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The aim of this study is to investigate aflatoxin gene expression during Streptomyces–Aspergillus

interaction. Aflatoxins are carcinogenic compounds produced mainly by Aspergillus flavus and

Aspergillus parasiticus. A previous study has shown that Streptomyces–A. flavus interaction can

reduce aflatoxin content in vitro. Here, we first validated this same effect in the interaction with A.

parasiticus. Moreover, we showed that growth reduction and aflatoxin content were correlated in

A. parasiticus but not in A. flavus. Secondly, we investigated the mechanisms of action by reverse-

transcriptase quantitative PCR. As microbial interaction can lead to variations in expression of

household genes, the most stable [act1, btub (and cox5 for A. parasiticus)] were chosen using

geNorm software. To shed light on the mechanisms involved, we studied during the interaction the

expression of five genes (aflD, aflM, aflP, aflR and aflS). Overall, the results of aflatoxin gene

expression showed that Streptomyces repressed gene expression to a greater level in A.

parasiticus than in A. flavus. Expression of aflR and aflS was generally repressed in both

Aspergillus species. Expression of aflM was repressed and was correlated with aflatoxin B1

content. The results suggest that aflM expression could be a potential aflatoxin indicator in

Streptomyces species interactions. Therefore, we demonstrate that Streptomyces can reduce

aflatoxin production by both Aspergillus species and that this effect can be correlated with the

repression of aflM expression.

INTRODUCTION

Aflatoxins (AFs) are polyketide-derived furanocoumarins.
They are produced by fungi of the genus Aspergillus
(including Aspergillus flavus and Aspergillus parasiticus) in
agricultural foodstuffs (maize, hazelnut, peanut, etc.) (Giorni
et al., 2007; Passone et al., 2010). These AFs are toxic and their
main adverse effects on humans are hepatocarcinoma (Qian
et al., 1994; IARC, 2014), immune system deficiency (Jiang
et al., 2005), reduced child growth (Gong et al., 2004) and
increased risks of stillborn or newborn jaundice (Shuaib et al.,
2010). To reduce those multiple effects, many countries have
implemented maximum authorized levels of AFs in food and
feed (Wu & Guclu, 2012).

AF biosynthesis is coded by a 80 kb long DNA sequence.
The latter is a cluster containing 30 putative genes charac-
terized in both A. flavus and A. parasiticus (Yu, 2012). For
structural genes, early (as aflD), medium (as aflM) and late
(as aflP) genes are denominated (Fig. S1, available in the

online Supplementary Material). The gene aflD encodes a
reductase enzyme involved in the conversion of norsolori-
nic acid to averantin (Papa, 1982); aflM is required for the
conversion of versicolorin A to demethylsterigmatocystin
(Skory et al., 1992); and aflP encodes a methyltransferase
converting sterigmatocystin to O-methylsterigmatocystin
(Bhatnagar et al., 1988). Two cluster-specific regulators are
also known: aflR encodes a transcription activator that
binds a consensus sequence in the promoter regions of AF
structural genes (Payne et al., 1993), and AflS is a potential
co-activator of AflR (Meyers et al., 1998) (Fig. S1).
Schmidt-Heydt et al. (2009) showed that the aflR/aflS
ratio can also be used as an indicator of AF biosynthesis. In
addition to AflR and AflS, the clustered genes are also
regulated by aspecific transcriptional regulators such as
LaeA or Ap-1 (Reverberi et al., 2008; Chang et al., 2012).

Microbial interactions with yeast, bacteria or fungi can
reduce AF production by aspergilli (Yin et al., 2008).
Streptomyces are soil-borne bacteria that can develop in
crops and that are known to be good biocontrol candidates
(Bressan & Figueiredo, 2008). Studies have shown that
Streptomyces metabolites are sources of AF repressors (Ono
et al., 1997; Sakuda et al., 2000). However, until recently no
studies have focused on Streptomyces–Aspergillus mutual

Abbreviations: AF, aflatoxin; RT-qPCR, reverse-transcriptase quantitat-
ive PCR.

