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ABSTRACT 26 

A few studies have highlighted the importance of the respiratory microbiome in modulating 27 

the frequency and outcome of viral respiratory infections. However, sufficient data is 28 

lacking on the use of microbial signatures as prognostic biomarkers to predict respiratory 29 

disease outcomes. In this study, we aimed to evaluate whether specific bacterial community 30 

compositions in the nasopharynx of children at the time of hospitalization are associated 31 

with different influenza clinical outcomes. 32 

We utilized retrospective nasopharyngeal (NP) samples (n=36) collected at the time of 33 

hospital arrival from children who were infected with influenza virus and had been 34 

symptomatic for less than two days. Based on their clinical course, children were classified 35 

into two groups: patients with mild influenza, and patients with severe respiratory or 36 

neurological complications. We implemented custom 16S rRNA gene sequencing, 37 

metagenomic sequencing and computational analysis workflows to classify the bacteria 38 

present in NP specimens at the species level.  39 

We found that increased bacterial diversity in the nasopharynx of children was strongly 40 

associated with influenza severity. In addition, patients with severe influenza had decreased 41 

relative abundance of Staphylococcus aureus, and increased abundance of Prevotella 42 

(including P. melaninogenica), Streptobacillus, Porphyromonas, Granulicatella (including 43 

G. elegans), Veillonella (including V. dispar), Fusobacterium and Haemophilus in their 44 

nasopharynx.  45 

This pilot study provides proof-of-concept data for the use of microbial signatures as 46 

prognostic biomarkers of influenza outcome. Further large prospective cohort studies are 47 

needed to refine and validate the performance of such microbial signatures in clinical 48 

settings.  49 
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INTRODUCTION 50 

Seasonal influenza in children is a major burden on public health. It is estimated that 51 

between 20 to 30% of children are infected with influenza each winter (WHO). While most 52 

of the children develop uncomplicated influenza illness, between 1.5 to 4% of infected 53 

children are hospitalized for influenza complications (1) including pneumonia, asthma 54 

exacerbations, neurological complications, and death (2). Risk factors for hospital 55 

admission in children include age <2 years and having underlying medical conditions (such 56 

as neurological disorders, prematurity, immunosuppression, diabetes, or sickle cell disease) 57 

(3). However, about half of pediatric hospitalizations from seasonal influenza occur in 58 

children without a high-risk medical condition (4). 59 

From a clinical perspective, failure to identify influenza-infected patients that have a higher 60 

risk of developing severe disease delays the delivery of appropriate treatment, and may 61 

have profound consequences for the recovery and long-term health of the patient. It has 62 

been reported, in an adult population, that a delay of one day from onset of symptoms to 63 

hospital admission increased the risk of death from influenza-caused disease by 5.5% (5). 64 

Several attempts have been made to develop prognostic indicators that would help identify 65 

patients at risk of severe influenza disease progression. Influenza viral load is not predictive 66 

of clinical outcome (6), but increased serum levels for several cytokines in adults infected 67 

with 2009 H1N1 influenza virus are correlated with disease progression (7), and increased 68 

nasal levels of two proinflammatory cytokines are associated with severe influenza (6). 69 

However, at present, there are no biomarkers readily available to the physician at the time 70 

of hospital admission able to predict the likelihood of disease progression in all patients. 71 

Improving severe influenza prognosis and treatment requires a better understanding of 72 

influenza disease. Influenza severity is determined by a complex interplay between viral, 73 

environmental and host factors, which is not yet fully understood and which cannot be 74 
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comprehended without looking at the system as a whole (8). One factor which has been 75 

poorly studied and needs to be integrated in influenza pathogenesis models is the 76 

microbiome, defined as the microbial communities colonizing the human body (microbiota) 77 

together with the surrounding environment (9,10). Secondary bacterial pneumonia is a 78 

well-known cause of pulmonary complications resulting from influenza infection, and was 79 

reported as a major cause of mortality during the 1918 pandemic (11). However, the idea 80 

that the microbiota might also be involved in influenza pathogenesis is only a recent 81 

concept. Leung et al. recently reported that the oropharyngeal microbiota of a pool of 82 

patients with H1N1 pneumonia was different from that of patients with non-H1N1 83 

pneumonia (12). A second metagenomic study observed that patients infected with H1N1 84 

had a higher amount of Proteobacteria in the upper respiratory tract than normal reference 85 

nasopharyngeal (NP) microbial profiles previously published (13). This study also showed 86 

a variation in NP microbiota depending on patient age. However, sequencing was 87 

performed on pools of anonymized samples with no associated clinical data and could 88 

therefore not link specific changes in microbiota composition with different influenza 89 

outcomes.  90 

In addition, several studies using mice have shown that the gut microbiota protects against 91 

influenza disease. Antibiotic-treated mice exhibit impaired antiviral immune responses 92 

following influenza virus infection, resulting in delayed viral clearance (14), while oral 93 

administration of probiotics in mice prior to influenza infection reduces viral titers (15). 94 

