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Abstract

This chapter considers the sub-seasonal–to–seasonal (S2S) prediction problem as intrinsically more difficult
than either short-range weather prediction or interannual–to–multidecadal climate prediction. The difficulty
arises from the comparable importance of atmospheric initial states and of parameter values in determining
the atmospheric evolution on the S2S time scale.

The chapter relies on the theoretical framework of dynamical systems and the practical tools this frame-
work helps provide to low-order modeling and prediction of S2S variability. The emphasis is on mid-latitude
variability and the complementarity of the nonlinear-waves vs. multiple-regime points of view in under-
standing this variability. Empirical model reduction and the forecast skill of the models thus produced in
real-time prediction are reviewed.

Keywords: bifurcations, cluster analysis, empirical model reduction, hierarchy of models, singular
spectrum analysis, predictability
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1. Introduction and motivation

The John von Neumann point of view (Von Neumann, 1955): short-term numerical weather
prediction (NWP) is the easiest — i.e., it is a pure initial-value problem; long-term climate pre-
diction is next easiest — it corresponds to studying the system’s asymptotic behavior; intermediate-
term prediction is hardest — both initial & boundary values are important. The modeling hier-
archy & successive bifurcations as Ariadne’s thread through the rungs of the hierarchy.

Intraseasonal time scales, more recently called subseasonal-to-seasonal (S2S), range from the determin-
istic limit of atmospheric predictability, of about 10 days, up to a season, say 100 days. These time scales
occupy a window of overlap between low-frequency variability (LFV) intrinsic to the atmosphere and short
climatic time scales that also involve the upper ocean and land-surface features, as well as the stratosphere.
These time scales are of particular importance to subseasonal prediction. Theoretical and observational stud-
ies of LFV over the past half-century have used two complementary ways of describing atmospheric LFV
in the extratropics: (i) episodic, by means of multiple weather (Reinhold and Pierrehumbert, 1982) or flow
(Charney and DeVore, 1979; Legras and Ghil, 1985) regimes; and (ii) oscillatory, by means of broad-peak,
slowly modulated oscillations (Ghil and Robertson, 2002, and references therein).

We pursue throughout the chapter the dynamical systems point of view first formulated by John von
Neumann (Von Neumann, 1955), according to which there are three levels of difficulty in understanding
and predicting atmospheric phenomena: (a) short-term numerical weather prediction (NWP) is the easiest,
since it represents a pure initial-value problem, as formulated by V. Bjerkness (Bjerknes, 1904) and L. F.
Richardson (Richardson, 1922); (b) long-term climate prediction is next easiest, since it corresponds to
studying the system’s asymptotic behavior, i.e., the possible attractors — such as fixed points, limit cycles,
strange attractors — and the statistical properties thereof (Ghil and Childress, 1987; Dijkstra and Ghil, 2005;
Dijkstra, 2013); and (c) intermediate-term prediction is hardest, since both the initial and the parameter
values are important. We deal with the latter problem by pursuing a full hierarchy of models, from the
simplest to the most detailed ones (Schneider and Dickinson, 1974; Held, 2005), and the tool of successive
bifurcations as Ariadne’s thread through the rungs of this hierarchy (Ghil and Robertson, 2000; Ghil, 2001).

This chapter starts in Sec. 2 with a brief summary of the main characteristics of the oscillatory vs.
intermittent viewpoints from a dynamical systems perspective, based on the review article of Ghil and
Robertson (2002) and updated using studies published since then. Section 3 then presents a new analysis of
the observational characteristics of oscillatory LFV, using a recently developed multivariate spectral analysis
tool. With this background and results in hand, Sec. 4 discusses low-order modeling (LOM) approaches
and their application to LFV, while outlining how these approaches have developed over the years from
so-called linear inverse models (LIMs) or principal oscillation patterns (POPs) to empirical model reduction
(EMR) and multi-level stochastic models (MSMs). The chapter concludes in Sec. 5 with the prospects for
improving S2S prediction in the extratropics based on the theoretical LFV framework sketched herein and
on data-driven LOMs.

2. Multiple mid-latitude regimes and low-frequency oscillations

Blocking, zonal flow, and teleconnection patterns; phenomenological description of extratrop-
ical flows in the S2S band (10–100 days). Mechanical- & thermal-topography effects, i.e., moun-
tains & land–sea contrast. Bifurcations & symmetry breaking as the unifying point of view for
the theoretical interpretation of the phenomenology. Markov chains of regimes & predictability.

2.1. The case for multiple regimes and their classification

Persistent LFV anomalies, in which the flow patterns differ significantly from the normal climatological
circulation and remain stationary for more than a week, have been objectively identified over the North
Pacific and North Atlantic in the 1980s (Wallace and Gutzler, 1981; Dole and Gordon, 1983; Mo and Ghil,
1988). Their onsets and breaks, on the other hand, are rather abrupt. The most familiar of these persistent
patterns or “Grosswetterlagen” (Namias, 1968), albeit not the only ones, are blocked and zonal flows.
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Within the last few decades it has been demonstrated that these patterns can be identified by examining
the probability distribution function (pdf) of the corresponding large-scale maps in the atmosphere’s phase
space (Cheng and Wallace, 1993; Kimoto and Ghil, 1993a,b; Smyth et al., 1999). The resulting patterns
resemble those found previously by using correlation analysis.

Many of the methods used to classify weather maps are summarized in Table 1. In such a classification,
an individual atmospheric map is thought of as a point in phase space. To achieve a reliable, statistically
significant classification, it is necessary to consider a low-dimensional subspace of this phase space that still
captures most of the variance in the data set. The usual choice is to compute the analyzed record’s empirical
orthogonal functions (EOFs), i.e., the eigenvectors of the covariance (or correlation) matrix, and to select a
subspace spanned by a few leading eigenvectors (Mo and Ghil, 1988; Cheng and Wallace, 1993; Kimoto and
Ghil, 1993a,b; Smyth et al., 1999).

Many of the classification methods define the regimes as classes of distinct atmospheric states that have
a high probability of occurrence and are separated by regions of lower probability. Some of these methods
seek maxima of the pdf by using kernel density estimation (Kimoto and Ghil, 1993b; Corti et al., 1999) or
more ad hoc methods (Molteni et al., 1990). Each regime is then formed by the points, or maps, that exceed
a given probability threshold in the neighborhood of a pdf maximum. The number of pdf peaks depends
on the kernel smoothing parameter used, which can be determined objectively by using a least-squares
cross-validation procedure (Silverman, 1986).

Smyth et al. (1999) have used a mixture model that approximates the pdf by the sum of a small number
of multivariate Gaussians. In this case, the regimes are “fuzzy” in the sense that they overlap, and that each
particular daily weather map can be assigned a probability of belonging to one or another regime. This was
the case also in Mo and Ghil (1988), who used a different classification algorithm, and obtained therewith a
different number of regimes. This number, as well as the spatial patterns associated with the regimes, are
discussed in Sec. 4.

Cluster analysis is a less ambitious approach to classifying atmospheric states: it localizes high concen-
trations of points, called clusters, but does not pretend to estimate the pdf. There are two main types of
clustering algorithm: hierarchical and partitioning. In hierarchical algorithms, one builds a classification
tree iteratively, starting from single data points and merging them into clusters according to a similarity
criterion. Cheng and Wallace (1993) used Ward’s method to do this. In partitioning algorithms, a prescribed
number of clusters is chosen, and data points are agglomerated around kernels initially picked as random
seeds. The kernels are iteratively modified so as to globally minimize the data scatter about them, as done
in the K-means method of Michelangeli et al. (1995).

Using low-pass filtered data, based on running means of 5–10 days, introduces some measure of persistence
into the above methods, which are based on frequency of occurrence. A second broad class of methods uses
quasi-stationarity explicitly. Here, the regimes are defined as comprising states for which large-scale motion
is slow in the statistical sense. More precisely, one seeks the large-scale patterns that have, on average, a
small time derivative (Legras and Ghil, 1985). This phase-space speed can be computed for maps that do
include synoptic-scale motions by a nonlinear equilibration technique (Vautard and Legras, 1988; Vautard,
1990; Michelangeli et al., 1995).

