for LRU and acyclic control-
flow graphs.

6

Proof. Obviously, the problem is in NP: a path may be chosen nondeterminis-
tically then checked in polynomial time.

Now consider the following reduction from CNF-SAT (see Figure 1 for an
example). Let nV be the number of variables in the SAT problem. With each
variable v in the SAT problem we associate two cache block labels bv and bv̄.
The idea is to represent a variable assignment as a cache state. We store bv in
the cache when v is set to true, and bv̄ when v is set to false. Let x be a fresh
name. We first load x into the cache. The control-flow graph is then a sequence
of switches:

• For each variable v in the SAT problem, a switch between two edges
labeled with bv and bv̄ respectively. Executing this sequence of switches
then loads into the cache a set of blocks representing a variable assignment.
In addition, the next block that will be evicted (if any) is x.

• For each clause in the SAT problem, a switch between edges labeled with
the blocks associated to the literals present in the clause. If at least one
of these blocks has been accessed before, then the corresponding access
can be performed without evicting x. Otherwise, x is guaranteed to be
evicted.

Each path through the sequence of switches with at most nV different labels
corresponds to a SAT valid assignment, and conversely. Then there exists an
execution such that at F the cache contains x if and only if there exists a SAT
valid assignment.

The objection can be made that the reduction in this proof produces control-
flow graphs in which the same label occurs an arbitrary number of times — the
number of times the corresponding literal occurs in the CNF-SAT problem, plus
one. This is realistic for a data cache, since in a given program the same cache
block may be accessed an arbitrary number of times. It is however unrealistic
for an instruction cache:3 an instruction cache block has a fixed size, contains a
maximum number of instructions, and thus cannot be accessed from an arbitrary
number of control edges.4 However, we can refine the preceding result to account
for this criticism.

Theorem 10. The exist-hit problem is NP-complete for LRU for acyclic
control-flow graphs, even when the same cache block is accessed no more than
thrice.

Proof. We use the same reduction as in Th. 10, but from a CNF-SAT problem
where each literal occurs at most twice, as per the following lemma.

3Unless procedure calls are “inlined” in the graph, because then the cache blocks corre-
sponding to the inline procedures appear as many times as the number of locations it is called
from.

4Consider a cache with 64-byte cache lines, as typical in x86 processors. In order for several
basic blocks of instructions to overlap with that cache line, each, except perhaps the last one,
must end with a branch instruction, which, in the shortest case, takes 2 bytes. No more
than 32 basic blocks can overlap this cache line, and this upper bound is achieved by highly
unrealistic programs.

7

Lemma 11. CNF-SAT is NP-hard even when restricted to sets of clauses where
the same literal occurs at most twice, the same variable exactly thrice.5

Proof. In the set of clauses, rename each occurrence of the same variable vi as
a different variable name vi,j , then add clauses vi,1 ⇒ vi,2, vi,2 ⇒ vi,3, . . . ,
vi,n−1 ⇒ vi,n, vi,n ⇒ vi,1 to establish logical equivalence between all renamings.
Each literal now occurs once or twice, each variable thrice. Each model of the
original formula corresponds to a model of the renamed formula, and conversely.

Remark 12. The exist-hit problem is easy when the same cache block is accessed
only once in the graph. Assume that the aim is to test whether there exists an
execution leading to a cache containing x at the final node F . Either there
exists one reachable access R to x in the control-flow graph, or there is none
(in the latter case, x cannot be in the cache at node F) . Then there exists an
execution leading to a cache state containing x at node F if and only if there
exists a path of length at most N − 1 between R and F (see Proposition 6),
which may be tested for instance by breadth-first traversal. The complexity
question remains opens when cache blocks are accessed at most twice.

Theorem 13. The exist-hit problem is still in NP for LRU when the graph may
be cyclic.

Proof. To prove that the problem is still in NP in case of cyclic graph, we
show that the non-deterministic search of a exist-hit witness can be restricted
to “short” paths (i.e. path of polynomial size). Consider a path π from the
starting node S to the final node F such that the final cache content contains x
(i.e. π is a witness for the exist-hit problem). The idea of the proof is to remove
accesses from π to build a new witness π′ which can be found in polynomial
time.

The initial cache state being empty, there must be at least one access to x
in π. Let i be the index of the last access to x: the edge (πi, πi+1) is labeled
with block x, and for any j > i, (πj , πj+1) does not access x. We now split π at
index i into two paths π1 and π2: π1 = π1 . . . πi and π

2 = πi+1 . . . π|π|. π
1′ and

π2′ denote the paths obtained from π1 and π2 by removing cycles (subpaths
beginning and ending in the same node). By construction, π2′ does not evict
x: the set of distinct memory blocks accessed along π2′ is included in the set of
distinct memory blocks accessed along π2, which is insufficient to evict x. Thus,
x is guaranteed to be cached at the end of π2′ (due to Property 6). Because π1′

and π2′ are cycle free, we have |π1′| ≤ |V | and |π2′| ≤ |V |. The path π′ = π1′π2′

obtained as the concatenation of π1′ and π2′ has thus length at most 2|V |. In
addition π′ goes from S to F and leads to a cache state containing x. Thus,
the nondeterministic search for a witness hit path may be restricted to paths of
length at most 2|V |, which ensures membership in NP.

8

v′0

v′1

v′3

v′2

(a) Graph with (thick) Hamiltonian cycle

S v00 v12

v11

v13

v21

v22

v23

v31

v32

v33

v40
x

(b) Acyclic control-flow graph obtained by the re-
duction. Edge labels are not shown; the path cor-
responding to the Hamiltonian cycle is shown in a
thick line.

Figure 2: Reduction from Theorem 14 from the Hamiltonian cycle problem to
the exist-miss problem for LRU caches.

3.3 Exist-Miss

Theorem 14. The exist-miss problem is NP-complete for LRU for acyclic
control-flow graphs.

Proof. Obviously, the problem is in NP: a path may be chosen nondeterminis-
tically, then checked in polynomial time.

We reduce the Hamiltonian circuit problem to the exist-miss problem (see
Figure 2 for an example). Let G′ = (V ′, E′) be a graph, let n = |V ′|,
V ′ = {v′0, . . . , v

′
n−1} (the ordering is arbitrary). We check the existence of

Hamiltonian circuit in G′. Let us construct an acyclic control-flow graph G
suitable for cache analysis as follows:

• two copies v00 and vn0 of v′0

• for each v′i, i ≥ 1, |V ′| − 1 copies vji , 1 ≤ j < n (this arranges these nodes
in layers indexed by j)

• for each pair vji , v
j+1
i′ of nodes in consecutive layers, an edge, labeled by

the address i′, if and only if there is an edge (i, i′) in E′.

There is a Hamiltonian circuit in G′ if and only if there is a path in G from v00
to vn0 such that no edge label is repeated, thus if and only if there exists a path
from v00 to vn0 with at least n distinct edge labels. Prepend an edge accessing a
fresh block x from the start node to v00 , then there exists a trace such that x is
not in the cache at vn0 if and only if this Hamiltonian circuit exists.