Finally, a recent mouse study showed that Staphylococcus aureus colonization in the upper 95 

respiratory mucosa attenuated influenza infection compared with germ-free mice (16). 96 

However, germ-free mice may not be appropriate to study the role of the microbiome in 97 

influenza as they have important physiological defects such as altered immune systems, 98 
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which can perturb responses to influenza infection (reviewed in (17)). Additionally, there 99 

are significant differences between the microbiomes of mice and humans (17).  100 

Due both to the heterogeneity of the respiratory microbiome in humans and to the low 101 

proportion of severe cases in seasonal influenza, large prospective studies are needed to 102 

link the respiratory microbiome with influenza severity in patients. As a proof-of-concept, 103 

we utilized NP specimens from a retrospective collection of influenza-positive samples 104 

from children infected with influenza virus with different disease outcomes, mild or severe, 105 

and tested whether specific bacterial species in the nasopharynx of patients at the time of 106 

hospitalization correlated with influenza disease severity. We determined a differential 107 

microbial signature discriminating patients with severe and mild influenza. Such a signature 108 

could be used as a prognostic biomarker for early diagnosis of severe influenza. 109 

RESULTS 110 

Selected patients 111 

We profiled the microbial communities of 36 NP samples collected at the time of hospital 112 

arrival from patients classified retrospectively based on their clinical course into two 113 

groups: patients with mild influenza (n=22) or severe influenza (n=14) outcome. Patients 114 

had been symptomatic for less than 2 days before hospital admission. None of the patients 115 

received antibiotics for up to three weeks before sample collection). After sampling, severe 116 

patients were pre-emptively treated. Demographics and clinical parameters of the 36 117 

patients are summarized in Table 1 (baseline characteristics for Table 1A and follow-up 118 

characteristics for Table 2A). Among patients who developed severe influenza, four 119 

patients had severe respiratory complications requiring ventilatory support and 120 

hospitalization in Intensive Care unit (ICU), and ten patients had neurological 121 

complications requiring hospitalization in ICU (n=6 from 10, 60%) or in other units. The 122 
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most common neurological complications were coma (n=4 from 10, 40%) and epilepsy 123 

(n=5 from 10, 50%). Average time of hospitalization was similar among the two severe 124 

groups (7.4 and 9.8 days for the patients with neurological and respiratory complications, 125 

respectively). Patients with mild influenza were either discharged or hospitalized in 126 

emergency short-stay units. Their median time of hospitalization of one day corresponds to 127 

a monitoring of more than 6 hours in emergency service, which is considered in France as a 128 

hospitalization. Due to a too small number of patients included, no age- and sex- matched 129 

analyses could be performed on this cohort with sufficient power. As respiratory 130 

microbiome changes with age and sex (18), our results have been adjusted for these 131 

parameters in the rest of the study using multivariate analysis (see Material and Methods 132 

section). Finally, Cycle threshold (Ct) values from influenza real-time RT-PCR, as 133 

described in the Material and Methods section, were used as a proxy measure of viral load 134 

and were not significantly different between the groups, suggesting no relationship between 135 

initial viral load and disease outcome, as previously described (6).  136 

NP microbiota composition of children infected with influenza virus 137 

Across all 36 respiratory samples, > 5.2 million high-quality 16S RNA sequences were 138 

classified into 300 operational taxonomic units (OTUs), with 101 OTUs supported by > 139 

1,000 reads each (Fig S1). All OTUs were classified up to the genus level and 49% were 140 

classified up to the species level. Relative abundance for all 300 OTUs in each sample is 141 

given (Fig 1A). Five OTUs dominated the NP bacterial profiles (defined as a relative 142 

abundance > 50% in at least one sample). Among these five OTUs, the genera were 143 

Moraxella, Staphylococcus, Streptococcus, and Haemophilus (Fig 1B). Moraxella 144 

catharrhalis was found as the dominant species in 11 of 36 samples (30%). Moraxella 145 

nonliquefaciens was also detected and was the dominant species in 4 samples. 146 

Staphylococcus aureus was the dominant species in 2 samples. OTU_4 was classified only 147 
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to the genus level: Streptococcus, and was the dominant species in 5 samples. Finally, 148 