One supplementary table and two supplementary figures are available
with the online Supplementary Material.
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interactions and their impact on AF production and AF
gene expression.

Recently, we found that Streptomyces (27 strains)–A. flavus
(NRRL 62477) mutual interaction on contact can reduce
the concentration of AF B1 (AFB1) and AF B2 (AFB2) in
vitro by up to 4.4 % (remaining concentration) (Verheecke
et al., 2014).

In this study, six of the Streptomyces strains previously used
were chosen for further investigation. Our preliminary goal
was to verify the interaction impact on an AF G producer,
namely A. parasiticus. Our main objective was to study the
impact of these interactions on AF gene expression. The
methodology was applied to A. flavus and A. parasiticus on
expression of five targeted genes (aflD, aflM, aflP, aflR and
aflS).

METHODS

Fungal and Streptomyces strains. The fungal strains used were A.
flavus NRRL 62477 and A. parasiticus Afc5. The six actinomycete
strains were selected on ISP-2 medium after 10 days at 28 uC, mainly
based on the results from Verheecke et al. (2014): antagonism on
contact with A. flavus, reduction of AFs concentration under 17 %
versus control and growth on ISP-2 medium (unpublished data).
Their 16S rRNA genes were sequenced according to the method
described by Zitouni et al. (2005). The six strains were identified as
Streptomyces roseolus S06, Streptomyces calvus S13, Streptomyces
thinghirensis S17, Streptomyces sp. S27, Streptomyces griseoplanus S35
and Streptomyces caeruleatus S38. Streptomyces were kept at 220 uC in
cryotubes in ISP-2 medium with 20 % (v/v) glycerol.

Interaction method and AF quantification. Pre-cultures for both
Aspergilli (on yeast extract peptone dextrose medium) and for
Streptomyces (on ISP-2) were made for 7 days at 28 uC as previously
described by Verheecke et al. (2014). The culture conditions are based
on Verheecke et al. (2014) with slight modifications: a sterile 8.5 cm
cellophane sheet (Hutchinson) was dropped on ISP-2 (Shirling &
Gottlieb, 1966) prior to inoculum and two streaks (instead of one) of
Streptomyces culture were inoculated in parallel 2 cm away from
Aspergillus inoculation (centre of the Petri dish). Two sets of plates
(three Petri dishes each) were inoculated: one set for RNA extraction
at 90 h (day 4) and one at 7 days for analysis of fungal growth and AF
concentration. One day 4 (set one), the fungal biomass was separated
from the bacterial biomass. Using a scalpel and with the naked eye,
the mouldy cellophane was removed and used for RNA extraction
(avoiding taking bacterial biomass). At day 7 (set two), the fungal
biomass was removed from the cellophane sheet for measurement of
dry weight (after drying: 18 h at 80 uC). In the remaining media,
three agar plugs (w 9 mm) were removed from the fungal growth area
for AF quantification (Verheecke et al., 2014). The experiment was
done twice in triplicate.

AF quantification was done as previously described (Verheecke et al.,
2014). Briefly, methanol (1 ml) was added to agar plugs during a
30 min incubation period (shaken three times). This was then
centrifuged for 15 min at 12470 g and the supernatant was filtered
(0.45 mm, 4 mm PVDF; Whatman) into vials. AF quantification was
done on an Ultimate 3000 system (Dionex- Thermo Electron) with all
the RS series modules. A C18 pre-column and column were used
(Phenomenex, Luna 3 mm, 20064.6 mm). Detection of AFs was
done according to instructions for the Coring Cell analysis system
(Coring System Diagnostix). Quantification was realized with
Chromeleon software, using AFB1 and AFB2 (Sigma-Aldrich)

(detection limit: 0.5 p.p.b.) as standards. Statistical analyses were

made using ‘nparcomp’ R (version 2.15.2).