The proof of Theorem 13 (exist-hit problem is still in NP for cyclic CFG)
does not carry over to the exist-miss case. Indeed, this proof shows that if there
is a path leading to a hit, then there is a “short” path that also lead to hit
and can be discovered in polynomial time. This “short” path might contain

5We thank Pálvölgyi Dömötör for pointing out to us that this restriction is still NP-hard.

9

fewer blocks between the last access to x and the final node F than the original
witness. Due to the fundamental property of LRU (see Property 6) this is not
a problem and the “short” path is still guaranteed to lead to a hit. However,
in the case of the exist-miss problem, the short witness must be built carefully,
as cutting cycles might remove accesses needed to evict x. To show that the
exist-miss problem for LRU is still in NP for cyclic control-flow graphs, one must
exhibits short paths with the same blocks accessed (after x) than the original
witness. The following lemma ensures that this is always possible.

Lemma 15. Let B the set of memory blocks and G = (V,E) a control-flow
graph with edges decorated with elements of B on edges. From any node v1 and
v2 in V , and any path from v1 ∈ V to v2 ∈ V we can extract a path from v1 to
v2 with the same contents (same memory blocks accessed) and length at most
|V | · |B| (and thus at most |V | · |E|).

Proof. Consider a path π from v1 to v2. π can be segmented into sub-paths
π1, . . . , πm, each beginning with the first occurrence of a new label not present
in previous sub-paths.

Each sub-path πi consists of an initial edge ei followed by π′
i. From π′

i one
can extract a simple path π′′

i — that is, π′′
i has no repeated node — of length

at most |V | − 1. By definition, there are no new edge label between ei and
ei+1. Thus removing cycles from π′

i does not change the set of blocks accessed.
Then, the concatenated path e1π

′′
1 · · · emπ

′′
m has the same contents as π, starts

and ends with the same nodes, and has at most |V | · |B| edges.

Theorem 16. The exist-miss problem is still in NP for cyclic control-flow
graphs.

Proof. Given a witness of miss existence π, one can split π into π1 and π2 at
the last access to x (if any). If π does not contain any access to x, then simply
consider π1 = ε and π2 = π.

From the preceding lemma, one can extract from π1 and π2 two paths π1′

and π2′ of length at most |V | · |B| accessing the same sets of blocks. There are
thus enough blocks accessed along π2′ to evict x, and the path π′ obtained by
chaining π1′ and π2′ is guaranteed to lead to a miss. One can thus search for a
witness path of length at most 2 · |V | · |E| to check the existence of a miss..

3.4 Extensions

Theorem 17. The above theorems hold even if the starting cache state is un-
specified: a problem with arbitrary starting cache state can be reduced to a prob-
lem of the same kind with empty starting cache state, and vice-versa.

Proof. Consider a problem P with empty initial cache state. Prepend to the
control-flow graph of P a sequence f1 . . . fN accesses to N pairwise distinct
accesses to fresh blocks (blocks not appearing in P), whereN is the associativity,
and call the resulting problem P ′. After executing this sequence, the cache only
contains blocks from f1 . . . fN (not necessarily in that order) and none of the

10

blocks of P . It is thus equivalent to check exist-hit or exist-miss properties on
P ′ from an arbitrary initial state and on P from an empty initial state.

Consider a problem P with arbitrary initial cache state. Prepend to the
control-flow graph of P the following gadget, where ǫ denotes ǫ-transitions (no
memory access) and b1, . . . , bm denote the alphabet of memory blocks:

startP ′ q1 qN−1 qN

b1

bm

b1

bm

startP
ǫ

ǫ ǫ
ǫ

(1)

This gadget loads into the cache any combination from zero to N blocks from
b1, . . . , bm, in all possible orders. Thus analyzing P ′ with a empty initial cache
state is equivalent to analyzing P with an arbitrary initial cache state.

Remark 18. The proofs of NP-hardness for exist-hit and exist-miss on acyclic
graphs for LRU carry over to FIFO (section 5).

4 Boolean register machine

In the next sections, we shall prove that the exist-hit and the exist-miss prob-
lems for a variety of replacement policies are NP-hard for acyclic control-flow
graphs and PSPACE-hard for general control-flow graphs. All proofs will be
by reduction from the reachability problem on a class of very simple machines,
which we describe in this section: this problem is NP-complete if the control-
flow graph of the machine is assumed to be acyclic, and PSPACE-complete in
general.

Definition 19. A Boolean register machine is defined by a number r of registers
and a directed (multi)graph with an initial node and a final node, with edges
adorned by instructions of the form:

Guard vi = b where 1 ≤ i ≤ r and b ∈ {f , t},

Assignment vi := b where 1 ≤ i ≤ r and b ∈ {f , t}.

The register state is a vector of r Booleans. An edge with a guard vi = b may
be taken only if the i-th register contains b; the register state is unchanged. The
register state after the execution of an edge with an assignment vi := b is the
same as the preceding register state except that the i-th register now contains b.

The reachability problem for such a system is the existence of a valid execu-
tion starting in the initial node with all registers equal to f , and leading to the
final node.

11

initial final

v1 := f

v1 := t

v2 := f

v2 := t

v3 := f

v3 := t

v1 = t

v2 = t

v3 = t

v1 = f

v2 = t

v3 = f

Figure 3: Reduction of CNF-SAT over 3 unknowns with clauses {v1∨v2∨v3, v̄1∨
v2 ∨ v̄3} to a Boolean 3-register machine

Lemma 20. The reachability problem for Boolean register machines is
PSPACE-complete.

Proof. Such a machine is easily simulated by a polynomial-space nondetermin-
istic Turing machine; based on Savitch’s theorem, the reachability problem is
thus in PSPACE.

Any Turing machine using space P (|x|) on input x can be simulated by a
Boolean register machine with O(P (|x|)) registers, encoding the state of the
tape of the Turing machine, and a number of transitions in O(P (|x|).|D|) where
D is the description of the Turing machine.

Lemma 21. The reachability problem for Boolean register machines with acyclic
control-flow is NP-complete.

Proof. A path from initial to final nodes, along with register values, may be
guessed nondeterministically, then checked in polynomial time, thus reachability
is in NP.

Any CNF-SAT problem with r Boolean unknowns may be encoded as a
Boolean r-register machine as follows: a sequence of r disjunctions between
vi := t and vi := f for each variable i, and then for each clause vi+

1

∨· · ·∨vi+
n+

∨

vi−
1

∨ · · · ∨ vi−
n−

, a disjunction between edges vi+
i

= t for all 1 ≤ i ≤ n+ and

edges vi−
i
= f for all 1 ≤ i ≤ n− (Figure 3).

All forthcoming reductions will replace each instruction edge (vi = b guard
edges, vi := b assignment edge) by a “gadget”, a small acyclic piece of control-
flow graph adorned with accesses to memory blocks; they will also add a prologue
and an epilogue. The idea is to simulate executions of the Boolean register
machine by executions of the cache system.

