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RÉSUMÉ. Prolongeant un précédent model publié dédié à l’interaction entre les cellules β, l’insuline,
le glucose, les recepteurs d’insuline et les acides gras libres, cet article propose un modele mathé-
matique introduisant l’effet de l’hormone de croissance sur l’homéostasie du glucose. L’analyse de
stabilité a été suivie d’explication pratique des points d’équilibre. Enfin, la simulation a illustré com-
ment les cellules β, l’insuline, le glucose, les récepteurs d’insuline, les acides gras libres et l’hormone
de croissance peuvent varier en fonction des différentes valeurs de certains paramètres.

ABSTRACT. Extending an existing model devoted to the interaction between β-cell mass, insulin,
glucose, receptor dynamics and free fatty acids, in glucose regulatory system simulation, this paper
proposes a mathematical model introducing the effect of growth hormone on the glucose homeostasis
alongside the other variables. Stability analysis is carried out and pragmatic explanation of the equi-
librium points is emphasized. Finally, simulation illustrated how β-cell mass, insulin, glucose, receptor
dynamics, free fatty acids and growth hormone may vary with different values of some parameters in
the model.
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1. Introduction

During the last decades, an important number of publications were devoted to mathemat-
ical modeling applied to diabetes. We cite in particular, the papers presenting a model
of β-Cell Mass, Insulin, and Glucose Kinetics [17], mathematical modeling and simula-
tion of β-Cell Mass, Insulin, and Glucose dynamics: effect of genetic predisposition to
diabetes [4], dynamic modeling of Free Fatty Acids, Glucose, and Insulin: an extended
minimal model [14], a model of β-Cell Mass, Insulin, Glucose and Receptor Dynamics
[8] and the impact of obesity on predisposed people to type 2 diabetes: a mathematical
model of β-Cell Mass, Insulin, Glucose, Receptor Dynamics and Free Fatty Acids [5].
For more publications on modeling for diabetes, we refer to the following reviews [1]-[3],
[6], [11]-[13] and [15]. In this paper, we consider the effect of Growth Hormone (GH) on
glucose homeostasis, extending the previous model published by Boutayeb W et al. [5].
While growth hormone is well known to promote growth in children by acting on a num-
ber of tissues and organs, it is importance for adults is less known. It doesn’t cause growth
in adults but it plays a major role in metabolism, muscle mass function, lipid control and
glucose homeostasis. The idea of investigating growth hormone was mainly motivated
by a review article published by Kim S-H and Park M-J in 2017 on the effects of growth
hormone (GH) on glucose metabolism and insulin resistance in human [9]. The review
article summarized the main findings of several studies on this subject as follows:

1) Investigating the effects of growth hormone (GH) on glucose metabolism
have demonstrated that GH increases glucose production through gluconeogenesis and
glycogenolysis from the liver and kidney.

2) Growth hormone stimulates lipolysis which results in free fatty acid (FFA) flux
from adipose tissue to circulation.

3) Increased FFA in circulation can induce insulin resistance. Meanwhile, increase
in FFA uptake by hepatocytes results in promotion of hepatic lipid oxidation and accumu-
lation of Acetyl-CoA, yielding an increase of blood glucose levels.

4) Interaction between insulin and GH downstream of receptor activation in the
skeletal muscle and adipose tissue provides another alternative mechanism mediating GH-
induced resistance.

Consequently, growth hormone can be introduced in a mathematical model besides other
hormones and factors like glucose, insulin, beta-cells, insulin receptors and free fatty
acids (FFA).
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2. The mathematical model

Our model is an extension of the model of Boutayeb et al. [5] which involves five variables
(glucose, insulin, β-cell mass, insulin receptors and free fatty acids) governed by the five
following nonlinear differential equations :

dβ

dt
=
(
−g + hG(t)− iG(t)2

)
β(t) (1)

dI

dt
=

β dG2

(1 +R)(e+G2)
− fI − fRI (2)

dG

dt
= a− (b+ cRI)G+m1(F − Fb) (3)

dR

dt
= j(1−R)− kIR− lR (4)

dF

dt
= −m2(F − Fb) +m3(G−Gb) (5)

where β-cell mass β(t), insulin I(t), glucose G(t), insulin receptors R(t) and growth
hormone GH(t) are all functions of time, from which t was omitted for simplicity. All
the coefficient parameters, their interpretation and values are recalled in Table 1.

