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ANGULAR DIFFERENCE MEASURE BETWEEN TOMOGRAPHIC PROJECTIONS TAKEN
AT UNKNOWN DIRECTIONS IN 2D

Minh-Son Phan, Étienne Baudrier, Loı̈c Mazo, Mohamed Tajine

ICube, University of Strasbourg, CNRS
300 Bd Sébastien Brant - CS 10413 - 67412 ILLKIRCH, FRANCE

ABSTRACT

This paper introduces a new measure for estimating the angu-
lar difference between two tomographic projections belong-
ing to a set of projections taken at unknown directions. The
measure is potential for many applications such as projection
refinement or projection classification, which are important
in the process of tomographic reconstruction. Our measure
relies on the construction of a neighborhood graph for pro-
jection moments, the calculus of the angular difference for
neighboring projections and the computation of geodesics on
this graph. The accuracy and the robustness of our measure is
shown on a test database including 50 2D gray-level images
at different resolutions and with different levels of noise.

Index Terms— tomography, unknown direction, Eu-
clidean distance, angular difference measure

1. INTRODUCTION

The problem of tomographic reconstruction for unknown di-
rection projections has been widely examined in [1, 2, 3, 4, 5].
There are generally two steps: first estimating the projection
directions, then reconstructing the object from the estimated
directions. This process depends on the measurement of dis-
tance between two projection vectors in which the Euclidean
distance is often used. For example, in [1], Coifman et al.
compute the Euclidean distance between the acquired projec-
tions for the purpose of their classification and their direction
estimation. In [2], Van Heel computes the Euclidean distance
between the acquired projections and those generated from
the reconstruction model. The objective is to refine the recon-
struction model. Another measure used to compare the pro-
jections is the cross-correlation coefficient as shown in [3],
but there is no difference between the Euclidean distance and
the cross-correlation coefficient in practice (see [6] for more
details).

On the other hand, we observe that the Euclidean dis-
tance is not invariant under the rotation of the object even
for the two close projections. More precisely, we can ob-
tain many different values of the Euclidean distance between
projections, taken at the two fixed directions when rotating
the object around its centroid. Therefore, there can be errors

when using the Euclidean distance in some situations such as
the projection refinement or the projection classification.

To overcome this problem, we propose in this paper a new
measure that estimates the projection angular difference by
using the properties of projection moments. The organization
of the paper is as follows. In Sec. 2, we provide the back-
ground notions that are used in Sec. 3 for solving the problem
of angular difference estimation. Sec. 4 deals with the prob-
lem of noise. The performance of our measure is shown for
2D images in Sec. 5. Finally, conclusion and perspective are
presented in Sec. 6.

2. BACKGROUND NOTIONS

We first present the definition of the projection as follows.

Definition 1 (Projection). Let f : R2 → [0, 1] a measurable
function with compact support. Let θ ∈ R. The projection
Pf (θ) in the direction θ is defined by

Pf (θ)(x) =

∫
R
f(R−θ(x, y)) dy

where Rθ is the rotation by the angle θ around the origin.

Note that Pf (θ)(x) = Pf (θ + π)(−x). Thus we can

assume that θ ∈
[
−π

2
,
π

2

)
.

The definition of the moment of a projection is:

Definition 2 (Moment of projection). Let d ∈ N. The dth
order moment of a projection Pf (θ) is given by

µf,d(θ) =

∫
R
xd(Pf (θ)(x)) dx.

Moments of projection are trigonometric polynomials.

Property 1 ([4]). Let d ∈ N. The dth order moment of a
projection Pf (θ) can be presented as

µf,d(θ) =
∑

0≤k≤d
k≡d mod 2

ak cos(kθ) + bk sin(kθ) (1)

where ak, bk ∈ R.

In the following, for simplicity, we writeP and µd instead
of Pf and µf,d.



3. ESTIMATION OF THE ANGULAR DIFFERENCE
BETWEEN TWO PROJECTIONS

3.1. Problem of angular difference estimation

Let f be a function whose centroid is at the origin, n ∈ N,
Θ = {θ1, . . . , θn} ⊆

[
−π

2
,
π

2

)
be a set of unknown direc-

tions and Π = {P(θi) | 1 ≤ i ≤ n} be the set of their
associated projections. The angular difference between two
projections is:

Dang(P(θi),P(θj)) = |θi − θj |.