However, there is one problem: in Boolean register machines, an execution
aborts when a guard is not satisfied, whereas in our cache analysis problems,
executions never abort except when reaching a control node with no outgoing
edge. We overcome this limitation by arranging the cache analysis problems
so that the cache states following the simulation of an invalid guard (e.g. the
simulated state encodes vi = t but the guard is vi = f) are irremediably marked
as incorrectly formed; thus the reachability problem for the Boolean register

12

machine is reduced to the reachability of a correctly formed cache state at a
certain node, which, in the epilogue, is encoded into the reachability of a cache
hit (or a cache miss, respectively).

5 FIFO

FIFO (First-In, First-Out), also known as “round-robin”, caches follow the same
mechanism as LRU (a bounded queue ordered by age in the cache), except that
a block is not rejuvenated on a hit. They are used in Motorola PowerPC 56x,
Intel XScale, ARM9, ARM11 [12, p.21], among others.

5.1 Fundamental properties

The state of a FIFO cache with associativity N is a word of length at most
N over the alphabet of cache blocks, composed of pairwise distinct blocks; an
empty cache is defined by the empty word. When an access is made to a block
a, if it belongs to the word (hit) then the cache state does not change. If it does
not belong to the word (miss), and the length of the word is less than N , then
a is appended to the word; otherwise, the length of the word is exactly N —
the first block of the word is discarded and a is appended.

Lemma 22. The exist-hit and the exist-miss problems are in NP for acyclic
control flow graphs.

Proof. Guess a path nondeterministically and execute the policy along it.

Lemma 23. The exist-hit and the exist-miss problems are in PSPACE for gen-
eral graphs.

Proof. Simulate the execution of the policy using a polynomial-space nondeter-
ministic Turing machine. Based on Savitch’s theorem, both problems are in
PSPACE.

5.2 Reduction to Exist-Hit

We reduce the reachability problem for the Boolean register machine to the
exist-hit problem for the FIFO cache as follows. The associativity of the cache
is chosen as N = 2r − 1. The alphabet of cache blocks is {(ai,b)1≤i≤r,b∈{f ,t}} ∪
{(ei)1≤i≤r} ∪ {(fi)1≤i≤r−1} ∪ {(gi)1≤i≤r−1}.

The main idea is to encode the value of registers by loading the blocks ai,b
into the cache (ai,t is used when the register i contains value true, and ai,f is
used for false). The blocks ei are used to distinguished valid boolean machine
executions from executions where the machine should have halt. Finally, blocks
fi and gi are used in epilogue to turn valid states into cache hits and invalid
states into cache misses.

13

The register state v1, . . . , vr of the register machine is to be encoded as the
FIFO state

a1,v1e2a2,v2 . . . erar,vr . (2)

We use the FIFO state essentially as a delay-line memory.6

Definition 24. We say that a FIFO state of that form is well-formed at shift
1, or well-formed for short if it is of the form

a1,v1e2a2,v2 . . . erar,vr (3)

We say that a FIFO state is well-formed at shift i (2 ≤ i ≤ r) if it is of the
form

ai,viei+1ai+1,vi+1
. . . ar,vre1a1,v1e2 . . . ai−1,vi−1

(4)

In both cases, we say that the FIFO state corresponds to the state v1, . . . , vr.
This formalizes the notion of valid and invalid states.

Definition 25. We turn the register machine graph into a cache analysis graph
as follows.

• From the cache analysis initial node If to the register machine for-
mer initial node Ir there is a prologue, a sequence of accesses
a1,fe2 . . . ar−1,ferar,f .

• Each guard edge vi = b is replaced by the gadget

start end

φ1,f

φ1,t

φi−1,f

φi−1,t

φi,b
φi+1,f

φi+1,t

φr,f

φr,t

(5)
where φi,b denotes the sequence of accesses ai,beiai,b.

• Each assignment edge vi := b is replaced by the gadget

start end

φ1,f

φ1,t

φi−1,f

φi−1,t

ψi,b

φi+1,f

φi+1,t

φr,f

φr,t

(6)
where ψi,b denotes the sequence of accesses eiai,bei.

• From the register machine former final node Fr to a node Fa there is a
sequence of accesses ψ1,f . . . ψr,f , constituting the first part of the epilogue.

• From Fa to a node Fh there is a sequence of accesses
a1,fg1e2f2a2,fg2 . . . er−1fr−1ar−1,fgr−1erfr, constituting the second
part of the epilogue.

6We thank Ken McMillan for this remark.

14

• The final node is Ff = Fh.

The main difficulty in this reduction is that the Boolean register machines
may terminate traces if a guard is not satisfied, whereas the cache problem has
no guards and no way to terminate traces. Our workaround is that cache states
that do not correspond to traces from the Boolean machine are irremediably
marked as incorrect (formally: well-phased but not well-formed, per the following
definition).

Definition 26. We say that a FIFO state of that form is well-phased at shift
1, or well-phased for short if it is of the form

β1α2β2 . . . αrβr (7)

where, for each i:

• either αi = ei and βi = ai,bi for some bi,

• or βi = ei and αi = ai,bi for some bi.

We say that a FIFO state is well-phased at shift i (2 ≤ i ≤ r) if it is of the
form

βiαi+1βi+1 . . . αrβrα1β1 . . . αi−1βi−1 (8)

Lemma 27. Assume w is well-formed at shift i, corresponding to state σ =
(σ1, . . . , σr). If σi = b, then executing φi,b over FIFO state w leads to a state
well-formed at shift i + 1 (1 if i = r), corresponding to σ too. If σi = ¬b,
then executing φi,b over FIFO state w leads to a state well-phased, but not well-
formed, at shift i+ 1 (1 if i = r).

Proof. Without loss of generality we prove this for i = 1 and b = f . As-
sume w = a1,fe2a2,v2 . . . erar,vr ; then the sequence φ1,f = a1,fe1a1,f yields
a2,v2 . . . erar,vre1a1,f . Assume now w = a1,te2a2,v2 . . . erar,vr ; then φ1,f yields
a2,v2 . . . erar,vra1,fe1.

Lemma 28. Assume w is well-formed at shift i, corresponding to state σ =
(σ1, . . . , σr). Executing ψi,b over FIFO state w leads to a state well-formed at
shift i+ 1 (1 if i = r), corresponding to σ where σi has been replaced by b.

Proof. Without loss of generality we prove it for i = 1 and b = f . As-
sume w = a1,v1e2a2,v2 . . . erar,vr ; then the sequence ψ1,f = e1a1,fe1 yields
a2,v2 . . . erar,vre1a1,f .

Corollary 29. Assume starting in a well-formed FIFO state, corresponding to
state σ, then any path through the gadget encoding an assignment or a guard

• either leads to a well-formed FIFO state, corresponding to the state σ′

obtained by executing the assignment, or σ′ = σ for a valid guard;

• or leads to a well-phased but not well-formed state.

15

Lemma 30. Assume w is well-phased, but not well-formed, at shift i, then
executing ψi,b or φi,b over FIFO state w leads to a state well-phased, but not
well-formed, at shift i+ 1.

Proof. Without loss of generality, we shall prove this for i = 1. Let w =
β1α2β2 . . . αrβr.

First case: β1 = e1. ψ1,b = e1a1,be1 then leads to β2α3β3 . . . αrβra1,be1,
which is well-phased, but not well-formed due to the last two blocks, at shift 2.
φ1,b = a1,be1a1,b also leads to the same state.