OTU_5 (Haemophilus) was the dominant OTU in 4 samples. In the remaining 10 (28%) 149 

other samples, there were more than a single dominant OTU: for 3 samples, there were two 150 

major OTUs (with relative abundance between 25 and 50%), and for 7 samples, bacterial 151 

profiles were more complex. Importantly the presence of a dominant OTU was not 152 

significantly associated with influenza outcome after adjusting with covariates (Table S1).  153 

To validate the bacteria taxonomy classifications inferred by the 16S ribosomal profiling, 154 

we performed shotgun metagenomic sequencing on a subset of NP specimens obtained 155 

from patients with mild (n=10) and severe (n=10) influenza. Comparable bacterial 156 

compositions were found in the 16S targeted sequencing and shotgun metagenomic datasets 157 

(Fig S2). 158 

NP microbiota composition differentiates influenza outcome 159 

To examine whether variations in NP bacterial communities composition were related to 160 

clinical and/or demographic characteristics of the patients, a UniFrac distance matrix was 161 

calculated and used in PerMANOVA analyses against five clinical variables (clinical 162 

outcome, days between sampling and symptom onset, patient’s age, patient’s sex, sample 163 

nature). This analysis revealed that differences in NP microbiota composition were strongly 164 

associated with influenza outcome (p-value= 0.00025) (Fig 2, Table S2). This analysis, 165 

confirmed by unsupervised clustering of the samples based on whole microbiota profiles, 166 

was able to segregate mild from severe patients. All but one mild patient belonged in the 167 

first cluster, and all but 4 severe patients belonged in the second cluster (Fig S3). Patient’s 168 

age was also associated with NP microbiota (p-value= 0.03450) but less strongly than 169 

influenza outcome. There was no evidence of significant interaction between age and 170 

clinical outcome on NP microbiota composition (Table S2). Finally, we tested whether 171 

there was a difference in microbiota composition between patients with respiratory or 172 
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neurological complications. After adjusting for covariates, type of severe influenza 173 

complication was not significantly associated with whole microbiota profiles (Table S3). 174 

Patients with mild influenza have a less diverse NP microbiota than patients that 175 

develop severe influenza  176 

We further tested whether NP microbiota diversity (alpha diversity) was also associated 177 

with patient’s demographics and/or clinical features. Several diversity indices were 178 

calculated (Fig 3) and were further used in statistical analysis to examine whether species 179 

diversity in NP samples were related to five variables (clinical outcome, days between 180 

sampling and symptom onset, patient’s age, patient’s sex, sample nature). Using multiway 181 

ANOVA, we found that NP microbiota diversity, as estimated by the Shannon diversity 182 

index (H), ACE, Chao1, Fisher, and Simpson indices, was strongly associated with 183 

influenza outcome (Table S4).The Simpson’s reciprocal index was the only one not 184 

significantly associated with influenza outcome (Table S4). This observation could be 185 

linked to the size of the cohort,  186 

this index being the most sensitive to a lack of power. Patients with mild influenza had 187 

significantly lower bacterial diversity (average H=0.57) than patients with severe influenza 188 

(average H=2.03). The NP microbiota diversity was weakly associated with patient’s age 189 

(Table S4). There was no evidence of significant interaction between age and clinical 190 

outcome, between sample nature and clinical outcome, or between age and sample nature 191 

on NP microbiota diversity (Table S4). In addition, there was no significant difference in 192 

microbiota diversity between patients with neurological and respiratory complications 193 

(Table S5). Overall, we found that increased bacterial diversity in the upper respiratory 194 

tract was associated with influenza severity. 195 



9 

 

Differential microbial abundance between patients with mild or severe influenza 196 

Statistical analysis to characterize the differential microbial species abundance between 197 

patients with mild influenza and patients with severe influenza was performed using a 198 

generalized linear model adjusting for age, sex, time since symptom onset and sample 199 

nature. Twelve OTUs were found differentially abundant between the two groups of 200 

patients (Fig 4A). Average abundance in each group for the 12 differential OTUs is given 201 

Table 2. Among the differential OTUs, one was among the five most abundant OTUs 202 

detected in the respiratory microbiome profiles: Staphylococcus aureus was more abundant 203 

in patients with mild influenza than in patients with severe influenza (Table 2). The 204 

remaining 11 differential OTUs had limited abundance (<3% on average) and were all 205 

more abundant in patients with severe influenza. The genera of these 11 OTUs were: 206 

Prevotella for two of them, Streptobacillus, Porphyromonas, Veillonella for three of them, 207 

Fusobacterium, Haemophilus, Lachnospiracea incertae sedis, and Granulicatella. Some of 208 

these OTUs were detected almost exclusively in patients with severe influenza, for example 209 