Huth et al. (2008) provided a more recent review of classification schemes of atmospheric circulation
patterns, and included a table that updates the one of Ghil and Robertson (2002) reproduced herein.
Straus et al. (2007) compared the circulation regimes in the National Center’s for Environmental Prediction
(NCEP’s) reanalyses with the GCM model simulations of the Center for Ocean-Land-Atmosphere Studies
(COLA), showing that three out of the four observed clusters have identifiable counterparts in the model
simulations. These authors, as well as Straus and Molteni (2004), also studied possible changes in the
structure of the COLA GCM’s regimes in response to changes in tropical sea surface temperature (SST)
forcing. Christensen et al. (2014), Dawson and Palmer (2014) and Muñoz et al. (2017) used weather
regimes to evaluate more broadly the simulation skill of climate models, with Dawson and Palmer (2014),
in particular, showing that higher horizontal resolutions in NWP models improves regime simulation.

Most recently, Hannachi et al. (2017) have reviewed the state of knowledge on the low-frequency fluctu-
ations of the extratropical troposphere. These authors showed that retaining periods longer than 10 days
yields statistically significant multiple regimes, while Stephenson et al. (2004), to the contrary, had found
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Table 1: Classification methods for weather maps. Based on Ghil and Robertson (2002) and updated.

Approach Method Data sets References Comments
Regime classification by position

Cluster analysis Categorical NH Mo and Ghil (1988) Fuzzy
NH + sectorial Michelangeli et al. (1995) Hard (k-means)
Model Dawson and Palmer (2014) Hard (k-means)
Model+NH+sectorial Muñoz et al. (2017) Hard (k-means)
Model + sectorial Straus and Molteni (2004);

Straus et al. (2007, 2017)
Hard (k-means)

Hierarchical NH + sectorial Cheng and Wallace (1993) 3 NH clusters

PDF estimation Univariate NH Benzi et al. (1986); Bimodality
Hansen and Sutera (1995)

Multivariate NH Kimoto and Ghil (1993a) 3 modes
NH + sectorial Kimoto and Ghil (1993b); Multimodal

Smyth et al. (1999) 3 NH clusters

Regime classification by persistence
Pattern correlations NH Horel (1985)

SH Mo and Ghil (1987) 3 regimes

Minima of tendencies Models Legras and Ghil (1985);
Mukougawa (1988);
Vautard and Legras (1988)

Atl.-Eur. sector Vautard (1990) 4 regimes

Transition probabilities
Counts Model + NH Mo and Ghil (1988) Elementary

Monte Carlo NH + SH Vautard et al. (1990) Advanced
NH + sectorial Kimoto and Ghil (1993b) Advanced

NH = Northern Hemisphere; SH = Southern Hemisphere; PDF = probability density function.
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no strong evidence in monthly mean reanalysis data for rejecting the single-regime multinormal hypothesis.
The obvious reason for the latter result seems to be that the number of maps retained by these authors was
too small or that the subspace they retained was too large for a satisfactory estimation of the pdf. Another
way of looking at the difference between the results of Hannachi et al. (2017) and of Stephenson et al. (2004)
is the fact that the persistent anomalies associated with passage through the distinct regimes in phase space
rarely lasts longer than ten days (Dole and Gordon, 1983; Kimoto and Ghil, 1993a,b). Thus, Hannachi et al.
(2017) were separating such passages from the more diffuse flow in phase space outside the regimes, while
Stephenson et al. (2004) were not.

Besides the fairly low degree of controversy that persists on the very existence of multiple regimes, there
is still some lack of agreement as to their causes. Thus, Majda et al. (2006) find in a Hidden Markov Model
(HMM) analysis that metastable regime transitions can occur despite a simple model’s nearly Gaussian pdf,
while Sura et al. (2005) show that deviations from Gaussianity can also result from linear, stochastically
perturbed dynamics with multiplicative noise statistics. Deremble et al. (2012) show that thermal forcing
by a time-independent SST front can affect the atmospheric flow patterns and bifurcation sequence obtained
in atmospheric models with likewise time-independent, but mechanical, i.e. topographic forcing (Legras and
Ghil, 1985; Jin and Ghil, 1990).

One may conclude that the number and variety of methods that have been used to identify and describe
LFV regimes are leading up to a tentative consensus on their existence, robustness, and characteristics. We
turn therewith to reviewing some of the theoretical foundations for the explanation of multiple regimes.

2.2. Theoretical basis of multiple regimes

Rossby wave propagation and interference. The slowly traveling, large-scale wave patterns that were first
associated with weather phenomena in the 1930s are solutions of the partial differential equation for the
conservation of potential vorticity q along a particle trajectory (Gill, 1982; Pedlosky, 1987). For the purposes
of this expository review, q can be defined as the vorticity ζ of a column of fluid divided by its height h,
i.e., q = ζ/h. Conservation of q thus means, for instance, that a column of fluid’s anti-clockwise rotation
(defined as ζ > 0) will slow down (i.e., ζ decreases to smaller positive values) as the column moves over a
mountain range (i.e., h > 0 decreases). This type of vorticity balance leads to slow Rossby waves (Rossby
et al., 1939; Haurwitz, 1940) that propagate westward with respect to the mean westerly jet. In this volume,
Brunet and Methven (2018) present a more complete view of the role of such waves in S2S variability.

One view of persistent anomalies in mid-latitude atmospheric flows is that they result simply from the
coincidental slowing down or linear interference of such Rossby waves (Lindzen et al., 1982; Lindzen, 1986).
Another view is that a standing wave induced by topography can lead to a resonant interaction with two
separate Rossby waves of distinct wavenumbers and thus produce a long-lived resonant wave triad (Egger,
1978; Ghil and Childress, 1987, Section 6.2). Neither one of these views provides an explanation of the
observed clustering of persistent anomalies into distinct flow regimes. But the second one does suggest the
more radically nonlinear theory described in the next few paragraphs.

Charney and DeVore (1979) took a major step in formulating a self-consistent atmospheric model for
multiple equilibria and connecting it to observations of blocked and zonal flow. They used a highly idealized
barotropic model to study the interaction between a zonal flow and simple topography with zonal wavenum-
ber 2. Their model exhibits two stable equilibria for the same strength ψ∗

A of the prescribed zonal forcing
that represents here the strength of the pole-to-equator temperature contrast. Charney et al. (1981) con-
fronted the barotropic theory of Charney and DeVore (1979) with observations, while Charney and Straus
(1980) extended it to baroclinic flows. In a somewhat complementary vein, Mitchell and Derome (1983)
followed up on the suggestion (e.g., McWilliams, 1980, and references therein) that steady-state solutions of
the inviscid potential vorticity equation, written as q = G(ψ, p), can simulate blocking patterns, and may
be resonantly excited by periodic forcing; here ψ = ψ(x, y, p) is the stream function, p is pressure, and (x, y)
are horizontal coordinates pointing east- and northward.

Figure 1 shows the Charney and DeVore (1979) model’s bifurcation diagram, with the strength ψA of the
zonal jet in the model’s steady-state solutions plotted against the corresponding strength ψ∗

A of the forcing.
The two stable equilibria—marked Z and R−—are associated with “zonal” and “blocked” flow, respectively,
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(a) Bifurcation diagram (b) Flow patterns

Figure 1: Multiple equilibria of a three-mode quasi-geostrophic model with simplified forcing and topography. (a) Bifurcation
diagram showing model response to changes in forcing; see text for the explanation of abscissa and ordinate. The “S”-shaped
bifurcation curve is typical of two back-to-back saddle-node bifurcations that give rise to two stable solution branches (solid)
separated by an unstable one (dashed). (b) Flow patterns of the zonal (upper) and blocked (lower) branch, corresponding to
the two stable equilibria Z and R (after Charney and DeVore, 1979). (Reprinted with permission from Ghil and Childress
(1987): Copyright 1987, Springer Nature.)

as illustrated in Fig. 1b. The near-zonal solution is close in amplitude and spatial pattern to the forcing
jet and is influenced very little by the topography, whereas the blocked solution is strongly affected by
it. In the blocked-flow solution, a high-amplitude ridge is located upstream of the “mountains,” similar
to the situation during typical observed blocks off the West Coast of North America. This configuration,
with a negative zonal pressure gradient on the windward slope of the mountains, corresponds to a negative
mountain torque on the atmosphere.