Our main goal in this work is to estimate the angular differ-
ence between any two projections of the set Π.
In [7], Salzman shows that it is possible to compute the di-
rection θ associated with the projection P(θ) by using the
following equation:

sin2(θ) =
µmax
2 − µ2(θ)

µmax
2 − µmin

2

(2)

where µmax
2 = maxθ∈R µ2(θ) and µmin

2 = minθ∈R µ2(θ).
Nevertheless, there are two possible values of θ in (2) since
the function sin is odd. To address this problem, Salzman
uses the odd order moment which can disambiguate the angle
value. However, due to the high slope of the function arcsin
near the abscissa 1, the calculus of Dang(P(θi),P(θj)) de-
rived from (2) would not be robust to noise when the moment
of one of the projections is close from µmin

2 . Instead, we give
a criterion for finding the closest projections from a given one
(Sec. 3.2). Then, we linearize the angular difference for close
projections (Sec. 3.3). Finally, we measure the angular differ-
ence between any two projections as the length of the shortest
path between these projections in the graph whose vertices
are the projections P(θi) and whose edges connect close an-
gle projections, weighted by the measure found in Sec. 3.3.

3.2. Searching for the neighbors of projection

The aim of this section is a method for selecting (in the pro-
jection set Π) the neighbors of a given projection. Since the
moments are non-monotonic, close moments are not syn-
onymous of close angles. Hence, for each moment µd(θ),
we need to find an interval µd(θ) ± εd(θ) in which can be
found, with some chosen probability p, at least one moment
corresponding to a close projection. Assuming that the θ
are independent, uniformly distributed, random variables in[
−π

2
,
π

2

)
, we derive from (2), that

ε2(θ) ≈ 2δ
√

(µmax
2 − µ2(θ))(µ2(θ)− µmin

2 ), (3)

where
δ =

π

2

(
1− (1− p)

1
n−1

)
.

For the moment µ1, we obtain from (1)

ε1(θ) ≈ δ
√

((µmax
1 )2 − (µ1(θ))2), (4)

and, for d ≥ 3, using Bernstein’s inequality for Fourier series,

εd(θ) ≤ d δmax{|µd(θ)|} (5)

In conclusion, (3), (4) and (5) allow us to find the neighbors
of each projection by cross-checking the information given by
moments of distinct orders.

The problem of measuring the angular difference between
two neighboring projections is presented in the following sec-
tion.

3.3. Estimation formulae

Eq. (2) is rewritten as

µ2(θ) = µmax
2 cos2(θ) + µmin

2 sin2(θ)

We develop the finite Taylor series for µ2 at θ

µ2(θ + ∆θ) = µ2(θ) +
dµ2

dθ
∆θ + o(∆θ) (6)

where
dµ2

dθ
= 2(µmax

2 − µmin
2 ) sin(θ) cos(θ). In addition, we

have from (2)

sin(θ) cos(θ) = ±
√

(µmax
2 − µ2(θ))(µ2(θ)− µmin

2 )

µmax
2 − µmin

2

. (7)

We then obtain from (6) and (7)

∆θ = ± µ2(θ + ∆θ)− µ2(θ)

2
√

(µmax
2 − µ2(θ))(µ2(θ)− µmin

2 )
+ o(∆θ).

Thus the approximation of |∆θ| for small ∆θ is given by

|∆θ| ≈ |µ2(θ + ∆θ)− µ2(θ)|
2
√

(µmax
2 − µ2(θ))(µ2(θ)− µmin

2 )
. (8)

However, when µ2(θ) approaches µmax
2 or µmin

2 , the denom-
inator of (8) approaches 0. This will increase the approxima-
tion error in (8). Therefore, two other approximation formu-
lae are developed for these cases.

For small ∆θ, one has ∆θ ≈ sin(θ+∆θ)− sin(θ). Then,
from (2), we derive that, if θ and θ + ∆θ have the same sign,

|∆θ| ≈

∣∣∣√µmax
2 − µ2(θ + ∆θ)−

√
µmax
2 − µ2(θ)

∣∣∣√
µmax
2 − µmin

2

(9)

and if θ and θ + ∆θ have opposite signs,

|∆θ| ≈

∣∣∣√µmax
2 − µ2(θ + ∆θ) +

√
µmax
2 − µ2(θ)

∣∣∣√
µmax
2 − µmin

2

.