Porphyromonas (OTU_31) was detected in 11 (76%) patients with severe influenza vs. in 210 

only 2 (9%) patients with mild influenza. 211 

In addition, we performed a similar statistical analysis on the severe influenza group only, 212 

to determine whether there were differences between patients with neurological and 213 

respiratory complications. Seven OTUs (Moraxella catarrhalis, Actinomyces, 214 

Corynebacterium, Dolosigranulum pigrum, Chryseobacterium, Prevotella and Parvimonas 215 

micra) were found differentially abundant (Fig 4B, Table 3). Except for Moraxella 216 

catarrhalis and Parvimonas micra, these OTUs were significantly more abundant in 217 

neurological severe forms than in respiratory severe forms. As already described, 218 

Moraxella catarrhalis remain abundant in both severe form (17.39% vs. 29.89%), unlike all 219 

others OTUs, with limited abundance in both groups (<1% in average). 220 
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Minimal microbial signatures classify mild vs. severe cases 221 

To determine whether a smaller subset of OTUs could efficiently classify patients into mild 222 

and severe groups, we used an association rule mining algorithm among differentially 223 

abundant OTUs. To test the signatures’ predictive performance, we used the trained rules to 224 

determine influenza disease severity of patients excluded from the training set (leave-one-225 

out cross-validation (LOOCV)). In addition, only rules that were found in all cross-226 

validation instances were considered as robust. This analysis revealed 30 5 robust 227 

association rules comprising two to three OTUs able to classify mild vs. severe patients 228 

with cross-validated sensitivity up to 93% and specificity up to 100% (Table 4). For 229 

instance, the quantification of OTU_22 (Streptobacillus) at a relative abundance higher 230 

than 8.8e-06 and the quantification of OTU_85 (Haemophilus) at a relative abundance 231 

higher than 4.8e-05 predict that the patient will develop a severe influenza with a sensitivity 232 

of 92.86% and a specificity of 90.91%. The performances of these different rules need to be 233 

validated in prospective cohort studies but these data indicate that microbial signatures 234 

comprising of very few bacterial species have the potential to predict influenza outcome 235 

with substantial accuracy. 236 

Altogether, these results demonstrate that differences in NP microbiota composition early 237 

after infection are associated with influenza severity and provide proof of concept data for 238 

the use of microbial signatures as prognostic biomarkers of influenza outcomes in a clinical 239 

setting. 240 

DISCUSSION  241 

Influenza virus transmission and pathogenesis in humans is unpredictable, at the population 242 

and individual level in terms of clinical severity. While rapidly identifying patients at risk 243 

of influenza complications is crucial for patient management and survival, there is currently 244 
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no host biomarker assay available to predict influenza severity at the time of infection. In 245 

this study, we used a retrospective collection of early NP samples from children infected 246 

with influenza virus to test the feasibility of using a prognostic microbial signature to 247 

predict influenza disease outcome in a clinical setting. By comparing the relative 248 

abundance and diversity of microbial populations in the upper respiratory tract of children 249 

at the time of hospitalization, we identified bacterial profiles that differentiated children 250 

that developed severe disease vs. non-progressive mild influenza infection, using five 251 

different diversity indexes. All but one have shown statistical differences between these 252 

two groups. This difference was not significant for the Simpson’s reciprocal index, the 253 

most dependent to cohort size (as reviewed in (19)).  To our knowledge, this is the first 254 

study associating influenza severity with NP bacterial composition in children. 255 

There are a limited number of studies describing the composition of the respiratory tract 256 

microbiota in healthy and diseased children. Studies profiling the NP microbiota have 257 

reported that healthy children younger than 2 years have their upper respiratory tract 258 

colonized by one predominant commensal bacterial genera consisting of Moraxella, 259 

Haemophilus, Streptococcus, Prevotella, Dolosigranulum, Staphylococcus, 260 

Corynebacterium, Flavobacteria or Neisseria (18,20–22). Similarly to these studies, we 261 

found that most of the children infected with influenza had microbial compositions in their 262 

nasopharynx that were dominated by one bacterial species, with Moraxella, Streptococcus, 263 

Haemophilus and Staphylococcus representing the most abundant bacterial genera. 264 

However, the nasopharynx microbiomes of children infected with influenza were not 265 

colonized with gram positive commensal species (Anoxybacillus, Dolosigranulum, 266 

