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ICube, University of Strasbourg, CNRS
300 Bd Sébastien Brant - CS 10413 - 67412 ILLKIRCH, FRANCE

ABSTRACT

This paper deals with the estimation of angular difference be-
tween two tomographic projections belonging to a set of pro-
jections taken at unknown directions. The proposed method
extends our former work from 2D to 3D. The method is po-
tential for many applications such as projection refinement or
projection classification, which are important in the process
of tomographic reconstruction. Unlike to common line based
angular estimation, the proposed method does not need refer-
ence projections. Our method relies on the selection of pro-
jection neighbors with local adaptive thresholds, the calculus
of the angular difference for neighboring projections by us-
ing properties of moments. The accuracy and the robustness
of our method are shown on a test database including 50 3D
gray-level images at different resolutions and with different
levels of noise.

Index Terms— tomography, unknown direction, angular
difference, Euclidean distance, invariant moments

1. INTRODUCTION

Tomographic reconstruction for unknown direction projec-
tions is a well-known problem in various domains such as
cryo electron microscopy or medical imaging. During the
process of reconstruction, the distance between two projec-
tion vectors is measured and the Euclidean distance is often
used. For example, in [1, 2], the authors compute the Eu-
clidean distances between the neighboring projections in or-
der to classify the projections and estimate their directions. In
[3], after generating an initial reconstruction model, Van Heel
computes the Euclidean distance between the projections of
the reconstruction model and those acquired from data for the
purpose of refining the reconstruction model. The Euclidean
distance is also used in [4] for simultaneously estimating the
projection directions and reconstructing the object.

However, the calculus of the Euclidean distance between
two projections has a wide variation even if the two projec-
tions are close. This may lead to errors when classifying or
refining projections. On the other hand, our previous work in
2D presented a method that can estimate the angular differ-
ence between two projections by using the properties of mo-

ments [5]. The variation of the angular difference estimated
from this method is very smaller than the Euclidean distance.
This enables us to extend our work to 3D for estimating the
angular difference between the neighboring projections. The
organisation of the paper is as follows. We first provide some
background notions in Sec. 2. Then, the estimation problem
of the angular difference is presented in Sec. 3. The perfor-
mance of our method is carried out in Sec. 4. Finally, we
conclude in Sec. 5.

2. BACKGROUND NOTIONS

2.1. Rotation in 3D

We first present the rotation convention used in this paper.
The rotation of a vector in 3D is defined as the rotation of this
vector around the three axes x, y and z by the three angles ¢, 0
and 1. It can be represented as the multiplication of the three
rotation matrices R, R} and R7,. For example, the product

R,0.4 =R, Ry RY, (1)

represents a rotation of a vector around the z, y and z axis by
the angles v, 6 and ¢, respectively. We also note that
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2.2. Projection

The projection of an object can be obtained by first rotating
the coordinates system using the rotation matrix R, ¢,y then
project the object onto the new (xOy) plane. This procedure
is similar to the rotation of the object using the rotation matrix
R_(y,0,,) and project the object onto the (zOy) plane. We
define the projection as follows

Definition 1 (Projection). Let f : R®* — [0, 1] be a mea-
surable function with compact support and let ¢,0,19 € R.
The projection Py(p,0,v) of f in the direction (p,0,)) is
defined by

’Pf(QO, 0, w)(xa y) = /Rf(p—(w,e,ap) (xvy7 Z))dZ, )
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Note that Py (¢, 0,v) = Ps(¢ + 7,0 + 7,9 + 7). Thus
we can assume that p, 0,9 € [-7/2,7/2].

We also present the direction vector of the projection, that
is the unit vector in the new z axis direction as follows

'U’P(QD, 9) = RL/J,Q,’L[J (Oa 07 1)T

3

= (sin @, — sin p cos ), cos p cos )7 .
Note that the direction vector vp (i, #) does not depend on
the angle 1.

2.3. Moment of projection

We recall that for a function g : R? — R, the moment of g
with order (¢, d), where ¢, d € N is given by

fic.a(g) =//xcydg(x7y)dwdy-
RJR

For a function f : R®* — R and ¢,0,7% € R, we note
Wred(p,0,%) = pea(Pr(p,6,7)) a moment with order
(¢, d) of the projection Py (¢, 0,1)).

The moments of projection in 2D are trigonometric poly-
nomials as a function of projection direction as shown in [6].
In 3D, we obtain the following result

Proposition 1 (Trigonometric polynomial of moment). Let
f : R3 — [0,1] be a measurable function with compact sup-
port, let ©,0,1 € R and ¢,d € N. The moment of the pro-
Jjection Py(p,0,1) of the function f, with the order (c,d),
in the direction (p,0,1) is a trigonometric polynomial as a
function of projection direction.

In the following, for simplicity, we write P and p. g in-
stead of Py and pif ¢ 4.