Benzi et al. (1986) and Hansen and Sutera (1995) found evidence of bimodality in a composite index of
wave amplitude in the NH mid-latitude flow. Although the statistical significance and robustness of their
findings have been subject to criticism (Nitsche et al., 1994), direct confrontation of theoretical bimodality
with observations has clearly stimulated LFV research during the 1980s. Further comparisons between the
various approaches to LFV and to S2S prediction are drawn in Sec. 5.

A reasonable classification of low-pass filtered flow maps into discrete regimes provides only a static view
of LFV. The next step is to study the transitions between these regimes over time. A matrix of probabilities
for transitions from regime i to regime j is constructed by simply counting the transitions occurring in
the data set. This yields an estimated set of conditional probabilities, in line with long-range forecasting
experience (Namias, 1968; Kalnay and Livezey, 1985) and the physical intuition that certain pathways of
transition are more probable than others.

One kinematic approach to LFV is based on the Markov chain of these transitions. In this approach,
knowledge of the system’s present state is put to use to make a forecast, rather than using only unconditional
probabilities. The Markov-chain view of LFV and, hence, long-range forecasting, is based on the existence
of multiple regimes, the expected time of residence in each regime, and the probabilities of transition from
one regime to another (Fig. 2).

Finally, several simple and intermediate model studies have addressed the issue of early warning indicators
for regime transitions. For instance, Kondrashov et al. (2004) used the pdf of the exit angle from a given
regime in a global baroclinic, quasi-geostrophic, 3-level (QG3) model with topography, originally due to
Marshall and Molteni (1993), while Deloncle et al. (2007) used for the same model a fairly recent statistical
learning method called random forests (Breiman, 2001). Kondrashov et al. (2007) then applied the random
forests algorithm for studying regime transitions in Northern Hemisphere (NH) data sets, while Tantet
et al. (2015) used transfer operator theory for the study of transitions from zonal to blocking events in a
hemispheric barotropic model. Methods for the study and prediction of regime transitions are discussed in
greater detail in Sec. 4.2, after having provided additional insight into LFV dynamics in Sec. 3.2.
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3. Extratropical oscillations in the S2S band

Phenomenological description of the extratropical oscillations in the S2S band. Variations of
atmospheric angular momentum (AAM). Topographic instability and Hopf bifurcation; transi-
tion to irregular, chaotic behavior. Extratropical oscillations in a GCM with no Madden-Julian
Oscillation (MJO) in the tropics.

3.1. Phenomenological description

Variations of geopotential height. In this subsection, we analyze the geopotential height field at 500 hPa
(Z500) from the ERA-interim reanalysis of Dee et al. (2011) that spans 37 years, January 1979–December
2016). We focus on the region 20◦S−90◦N, so as to include the tropics as well as the NH extratropics. This
choice, along with that of the Z500 level, will become clearer as we proceed on to the results.

To identify spectral components of spatio-temporal behavior in the extensive ERA-interim reanalysis
datasets, we apply here the multichannel singular spectrum analysis (M-SSA) methodology. For a compre-
hensive overview of the SSA and M-SSA methodology and of related literature, see Ghil et al. (2002) and
(Alessio, 2016, chapter 12). M-SSA essentially diagonalizes the lag-covariance matrix of the multivariate
dataset to yield a set of empirical orthogonal functions (EOFs) and the corresponding eigenvalues, which
describe the variance captured by each EOF. In contrast to classical principal component analysis (PCA),
M-SSA is able to capture oscillatory behavior in pairs of EOFs with approximately equal eigenvalues and
dominant frequencies (Vautard and Ghil, 1989; Plaut and Vautard, 1994). To improve the separability of
distinct frequencies, we rely here on a subsequent varimax rotation of the EOFs, cf. Groth and Ghil (2011).

Prior to the M-SSA analysis, the composite seasonal cycle is first subtracted from the daily time series.
This cycle is computed by averaging the time series at each grid point over all years for each calendar day,
and by smoothing this average using a 15-day running mean. Following Feliks et al. (2010, and references
therein), we apply next a Chebyshev type I filter to the time series of anomaly maps, i.e., of the differences
between the raw maps and the seasonal cycle so obtained, a lowpass filter that removes high-frequency
oscillations with a period shorter than 20 days. The lowpass-filtered Z500 anomalies are subsampled with
a sampling rate of 10 days, which yields time series of roughly 1300 samples. Finally, the subsampled
anomalies are projected onto the 40 leading spatial EOFs of a classical PCA analysis, capturing 90% of the
total variance. The corresponding principal components, finally, give the D = 40 input channels for the
M-SSA analysis; see Groth et al. (2017) for further details of M-SSA analyzing extensive reanalysis datasets.

Oscillatory features in time and space. Figure 3(a) shows the eigenvalue spectrum of the subsampled Z500
anomalies. The spectrum exhibits several highly significant spectral peaks in the intraseasonal band; their

Z = Zonal
B =

Blocked

C =
Wave
Train

τZ

τZ τB

τC

τB

PCZ

PZB

PZC

Time
mean

No. of
events

Duration

No. of
events

Duration

(a)

(b) (c)

Figure 2: Schematic Markov chain with three regimes, B, C, and Z, for ‘Blocked’, ‘Wave Train’ and ‘Zonal’. (a) Some
preferential paths between pairs of regimes are shown, along with the corresponding transition probabilities, for instance pZB .
(b and c) The distribution of residence times in log-linear coordinates differs from the straight line associated with a red-noise
process; the mean residence time for each regime is denoted by τ . (Reprinted with permission from Ghil (1987): Copyright
1987, Springer Nature.)
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Figure 3: Intraseasonal oscillations of 500 hPa geopotential height (Z500) in the ERA-interim reanalysis for the time interval
1979–2016 and the region (20◦S–90◦N). (a) Spectrum of eigenvalues (black dots) plotted as a function of the associated
dominant frequency from an M-SSA analysis with a window length of M = 35 (350 days); the subsequent varimax rotation
uses EOFs 1–40. The corresponding period length (in days) for the key oscillatory pairs in the S2S band is indicated. Lower
and upper limits of the error bars correspond to the 2.5% and 97.5% quantiles of a Monte Carlo test against the composite
null hypothesis of EOFs 1–4 plus AR(1) noise; the test ensemble has 1000 members. EOFs 1–4 (target dots) correspond to the
trend and to a peak that lies below the S2S range of interest herein. (b) Local variance captured by the oscillatory pairs that
are indicated in the upper panel, as a function of time.

frequencies agree very well with those identified and described in detail in previous studies (Ghil and Mo,
1991; Plaut and Vautard, 1994). In particular, two eigenvalue pairs stand out clearly above the red-noise
spectrum at periods of 50 and 43 days, along with two shorter-period oscillations at 28 and 26 days.