Corynebacterium and Lactococcus). It is possible that influenza virus induced a decrease in 267 

the abundance of these species early after infection. Interestingly, these gram positive 268 

commensal species have been shown to control the abundant colonization of pathobionts 269 
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such as H. influenza, S. pneumonia, S. aureus, or M. catarrhalis and enhanced risk of 270 

acquiring acute otitis media (21,23), pneumonia and bronchiolitis (24). In future studies, it 271 

will be interesting to follow respiratory microbiome dynamics longitudinally prior and post 272 

influenza infection to characterize early virus-microbiome interactions.  273 

The most common genus found in our population was Moraxella, with two main species M. 274 

catarrhalis and M. nonliquefaciens. High abundance of M. nonliquefaciens was previously 275 

associated with viral pneumonia caused by adenovirus, rhinovirus or enterovirus, 276 

respiratory syncytial virus, or human metapneumovirus infections (20). In addition, 277 

Moraxella vs. Alloiococcus colonization is associated with increased respiratory syncytial 278 

virus infections and severity (22). As we could not profile NP microbiota of healthy 279 

children in parallel with influenza-infected children, we cannot determine whether 280 

Moraxella colonization was also associated with influenza infection but we found that M. 281 

catarrhalis and M. nonliquefaciens relative abundance were not predictive of influenza 282 

severity, after adjusting for covariates. Further evaluation of the effect of specific virus-283 

microbiome interactions is necessary to better define the respiratory microbiota and its 284 

influence on clinical disease outcome of acute respiratory infections in children. 285 

In our study, severe influenza infection was predicted by increased bacterial diversity in the 286 

nasopharynx of children. In addition, a microbial signature of 12 OTUs was able to 287 

discriminate patients developing severe vs. mild influenza. Eleven of these 12 OTUs had 288 

higher abundance in severe patients and included the following genera: Prevotella, 289 

Streptobacillus, Porphyromonas, Granulicatella, Veillonella, Fusobacterium, 290 

Lachnospiracea incertae sedis and Haemophilus spp. Except for Haemophilus, these 291 

genera all belong to obligate or facultative anaerobic bacteria. Species that were found 292 

more abundant in patients with severe influenza included: Prevotella melaninogenica, and 293 

Veillonella dispar which are anaerobic gram-negative bacteria part of the normal oral (25) 294 
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and respiratory tract microbiota (26) and can cause anaerobic pulmonary infections (25) or 295 

meningitis and endocarditis (27); and Granulicatella elegans, a member of the nutritionally 296 

variant streptococci, which are common components of the oral microbiota that have been 297 

associated with endocarditis and septicemia (28). Only one OTU was more abundant in 298 

patients with mild symptoms: Staphylococcus aureus. This is in line with the study of 299 

Wang et al. who reported that S. aureus priming prevents influenza-mediated lung injury in 300 

a mouse model (16). The proposed mechanism was that S. aureus induces monocyte 301 

polarization into M2 alveolar macrophages via Toll-like receptor 2 signaling, which inhibits 302 

influenza-mediated lethal inflammation (16). Based on our pilot study, the higher 303 

abundance of S. aureus in mild non-progressors could explain the lack of severe clinical 304 

manifestations observed in our patient cohort, while the presence of a diverse nasopharynx 305 

microbiota containing multiple pathobionts significantly increased the risk of acquiring 306 

severe influenza-related disease. Furthermore, we have compared each of the two severe 307 

influenza groups. Seven OTUs were significantly more diverse in one group, respiratory 308 

group for two of them (Moraxella catarrhalis and Parvimonas micra), and neurological 309 

group for the rest of them (Actinomyces, Corynebacterium, Dolosigranulum pigrum, 310 

Chryseobacterium and Prevotella). Physiologically, all these bacteria were commensal of 311 

the respiratory tract and oral cavity. They were mainly described in pneumonia and 312 

periodontitis infections but could also be the cause of central nervous system infections, 313 

bone infections and endocarditis (29–31). Interestingly, Dolosigranulum pigrum, associated 314 

to the development of kerato-conjunctivitis, has already been characterized in respiratory 315 

tract microbiome as belonging to an health-associated community, developing lately in 316 

children born by caesarean section (32). Note that this analysis remains mostly 317 

underpowered, due to the small number of patients in each severe group in this study.  318 
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 It is noteworthy that microbial signature predicting influenza clinical outcome could be 319 

reduced to only 2-3 OTUs. If proven to be robust in future studies, such signature creates 320 

potential for the development of a real-time clinical assay using current technology. Rapid 321 