Second case: β1 is either a1,f or a1,t; assume the former without loss of
generality. Then there exists j > 1 such that αj = aj,vj and βj = ej. ψ1,b then
leads to β2α3β3 . . . αrβre1a1,b, which is well-phased, but not well-formed due to
the αj , βj , at shift 2.

φ1,f leads to β2α3β3 . . . αrβre1a1,f , which is well-phased, but not well-formed
due to the αj , βj , at shift 2.

φ1,t leads to β2α3β3 . . . αrβra1,te1, which is well-phased, but not well-formed
due to the last two blocks, at shift 2.

Corollary 31. Assume starting in a well-phased but not well-formed FIFO
state, then any path through the gadget encoding an assignment or a guard leads
to a well-phased but not well-formed FIFO state.

Corollary 32. Any path from a well-formed FIFO state in Ir to Fr in the FIFO
graph from Theorem 25

• either corresponds to a valid sequence of assignments and guards from the
register machine from Ir to Fr, and leads to a well-formed FIFO state
corresponding to the final state of that sequence

• or corresponds to an invalid sequence of assignments and guards from the
register machine, and leads to a well-phased but not well-formed FIFO
state.

Conversely, any valid sequence of assignments and guards from the register
machine maps from Ir to Fr transforms a well-formed FIFO state into a well-
formed FIFO state, corresponding respectively to the initial and final states of
that sequence.

Corollary 33. The path from Fr to Fa (as in Definition 25):

• transforms a well-phased but not well-formed FIFO state into a well-phased
but not well-formed FIFO state

• transforms any well-formed FIFO state into a well-formed FIFO state w0

corresponding to the initial register state (all registers zero).

Lemma 34. The path a1,fg1e2f2a2,fg2 . . . er−1fr−1ar−1,fgr−1erfr (from Fa to
Fh in Definition 25):

• transforms w0 into ar,fg1f2g2 . . . fr−1gr−1fr

16

• transforms any other word w consisting of a’s and e’s into a word not
containing ar,f .

Proof. The first item is trivial. We shall now prove that it is necessary for the
input word to be exactly w0 in order for the final word to contain ar,f . In
order for that, there must have been at most 2r− 2 misses along the path. The
accesses to g1, f2, g2, . . . , fr−1, gr−1, fr are always misses. As there are 2r− 2 of
them, there must have been exactly those misses and no others. This implies
that ar,f was in the last position in w.

When er is processed, similarly there were exactly 2r − 3 misses, and er
must be a hit. This implies that er was in the last or the penultimate position
in w, but since the last position was occupied by ar,f , er must have been in the
penultimate position.

The same reasoning holds for all preceding locations, down to the first one,
and thus the lemma holds.

From all these lemmas, the main result follows:

Corollary 35. There is an execution of the FIFO cache from If to Ff such
that ar,f is in the final cache state if and only if there is an execution of the
Boolean register machine from Ir to Fr.

Theorem 36. The exist-hit problem for FIFO caches is NP-complete for acyclic
graphs and PSPACE-complete for general graphs.

Proof. As seen above, a register machine reachability problem can be reduced in
polynomial time to a exist-hit FIFO problem, preserving acyclicity if applicable.

Remark 37. We have described a reduction from a r-register machine to a FIFO
cache problem with an odd 2r−1 number of ways. This reduction may be altered
to yield an even number of ways as follows. Two special padding blocks p and
p′ are added. A well-formed state is now pa1,b1e2a2,b2 . . . ar,br ; the definition of
well-phased states is similarly modified. Each gadget G for assignment or guard
is replaced by p′GpG. The first p′ turns padding p into p′, G is applied. The
second p′ turns p′ into p and G is applied again.

This remark also applies to the exist-miss problem.

5.3 Reduction to Exist-Miss

We modify the reduction for exist-hit in order to exhibit a miss on ar,f later on
if and only if it is in the cache at the end of the graph defined above.

Definition 38. We transform the register machine graph into a cache analysis
graph as in Theorem 25, with the following modification: in between Fh and
Ff we insert a sequence ar,fe1a1,f . . . er−1ar−1,fer, constituting the third part
of the epilogue.

17

Lemma 39. The path from Fh to Ff transforms ar,fg1f2g2 . . . fr−1gr−1fr into
a word not containing ar,f . It transforms any word composed of f ’s and g’s only
into a word containing ar,f .

Theorem 40. The exist-miss problem for FIFO caches is NP-complete for
acyclic graphs and PSPACE-complete for general graphs.

5.4 Extension to arbitrary starting cache

Lemma 41. The exist-hit and exist-miss problems for an empty starting FIFO
cache state are reduced, in linear time, to the same kind of problem for an
arbitrary starting cache state, with the same associativity.

Proof. Let Σ be the alphabet of blocks in the problem and N its associativity.
Let e1, . . . , e2N−1 be new blocks not in Σ; after accessing them in sequence,
the cache contains only elements from these accesses [13, Th. 1]. Prepend this
sequence as a prologue to the cache problem; then the rest of the execution of
the cache problem will behave as though it started from an empty cache.

Corollary 42. The exist-hit and exist-miss problems for FIFO caches with
arbitrary starting state is NP-complete for acyclic graphs and PSPACE-complete
for general graphs.

5.5 Extension to Pseudo-RR caches

Recall how a FIFO cache with multiple cache sets — the usual approach in
hardware caches — operates. A memory block of address x is stored in the cache
set number H(x) where H is a suitable function, normally a simple combination
of the bits of x. In typical situations, this is as though the address x were
specified as a pair (s, a) where s is the number of the cache set and a is the
block name to be used by the FIFO in cache set number s.

In a FIFO cache, each cache set, being a FIFO, can be implemented as a
circular buffer: an array of cache blocks and a “next to be evicted” index. In
contrast, in a pseudo-RR cache, the “next to be evicted” index is global to all
cache sets.

A FIFO cache exist-hit or exist-miss problem with cache blocks a1, . . . , an
can be turned into an equivalent pseudo-RR problem simply by using
(s, a1), . . . , (s, an) as addresses for a constant distinguished cache set s. Thus,
both exist-hit and exist-miss are NP-hard for acyclic control-flow graphs on
pseudo-RR caches, and PSPACE-hard for general control-flow graphs.

The same simulation arguments used for FIFO (subsection 5.1) hold for
establishing membership in NP and PSPACE respectively.

6 PLRU

Because LRU caches were considered too difficult to implement efficiently in
hardware, various schemes for heuristically approximating the behavior of a

18

LRU cache (keeping the most recently used data) have been proposed. By
“heuristically approximating” we mean that these schemes are assumed, on
“typical” workloads, to perform close to LRU, even though worst-case perfor-
mance may be different.7 Some authors lump all such schemes as “pseudo-LRU”
or “PLRU”, and call the scheme in the present section “tree-based PLRU” or
“PLRU-t” [1], while some others [12, p. 26] call “PLRU” only the scheme dis-
cussed here.

PLRU has been used in i486 [8] (4-way), Intel Pentium II-IV, PowerPC
75x [12, p. 21]; an 8-way PLRU is used in NXP/Freescale MPC745x [10, p. 3-
41] and MPC75x [11, p. 3-19], e6500, MPC8540.