While Weickmann et al. (1985) discussed overall oscillatory behavior in the 30–60-day band, Dickey
et al. (1991) showed that variations in global atmospheric angular momentum (AAM) exhibit spectral
peaks with distinct periods near 40 and 50 days. The latter authors demonstrated that the 50-day peak is
largely associated with AAM fluctuations in the Tropics, while the 40-day peak is associated primarily with
variations in the strength of the mid-latitude westerlies, particularly in the NH. Indeed, the amplitude of the
40-day oscillation in zonal winds is known to be largest during boreal winter, when the winds are strongest
in the NH (Weickmann et al., 1985; Ghil and Mo, 1991; Strong et al., 1993, 1995)

Our analysis of the Z500 anomalies goes into greater spatial detail than the zonally averaged one of Dickey
et al. (1991). Herein, both oscillations, at 50 and at 43 days, make significant contributions to extratropical
variability, with a Rossby wavetrain–like pattern across the North Atlantic extending into Eurasia, cf.
Figs. 4(a,b). Figure 4(a), however, also shows a larger contribution of the 50-day oscillation to the dynamics
in the Tropics, while a pattern that resembles the Pacific–North American (PNA) teleconnection extends
northeastward from the Tropical Central Pacific; the 43-day oscillation, cf. Figure 4(b), is mainly limited to
the NH, and contributes but little to the tropical LFV, except in the Atlantic sector.

Furthermore, the 28-day and 26-day oscillations that show up as significant in Fig. 3(a) have dynamical
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Figure 4: Spatial structure of intraseasonal Z500 variability with (a) periods of 50 days, and (b) of 43 days; based on the
M-SSA analysis in Fig. 3. Shown is the relative standard deviation (in %) at each grid point, i.e. relative to the total standard
deviation of overall Z500 variability.

patterns (not shown) that resemble a westward-traveling wave of this periodicity (Branstator, 1987; Kushnir,
1987; Dickey et al., 1991; Ghil and Mo, 1991). Figure 3(a) also points to a 71-day oscillation, whose period
associates it with the 70-day oscillation emphasized by Plaut and Vautard (1994). The 71-day oscillation
found in Z500 here, however, falls below the stringent 95% confidence level of the other four peaks.

To visualize the dynamics underlying the variability pattern in Figs. 4(a,b), we have also calculated
phase composites of the 43-day and 50-day mode. The phase composites of the 43-day mode are shown in
Fig. 5. This mode’s spatio-temporal structure is characterized by a retroregressing wave train, and it bears
a remarkable resemblence to the 30–35-day oscillation of Plaut and Vautard (1994). In phase category 1, we
observe an amplification of the North Atlantic dipole structure, while in category 3, we observe a blocking
pattern over Scandinavia. The overall pattern also shows greater variability in the Atlantic sector, with very
little participation of the Pacific one.

The phase composites of the 50-day oscillation in Fig. 6 share certain features with the 43-day oscillations
in the Atlantic sector, but exhibit much stronger variations in the Pacific sector. The 50-day tropical
amplitude, although quite weak, suggests that the Pacific sector is much more involved in the tropical-
extratropical interaction, whereas the 43-day mode in Fig. 5 is more focused on the Atlantic extratropical
sector, in good agreement with the results of Plaut and Vautard (1994).

Figure 5: Phase composites of the 43-day oscillation from the M-SSA analysis of Z500 in Fig. 3. Four phases that correspond
to one-half of the cycle are shown in color (in m). The phase categories are labeled in the panel legends by their midpoint (in
days); also shown are the extreme values (min and max, in m).
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Figure 6: Same as Fig. 5, but showing the phase composites of the 50-day oscillation.

The present results thus concur, overall, with the conclusion of Plaut and Vautard (1994) that tropical-
extratropical interactions in the intraseasonal band are much more active in the Pacific sector and with
a 50-day periodicity, whereas the 43-day mode is more active in the Atlantic sector’s extratropics. A
similar distinction between the MJO and a separate 50-day mode in the Indian monsoon was made by
Krishnamurthy and Achuthavarier (2012) and found to help S2S predictability there by Krishnamurthy and
Sharma (2017). Even so, Cassou (2008) showed that the MJO does affect two of the four weather regimes
defined by Vautard (1990) in the North Atlantic sector and Western Europe. Cassou’s result is consistent,
still, with Fig. 4, in which we observe a significant contribution of the 50-day oscillation in the NH.

In Fig. 3(b), we have furthermore calculated the local variance (Plaut and Vautard, 1994; Groth et al.,
2015) for some of the intraseasonal oscillations, which shows a strong episodic modulation. This modulation
illustrates one of the interesting relationships between the episodic, multiple-regime description of atmo-
spheric LFV and the oscillatory one, based on intraseasonal oscillations (Kimoto and Ghil, 1993b; Plaut and
Vautard, 1994; Koo et al., 2002; Crommelin, 2003, 2004; Kondrashov et al., 2004). The complementarity of
these two points of view, episodic and oscillatory (Ghil and Robertson, 2002), will be discussed in Sec. 5.

3.2. Topographic instability and Hopf bifurcation

We outline here how a hierarchy of models (Ghil, 2001; Ghil and Robertson, 2000, 2002) can be used to
formulate and test the hypothesis that the 40-day oscillation is an intrinsic mode of the NH extratropics,
associated with the interaction between the jet stream and mid-latitude mountain ranges. The rudiments
of this hypothesis originate in the highly idealized barotropic model of Charney and DeVore (1979), which
we discussed in Sec. 2.2.

More complex models—both barotropic (i.e., single-layer) and baroclinic (i.e., multilayer), with more
spatial degrees of freedom than the Charney and DeVore (1979) model—exhibit multiple flow patterns,
some of which are similar to the blocked and zonal ones found in Fig. 1 above, even for fairly realistic values
of the forcing. The crucial difference is that the equilibria found in the more complex models are no longer
stable, and the system oscillates around the blocked solution or fluctuates between the zonal and blocked
solutions in an irregular, chaotic way (Legras and Ghil, 1985; Ghil and Childress, 1987, ch. 6).

The Legras and Ghil (1985) model, for instance, has 25 spherical harmonics and its bifurcation diagram
also appears as Fig. 8 in Ghil and Robertson (2002). In this diagram, the branch of blocked equilibria is
destabilized by an oscillatory instability as the intensity of the forcing jet increases. The transition from
a stable stationary solution — called a fixed point in dynamical systems theory — to a stable periodic
solution, called a limit cycle in this theory, is termed a Hopf bifurcation. The limit cycle that arises from
this bifurcation increases in amplitude as the forcing jet becomes stronger, and it has a period of roughly 40
days. This limit cycle loses its stability in turn as forcing is increased further and the flow becomes chaotic,
but the 40-day periodicity survives in the power spectrum of the chaotic flow.

Jin and Ghil (1990) showed that, when a sufficiently realistic meridional structure of the solutions’ zonal
jet is allowed, the back-to-back saddle-node bifurcations of Fig. 1a are indeed replaced by a Hopf bifurcation
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and thus transition to finite-amplitude periodic solutions can occur. Eigenanalyses of the unstable equilibria
in a barotropic model with higher horizontal resolution, as well as its time-dependent solutions, indicate
oscillatory instabilities with intraseasonal (35–50 days) and biweekly (10–15 days) time scales (Strong et al.,
1993). Floquet analysis of this model’s limit cycles (Strong et al., 1995) confirms that the 40-day oscillations
that arise in it by oscillatory topographic instability are stronger in winter than in summer, like the observed
NH oscillations (Ghil and Mo, 1991; Knutson and Weickmann, 1987).

To test the theory of NH extratropical oscillations developed in simpler models, Marcus et al. (1994,
1996) studied a 3-year perpetual-January simulation that had been performed with a version of the UCLA
GCM in which no self-sustained MJO was apparent in the tropics. A robust 40-day oscillation in AAM is
found to arise in the model’s NH extratropics when standard topography is present. Three shorter runs with
no topography produced no intraseasonal oscillation; this result is consistent with a topographic origin for
the NH extratropical oscillation in the standard model. The spatial structure of the circulation anomalies
associated with the model’s extratropical oscillation is shown in an 8-minute video, https://AAM_the_Video,
as displayed in several model-simulated fields, namely 500-hPa geopotential heights, 250-hPa streamfunction,
and surface pressure torques.