PCR panels accurately quantifying both bacterial and viral species (35) could facilitate a 322 

practical implementation of prognostic microbial signature-based assays simultaneously 323 

with acute respiratory virus diagnostics in a clinical setting. 324 

Our study has limitations inherent in its retrospective nature. First, despite the large number 325 

of samples (n=372) from children infected with influenza virus available in our collection, 326 

only 36 samples (9.7%) met our selection criteria. Because of the relatively low number or 327 

our cohort, we could not match patients groups in sex and age. As age and sex were 328 

described as important factors modifying the microbiota in the nasopharynx (18,22), we 329 

had to adjust for these potential confounders in statistical models. We found that the main 330 

factor influencing the NP microbiota was age. Sex was not associated with microbiota 331 

composition and diversity, as expected for young prepubescent children. The microbiome 332 

was also described as changing with seasons (18). However in our study, samples were 333 

collected over different years but all during the influenza season (Jan-March) therefore 334 

there was no seasonal effect to account for. Finally, due to the retrospective nature of our 335 

pilot study we could not compare the performances of our signature with existing clinical 336 

scores of severity, such as the Pediatric Risk of Mortality (PRISM III). Differences in 337 

number between neurological and respiratory groups (n=10 vs. n=4) could be explained by 338 

the administration of antimicrobial therapeutic in patients with respiratory complications 339 

before the NP sample was collected. Indeed children with respiratory distress were most 340 

likely to have pre-emptive antibiotics administrated at hospital admission before sampling, 341 

and so were excluded from analyses. In contrast, when children developing neurological 342 

complication had antibiotics administrated, this was mainly during hospitalization after NP 343 
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sample was collected, and treatment administrated prior to admission were mostly anti-344 

epileptic treatment. 345 

Future studies will involve the enrollment of prospective cohorts of children admitted in the 346 

emergency departments with longitudinal sample and clinical data collection to validate our 347 

microbial signature performance and analyze host-virus-microbiome interactions. Studies 348 

integrating microbiome analysis with a systems biology approach to influenza pathogenesis 349 

will accelerate the development of novel diagnostic tools and personalized therapeutics to 350 

combat influenza virus infections in children. 351 

METHODS 352 

Ethical statement 353 

Respiratory samples (NP aspirate or swab) were collected for regular disease management 354 

during hospital stay and no additional samples were taken. For the purpose of this study, 355 

patient confidentiality was strictly protected and informed consent has been obtained. This 356 

study was approved by the ethical committee of Hospices Civils de Lyon on Oct 14th, 2014. 357 

The study was also approved by the University of Washington IRB under Expedited 358 

Category 5 (Human Subjects Application #49811). 359 

Patient selection 360 

We analyzed 372 clinical records from children (≤15 years) who were admitted to a 361 

pediatric hospital (Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, France) in 2011-362 

2014. All analyzed samples were tested positive for influenza A or B virus using 363 

Respiratory Multi Well System MWS r-gene® kit (bioMérieux, Marcy-l’étoile, France) 364 

during the routine testing of the virology department of the University Hospital of Lyon. 365 
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Doing so, Ct could be obtained and were considered as an estimated viral load in the 366 

sample. 367 

In order to define a prognostic signature, only patients who were symptomatic for less than 368 

2 days and had a respiratory sample collected at the time of hospital arrival were selected. 369 

Based on their clinical course after sample collection, patients were classified into two 370 

groups: patients with mild influenza or patients with respiratory or neurological 371 

complications (the severe influenza group). Criteria used for classifying children in the 372 

severe influenza group with respiratory complications were: utilization of invasive or non-373 

invasive ventilation, blood gas alteration (hypoxemia <95% in arterial sample), and 374 

hospitalization in ICU for respiratory complications. Neurological complications were 375 

defined as symptoms that affected the central or peripheral nervous system including 376 

seizures, encephalopathy, encephalitis, or any focal neurologic symptom (33). Patients with 377 

neurological complications were hospitalized either in ICU or in neurology units 378 

specialized in the management of encephalitis or epilepsy. We excluded patients with 379 

incomplete clinical files as well as patients receiving antibiotics prior to respiratory sample 380 

collection as this treatment likely perturbs the microbiome. Other exclusion criteria 381 

included known risk factors for severe influenza (defined as chronic respiratory diseases, 382 

cardiac diseases, metabolic diseases, immunosuppression,…) and known chronic disease 383 

associated with respiratory microbiota dysbiosis (such as severe asthma, …)(3). Note that 384 

two patients had Down’s syndrome, one in the mild influenza group and one in the severe 385 

influenza group. In addition, in the respiratory group, one patient presented a Prader-Willi 386 

syndrome and one an uncategorized myopathy. While individuals with Down's syndrome, 387 

Prader-Willi syndrome, and myopathy are known to be at risk of respiratory problems, 388 

these comorbidities have not been associated with modifications in NP microbiome and we 389 

therefore did not exclude these patients. In total, 72 patients were selected, including 42 390 
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patients with mild influenza, 11 patients with respiratory distress symptoms and 19 patients 391 

with neurological complications. We extracted DNA and RNA using Nuclisens EasyMag. 392 