6.1 PLRU caches

The cache lines of a PLRU cache, which may contain cached blocks, are arranged
as the leaves of a full binary tree — thus the number of ways N is a power of
2, often 4 or 8. Two lines may not contain the same block. Each internal node
of the tree has a tag bit, which is represented as an arrow pointing to the left
or right branch. The state of the cache is thus the content of the lines and the
N − 1 tag bits.

There is always a unique line such that there is a sequence of arrows from
the root of the tree to the line; this is the line pointed at by the tags. Tags are
said to be adjusted away from a line as follows: on the path from the root of
the tree to the line, tag bits are adjusted so that the arrows all point away from
that path.

When a block a is accessed:

• If the block is already in the cache, tags are adjusted away from this line.

• If the block is not already in the cache and one or more cache lines are
empty, the leftmost empty line is filled with a, and tags are adjusted away
from this block.

• If the block is not already in the cache and no cache line is empty, the
block pointed at by the tags is evicted and replaced with a, and tags are
adjusted away from this block.

7Experimentally, on typical workloads, the tree-based PLRU scheme described in this
section is said to produce 5% more misses on a level-1 data cache compared to LRU [1].
However, that scheme may, under specific concocted workloads, indefinitely keep data that
are actually never used except once— a misperformance that cannot occur with LRU [7]. This
can produce domino effects: the cache behavior of a loop body may be indefinitely affected
by the cache contents before the loop [2].

Because of the difficulties in obtaining justifiable bounds on the worst-case execution times
of programs running on a PLRU cache, some designers of safety-critical real-time systems lock
all cache ways except for two, exploiting the fact that a 2-way PLRU cache is the same as a
2-way LRU cache and thus recovering predictability [2, §3].

19

6.2 Exist-Hit Problem

We reduce the reachability problem of a Boolean r-register machine to the PLRU
exist-hit problem for a (2r + 2)-way cache — without loss of generality, we can
always add useless registers so that 2r + 2 is a power of two. The alphabet of
cache blocks is {(ai,b)1≤i≤r,b∈{f ,t}} ∪ {(ei)0≤i≤r} ∪ {c}.

Definition 43. We say that a PLRU cache state is well-formed and cor-
responds to a Boolean state (bi)1≤i≤r if its leaves are, from left to right:
c, e0, a1,b1 , e1, . . . , ar,br , er.

Definition 44. We say that a PLRU cache state is well-phased if its leaves
are, from left to right: x0, e0, a1,b1 , e1, . . . , ar,br , er where x0 can be c or any ai,b
block.

We use the PLRU state as a random access memory. Appropriate sequence
of accesses define the memory location to be read or written.

Lemma 45. Let 0 ≤ i ≤ r, there exists a sequence πi of accesses, of length loga-
rithmic in r, such that, when run on a well-phased cache state x0, e0, . . . , xr, er,
that sequence makes tags point at xi without changing the contents of the cache
lines.

Proof. Moving from xi to the root of the tree, at every node one ei block is
accessed from the other branch at that node (see Figure 4 for an example of
sequence π1).

Let 1 ≤ i ≤ r, b ∈ {t, f}. Let φi,b be the sequence π0ai,b, and ψi,b the
sequence πiai,b.

Definition 46. We turn the register machine graph into a cache analysis graph
as follows.

• From the cache analysis initial node Ip to the register machine former
initial node Ir there is a sequence of accesses c, e0, a1,f , e1, . . . , ar,f , er.

• Each guard edge vi = b is replaced by the sequence φi,b, and each assign-
ment edge vi := b by the sequence ψi,b.

• The cache final node Fp is the same as the register machine final node Fr.

The idea is that any missed guard irremediably removes c from the cache.
The following lemmas are easily proved by symbolically simulating the execution
of the gadgets over the cache states:

Lemma 47. φi,b and ψi,b map any well-phased but not well-formed state to a
well-phased but not well-formed state.

Lemma 48. ψi,b maps a well-formed state to a well-formed state corresponding
to the same Boolean state where register i has been replaced by b.

20

x0 e0 x1 e1 x2 e2 x3 e3

1

1 0

1 1 1 0

1 0

1 0 0 1

1 0 1 0 1 0 0 1

x0 e0 x1 e1 x2 e2 x3 e3

1

0 0

1 0 1 0

1 0

0 1 0 1

1 0 0 1 1 0 0 1

x0 e0 x1 e1 x2 e2 x3 e3

1

1 0

0 0 1 0

1 0

1 0 0 1

0 1 0 1 1 0 0 1

x0 e0 x1 e1 x2 e2 x3 e3

0

1 1

0 0 0 0

0 1

1 0 1 0

0 1 0 1 0 1 0 1

e1

e0

e2

Figure 4: Sequence π1 = e1e0e2 makes tags point at x1 without changing cache
content

Lemma 49. φi,b maps a well-formed state corresponding to a Boolean state
(bi)1≤i≤r to

• if bi = b, a well-formed state corresponding to the same Boolean state;

• otherwise, a well-phased but not well-formed state.

Corollary 50. There is an execution of the PLRU cache from Ip to Fp such
that c is in the final cache state if and only if there is an execution of the Boolean
register machine from Ir to Fr.

Proof. A well-phased state is well-formed if and only if it contains c.

Theorem 51. The exist-hit problem for PLRU caches is NP-complete for
acyclic graphs and PSPACE-complete for general graphs.

6.3 Exist-Miss Problem

We use two extra blocks d and f .

Definition 52. Let Z be the sequence πrdπrcπ0f .

Lemma 53. Z turns any well-formed state into a state not containing c. Z
turns any well-phased but not well-formed state into a state containing c.

Proof. Consider a well-formed state ce0a1,b1e1 . . . ar,brer. Z replaces ar,br by d;
then the access to c does not change the line contents since c is in the cache,
and c is replaced by f .

21

Consider a well-phased but not well-formed state x0e0a1,b1e1 . . . ar,brer where
x0 6= c. Z replaces ar,br by d; then the access to c replaces d by c, and x0 is
replaced by f .

Definition 54. We turn the register machine graph into a cache analysis graph
in the same manner as in Definition 46, but between Fr and Fp we insert Z as
epilogue.

Lemma 55. There is an execution of the PLRU cache from Ip to Fp such that
c is not in the final cache state if and only if there is an execution of the Boolean
register machine from Ir to Fr.

Theorem 56. The exist-miss problem for PLRU caches is NP-complete for
acyclic graphs and PSPACE-complete for general graphs.

6.4 Extension to an arbitrary starting cache

Reineke et al. [13, Th. 12] proved the following result on PLRU caches:

Theorem 57. It takes at most k
2 log2 k + 1 pairwise different accesses to evict

all entries from a k-way set-associative PLRU cache set. Again, this is a tight
bound.

More precisely, they prove that there is a sequence of accesses of length
k
2 log2 k + 1 such that after executing this sequence over a cache with arbitrary
initial state, the cache contains only elements from the sequence.

Lemma 58. The exist-hit and exist-miss problems for an empty starting PLRU
cache state are reduced, in linear time, to the same kind of problem for an
arbitrary starting cache state, with the same associativity.