Parameter Value Units Biological Interpretation
a 864 mg

dl d glucose production rate by liver when G = 0
b 1.44 d−1 glucose clearance rate independent of insulin
c 0.85 ml

µU d insulin induced glucose uptake rate
d 43.2 µu

ml dmg β-cell maximum insulin secretory rate

e 20, 000 mg2

dl2 gives inflection point of sigmoidal function
f 216 d−1 whole body insulin clearance rate
j 2.64 d−1 insulin receptor recycling rate
k 0.02 ml

µU d insulin dependent receptor endocytosis rate
l 0.24 d−1 insulin independent receptor endocytosis rate
g 0.03 d−1 β-cell natural death rate
h 0.5727e-3 dl

mg d determines β-cell glucose tolerance range
i 0.2523e-5 dl2

mg2 d determines β-cell glucose tolerance range
m1 0.0864 1

d µmol constant rate
m2 43.2 d−1 constant rate for FFA production
m3 97.92 ml−1 constant rate for Glucose production
Fb 11 mg

dl basal value of Free Fatty Acids
Gb 98 mg

dl basal value of glucose

Table 1. Parameters in Insulin, Glucose, FFA, βcells & Receptors equations used by [5]
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In our model, we add growth hormone dynamics, by including a sixth differential equation
for GH(t) and by exhibiting the interaction of GH with glucose and FFA as follows:

dβ

dt
=
(
−g + hG(t)− iG(t)2

)
β(t) (6)

dI

dt
=

β dG2

(1 +R)(e+G2)
− fI − fRI (7)

dG

dt
= a− (b+ cRI)G+m1(F − Fb) + cGH (8)

dR

dt
= j(1−R)− kIR− lR (9)

dF

dt
= −m2(F − Fb) +m3(G−Gb) + x(GH −GHb) (10)

dGH

dt
= p− wGH − s(F − Fb)− zR (11)

From equation (11), the rate of the growth hormone GH is increased by the rate of
production of GH by the somatotropic cells (p), occurring in the pituitary gland. It is
decreased by the rate of GH clearance/absorption by the liver (w), the rate of uptake
of GH by Fat cells (s) and by the rate of uptake of GH by receptor cells (z). Growth
hormone also increases the rate of glucose (c) as well as the rate of FFA (x). Parameters
(and their values) used in the GH equation are given in Table 2 below. Other nonlinear
and more complicated interactions of GH with β-cells, insulin and receptors will be
addressed in further future research work.

GH Coefficients in equations Value Units Biological Interpretation
p 363 mlµg

min GH production rate by somatotropic cells
w 136 ml

min GH clearance rate by the liver
s 0.1 ng l

dml µmol rate of uptake of GH by Fat cells
z 2 ng l

dml rate of uptake of GH by receptor cells
x 200 mlµmol

l d ng constant rate for GH production
GHb 5 ng

ml basal value of growth hormone

Table 2. Parameters and their values used in the growth hormone equation [16]
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3. Stability analysis

3.1. Equilibrium points
The equilibrium points satisfy:

dβ

dt
=
dI

dt
=
dG

dt
=
dR

dt
=
dF

dt
=
dGH

dt
= 0 (12)

From equations (6) & (12) :

either (a) β = β∗
0 = 0, or (b) − g + hG− iG2 = 0 (13)

Case (a) : By direct substitution of β = 0 into equations of insulin and receptors (7) &
(9), we get three values:

β = β∗
0 = 0, I = I∗0 = 0, R = R∗

0 =
j

j + l
(14)

Substituting these values, into the original system gives the algebraic expressions
for G∗

0, F
∗
0 , GH

∗
0 as solutions to the following linear system b −m1 −c

0 s w
m3 −m2 x

 G
F
GH

 =

 a−m1Fb
p+ sFb − z j

j+l

m3Gb −m2Fb + xGHb


with

GH∗
0 =

γ

θ
(15)

F ∗
0 = −w

s
GH∗

0 +
1

s

(
p+ sFb − z

j

j + l

)
(16)

G∗
0 =

a−m1Fb +m1F
∗
0 + cGH∗

0

b
(17)

such that θ and γ are given by

θ = s(x b+ cm3)− w (m1m3 −m2b).

γ = s b (m3Gb + xGHb −m2 Fb)− sm3 (a−m1 Fb)− (m1m3 −m2 b)

(
p+ s Fb − z

j

j + l

)
.