Only 36 patients had samples with sufficient DNA quantity and quality for sequencing, 393 

including 22 patients with mild influenza, 4 patients with respiratory distress symptoms and 394 

10 patients with neurological complications.  395 

16S rRNA sequencing and analysis 396 

Genomic DNA was extracted from de-identified patient respiratory samples (n=36). 397 

Custom primers were synthesized to amplify a 510bp fragment containing variable regions 398 

V1-V3 of the 16S ribosomal gene. Briefly, 5ng of genomic DNA from each sample was 399 

used as starting template to generate the V1-V3 amplicon libraries. All genomic DNA was 400 

subjected to 20 cycles of PCR (Failsafe, Epicentre) and 16S amplicons were cleaned using 401 

0.8X AMPure XP beads (Beckman Couter Inc) following manufacturer’s instructions. 402 

Nextera dual index adaptors (Nextera XT adaptors, Illumina Inc.) were incorporated by 403 

performing 10 PCR cycles (Failsafe, Epicentre), cleaned using 1.1X AMPure XP beads 404 

(Beckman Couter Inc), quantified using a Qubit (DNA High Sensitivity, Life 405 

Technologies), and multiplexed using equal molar ratio of DNA for each sample. Final 16S 406 

libraries were loaded on a MiSeq sequencer at 2 pM with 5% PhiX control and sequenced 407 

using custom Illumina read primers to eliminate sequencing the V1-V3 16S primer 408 

sequences (Table S6). Each sample had an average of 150K read depth (300bp, paired end) 409 

and all 16S ribosomal sequences were classified using the UPARSE metagenomic pipeline 410 

(34). Briefly, this pipeline removed low quality reads, merged the paired reads to generate 411 

~430bp fragment, removed sequence artifacts (chimeric sequences, sequence errors), 412 

mapped full-length reads to a highly curated 16S ribosomal database derived from the RDP 413 

16S training set (v14), identified sequence reads to genus/species level with a 97% cut-off 414 

based on OTU classification, and generated summary tables for downstream statistical 415 
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analyses. In total, all samples passed our cut-off of at least 50,000 high-quality 16S DNA 416 

sequence reads per sample and all OTU were classified to the genus level (Fig S1). 417 

Rarefaction curves were performed to verify that sampling had exhausted the diversity at 418 

the sequence read depth cut off of 50,000 reads per sample (Fig S1C). For classification to 419 

the species level, we blasted the OTU representative sequences against the SILVA Ref 420 

NR99 database (release 119) from which uncultured species were removed. We used blastn 421 

with the following parameters ‘-evalue 1e-50 -perc_identity 99’. Blast results were further 422 

filtered to keep only results that were identical (up to the genus level) to UPARSE 423 

classification. 424 

Raw sequence data have been deposited at SRA (SUB1938413).  425 

Metagenome sequencing and analysis 426 

Genomic DNA (5ng) from 10 mild and 10 severe influenza patients were fragmented and 427 

tagged using the Nextera™ transposase following manufacturer’s instructions (Nextera™ 428 

XT DNA library kit, Illumina). Dual index adaptors were incorporated by PCR (14 cycles) 429 

and final libraries were multiplexed for sequencing. The final library was loaded on a 430 

NextSeq 500 using a 300 cycle high-output kit. All reads were de-multiplexed, adaptor 431 

sequences were removed, and low quality reads were discarded. High quality reads were 432 

aligned to a reference mammalian ribosomal RNA database and the human hg19 genome 433 

using STAR aligner. Unmapped nonhuman reads were classified using Kraken metagenome 434 

analysis software and the MiniKraken DB using default settings (35). Genus/species level 435 

identification including total read counts for each bacterial group was determined.  436 

Statistical analysis 437 

All statistical analyses were performed using R Statistical Software. The R “phyloseq” 438 

package (36) was used to calculate abundance-based richness estimators (e.g. Chao1, 439 
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ACE), and diversity indices (e.g. Shannon, Simpson and Fisher). Association between the 440 

Shannon diversity index (H) and patient group was assessed by one way ANOVA with 441 

Tukey multiple comparisons of means post hoc test. Multi-way ANOVA (type III) was 442 

used to identify covariates associated with each diversity index. The R “phyloseq” package 443 

was also used to calculate distance metrics (Bray-Curtis and weighted Unifrac) and 444 

visualize samples into two dimensions using non-metric multidimensional scaling (NMDS). 445 

Beta diversity analysis was performed on relative abundance data (i.e proportions: counts 446 

are divided by total library size). Permutational multivariate analysis of variance 447 