Proof. Same proof as Theorem 41, except we need a sequence of M =
N
2 log2N + 1 new blocks.

Let Σ be the alphabet of blocks in the problem and N its associativity.
Let e1, . . . , eM be new blocks not in Σ; after accessing them in a sequence as
constructed in Theorem 57, there is no longer any block from Σ in the cache.
Prepend this sequence as a prologue to the cache problem; then the rest of the
execution of the cache problem will behave as though it started from an empty
cache.

Corollary 59. The exist-hit and exist-miss problems for FIFO caches with
arbitrary starting state is NP-complete for acyclic graphs and PSPACE-complete
for general graphs.

7 NMRU

Other forms of “pseudo-LRU” schemes have been proposed than the one dis-
cussed in section 6. One of them, due to Malamy, Patel, and Hayes [9] is based

22

on the use of “most recently used” bits. It is thus sometimes referred to as the
“not most recently used” (NMRU) policy, or “PLRU-m” [1]. Confusingly, some
literature [12] also refers to this policy as “MRU” despite the fact that in this
policy, it is not the most recently used data block that is evicted first.

NMRU is used in the Intel Nehalem architecture, among others.

7.1 NMRU caches

Definition 60. The state of an N -way NMRU cache is a sequence of at most
N memory blocks αi, each tagged by a 0/1 “MRU-bit” ri saying whether the
associated block is to be considered not recently used (0) or recently used (1),
denoted by αr1

1 . . . αrN
N .

An access to a block in the cache, a hit, results in the associated MRU-bit
being set to 1. If there were already N − 1 MRU-bits equal to 1, then all the
other MRU-bits are set to 0.

An access to a block a not in the cache, a miss, results in:

• if the cache is not full (number of blocks less than N), then a1 is appended
to the sequence

• if the cache is full (number of blocks equal to N), then the leftmost (least
index i) block with associated MRU-bit 0 is replaced by a1. If there were
already N − 1 MRU-bits equal to 1, then all the other MRU-bits are set
to 0.

Remark 61. This definition is correct because the following invariant is main-
tained: either the cache is not full, or it is full but at least one MRU-bit is
zero.

Example 62. Assume N = 4. If the cache contains a0b0c0, then an access to
d yields a0b0c0d1 since the cache was not full. If a is then accessed, the state
becomes a1b0c0d1. If e is then accessed, the state becomes a1e1c0d1 since b was
the leftmost block with a zero MRU-bit. If f is then accessed, then the state
becomes a0e0f1d0.

7.2 Reduction to Exist-Hit

We reduce the reachability problem for the register machine to the exist-hit
problem for the NMRU cache as follows. The associativity of the cache is
chosen as N = 2r+3. The alphabet of the cache blocks is {(ai,b)1≤i≤r,b∈{f ,t}}∪
{(ei)1≤i≤r} ∪ {(ci)1≤i≤r} ∪ {d} ∪ {g0, g1}.

The register state v1, . . . , vr of the register machine is to be encoded as the
NMRU state

e01 . . . e
0
rd

0a1,v1 . . . a
0
r,vr

g00g
1
1 (9)

where the exponent (0 or 1) is the MRU-bit associated with the block.

Definition 63. We turn the register machine graph into a cache analysis graph
as follows.

23

• From the cache analysis initial node If to the register machine for-
mer initial node Ir there is the prologue: the sequence of accesses
e1 . . . erda1,f . . . ar,fg0g1.

• Each guard edge vi = b is replaced by the gadget φi,bg0φi,bg1, where φi,b
is

start
d

a1,f

a1,t

ai−1,f

ai−1,t

ai,b
ai+1,f

ai+1,t

ar,f

ar,t
end

e1 er

(10)

• Each assignment edge vi := b is replaced by the gadget ψi,bg0ψi,bg1, where
ψi,b is

start
d

a1,f

a1,t

ai−1,f

ai−1,t

ai+1,f

ai+1,t

ar,f

ar,t
end

e1 er ai,b

(11)

• From the register machine former final node Fr to a node Fa there is a
sequence of gadgets for the assignments v1 := f . . . vr := f , the first part
of the epilogue.

• From Fa to a node Fh there is a sequence of accesses a1,f . . . ar,f c1 . . . cr,
the second part of the epilogue.

• The final node is Ff = Fh.

Definition 64. We say that an NMRU state is well-formed at step s ∈ {0, 1}
if it is of the form

β0
1 . . . β

0
rd

0α0
1 . . . α

0
rg

s
0g

1−s
1 (12)

where ∀i, 1 ≤ i ≤ r, αi ∈ {aσ(i),f , aσ(i),t}, βi = eσ′(i) and σ and σ′ are two
permutations of [1, r]. In other words, a well-formed state contains r distinct
blocks ei placed before d, and r blocks ai,b, with distinct i’s, placed between d
and g0. We say “well-formed” for short if s = 0.

Definition 65. We say that an NMRU state is well-phased at step s ∈ {0, 1}
if it is of the form

γ0σ(1) . . . γ
0
σ(r)d

0γ0σ(r+1) . . . γ
0
σ(2r)g

s
0g

1−s
1 (13)

where γ1 = e1, . . . , γr = er, γr+1 ∈ {a1,f , a1,t}, . . . , γ2r ∈ {ar,f , ar,t} and σ is a
permutation of [1, 2r]. We say “well-phased” for short if s = 0.

Lemma 66. Executing a path through φi,bgs over an NMRU state w well-phased
at step s always leads to a state well-phased at step 1−s. Furthermore that state

• either is not well-formed at step 1− s

24

• or is identical to w except for the g0 and g1 blocks, and this may occur
only if ai,b belongs to w.

Proof. The input state w is x01, . . . , x
0
r, d

0, x0r+1, . . . , x
0
2r , g

0
0, g

1
1 where the

(xi)1≤i≤2r are a permutation of {ei | 1 ≤ i ≤ r} ∪ {ai,βi
| 1 ≤ i ≤ r} for

some sequence of Booleans (βi)1≤i≤r .
Consider a path through φi,b: it consists of d, followed by a sequence of r

a’s, then r e’s. Each of these accesses either freshens, or overwrites, one of the
x positions. After the sequence of a’s, there are either no a’s to the left of d,
or at least one. The former case is possible only if all a’s are hits, freshening
positions to the right of d — this means all these positions are left untouched
except that their MRU bits are flipped to 1. Then the sequence of e’s just flips
to 1 the MRU-bits of the e’s, all located to the left of d. The resulting state is
thus identical to w except that all MRU-bits to the left of g0 have been flipped
to 1; thus after accessing g0, the state is identical to the initial state except that
it ends with g1−s

0 gs1 instead of gs0g
1−s
1 .

Now consider the latter case: after the sequence of a’s there is at least
one position of the form a1i,β to the left of d. This position cannot be over-
written by the e’s. After the path through φi,b, the state is thus of the form
x11, . . . , x

1
r , d

1, x1r+1, . . . , x
1
2r, g

0
0 , g

1
1, and one of the xi for 1 ≤ i ≤ r is an a.