The oscillation is dominated by a standing wavenumber-2 pattern, which undergoes a predominantly
barotropic, tilted-trough vacillation. High values of AAM are associated with low 500-hPa heights over
the northeast Pacific and the North Atlantic oceans, and vice versa. These flow patterns resemble the
configurations seen in the Charney and DeVore (1979) simple model (see Fig. 1b here). The NE-SW–
tilting and NW-SE–tilting phases in the video’s 500-hPa fields are strongly reminiscent of the extremes and
intermediate phases of the 40-day oscillation that arises by Hopf bifurcation from the blocked equilibrium
in the Legras and Ghil (1985) model; see discussion of Ghil et al. (2003, Fig. 3).

4. Low-order data-driven modeling, dynamical analysis, and prediction

Linear and nonlinear LOMs and the role of memory effects. Empirical model reduction
(EMR) & EMR-based prediction. Partial observations and stochastic closure in LOMs. Slow
changes in the forcing and random effects: non-autonomous and random dynamical systems.

4.1. Background and methodological LOM developments

State-of-the-art, highly resolved GCMs, while able to simulate detailed interactions within the climate
system over a wide range of scales, generate detailed 4-D climate variability that is visually as complex
as currently available observational datasets, and is hence no less challenging to interpret. Dynamical
analysis of climatic phenomena typically involves a set of multiple GCM simulations that are designed to
isolate physical processes governing the simulated, and by inference, observed climate variability. These
simulations are, however, computationally expensive, and their interpretation is hindered by the presence
of model biases due to incomplete or imperfect parameterizations of the unresolved physical processes.

Moreover, GCMs represent a broad range of time and space scales and use a state vector that has many
millions of scalar variables. While detailed weather prediction out to a few days does require such high
numerical resolution, considerable work, both theoretical (Ghil and Childress, 1987, Sec. 6.5) and data-
based (Toth, 1995), has shown that important aspects of observed atmospheric LFV can be represented and
predicted with a substantially smaller number of degrees of freedom, as encapsulated by LOMs.

This statement extends beyond the issues of simulating and understanding LFV: it clearly includes
prediction as well, and it is also consistent with the fact that climate concerns statistical time and space
aggregates of weather. In fact, while there has been a recent surge of interest in S2S prediction through
coordinated international modeling activity, most of this activity involves GCM-based ensemble predic-
tion systems. Empirical, data-driven prediction, though, has a long history in forecasting the El Niño–
Southern Oscillation (ENSO) and the best LOMs (e.g., Kondrashov et al., 2005) were still outperform-
ing — no longer than six years ago — most GCM-based ENSO forecasts, even for lead times beyond
the S2S range (Barnston et al., 2012). Unfortunately, since the Barnston et al. (2012) review paper, the
plume of real-time Niño-3.4 predictions — which includes those of stochastic-dynamic models, as well as
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of GCMs — that is continuously monitored at the International Research Institute for climate and so-
ciety (IRI) no longer allows one to isolate the skill of individual LOMs or GCMs. Still, inspection of
the existing documentation at https://iri.columbia.edu/our-expertise/climate/forecasts/enso/

2017-October-quick-look/?enso_tab=enso-sst_table does indicate that — over the last seven boreal
winters, 2012-13 to 2017-18 — ENSO prediction has remained a tough problem for both GCMs and simpler
models. Hence, the contribution of the latter to real-time S2S forecasting can still be quite useful, in and of
itself, as well as in stimulating improvements in GCM predictions.

A theoretical approach to LOM development relies on time scale separation in the full governing equa-
tions to derive a reduced set of differential equations for the LFV and to parameterize the fast, unresolved
variability — such as atmospheric convection on synoptic and mesoscales — by stochastic forcing (e.g., Ep-
stein, 1969; Fleming, 1971; Majda et al., 1999). An alternative approach to climate diagnosis and prediction
is based on empirical modeling of the LFV, as observed in selected fields, under the assumption that it can
be described as a spatio-temporal, nonlinear and stochastic process. This statistical data-driven approach
does not require knowledge of the governing equations: even though it lacks the immediate dynamical inter-
pretability of climate models that are derived from first principles, it does allow one to reproduce detailed
aspects of the observed statistics by inverse modeling techniques, albeit in the subset of fields being sim-
ulated by the LOM. The available datasets — whether given by direct observations, reanalyses or GCM
simulations — are used to estimate both the model’s low-order, deterministic part and its driving noise.

Development of data-driven LOMs can thus be cast as a closure problem: These models can simulate and
predict LFV provided they are able to properly account for (a) linear and nonlinear interactions between
the resolved components, i.e., the high-variance LFV modes; and (b) the interactions between the resolved
components and the huge number of unresolved ones that represent the unobserved small-scale processes
and are not explicitly included in the LOM. The key steps are thus estimating interactions between the
macroscopic variables, identifying the hidden variables, and modeling the cross-interactions between the
macroscopic and hidden variables.

Linear inverse models (LIMs) and Principal Oscillation Pattern (POP) analysis (Penland, 1989; Penland
and Ghil, 1993; Penland, 1996; Penland and Sardeshmukh, 1995) assume a linear dynamical model for the
macroscopic variables, while their interactions with the small-scale, hidden processes are approximated by
spatially correlated white noise. The Empirical Model Reduction (EMR) approach (Kravtsov et al., 2005,
2009; Kondrashov et al., 2013) generalizes LIMs by allowing (i) quadratic interactions among macroscopic
variables; (ii) time-delayed dynamical effects via memory terms; and (iii) a richer temporal structure of the
noise. The memory effects that may appear in both the stochastic forcing and the dynamical operator are
conveyed by hidden variables arranged into a stacked system of levels. Each additional level includes a new
hidden variable, which is less auto-correlated than the one included on the previous level, until the last-level
variable can be approximated by spatially correlated white noise.

Chen et al. (2016) conducted a comprehensive suite of EMR experiments using a 4000-yr–long prein-
dustrial control simulation dataset from the CM2.1 coupled model of NOAA’s Geophysical Fluid Dynamics
Laboratory (GFDL), with the goal of better understanding ENSO diversity, nonlinearity, seasonality and
the effects of memory in the simulation and prediction of the Tropical Pacific’s SST anomalies. The results
show that multilevel nonlinear EMR models that account for SST history improve ENSO prediction skill
dramatically.

The EMR model coefficients introduced on each level are estimated by multilevel regression techniques;
see Kravtsov et al. (2009) for a comprehensive review of the EMR methodology. Strounine et al. (2010)
have systematically compared various model reduction methods, as applied to wintertime geopotential height
anomalies, and have demonstrated that, in the absence of clear scale separation, EMR methodology’s success
is rooted in its multilayer structure that accounts for the memory effects needed to achieve optimal closure
(Kravtsov et al., 2005).

Newman et al. (2003) showed that, at the beginning of the past decade, the forecast skill of a LIM model
of NH extratropical, weekly averaged circulation is comparable to that of NCEP’s medium-range forecast
(MRF) model at week 2 (days 8–14) and week 3 (days 15–21). Zhang et al. (2013) and Vitart (2017) have
documented the progress in MJO simulation and prediction by GCMs since then. Thus, the best GCM
predictions have achieved a bivariate correlation skill near 0.6 at four weeks, as measured between the two
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observed and forecast Real-Time Multivariate MJO Indices known as RMM1 and RMM2.
At the same time, LOMs have also progressed beyond LIMs, as outlined above. Kondrashov et al. (2013)

have improved upon the EMR-based predictions used in real-time ENSO forecasting (Kondrashov et al.,
2005) by including in the forecast ensemble information on the “weather noise” that prevailed at particular
phases of the MJO cycle, via the past-noise forecasting (PNF) methodology of Chekroun et al. (2011b).
These authors have demonstrated that, in retrospective forecasting, PNF-enhanced EMR methodology yields
bivariate-RMM correlation results that are quite comparable to those of the best GCMs (Kondrashov et al.,
2013, Fig. 2).