RNA extraction and quantification. In total, 60 mg of mycelium
was crushed in liquid nitrogen to a fine powder. The powder was then

stored at 280 uC until RNA isolation. Total RNA was isolated using an

Aurum Total RNA kit (Bio-Rad). The manufacturer’s instructions for

eukaryotic and plant cell materials were followed, except for two

modifications: DNase I digestion was extended to 1 h and elution was

done at 70 uC for 2 min in the elution buffer. Total RNA was eluted

into 80 ml and stored at 220 uC. Then, 1 ml of total RNA of each sample

was loaded into an RNA StSens chip (Bio-Rad) and quantified on a

Nanodrop 2000 spectrophotometer (Thermo Scientific) according to

the manufacturer’s instructions. Samples with RNA Quality Indicator
.7, A260/280 .2 and A260/230 .1.3 were selected for further analysis.

Reverse-transcriptase quantitative PCR (RT-qPCR). Reverse

transcription was carried out with an Advantage RT-PCR kit

(Clontech) with Oligo (dT)18 primer according to the manufacturer’s

instructions (RNA concentration: 1 mg total RNA), with one

modification: incubation at 42 uC was extended to 4 h. RT-qPCR

was performed in duplicate using a CFX96 Touch instrument (Bio-

Rad) using SsoAdvancedTM SYBR Green Supermix (Bio-Rad)
according to the manufacturer’s instructions (annealing temperature,

59 uC; concentrations: primers, 500 nM and cDNA, 100 ng). Primer

pairs and associated efficiencies were validated (85–115 %) (Table S1).

Validation of reference genes. Based on the literature, six

candidate genes (act1, btub, cox5, ef1, gpdA and tbp) were studied

as potentially suitable reference genes (Radonić et al., 2004; Bohle

et al., 2007). For identification of the optimal number of reference

genes and stability, eight samples (randomly selected among the
different conditions) were tested in triplicate. The measures of gene

stability V (gene pairwise variation) and M (V of a gene with other

genes) were calculated using geNorm software (Vandesompele et al.,

2002). M values are represented in Fig. S2 for A. flavus and A.

parasiticus, according to the geNorm software in standard configura-

tion. This led to the choice of act1 and btub (for A. flavus) and act1,

btub and cox5 (for A. parasiticus) as optimal reference genes.

Relative quantification. Relative quantification was determined
compared with the chosen reference genes. Calculation of gene

expression was via qbase+ software as well as statistical analysis

(Hellemans et al., 2007).

The correlations between fungal dry weight, AF content and gene

expression were determined using Pearson correlation (r, asterisks
indicate statistically significant differences at P,0.05).

RESULTS

Interaction of Streptomyces with A. parasiticus
and A. flavus

Interaction between Streptomyces and both Aspergillus species
was monitored in Petri dishes over 7 days. On day 7, all the
tested Streptomyces strains showed a mutual antagonism on
contact with the aspergilli. For A. parasiticus, compared with
the control dry weight (100 %), in interaction with the
bacterial strains, the fungal residual dry weight (RDW)
ranged from 24.7 % (S06) to 57.2 % (S17) (Table 1). For A.
flavus (Table 2), RDW ranged from 60.7 % (S35) to 92.7 %
(S27) of the control dry weight (100 %) when treated with the
same bacterial strains.



Reduction of AF concentration

On day 7, the production of AFs by A. parasiticus and A. flavus
was reduced in contact with the six Streptomyces strains
tested. For A. parasiticus, AFB1 and AFG1 production was
monitored (Table 1). S17 showed lower reductions of 13 and
6.2 % of the concentration in the medium as a percentage of
the control) for AFB1 and AFG1, respectively. S27 and S38
showed higher reduction of 4.1 and 4.5 % for AFB1 and 2.9 %
and 4.0 % for AFG1. S06, S13 and S35 reduced to the greatest

extent, with no AFB1 or AFG1 detected.