(PerMANOVA) was performed using adonis function in the R “vegan” package (37) to test 448 

the ability of variables (patient group, sex and age, sample nature, days since symptom 449 

onset) to account for observed variance in microbial profiles. Finally, statistical analyses for 450 

the differential abundance of mapped OTU reads were conducted by the ALDEx2 R 451 

package using a generalized linear model (glm) adjusting for covariates (age and sex) using 452 

aldex.glm function (38). We have modified the aldex.glm function to enable testing the 453 

effect of several variables in the glm model, instead of testing only one variable as in the 454 

default aldex.glm function. Covariates that were taken into account were age, sex, time 455 

since symptom onset and sample nature. Differential OTUs were defined using a p-value 456 

cut-off of 0.05.  457 

To determine whether small sets of OTUs could classify the patients, we used classification 458 

based on association rules using the R “arules” package. For this analysis, the relative 459 

abundance matrix of differentially abundant OTUs was transformed into a binary matrix 460 

based on the median relative of each OTU, with 1 meaning that the relative abundance of 461 

OTU_x in sample (i) is greater than the median value of OTU_x across all samples. Rules 462 

were mined with support>0.3, and confidence>0.8. Redundant rules were further pruned. 463 

We judged the robustness of the rules by using an LOOCV approach. For each subject, 464 



20 

 

association rules were predicted on all other subjects, excluding the one for which we made 465 

a prediction. After we had performed this procedure for all subjects, we selected the rules 466 

that were found in all instances and calculated their sensitivities and specificities from 467 

predicted versus true classifications. 468 
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FIGURES LEGENDS 590 

Figure 1: NP microbiota composition associated with each respiratory sample. A. 591 

Heatmap displaying the relative abundance of the 300 OTUs detected in each NP sample. 592 

Relative abundance is shown with a black to white gradient scale, with OTUs that were not 593 

quantified in white, and OTUs with a relative abundance of 1 being in black. The samples 594 

were ordered based on patients group and sample number. OTUs were clustered based on 595 

their relative abundance values across samples using Euclidian distances and complete 596 

linkage function. B. Barplot showing relative abundance of the 5 most abundant OTUs in 597 

each sample, colored by OTUs. Samples were ordered as in panel A. 598 

Figure 2: The NP microbiota composition differentiates influenza severity. Non-metric 599 

Multidimensional Scaling (NMDS) plot comparing the global NP microbial profiles with 600 

distances calculated using Unifrac distance. Each dot represents a sample: samples with 601 

similar microbial profiles are close together in the NMDS plot, while increasing distances 602 

in the plot between samples suggest divergent microbial profiles. Patients’ groups are 603 

depicted with different colors, and sample natures (NP Aspirate or Swabs) with different 604 

shapes. Stress = 0.1102 605 

Figure 3: Patients developing severe influenza have more diverse NP bacterial 606 

communities than patients with mild influenza. Boxplots showing different alpha 607 

diversity measures for the 3 groups of patients (Mild, Neurological, and Respiratory 608 

complications). 609 

Figure 4: Bacterial species differentially abundant between patients with mild and 610 

severe influenza (A) and between patients with respiratory and neurological 611 

complications (B). The heatmap shows the relative abundance of 12 OTUs that were found 612 

differentially abundant between patients with mild or severe disease after adjusting for 613 
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covariates (p-value < 0.05). Relative abundance is shown with a black to white gradient 614 

scale, with OTUs that were not quantified in white, and OTUs with a relative abundance of 615 

1 being in black. The samples were ordered based on patients group and sample number. 616 

OTUs were clustered based on their relative abundance values across samples using 617 

Euclidian distances and complete linkage function. 618 

TABLE LEGENDS 619 

Table 1:  (A) Baseline demographic and clinical characteristics of all patients included 620 

in the study. (B) Clinical evolution and therapeutic management of all patients 621 

included in the study. 622 

Table 2: Taxonomy and average relative abundance for the 12 OTUs differentially 623 

abundant between mild and severe influenza groups after adjusting for covariates 624 

(age, sex, sample nature, time since symptom onset). 625 

Table 3: Taxonomy and average relative abundance for the 7 OTUs differentially 626 

abundant between patients with respiratory and neurological complications after 627 

adjusting for covariates (age, sex, sample nature, time since symptom onset).   628 

Table 4: LOOCV performance characteristics of minimal microbial signatures in 629 

discriminating patients with mild vs. severe influenza outcome. Only rules predicted in 630 

all cross-validation instances are displayed in this table. Sensitivity and specificity were 631 

calculated using out-of-sample predictions. Rules are sorted based on specificity values in 632 

descending order. 633 