The access to g0 yields x01, . . . , x
0
r , d

0, x0r+1, . . . , x
0
2r, g

1−s
0 , gs1. This state is well-

phased but not well-formed.

Lemma 67. Executing a path through ψi,bgs over an NMRU state well-phased
at step s always leads to a state well-phased at step 1 − s. Furthermore that
state

• either is not well-formed at step 1− s

• or is identical to the initial state except for the g0 and g1 blocks, and,
possibly, the ai,βi

block replaced by ai,b.

Proof. Again, the initial state is x01, . . . , x
0
r , d

0, x0r+1, . . . , x
0
2r, g

0
0 , g

1
1 where the

(xi)1≤i≤2r are a permutation of {ei | 1 ≤ i ≤ r} ∪ {ai,βi
| 1 ≤ i ≤ r} for some

sequence of Booleans (βi)1≤i≤r .
Consider a path through ψi,b: it consists of d, followed by a sequence of

r − 1 a’s, then r e’s, then ai,b. Each of these accesses either freshens, either
overwrites, one of the x positions. After the sequence of a’s, there are either
no a’s to the left of d, or at least one. The former case is possible only if all
these a’s are hits, freshening positions to the right of d. Then the sequence of
e’s freshens the e’s to the left of d. There is one remaining x position with a
zero MRU-bit: it is to the right of d and carries a block ai,βi

. This block is then
updated or freshened by the ai,b access. Then the access to g0 flips all MRU-bits
to 0 except the one for g0, which is flipped to 1. Since all of the accesses before
the ai,b access were hits, the permutation of the positions has not changed: the
state is the same as the initial state except that a0i,βi

is replaced by a0i,b and

gs0g
1−s
1 is replaced by g1−s

0 gs1.

25

Now consider the latter case: after the sequence of a’s there is at least one
position of the form a1i,β to the left of d. Then, as in the proof of the previous

lemma, there is still a0i,β to the left of d at the end of the path through ψi,bgs.
Thus the final state cannot be well-formed.

Corollary 68. Assume starting in a well-formed NMRU state, corresponding
to Boolean state σ, then any path through the gadget encoding an assignment or
a guard

• either leads to a well-formed NMRU state, corresponding to the state σ′

obtained by executing the assignment, or σ′ = σ for a valid guard;

• or leads to a well-phased but not well-formed state.

Lemma 69. Executing the sequence a1,f . . . ar,f c1 . . . cr from Fa to Fh

over a well-formed NMRU state corresponding to a zero Boolean state
leads to a state containing d — more specifically, a state of the form
c11, . . . , c

1
r, d

0, a1π(1),f , . . . , a
1
π(r),fg

0
0g

1
1 where π is a permutation.

Proof. The a1,f . . . ar,f just freshen the corresponding blocks (MRU-bit set to
1), and then the c1 . . . cr overwrite the e’s.

Lemma 70. Executing the sequence a1,f . . . ar,f c1 . . . cr from Fa to Fh over a
well-phased but not well-formed NMRU state leads to a state not containing d
— where the 2r first MRU bits are set to 1, the next one to 0, and then g00g

1
1.

Proof. The well-phased but not well-formed NMRU state contains at least one
b to the right of d. When applying a1,f . . . ar,f , at least one of the a’s must thus
freshen or replace a block to the left of d. Then when applying c1 . . . cr, d gets
erased.

Corollary 71. There is an execution sequence from If , with empty cache, to
Ff , such that the final cache contains d if and only if there is an execution trace
from Ir to Fr.

Theorem 72. The exist-hit problem for NMRU caches is NP-complete for
acyclic graphs and PSPACE-complete for general graphs.

7.3 Reduction to Exist-Miss

Definition 73. We modify the reduction of Theorem 63 as follows. Between Fh

and Ff we insert the sequence dg0c1 . . . cra1,t, as the third part of the epilogue.

Lemma 74. Executing dg0c1 . . . cra1,t over a state of the form
c11, . . . , c

1
r, d

0, a1
π(1),f , . . . , a

1
π(r),fg

0
0g

1
1, where π is a permutation, leads to a

state without d.

Proof. d gets freshened, then g0 is the sole block with a zero MRU-bit. Thus,
when it is freshened, all other MRU bits are set to zero. Then c1 . . . cr freshen
the first r blocks, and a1,t erases d.

26

Lemma 75. Executing dg0c1 . . . cra1,t over a state not containing d, where the
2r first MRU bits are set to 1, the next one to 0, and then g00g

1
1 leads to a state

containing d.

Proof. d overwrites the 2r + 1-th position, then g0 is the sole block with a zero
MRU-bit. Thus, when it is freshened, all other MRU bits are set to zero. Then
possibly some blocks get overwritten among the r + 1 first blocks, and d is still
in the cache.

Corollary 76. There is an execution sequence from If , with empty cache, to Ff ,
such that the final cache does not contain d if and only if there is an execution
of the Boolean register machine from Ir to Fr.

Theorem 77. The exist-miss problem for NMRU caches is NP-complete for
acyclic graphs and PSPACE-complete for general graphs.

We have no results for reductions to cache analysis problems with arbitrary
starting state. The proof method that we used for FIFO and PLRU — prepend
a sufficiently long sequence of accesses that will bring the cache to a sufficiently
known state — does not seem to easily carry over to NMRU caches. Even though
it is known that 2N − 2 pairwise distinct accesses are sufficient to remove all
previous content from an NMRU cache [13, Th. 4], it can be shown that there
is no sequence guaranteed to yield a completely known cache state [13, Th. 5].

8 Conclusion and future work

We have shown complexity-theoretical properties that separate LRU from other
policies such as PLRU, NMRU, FIFO, pseudo-RR and that give a more rig-
orous meaning to the intuition that static analysis for LRU is “easier” than
for other policies, due to its forgetful tendencies. Reachability problems for
PLRU, NMRU, FIFO, pseudo-RR caches in fact are of the same complexity
class (PSPACE-complete) as generic reachability problems with arbitrary tran-
sitions over bits [4], which again justifies why they are hard.

Our assumption that all paths through the control-flow graph are feasible
is not realistic. As explained in the introduction, this assumption is made
because arbitrary arithmetic and tests on lead to all cache analysis problems
being equivalent to Turing’s halting problem. Another option is restricting the
program to a finite number of bits and a transition relation represented by a
Boolean circuit, formula, or OBDD, linking the previous values of the bits to
the next values; but as we have explained, this would not help distinguishing
between policies since all problems then become PSPACE-complete [4]. We thus
would need some kind of weaker execution model, but it is difficult to find one
that would still be realistic enough to have an interest.

One possibility, suggested by a reviewer, is to add a call stack. In Section 2,
we used the fact that the combination of a finite control automaton and the
exact state of the cache is just a bigger finite automaton, thus exist-miss and
exist-hit can be decided by explicit-state model checking. Adding a call stack,

27

for modeling procedure calls, would turn the problem into model-checking reach-
ability on a stack automaton, in other words a pushdown system. Despite these
systems having infinite state, reachability is decidable [3, 6]. Investigating the
complexity of the combination of the call stack with our cache models is left to
future work.