For A. flavus, AFB1 and AFB2 production was monitored

(Table 2). S17 showed the least reduction, with 24 and

5.3 % concentration in the medium for AFB1 and AFB2,

respectively. S13 showed higher reduction of 15.6 and

9.3 % for AFB1 and AFB2, respectively. S06, S27, S35 and

S38 were the greatest reducers, with no AFB1 or AFB2

detected. Pearson correlation was also applied.

AF gene expression

Gene expression was determined on day 4 with A. flavus
and A. parasiticus alone (controls) and in interaction with
the six Streptomyces strains. Five genes (aflD, aflM, aflP,
aflR and aflS) were investigated relative to two reference
genes (act1 and btub) for A. flavus and three reference
genes (act1, btub and cox5) for A. parasiticus.

For A. parasiticus, aflM expression was slightly impacted by
S13 (7.7-fold), moderately by S35 (33.3-fold) and very
highly by S06 (100-fold) (Table 1). S35 and S06 also
reduced aflP expression 83- and 250-fold, respectively.
Regarding aflS and aflR, S13 significantly reduced aflS
expression (6.25-fold) and S06 repressed the expression of
both aflS (10-fold) and aflR (14.3-fold). The interaction
did not significantly impact aflD expression.

For A. flavus, S35 repressed the expression of aflM (8.4-
fold) and aflR (1.5-fold) (Table 2). S38 repressed the

Table 1. Impact of Streptomyces strains on A. parasiticus AFs and gene expression

Data with the same letter are not significantly different (P,0.05). MC, Concentration in the media as a percentage of the control; ND, not detected.

Mean values are given ±SD.

Strain Fungal growth (%)

(day 7)

Effect on AF accumulation (% MC)

in co-culture (day 7)

Effect on gene expression (day 4)

AFB1 AFG1 aflD aflM aflP aflR aflS Ratio aflR/aflS

Control 103.5±0.9a 108.3±5.8a 101.3±10.9a 1.00 1.00 1.00 1.00 1.00 0.8

S06 24.7±26.4c
ND

c
ND

c 0.7 0.01* 0* 0.1* 0.07* 1.2

S13 35.2±11.6b,c
ND

c
ND

c 0.67 0.13* 0.08 0.2 0.16* 1.2

S17 57.2±6.6b 13±3.5b 6.2±0.3b,c 1.56 2.61 2.28 1.05 0.64 1.4

S27 35.2±17b 4.1±0.5b 2.9±0.2b,c 0.84 0.41 0.1 0.39 0.44 0.8

S35 32.9±2.9c
ND

c
ND

c 0.50 0.03* 0.01* 0.27 0.42 0.5

S38 44.3±12b,c 4.5±0.7b,c 4.0±0.3b,c 0.64 0.28 0.11 0.5 0.44 1.5

*Significant difference (P,0.05).

Table 2. Impact of Streptomyces strains on A. flavus AFs and gene expression

Data with the same letter are not significantly different (P,0.05). MC, Concentration in the media as a percentage of the control; ND, not detected.

Mean values are given ±SD.

Strain Fungal growth (%)

(day 7)

Effect on AF accumulation (% MC)

in co-culture (day 7)

Effect on gene expression (day 4)

AFB1 AFB2 aflD aflM aflP aflR aflS Ratio aflR/aflS

Control 100.0±15.4a 100.0±13.9a 100.0±17.3a 1.00 1.00 1.00 1.00 1.00 0.9

S06 64.6±8.6b 2.3±4.5c
ND 0.69 0.25 1.57 2.37 0.40 2.9

S13 81.3±16.2a 15.6±9.2b 9.3±20.8b 1.60 0.45 0.41 0.82 0.70 0.5

S17 77.7±11.2a 24.0±19.8b 5.3±11.9b 0.95 0.26 3.03 1.53 0.39 1.8

S27 92.7±18.3a 8.1±5.1b
ND 1.42 0.26 0.39 0.88 0.96 0.5

S35 60.7±11.4b 0.2±0.5c
ND 0.50 0.12* 1.02 0.63 0.24 1.3

S38 62.4±15.2b 3.1±5.3c
ND 1.44 0.14* 0.21* 0.69* 0.62 0.5

*Significant difference (P,0.05).