3. ESTIMATION OF THE ANGULAR DIFFERENCE

3.1. Problem of estimating the angular difference

We consider a function f whose centroid is at (0,0, 0), a set
of unknown directions © = {(p;,0;,v;)|1 < i < n} C
[—7/2,7/2[3, n € N. We set II = {P(¢;,0;,0:)|1 <
i < n} a set of projections associated to © and V =
{vp(pi,0;)|1 < i < n} a set of direction vectors of II.
Our purpose is to estimate the angular difference between
two neighboring projections from the set of projections II.
The following formula calculates the angular difference be-
tween two projections P and P, that is the inner product
between two direction vectors vp and vy

dang (P, 77/) = arccos (vp . Vp/ ) . 4)

In order to calculate the angular difference from the equa-
tion (4), the direction vector must be calculated. There are
two well-known approaches to the direction estimation prob-
lem. The first approach is based on the common line tech-
nique as shown in [7]. The main idea is that two projections
share one line in common which is perpendicular to the di-
rection vectors of the two projections. Thus, using the two
common lines between three projections enables us to find the
direction vectors of these projections. However, the common
line technique is time consuming and may lead to accumula-
tive errors when detecting the false common lines. We there-
fore employ the second approach that estimates the direction
vector of projection by analysing the relationship between the
moments of projections and the moments of the 3D function
[8, 9]. The method of moments is fast and does not lead to
the accumulation of errors as in the first approach. We have
developed from [8] the formula of direction vector as follows

1,2 3\T
/U'P(SD’H) = (U’Pv U’Pa U’P) ) (5)

where :

1 1/2
vl =+ (Z (Hmaz — 12,00, 0,%)) (bmaz — po,2(p, 0, 11’))) ,
with a = (,Uma,a: — /lzmed)(/ﬁmaz - M‘"Li’VL)7

1 1/2
v ==+ (E (Bmed = 142,0(9,0,9)) (Bmed — Ho,2(¢, 0, w))) .
with b = _(#ma:c - /Jmed)(lufmed - /mein)

1 1/2
0 = (§ ot = 12,000,090 (i = 020, 00))

with ¢ = (Nmaz - Nmin)(umed - 'U"mzn) and

MKmaz = max max({ 2 ®, 67 » H0,2 ) 0 »P))s
(p,0,0)€ER ( ,0( w) 0, (Qp ))
HKmed = i » Yy ) 2 ) 61 ®p))s
( 71 71@]) HlaX(}LZ, (90 0 d}) Mo, (@Z’ ))
Hmin = min min H2,0(P;s 67 y 10,2 ) 67 ®))-
(,0,%)ER ( s ( w) ) (w ))

There are four possible direction vectors in (5) due to the
unknown signs. These four direction vectors are on four dif-
ferent octants of the coordinates system. However, we can
obtain a unique solution in (5) if we make the assumption that
both of the projections are in the same octant. This is the
case for most neighboring projection pairs if there is a large
number of projections and if the distribution of projections
is uniform. Thus, we can forget the problem of signs in (5)
by simply setting vp = (Jvp|, [v3], v5)?. Then the angu-
lar difference formula between two neighboring projections
is modified as follows

i=1

3
dang (P, P’) = arccos <Z [vh v;)/ |> . (6)

The problem of searching the neighbors of each projection
is presented in the following section.



3.2. Searching for the neighbors of projection

In [5], we have developed a method for finding the neigh-
bors of each projection in 2D . The principle of this method is
that, for each moment of a given projection, with a given or-
der, we compute a threshold that allows us to find at least one
moment corresponding to a neighbor of the projection. The
method can also be applied in 3D. However, the moments are
not used directly since the projection can be rotated around
its direction vector by an arbitrary angle. This changes the
value of moments and leads to errors for neighboring search-
ing. Instead, we use Hu moments [10], for their invariance
to the rotation of projection. These invariant moments can
be calculated easily from of the (geometric) moments. Note
that the (geometric) moments are trigonometric polynomials
(Proposition 1) and it is known that the set of trigonometric
polynomials is a ring. Thus, these invariant moments are also
trigonometric polynomials.

Hu moments are now applied for selecting the neigh-
bors of a given projection. Since, these moments are non-
monotonic, close moments are not synonymous with close
direction vectors of projections. Thus, for each Hu mo-
ment M (¢, 0) of a given projection, we find an interval
M(p, 0) £P(p,0) in which can be found, with some chosen
probability p € [0, 1], at least one moment corresponding to
a neighbor of the projection. Assuming that the number of
projections is sufficient large and uniformly distributed on
demi-sphere. We first find for each angle A € {p,0}, an
interval A & J, in which there is at least one angle \'. Since
the distribution of projections is uniform, we can obtain the
formula of §, as follows