Another direction is to distinguish the analysis difficulty for different policies
for a fixed associativity. As explained in Section 2, all problems become poly-
nomial with respect to the program size; but one could still want to distinguish
asymptotic growths. However, as we have shown, too strong results in this area
would entail answers to very hard conjectures in complexity theory.

It is difficult to draw practical implications from worst-case complexity-
theoretic asymptotic results. We however think that our results are yet an-
other indication, in addition to the existence of efficient and precise analyses for
LRU [5, 14, 15] and their lack for other policies, that the LRU policy is to be
preferred for ease of analysis and thus for hard real time critical applications
where a worst case execution time bound must be established.8

References

[1] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. “Per-
formance Evaluation of Cache Replacement Policies for the SPEC
CPU2000 Benchmark Suite”. In: Proceedings of the 42Nd Annual South-
east Regional Conference. ACM-SE 42. Huntsville, Alabama: ACM, 2004,
pp. 267–272. isbn: 1-58113-870-9. doi: 10.1145/986537.986601.

[2] Christoph Berg. “PLRU Cache Domino Effects”. In: 6th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET’06).
Ed. by Frank Mueller. Vol. 4. OpenAccess Series in Informat-
ics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2006, pp. 69–71. isbn: 978-3-939897-03-3. doi:
10.4230/OASIcs.WCET.2006.672.

[3] Ahmed Bouajjani, Javier Esparza, and Oded Maler. “Reachability Anal-
ysis of Pushdown Automata: Application to Model-Checking”. In: Con-
currency Theory (CONCUR). Ed. by Antoni W. Mazurkiewicz and Józef
Winkowski. Vol. 1243. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer Verlag, 1997, pp. 135–150. doi: 10.1007/3-540-63141-0 10.

[4] Joan Feigenbaum et al. “Complexity of Problems on Graphs Represented
as OBDDs (Extended Abstract)”. In: Symposium on Theoretical Aspects
of Computer (STACS). Ed. by Michel Morvan, Christoph Meinel, and
Daniel Krob. Vol. 1373. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer Verlag, 1998, pp. 216–226. doi: 10.1007/BFb0028563.

8We have anecdotal evidence that certain designers of safety critical systems lock 6 ways
out of 8 PLRU ways in the MPC755 processor [11, Table C.3] so that the remaining 2 ways
are equivalent to a 2-way LRU cache, amenable to analysis. This illustrates the cost of using
a policy that performs well “on average” but that is not easy to statically predict.

28

http://worldcat.org/isbn/1-58113-870-9
http://dx.doi.org/10.1145/986537.986601
http://worldcat.org/isbn/978-3-939897-03-3
http://dx.doi.org/10.4230/OASIcs.WCET.2006.672
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/BFb0028563

[5] Christian Ferdinand and Reinhard Wilhelm. “Efficient and Precise Cache
Behavior Prediction for Real-Time Systems”. In: Real-Time Systems 17.2–
3 (Dec. 1999), pp. 131–181. issn: 0922-6443. doi: 10.1023/A:1008186323068.

[6] Alain Finkel, Bernard Willems, and Pierre Wolper. “A direct symbolic
approach to model checking pushdown systems”. In: Electr. Notes Theor.
Comput. Sci. 9 (1997), pp. 27–37. doi: 10.1016/S1571-0661(05)80426-8.

[7] Reinhold Heckmann et al. “The influence of processor architecture on the
design and the results of WCET tools”. In: Proceedings of the IEEE 91.7
(2003), pp. 1038–1054. doi: 10.1109/JPROC.2003.814618.

[8] i486 Microprocessor data sheet. Intel. 1989. url:
https://archive.org/stream/bitsavers_intel80486ataSheetApr89_12763574/i486_Microprocesso

[9] Adam Malamy, Rajiv N. Patel, and Norman M. Hayes.Methods and appa-
ratus for implementing a pseudo-LRU cache memory replacement scheme
with a locking feature. US patent 5,353,425. US Patent Office, Oct. 1994.
url: https://patents.google.com/patent/US5353425.

[10] MPC7450 RISC Microprocessor Family Reference Manual.
5th ed. NXP / Freescale Semiconductor. Jan. 2005. url:
https://www.nxp.com/docs/en/reference-manual/MPC7450UM.pdf.

[11] MPC750 RISC Microprocessor Family Reference Manual.
1st ed. NXP / Freescale Semiconductor. Dec. 2001. url:
https://www.nxp.com/docs/en/reference-manual/MPC750UM.pdf.

[12] Jan Reineke. “Caches in WCET analysis: predictability, competitive-
ness, sensitivity”. PhD thesis. Universität des Saarlandes, 2008. url:
http://www.rw.cdl.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.

[13] Jan Reineke et al. “Timing predictability of cache
replacement policies”. In: Real-Time Systems 37.2
(2007), pp. 99–122. doi: 10.1007/s11241-007-9032-3. url:
http://www.rw.cdl.uni-saarland.de/~grund/papers/rts07-predictability.pdf.

[14] Valentin Touzeau et al. “Ascertaining Uncertainty for Efficient Exact
Cache Analysis”. In: Computer-aided verification (CAV). Ed. by Viktor
Kuncak and Rupak Majumdar. Vol. 10427. Cham: Springer Verlag, 2017,
pp. 22–17. doi: 10.1007/3-540-63141-0 10. arXiv: 1709.10008.

[15] Valentin Touzeau et al. “Fast and exact analysis for LRU caches”. In:
Proceedings of the ACM on Programming Languages (PACMPL) 3.POPL
(2019), 54:1–54:29. doi: 10.1145/3290367. arXiv: 1811.01670.

29

http://worldcat.org/issn/0922-6443
http://dx.doi.org/10.1023/A:1008186323068
http://dx.doi.org/10.1016/S1571-0661(05)80426-8
http://dx.doi.org/10.1109/JPROC.2003.814618
https://archive.org/stream/bitsavers_intel80486ataSheetApr89_12763574/i486_Microprocessor_Data_Sheet_Apr89_djvu.txt
https://patents.google.com/patent/US5353425
https://www.nxp.com/docs/en/reference-manual/MPC7450UM.pdf
https://www.nxp.com/docs/en/reference-manual/MPC750UM.pdf
http://www.rw.cdl.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
http://dx.doi.org/10.1007/s11241-007-9032-3
http://www.rw.cdl.uni-saarland.de/~grund/papers/rts07-predictability.pdf
http://dx.doi.org/10.1007/3-540-63141-0_10
http://arxiv.org/abs/1709.10008
http://dx.doi.org/10.1145/3290367
http://arxiv.org/abs/1811.01670

	Introduction
	Fixed associativity
	LRU
	Motivation and fundamental properties
	Exist-Hit
	Exist-Miss
	Extensions

	Boolean register machine
	FIFO
	Fundamental properties
	Reduction to Exist-Hit
	Reduction to Exist-Miss
	Extension to arbitrary starting cache
	Extension to Pseudo-RR caches

	PLRU
	PLRU caches
	Exist-Hit Problem
	Exist-Miss Problem
	Extension to an arbitrary starting cache

	NMRU
	NMRU caches
	Reduction to Exist-Hit
	Reduction to Exist-Miss

	Conclusion and future work