expression of aflP (4.8-fold) and aflR (1.45-fold). S06
enhanced the expression of aflR (2.37-fold). Expression of
aflD and aflS was not significantly impacted by the six
strains.

The ratio aflR/aflS was monitored in both producing
strains. Both positive controls were close to 1 : 0.8 for A.
parasiticus and 0.9 for A. flavus. This ratio was above 1 for
A. parasiticus in interaction with S06 (1.2), S13 (1.2), S17
(1.4) and S38 (1.5) and for A. flavus in interaction with S06
(2.9), S17 (1.8) and S35 (1.3). Ratios for the other
interactions were below 1.

Assessment of correlation

Independently of the Streptomyces tested, Pearson correla-
tions were done between RDW and AF concentration. For
A. parasiticus, the reduction of AFB1 and AFG1 concen-
tration in the medium was correlated (r50.94* and 0.91*)
with RDW reduction. For A. flavus, AFB1 and AFB2
concentration were not correlated with RDW reduction.

Pearson correlations were also applied to gene expression
versus RDW or AF concentration in the medium. For A.
parasiticus, all gene expressions were correlated with RDW
reduction. The strongest correlation was obtained for
expression of aflP (r50.97*). Correlations were also iden-
tified between the reduction of AFB1 concentration in the
mediumand aflD, aflM and aflP repression (r50.91*, 0.92*
and 0.86*, respectively). For A. flavus, RDW and AFB1 and
AFB2 concentrations were only correlated with aflM
expression (r50.86*, 0.86* and 0.83, respectively).

DISCUSSION

Six Streptomyces strains had their impact confirmed on A.
flavus and tested for A. parasiticus. They all showed mutual
antagonism on contact as described by Magan & Lacey
(1984). This type of interaction has already been studied in
Petri dishes (Sultan & Magan, 2011; Verheecke et al., 2014).
The latter showed that after 10 days at 28 uC on ISP-2
medium, 27 of 37 actinomycete strains showed mutual
antagonism on contact with A. flavus and were able to reduce
AF accumulation (residual concentration below 38 %). Here,
after 7 days, the interaction with both Aspergillus species and
the six chosen bacterial strains led to mutual antagonism on
contact impacting fungal growth and resulting in residual AF
concentration in the medium below 24 %.

In our study, for A. parasiticus, RDW reduction was
correlated with AF concentration reduction. This correla-
tion is generally observed in the literature (reviewed by
Holmes et al., 2008; Bluma et al., 2008a, b). However,
exceptions to this rule are also found. Indeed, Reverberi
et al. (2008) studied the effect of Lentinula edodes CF42
filtrate (2 %, w/v) on A. parasiticus after 9 days at 30 uC in
potato dextrose broth. The results showed 1.90 % AF
concentration while no impact on fungal growth was
detected. In our study, we highlight another example in

another Aspergillus species. Indeed, for A. flavus, RDW
reduction was not correlated with AF concentration
reduction. In conclusion, we observed different responses
to the Streptomyces interaction depending on the Aspergillus
species studied. Regarding A. flavus, the results described here
demonstrate that bacterial interaction did not impact AF
concentration in the medium just by fungal growth
reduction.