More broadly speaking, EMR-based climate predictions have proven to be highly useful and competitive
as statistical benchmarks against physics-based models for prediction on the S2S time scales associated with
the MJO (Kondrashov et al., 2013), as well as with ENSO (Kondrashov et al., 2005).

The Multilayer Stochastic Model (MSM) framework introduced by Kondrashov et al. (2015) establishes,
in a data-driven context, a clear connection between the EMR methodology and the Mori-Zwanzig (MZ)
formalism of statistical physics. It is this sound physical basis that helps derive a closed system of stochastic-
dynamic equations for a subset of the original system’s variables (Kondrashov et al., 2015, Secs. 4 & 5).
This closed system of equations includes Markovian and non-Markovian deterministic terms that are not
necessarily quadratic, as well as stochastic noise terms (Chorin et al., 2002; Chorin and Hald, 2006).

The major methodological problem is that, in the highly nonlinear climate system, there is typically a
continuum of scales, from the fastest and shortest to the slowest and longest. In this case, the MZ formalism
allows one to treat the interactions between LFV and smaller scales as memory effects. These memory effects
represent a significant deviation from the markovianity of the dynamical models that are most often used
in modeling atmospheric, oceanic and climate phenomena and processes. Markovianity means dependence
on the initial state alone, as opposed to states that preceded it. Thus, ordinary and partial differential
equations, as well as the Markov chains mentioned in Sec. 2 herein, are markovian: delay-differential and
other functional differential equation (Hale and Verduyn Lunel, 1993) are not. Bhattacharya et al. (1982)
introduced the latter into the climate sciences and they have been used since extensively in ENSO modeling,
with memory terms that account for travel times of Kelvin and Rossby waves across the Tropical Pacific;
see also (Ghil et al., 2015, and references therein).

The non-Markovian terms become particularly important in the absence of scale separation, whereas
Stinis (2006) showed that, for relatively large scale separation, the results of the MZ methodology are similar
to those of the model reduction formalism of Majda et al. (1999). The MSM framework thus improves upon
EMR by its greater generality of the deterministic terms, as well as by the proper understanding of the
memory effects. The improvements in simulation and prediction achieved by nonlinear (EMR and MSM)
vs. linear (LIM and POP) data-driven models (e.g., Barnston et al., 2012) seem to further buttress the
credibility of the highly nonlinear Devil’s staircase scenario for ENSO (Jin et al., 1994; Tziperman et al.,
1994) vs. stable noise-forced dynamics (Neelin et al., 1998).

Kondrashov and Berloff (2015) have shown that a change of basis by M-SSA can help in applying the
MSM methodology to capture the LFV in multiscale oceanic turbulence, because M-SSA utilizes time-lagged
information and therefore implicitly conveys the memory effects. Data-adaptive harmonic decomposition
(DAHD: Chekroun and Kondrashov, 2017) further advances the dynamic interpretation of nonlinear data-
driven models. DAHD provides, for a broad class of time-evolving datasets, reduction coordinates that can
be efficiently modeled by systems of paired stochastic differential equations (SDEs), while using a fixed set of
predictor functions. The methodology has proven itself already in the modeling, simulation and prediction
of the Arctic’s sea ice extent and concentration field (Kondrashov et al., 2017a,b), but remains to be tested
for other climatic time series.

In summary, the field of low-order, data-driven stochastic-dynamic models has undergone remarkable
development in recent years. These models offer, therewith, new opportunities to further our understanding
and prediction on S2S time scales. The following two subsections present examples of their successful
application to mid-latitude LFV variability and to ENSO phenomena, respectively.
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4.2. Dynamical diagnostics and empirical prediction on S2S scales

LOMs can be very useful for the dynamical interpretation of atmospheric oscillations and multiple
regimes. Such models not only help compact the dataset’s information content but can also provide insights
into the dynamics and predictability of climatic LFV, via the analysis of the reduced model’s mathemat-
ical structure. Thus, Kondrashov et al. (2006, 2011) constructed and analyzed a LOM of extratropical
atmospheric LFV by applying EMR to the output of a long simulation of the QG3 model mentioned in
Sec. 2.2. This model has a fairly realistic climatology and variability, and it has been used quite extensively
to study NH mid-latitude flows (e.g., D’Andrea and Vautard, 2001; D’Andrea, 2002; Deloncle et al., 2007,
and references therein).
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Figure 7: Gaussian mixture-model centroids, showing streamfunction anomaly maps at 500 hPa, for the QG3 model: (a)
NAO+; (b) NAO−; (c) AO+; and (d) AO−. Positive contours are solid and land masses are shaded; twenty contour levels
between maximum and minimum values are used, with the following intervals (in 106 m2 s−1): (a) 1.1; (b) 0.8; (c) 0.8; and
(d) 1.1. After Kondrashov et al. (2006). ( c©American Meteorological Society. Reproduced with permission.)

The full QG3 model’s phase space has a dimension of O(104), while the derived EMR model has only
45 variables. The regimes of both the EMR model and the QG3 model were computed using a Gaussian
mixture model by following Smyth et al. (1999, and references therein). The centroids of the four regimes
for the full QG3 model are plotted in Fig. 7, and they correspond to opposite phases of the Arctic Oscillation
(AO+ and AO−) and of the North Atlantic Oscillation (NAO+ and NAO−), in good agreement with the
earlier results of Molteni and Corti (1998). The EMR model captures very well the non-Gaussian features
of the full QG3 model’s probability density function (PDF) and shares with the latter its four anomalously
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persistent flow patterns, as well as the Markov chain of transitions between these regimes (not shown).
The spatial correlations between the anomaly patterns in Fig. 7 and those of the EMR model (not shown)

all exceed 0.9. This good match between the regime centroids in the two models, full and reduced, as well
as between the corresponding Markov chains, emphasizes the intrinsic dynamical nature of both the NAO
and the AO, and strongly suggests that the NAO is not merely a regionalization of the AO, at least not in
the fairly realistic QG3 model.

The four regimes that are best supported by synoptic experience, as well as by the statistical analysis
of the upper-air data for the past half-century, are the zonal and blocked phases of westerly flow in the
Atlantic–Eurasian and Pacific–North-American sector, respectively (Cheng and Wallace, 1993; Smyth et al.,
1999; Ghil and Robertson, 2002). The AO, also called the NH annular mode (Wallace, 2000), seems to be
only statistically annular: it representa a redistribution of mass between the poles and subtropics, but actual
“sloshing” events are sectorial, by-and-large. Hence the correlation between the subtropical highs over the
North Atlantic and the North Pacific in observational and reanalysis data is quite low at sub-monthly time
scales (e.g., Kimoto and Ghil, 1993b).

Both the AO and NAO indices are, however, dominated by Arctic sea-level pressure variations, and hence
the NAO and AO are highly correlated in observations. Moreover, both the QG3 model (Kondrashov et al.,
2006) and the no-MJO version of the UCLA GCM (Marcus et al., 1994, 1996) seem to possess some form of
a 40-day sloshing mode that originates in mid-latitudes. Seeing the hemispheric AO+ and AO− patterns of
Figs. 7(c,d) replace the PNA-sector patterns of Ghil and Robertson (2002, and references therein) is thus not
too surprising: the hemispheric AO± centroids overlap largely in the Atlantic–Eurasian sector with NAO±,
respectively, from which they differ mainly by much stronger centers of action in the PNA sector.
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Figure 8: Mixture-model clusters for EMR model simulations of the full QG3 atmospheric model. The four panels differ by
the amplitude of the EMR’s stochastic forcing, which is multiplied by a factor ε: a) ε = 0.2; b) ε = 0.4; c) ε = 0.6; d) ε = 1
(optimal case). Note that the number of the clusters and their separation in phase space increase with ε. The four regimes are
only labeled in panel (d). After Kondrashov et al. (2006) ( c©American Meteorological Society. Reproduced with permission.)