1
51— 0-p)7),
O\ = 1
CAEACE
We also note that Hu moments My, 6) are trigonometric

polynomials. Then, by using Bernstein’s inequality [11] for
trigonometric polynomials, we have

ifA=¢
(1-(1—p)v), ifA=0"

p ~
e(p,0) = k (3p + d) (£§§R\M(¢79)\7 ©)

where k is the order of M(y, 0).
In particular, when M = 5 o + f10,2, a better value of e?
can be obtained as follows

eP(p,0) = 2 (€ 0y + &9 J9), ®)

where

€p = ((M(p,0) — pmed) (umee 4+ pmed — M(i,0))) "7,

€0 = ((M(p,0) — pumom) (umae 4 pmed 4 ymin — Mg, 0))) /2.
In conclusion, (7) and (8) allow us to find sets of pro-

jection neighbors for distinct moment orders. Then, the final

result is obtained by intersecting these set of projection neigh-

bors.

Remark 1. In Section 3, the exact values of ©™%*, ™¢? and
™" used in (5), (7) and (8) are not known. We can only
estimate p™%%, ™% and ;™" from the finite set of projec-
tions II. However, if the angular difference d.,s between
two neighboring projections is small in probability, then we
can assume that the errors on £®, ;¢ and ;™" less than
(dang)? and do not modify the formulae obtained above.

4. RESULTS

We apply our method on a set of 50 phantom images of dif-
ferent resolutions (323, 643, 1283 and 2563 voxels) as shown
in Fig. 1. We first generate randomly a set of 400 triplets
(¢,0,1), where ¢, 0,9 € [—7/2,7/2[. Then, a set of pro-
jections P(ip, 0,) is computed for each image. We next find
the neighbors of each projection P(¢p, 6, ) by using the Eq.
(7) and (8). Finally, the angular differences da,e between the
neighboring projections are estimated by the Eq. (6). The
Euclidean distance between these neighboring projections are
also computed. Our objective is to measure the dispersion of
our estimated angular difference Hang (resp. the Euclidean
distance) with respect to the exact angular difference dang.
We use the variance-to-mean ratio (VMR) presented in [5]
for measuring the dispersion. The VMR should be lower than
0.5 for a small dispersion. As seen in Table. 1, the VMR of
our estimated angular difference aang is very smaller than 0.5
for all image resolutions, whereas VMR  of the Euclidean dis-
tance is higher than 1. An example for the dispersion of the
Euclidean distance and the Hang is illustrated in Fig. 2. We
see that the dispersion of the Euclidean distance (z axis) with
respect to dang (y axis) is greater than the Hang.

W R e

Fig. 1: Examples from the 3D database

Table 1: Mean and standard deviation of the VMR for the
Euclidean distance and the day,, according to the image

resolutions.
Resolution | Euclidean distance dang
323 voxels 1.03 £ 0.40 0.06 £0.03
643 voxels 0.98 +0.32 0.05 +0.01
1283 voxels 1.094+0.34 0.05 £0.02
2563 voxels 0.83 +0.37 0.05 +0.03

The robustness of our method against noise is also eval-
uated. A white noise with a given SNR is added to the pro-
jections as seen in Fig. 3. The results of estimating d,.g are
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Fig. 2: Dispersion of the Euclidean distance (a) and our
estimated angular difference (b), from an image of size 643
voxels.

shown in Fig. 4 for the images of 256 voxels. The mean of
VMR is still lower than 0.5 at the SNR > 10 dB.

(a) Without noise (b) 15dB

(c)10dB

(d)5dB

Fig. 3: Examples of noisy projections.

We further applied our method to a real image TAF7 of
1603 voxels as shown in Fig.5. 400 noisy projections are
generated from the TAF7 and the Wiener filter is used to de-
noise the projections. The positive results are obtained at the
SNR > 10 dB with the VMR < 0.5.

8910 20 30
SNR (dB)

Fig. 4: Mean and standard deviation of the VMR for Hang
against white noise, from the images of 2562 voxels.

Fig. 5: Real 3D image TAF7.

5. CONCLUSION

This paper extends our new method to the 3D case. We deal
with the problem of estimating the angular difference between
two neighboring projections taken at unknown directions. We
first find the neighbors of each projection based on local adap-
tive thresholds for the moments of projections. Then formula
of estimating the angular difference between two neighboring
projections is given. Our method has been evaluated on a set
of 3D images at different resolutions and with different levels
of noise. The results demonstrated that our estimated angular
difference performs better than the Euclidean distance and is
robust at moderate levels of noise. Our method can be applied
for many applications such as projection refinement, projec-
tion classification, etc.

Finding the neighboring projections and estimating the
angular differences between them are important for the fol-
lowing step of our work. This allows us to calculate the an-
gular difference between any two projections by construct-
ing a neighborhood graph whose edges connect the neighbor-
ing projections, weighted by the estimated angular differences
and then using the shortest path algorithm on the graph. This
work will be completed in the future.
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