AF inhibition can occur through gene repression (Yu, 2012;
Alkhayyat & Yu, 2014). Thus, we developed a methodology to
monitor AF gene expression. Our preliminary work iden-
tified maximum gene expression at 90 h (data not shoown).
Based on those results, we monitored gene expression under
the same conditions. Reference genes were then chosen based
on geNorm software and the data matched the MIQE
guidelines (Bustin et al., 2009). In our study, we tested six
candidates genes for their stability during Aspergillus–
Streptomyces interaction and the most stable genes were
identified (Radonić et al., 2004). Nevertheless, cox5 was less
stable than expected (fifth out of seven for A. flavus) and
gapdh was more stable than described in the literature for
other organisms (Dheda et al., 2004; Bohle et al., 2007;
Radonić et al., 2004).

In particular, we monitored the expression of three
structural genes, aflD (early), aflM (medium) and aflP
(late), and two regulator-coding genes, aflR and aflS. The
expression of aflM was mostly repressed (between 2.2- and
100-fold) under the conditions tested. A disruption of the
aflM homologue in Aspergillus nidulans (verA) led to a
reduction of sterigmatocystin production by 200- to 1000-
fold (Keller et al., 1994) and versicolorin A accumulation.
Here, we showed that repression of aflM expression was
highly correlated with AFB1 concentration reduction in
both Aspergillus species. Thus, the measure of aflM
expression could be an indicator of AF concentration in
our experimental conditions.

For A. parasiticus, gene expressions were correlated with
growth reduction. This could be linked to a delay in fungal
growth impacting gene expression. For A. flavus, RDW
reduction was not correlated with gene expression. The
latter were differentially modulated depending on the
bacterial strain. Similar results were obtained for A. flavus
with caffeic acid addition to the medium: aflD (6.6-fold),
aflM (7.1-fold), aflP (9.1-fold) and aflS (1.5-fold) were
repressed without affecting fungal growth (Kim et al.,
2008). In our case, the same range of repression was
observed in the Streptomyces–Aspergillus interaction.

With regard to regulators, expression of aflR was differently
impacted. It was enhanced 2.37-fold by S06 for A. flavus
and repressed up to 10-fold by S06 for A. parasiticus.
Variation of aflR expression was also observed in A.
parasiticus after addition of Trametes versicolor filtrate in
the medium. Indeed, after 3 days, aflR expression was
enhanced by more than 10-fold in Czapek–Dox broth
solidified with agar while AF content was reduced (Zjalic
et al., 2006). In the present study, aflR expression was



enhanced in S06 interaction with A. flavus and AF pro-
duction was also reduced. In the S06 interaction, aflR
expression was not representative of AflR function on aflD,
aflM or aflS expression.

Depending on the fungal and bacterial strains, the ratio
aflR/aflS was differently impacted. It ranged for A. flavus
from 2.9 by S06 to 0.5 by S35 and for A. parasiticus from
1.5 by S38 to 0.5 by S35. This ratio was first studied under
various activity of water and temperatures, and a ratio
above 1 would lead to an activation of AFB1 biosynthesis
(Schmidt-Heydt et al., 2009). In our study, a ratio above 1
was found under most conditions but was not correlated
with high AF accumulation.

Moreover, the repression of aflM expression was highly
correlated with AFB1 concentration in the medium in both
Aspergillus species. A further indicator besides the aflR/aflS
ratio could be aflM expression in relation to AF accumu-
lation in the interaction with Streptomyces.

In conclusion, we have shown that mutual antagonism on
contact between Streptomyces species and species of the
genus Aspergilli led to a reduction of AF accumulation by
A. flavus and A. parasiticus. The AF reduction of the latter
was correlated with fungal growth reduction whereas no
correlation was observed for A. flavus. Here, Streptomyces
species bacterial interactions mainly led to the repression of
aflM and aflS but had a different impact on aflP and aflR
expression. Expression of aflM was correlated with AF
accumulation in both Aspergillus species and could be an
indicator of AF content in the interaction with Strepto-
myces. Based on this, Streptomyces griseoplanus S35 appears
to be the best biocontrol candidate for further testing on
maize.
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