In addition, M-SSA identifies intraseasonal oscillations with a period of 35–37 days and of 20 days in the
data generated by both the full QG3 model and its EMR version. These oscillatory modes are similar to
those seen in the observations, as plotted in Fig. 3 here, and in previous studies (e.g., Ghil and Robertson,
2000, 2002, and references therein). The former one is clearly these models’ version of the extratropical,
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40-day mode found by Legras and Ghil (1985), while the QG3 model is expected to lack the MJO-related
50-day mode seen in Fig. 3. Lott et al. (2001, 2004a,b) have shown that observational NH data confirm the
importance of mountain torques in an extratropical oscillation that has a shorter periodicity than the MJO.
Mountain torque anomalies were also found to anticipate the phases of the AAM oscillation, as well as the
onsets and breaks of certain flow regimes.

The QG3 model’s LFV features can be interpreted via dynamical analysis of the reduced model. In
particular, the AO− regime arises from the unique steady state of the EMR model’s three-level deterministic
operator, at the larger positive values of PC-1, while the PDF ridge that is present in the QG3 model,
cf. Kondrashov et al. (2006, Fig. 6), coincides with the location of a plateau of quasi-stationary states of
the reduced model, cf. Figs. 8(b–d) here. The increase of the extent of the PDF plateau in both the full
and the reduced model — first along the EOF-1 direction and then, at lower negative values of PC-1, along
the EOF-2 direction — appears to be due to preferential instabilities in the subspace of the QG3 model’s
leading modes. These instabilities are to be equilibrated by the full model’s transient feedbacks that are
captured in the EMR by the noise and memory effects.

Changes in the number and amplitude of the PDF’s modes were also observed by Molteni and Corti
(1998) when varying the potential vorticity forcing in the QG3 model to represent a subtropical Rossby wave
source appropriate for cold ENSO events. The changes plotted in Fig. 8 here can be interpreted as changes
that might arise in a GCM subject either to stochastic parametrizations with varying noise intensities (e.g.,
Palmer and Williams, 2009, and references therein) or to fluctuating changes in external forcing. The rather
surprising succes of EMRs, in their various guises, at simulating and predicting S2S variability may be
largely attributed to the presence and proper intensity of the noise processes they include.

The dominant intraseasonal oscillation in both the QG3 and the optimal EMR model has a period of
about 35–37 days and it is associated with the least-damped eigenmode of the latter, when linearized about
its climatological state. While there is no clear scale separation in the QG3 simulations, it is the interactions
between the model’s largest-scale modes — whose variance is concentrated in the subspace of its four leading
EOFs — and the intermediate scales, captured by EOFs 5–15, that appear to be responsible for the slow-
down of the intraseasonal oscillation’s trajectory in the full QG3 model, as well as in the optimal EMR
model. This slow-down is associated with the emergence of the AO+ and NAO− regimes.

The EMR model’s stochastic forcing represents the unresolved smaller-scale processes in the QG3 model.
The effect of this forcing on the full dynamics is revealed by a bifurcation analysis with respect to the noise’s
amplitude ε. In particular, Fig. 8 shows that, as ε increases from zero to its optimal value, the model
trajectory is initially confined to a small region near the EMR model’s unique steady state (panel (a)) and
that it gradually fills up the quasi-stationary ridge along the EOF-1 axis (panels (b)–(d)). When ε becomes
large enough, the intraseasonal oscillatory mode is excited, resulting in the model’s PDF expanding in the
EOF-2 and EOF-3 directions, while additional quasi-stationary states appear. The sequence of panels in
Fig. 8 can be taken to imply that the stochastic forcing needs to be sufficiently strong in order to obtain
realistic LFV regimes. The role of stochastic processes in nonlinear dynamics will be discussed more fully
at the end of this chapter, in Sec. 5.

Kondrashov et al. (2011) have also analyzed this EMR model’s nonlinear dynamical operator and shown
that it gives rise to “swirls” in the time-mean tendencies of the model’s state-averaged trajectories, when
projected onto a low-dimensional subspace. These swirls are dominated by the deterministic interactions
between the large-scale modes. More recently, Tantet et al. (2015) have associated similar swirl patterns
with persistent weather regimes in the output of a barotropic atmospheric model with an intermediate
resolution of 231 spherical modes. These authors applied transfer operator methods (Chekroun et al., 2014,
and references therein) to develop early warning indicators for regime transitions, in particular from zonal
to blocked flows, as mentioned in Sec. 2.2.

The idea of considering preferred directions of instability of a regime’s centroid goes back to the “ghost
equilibria” of Legras and Ghil (1985). In particular, Deloncle et al. (2007) and Kondrashov et al. (2007) have
applied the random forests algorithm (Breiman, 2001) to learn the predictors connected to these preferred
directions in a low-dimensional space. This statistical approach worked rather well in medium-to-long-range
prediction of regime breaks, in both the QG3 model (Deloncle et al., 2007) and NH atmospheric observational
data (Kondrashov et al., 2007). The results of Tantet et al. (2015) provide further dynamical understanding

16



1400 1500 1600 1700 1800 1900

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

time

LFV of X2  

 

 
data
SSA−RC

Figure 9: Time series of the component x2 (red curve) and its LFV mode obtained by SSA reconstruction (blue curve). The
latter has a dominant period of 25 nondimensional units, and it captures 36% of the total variance.

for why that appears to be the case. In the context of S2S prediction, the dynamically motivated predictors
might turn out to correspond to preferred instability directions of either fixed points that “anchor” multiple
regimes, such as El Niño and La Niña (Dijkstra, 2005, Ch. 7, and references therein), or to similar instabilities
of limit cycles that are associated with oscillatory modes, such as the MJO or the extratropical, 40-day mode
discussed in Sec. 3.1 and the present one. Instability of limit cycles in atmospheric LFV was studied, for
instance, by Strong et al. (1995), and is mentioned here in Sec. 3.2.

4.3. LFV and multilayer stochastic closure: A simple illustration

In this subsection, we provide an illustrative example that will help understand the reasons for the effec-
tiveness of MSM modeling, and hence of EMR models, in simulating and potentially predicting extratropical
S2S variability. This example illustrates intraseasonal ENSO prediction.

Consider the following nonlinear, periodically and stochastically forced two-variable (x1, x2) model from
Chekroun et al. (2011b, Supplementary Information): dx1 = {(r + σdWt)x1(α+ x1)(1− x1)− cx1x2 + a sin(2πf0t)}dt,

dx2 = {−mαx2 + (c−m)x1x2}dt.
(1)

Here the variable x1 is subject to deterministic, additive forcing a sin(2πf0t), while the stochastic term σdWt

represents a random perturbation of the parameter r by white noise, and we assume that only the variable
x2 is observed. The default values of the model parameters are σ = 0.3, m = r = 1, c = 1.5 and α = 0.3.
The model is integrated from time t = 0 to t = Tf = 2000 (in dimensionless units), with the initial state
(x1(0), x2(0)) = (0.5, 0.5), by using a classical stochastic Euler-Maruyama scheme with step size ∆t = 0.1.
When both periodic forcing and noise are absent, the model has only one globally stable equilibrium.

When turning on the periodic forcing with amplitude a = 0.05 and frequency f0 = 0.25, the system
exhibits only one periodic orbit of period 4, which is globally stable. In the presence of noise, with σ = 0.3,
an LFV mode with a period equal to approximately 25 units — i.e., a frequency of f = 0.04 6= f0 — becomes
dominant, as seen in Fig. 9. This mode (blue in the figure) is captured by SSA reconstruction, and it can
be attributed to a damped non-normal mode that is sustained by the noise (Chekroun et al., 2011b). In
the present ENSO-related illustration, the periodic forcing T0 = 1/f0 = 4 corresponds to the seasonal cycle,
while the intrinsic periodicity of T ' 25 is associated with ENSO’s low-frequency mode of roughly 6 years.