When θ and θ + ∆θ have opposite signs, there is at least
one projection (µmax

2 ) whose angle (θ = 0) is closer from θ
than θ + ∆θ. So, since, at the first stage, we are interested
in finding pairs of projections whose angles are as close as
possible (see Sec. 3.2), we are allowed to set (9) as the default
formula when µ2(θ) approaches µmax

2 .
Alike, when µ2(θ) approaches µmin

2 , we obtain the fol-
lowing formula

|∆θ| ≈

∣∣∣√µ2(θ + ∆θ)− µmin
2 −

√
µ2(θ)− µmin

2

∣∣∣√
µmax
2 − µmin

2

. (10)

In conclusion, the angular difference between any two
close projections can be estimated by the so-called Angular
Difference Measure through (8), (9) and (10):

ADM(P(θi),P(θj)) =


(10), if µ2(θi) ≈ µmin

2

(9), if µ2(θi) ≈ µmax
2

(8), otherwise
(11)

Note that the ADM depends on the whole projection set for
µmin
2 and µmax

2 determination.
Remark 1. In Section 3, µmax

d and µmin
d appear in Eq. (3),

(4), (5), (8), (9), (10). Nevertheless, the exact value of µmax
d

and µmin
d are not known since they are estimated from the

(finite) set of projections Π. Even if it is not possible to give
the proof here due to the lack of place, it is possible to show
that the hypothesis “the angular difference ∆θ between close
angles is very small in probability” leads to an error on µmax

d

and µmin
d less than (∆θ)2. Then the error on µmax

d and µmin
d

do not modify the formulae obtained above.
Eventually, the angular difference between two projec-

tions which are not close to each other is computed via Dijk-
stra’s shortest path algorithm [8]. Our method is summarized
in Algorithm 1 in which the orders of moments of projections
are 1, 2, 3 and 5 since they are sufficient to find the neighbors
of each projection.

4. DEALING WITH NOISE

In reality, the projections are often contaminated by noise
that is modeled as a white centered Gaussian noise. We first
present here the noise robustness of our method without pre-
processing, then we present an efficient denoising method that
is used as preprocessing step. Our method noise robustness
comes from the use of moments of projection. It is known
that the sum of Gaussian independent variables is also a Gaus-
sian variable. One can show that the dth order moment of the
noisy projection x 7−→ P(θ)(x) +Nx, where Nx is a Gaus-
sian noise with zero mean and a variance σ2, ∀x ∈ [−1, 1],
follows the Gaussian distribution with a mean µd(θ) and a

variance
1∫
−1
x2dσ2dx =

σ2

d+ 1/2
≤ σ2. So, using the mo-

ments of projection for angular difference estimation can help

Algorithm 1: Estimation of the ADM

Data: {P(θi) | 1 ≤ i ≤ n}.
Result: R = {ADM(P(θi),P(θj)) | 1 ≤ i < j ≤ n} .

1. M = ∅, D = {1, 2, 3, 5}.

2. Compute {µd(θi)}i=1...n, d ∈ D.

3. For each index i

3.1. Jd = {j | |µd(θj)− µd(θi)| ≤ εd}, d ∈ D.

3.2. J =
⋂

Jd.

3.3. dj =
∑
k∈D

(µk(θj)− µk(θi))
2, j ∈ J.

3.4. j0 = argmin
j∈J

{dj}.

3.5. M = M ∪ {ADM(P(θi),P(θj0))}.

4. R← Dijkstra(M).

us to reduce the noise in a ratio of d+ 1/2. However, in case
of significant noise, this reduction is not sufficient. There-
fore, we employ a projection denoising method developped
by Singer and Wu in [9] as a denoising step. However, only
the first step of their method which is based on the PCA de-
composition [10], is employed to denoise the set of tomo-
graphic projections. Even if it is not the whole step, it is called
here the Singer-Wu method. The efficiency of the denoising
step is shown in Fig. 5.

5. EXPERIMENTS

Our method is applied for a set of 50 images with differ-
ent sizes (32 × 32, 64 × 64, 128 × 128 and 256 × 256 pix-
els) as those shown in Fig. 1. In the first experiment, given
I = (0◦, 2◦], we randomly generated 300 pairs (θ,∆θ) ∈
[−90◦, 90◦)×I. The associated projections P(θ) and P(θ+
∆θ) are then computed. The ADM and the Euclidean dis-
tance between P(θ) and P(θ + ∆θ) are estimated. Our ob-
jective is to measure the dispersion of the ADM (resp. the
Euclidean distance) with respect to ∆θ. In order to measure
the dispersion, we use the variance-to-mean ratio (VMR):

VMR =
1

k

k−1∑
i=0

σ2
i

µi

where σ2
i , µi are the variance and the mean of the ADM (resp.

the Euclidean distance) for ∆θ ∈ (αi, α(i+ 1)], where α =

0.1 is the sample step such that I =
k−1⋃
i=0

(αi, α(i + 1)] and

consider that k =

⌊
sup(I)− inf(I)

α

⌋
. The VMR must be



Fig. 1: Image data

Fig. 2: First experiment : mean and standard deviation of the
VMR for the Euclidean distance and the ADM, according to

image sizes.

lower than 1 for a negligible dispersion. The result is illus-
trated in Fig. 2.