By applying EMR solely to a time series of the observed variable x2, cf. Kravtsov et al. (2005), a univariate
two-level EMR model is obtained for x2 alone. This scalar model includes a cubic polynomial, as well as
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Figure 10: Prediction skill for the optimal EMR model obtained solely from the x2(t) time series. The best cubic two-level
EMR model clearly outperforms LIM both in terms of anomaly correlations (red curve vs. magenta) and root-mean-square
(RMS) errors (blue vs. cyan).

multiplicative interaction with the periodic forcing, on its main level (not shown). Note that this parametric
form is entirely different from the correct form of the right-hand side of the x2-equation in Eq. (1), as it
does not explicitly include interactions with the periodically and stochastically forced unobserved variable
x1. These interactions are parameterized by the memory effects conveyed in the two-level EMR model.

Prediction skill is plotted in Fig. 10 in terms of both root-mean-square errors (RMSE) and anomaly
correlations (Corr). The figure shows that the out-of-sample prediction skill of the ensemble mean for the
estimated EMR model is significantly better than that of a linear single-level LIM model, with the EMR’s
maintaining useful prediction skill, i.e. Corr≥ 0.5, up to a lead time of roughly 6 time units, which represents
roughly a quarter of a period of the LFV mode.

This example illustrates the benefits for prediction of including nonlinear and memory terms in empirical
stochastic models, as demonstrated by comparing the performance of UCLA’s EMR model in real-time ENSO
forecasting with other statistical forecasts; see Barnston et al. (2012).

5. Concluding remarks

Considerable progress has been made in the 15 years since the review article of Ghil and Robertson
(2002) in low-order predictive modeling of what was called at that time extended or long-range forecasting
and is now more specifically referred to as S2S prediction. Four of the approaches that were considered in
this modeling are summarized in Fig. 11.

One approach to persistent anomalies in mid-latitude atmospheric flows on 10–100-day time scales is to
consider them simply as due to slowing down of Rossby waves or to their linear interference (Lindzen et al.,
1982; Lindzen, 1986). This approach is illustrated in the sketch labeled (c) within the figure: zonal flow
Z and blocked flow B are simply slow phases of an harmonic oscillation, like the neighborhood of t = π/2
or t = 3π/2 for a sine wave sin(t); or else they are due to an interference like that occurring for a sum
A sin(t) +B sin(3t) near t = (2k+ 1)π/2. A more thorough, quasi-linear version of this approach is to study
long-lived resonant wave triads between a topographic Rossby wave and two free Rossby waves (Egger, 1978;
Trevisan and Buzzi, 1980; Ghil and Childress, 1987, Section 6.2). Neither version of this approach, though,
explains the anomalies’ organizing into distinct flow regimes.
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Figure 11: Schematic overview of atmospheric LFV mechanisms.

Rossby et al. (1939) initiated a different, genuinely nonlinear approach by raising the possibility of
multiple equilibria as an explanation of preferred atmospheric flow patterns. These authors drew an analogy
between such equilibria and hydraulic jumps, and formulated simple models in which similar transitions
between faster and slower atmospheric flows could occur. This multiple-equilibria approach was then pursued
quite agressively in the 1980s (Charney and DeVore, 1979; Charney et al., 1981; Legras and Ghil, 1985; Ghil
and Childress, 1987, Sections 6.3–6.6) and it is illustrated in Fig. 11 by the sketch labeled (a): one version
of the sketch illustrates models that concentrated on the B–Z dichotomy (Charney and DeVore, 1979;
Charney et al., 1981; Benzi et al., 1986), the other on models (e.g., Legras and Ghil, 1985) that allowed for
the presence of additional clusters, like those found by Kimoto and Ghil (1993a) or Smyth et al. (1999),
viz. opposite phases of the NAO and PNA anomalies (PNA,RNA and BNAO ' NAO− in sketch (a) of
Fig. 11). The LFV dynamics in this approach is given by the preferred transition paths between the two or
more regimes; see again Table 1 in Sec. 2.1 and references therein.

A third approach is associated with the idea of oscillatory instabilities of one or more of the multiple
fixed points that can play the role of regime centroids. Thus, Legras and Ghil (1985) found a 40-day
oscillation arising by Hopf bifurcation off their blocked regime B, as illustrated in sketch (b) of the figure.
An ambiguity arises, though, between this point of view and a complementary possibility, namely that the
regimes are just slow phases of such an oscillation, caused itself by the interaction of the mid-latitude jet
with topography, cf. Sec. 3.2. Thus, Kimoto and Ghil (1993b) found, in their observational data, closed
paths within a Markov chain whose states resemble well-known phases of an intraseasonal oscillation. Such
a possibility was confirmed in the QG3 model by Kondrashov et al. (2004). Furthermore, multiple regimes
and intraseasonal oscillations can coexist in a two-layer model on the sphere within the scenario of “chaotic
itinerancy” (Itoh and Kimoto, 1996, 1997).

Finally, sketch (d) in the figure refers to the role of stochastic processes in S2S variability and prediction,
whether it be noise that is white in time — as in Hasselmann (1976) or in LIMs (Penland, 1989, 1996;
Penland and Ghil, 1993; Penland and Sardeshmukh, 1995) — or red in time, as in EMRs and MSMs
(Kravtsov et al., 2005, 2009; Kondrashov et al., 2006, 2013, 2015) or even non-Gaussian (Sardeshmukh
and Penland, 2015). Stochastic processes may enter into models situated on various rungs of the modeling
hierarchy, from the simplest conceptual models to high-resolution GCMs. In the latter, they may enter
via stochastic parametrizations of subgrid-scale processes (e.g., Palmer and Williams, 2009, and references
therein), while in the former they may enter via stochastic forcing, whether additive or multiplicative,
Gaussian or not (e.g., Kondrashov et al., 2015, and references therein).

Figure 11 simply summarizes some of the key dynamical mechanisms of mid-latitude S2S variability, as
discussed in this chapter, without providing a definitive answer to which approach to low-order modeling
and prediction is or will be most productive in the near future. Such an answer is likely to be long in
coming, if ever. On the more practical aspects of S2S prediction, though, it is clear that the ideas presented
herein — on the role of LOMs vs. more detailed and highly resolved models, and on extratropical sources
of variability and hence of predictability — are certain to be of use. The most promising LOMs appear to
be those that do include nonlinear dynamics, memory effects, and colored noise. EMRs and MSMs that do

19



so have proven quite competitive in ENSO forecasting, according to Barnston et al. (2012), and are likely to
provide important prediction benchmarks for S2S forecasting, as well as important tools for a more complete
understanding of the dynamics of extratropical S2S variability and teleconnections.

We conclude with a few comments about the role of climate change in the S2S variability and predictabil-
ity problem. As mentioned in Sec. 1, the difficulty of the S2S problem is largely due to its being mid-way
between the short-term weather problem and the long-term climate problem (Von Neumann, 1955). A math-
ematically self-consistent way out of this difficulty is provided by the theory of non-autonomous and random
dynamical systems, as introduced recently into the climate sciences (e.g., Ghil et al., 2008; Chekroun et al.,
2011a; Drótos et al., 2015; Ghil, 2017, and references therein). This theory — as opposed to the classical
theory of autonomous dynamical systems, in which coefficients and forcing do not depend on time — allows
one to include very fast forcing, by stochastic processes, as well as much slower forcing. Examples of the
latter include not only changes in radiative forcing due to anthropogenic changes in aerosol and greenhouse
gas concentrations, but also forcing by ocean–atmosphere (e,g., Ghil, 2001, 2017, and references therein) or
stratosphere–troposphere interactions (e,g., Holton et al., 1995, and references therein). There is no room
here to either provide a more detailed account of the appropriate concepts and methods or to actually apply
it to NH LFV. Fairly readable accounts for the climate scientist do exist, though (Ghil, 2014; Moron et al.,
2015; Chang et al., 2015, Ch. 2), and might encourage the interested reader to use them in the S2S context.
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