Clearly, the VMRs of the Euclidean distance are higher
than 1 from the image size 64×64 pixels, whereas the VMRs
of the ADM are lower than 1 for all image sizes. An example
of the Euclidean distance and the ADM computed from an
image of size 256×256 pixels is also illustrated in Fig. 3. We
see that the dispersion of the Euclidean distance (x axis) with
respect to ∆θ (y axis) in Fig. 3a is greater than the ADM in
Fig. 3b.

In the second experiment, given an image and 300 ran-
dom projections with θ ∈ [−90◦, 90◦), the ADMs between
all pairs of projections are computed, using Algorithm 1. The
VMR is evaluated with a sample step α = 0.5. We also com-
pare the ADM with the Euclidean distance and the angular
difference estimated by (2), noted as the Salzman’s measure.
As seen in Fig. 4, the VMRs of the ADM are very small
compared to the ones of the Euclidean distance and the Salz-
man’s measure. Then, a Gaussian noise with a given SNR is
added to the projections. The results of estimating the ADM
before and after using the Singer-Wu method described in
Sec. 4 are shown in Fig. 5 for images of size 256 × 256 pix-
els. The VMRs after using this denoising step are lower than
before and the means of the VMRs are still lower than 1 at
SNR > 18 dB.

6. CONCLUSION

We present in this paper a new measure for estimating the an-
gular difference between two unknown direction projections.
We first present the selection of neighboring projections from
their moments. Then formulae of the moment based angular
difference for neighboring projections are given. These mea-
sures are used for constructing the projection graph whose

(a) (b)

Fig. 3: First experiment : dispersion of the Euclidean
distance and the ADM, from an image of size 256× 256

pixels.

Fig. 4: Second experiment : mean and standard deviation of
the VMR for the ADM, the Euclidean distance and the

Salzman’s measure, according to image sizes.

Fig. 5: Second experiment : mean and standard deviation of
the VMR for the ADM, from images of size 256× 256
pixels, according to the SNR before and after using the

Singer-Wu method.

edges connect the neighboring projections, weighted by our
measure. The angular differences between any two projec-
tions in the graph are then computed by the Dijkstra’s short-
est path algorithm. Our measure has been evaluated on a set
of 2D images and the results shown that our measure per-
formes better than the Euclidean distance and the Salzman’s
measure at the different tested image resolutions. Moreover
they show that our measure is robust at moderate levels of
noise. Our measure is promising for many applications such
as projection refinement, projection classification, etc. Our
future work is to extend the measure for 3D and improve its
robustness at the higher levels of noise.



7. REFERENCES

[1] R. R. Coifman, Y. Shkolnisky, F. J. Sigworth, and
A. Singer, “Graph laplacian tomography from un-
known random projections,” IEEE Trans Image Process,
vol. 17, no. 10, pp. 1891–1899, Oct. 2008.

[2] M. Van Heel, “Multivariate statistical classification of
noisy images (randomly oriented biological macro-
molecules),” Ultramicroscopy, vol. 13, no. 1-2, pp. 165–
183, 1984.

[3] ——, “Angular reconstitution: a posteriori assignment
of projection directions for 3D reconstruction,” Ultra-
microscopy, vol. 21, no. 2, pp. 111–123, 1987.

[4] S. Basu and Y. Bresler, “Feasibility of tomography with
unknown view angles.” IEEE Trans Image Process,
vol. 9, no. 6, pp. 1107–22, Jan. 2000.

[5] C. Fillion, A. Daurat, B. Naegel, G. Frey, and E. Bau-
drier, “A new ab initio reconstruction method from
unknown-direction projections of 2d binary set,” in
Proc. of Int Conf on Image Process, IEEE, Ed., 2013.

[6] J. Frank, Three-dimensional electron microscopy of
macromolecular assemblies: visualization of biological
molecules in their native state. New York: Oxford
Univ. Press, 2006.

[7] D. B. Salzman, “A method of general moments for
orienting 2D projections of unknown 3D objects,”
Comput Vision Graph, vol. 50, no. 2, pp. 129–156, May
1990.

[8] E. W. Dijkstra, “A note on two problems in connexion
with graphs,” Numerische Mathematik, vol. 1, no. 1, pp.
269–271, Dec. 1959.

[9] A. Singer and H. T. Wu, “Two-dimensional tomography
from noisy projections taken at unknown random
directions,” J Imaging Sci, vol. 6, no. 1, pp. 136–175,
Feb. 2013.

[10] I. T. Jolliffe, Principal component analysis. New York:
Springer, 2002.