Hence, a first equilibrium point is

P0 = (β∗
0 , I

∗
0 , G

∗
0, R

∗
0, F

∗
0 , GH

∗
0 ) =

(
0, 0, G∗

0,
j

j + l
, F ∗

0 , GH
∗
0

)
(18)

in which G∗
0, F ∗

0 and GH∗
0 are respectively given by (15), (16) and (17).
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Case (b) : (−g + hG− iG2) = 0 has two roots

G∗
1 =

h+
√
h2 − 4ig

2i

and G∗
2 =

h−
√
h2 − 4ig

2i
Taking G = G∗

n (n = 1, 2) and considering

dR

dt
=
dG

dt
=
dGH

dt
=
dF

dt
= 0

yields the following nonlinear system:

j(1−R)− kRI − l R = 0

bG∗
n −m1F − cGH + cRIG∗

n = a−m1Fb

sF + wGH + zR = p+ sFb

−m2F + xGH = −m3(G
∗
n −Gb)−m2Fb + xGHb

The nonlinearity term RI in
dG

dt
, is then replaced by RI =

j

k
− j + l

k
R, derived

from
dR

dt
= 0 and the system is re-arranged as a linear system of three unknowns

F , GH and R, as follows : m1 c δ
m2 −x 0
s w z

  F
GH
R

 =

 α
λ
µ


Where:

δ =
c(j + l)

k
G∗
n, α =

c j

k
G∗
n + bG∗

n − a+m1Fb,

λ = m3(G
∗
n −Gb) +m2Fb − xGHb, µ = p+ sFb.

The solution of this system is given by:

R∗
n =

(µm1 − αs)(xm1 + cm2) + (wm1 − cs)(λm1 − αm2)

(xm1 + cm2)(zm1 − δs)− δm2(wm1 − cs)
(19)

GH∗
n =

(αm2 − λm1)

(xm1 + cm2)
− δm2

(xm1 + cm2)
R∗
n (20)

F ∗
n =

α

m1
− δ

m1
R∗
n −

c

m1
GH∗

n (21)
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then, expressions for I∗n and β∗
n follow from substitutions and are given by :

I∗n =
j

k

1

R∗
n

− j + l

k
(22)

β∗
n =

fI∗n + fI∗nR
∗
n

d

(1 +R∗
n)(e+G∗

n
2)

G∗
n
2

(23)

Consequently, the second and third equilibrium points Pn, n = 1, 2 are given by :

Pn = (β∗
n, I

∗
n, G

∗
n, R

∗
n, F

∗
n , GH

∗
n), n = 1, 2; (24)

using equations (19) to (23).

3.2. Stability Analysis
The Jacobian of the system is given by:


−g + hG− iG2 0 (h− 2iG)β 0 0 0
d

(1 +R)
G2

(e+G2) −f − fR 2βd

(1 +R)

G

(e+G2)
(1− G2

(e+G2)
) −fI − βd

(1 +R)
2

G2

(e+G2)
0 0

0 −cRG −cRI − b −cIG m1 c
0 −kR 0 −kI − l − j 0 0
0 0 m3 0 −m2 x
0 0 0 −z −s −w


Using parameters’ values listed in Tables 1 and 2, we evaluate the Jacobian at each equi-
librium point P0, P1 and P2 given by equations (18) and (24). Then eigenvalues of re-
sulting matrices J(Pn), for n = 0, 1, 2 are computed to classify the equilibrium points,
as follows: The eigenvalues of the Jacobian J(P0) at P0 are :

−1.24,−44.16,−69.23,−2.88,−412.56,−0.81

All the eigenvalues of the Jacobian J(P0) are negative, hence P0 is a stable pathological
point which indicates that a diabetic person with a complete apoptosis of β-cells is in a
state of no return. In this case treatment of diabetes must be by exogenous injection of
insulin. The eigenvalues of the Jacobian J(P1) at P1 are :

−383,−44.42,−24.64,−2.88,−69.23,−0.005

Similarly, all the eigenvalues of the Jacobian J(P1) are negative, hence P1 is a stable
physiological point. In opposition to the previous case, here stability means that a person
having values of the six variables in the required physiological range will remain in a
healthy state as far as the values vary within the vicinity of the healthy ranges. The
eigenvalues of the Jacobian J(P2) at P2 are :

−401,−69,−44,−10.26, 0.1,−2.88
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In the case of P2, one of the eigenvalues is not negative and hence, this equilibrium point
is a saddle point, which means, that a person living with these values of the six variables
may evolve towards a physiological or a pathological state.

3.3. Classification and interpretation of equilibrium points
Using the parameter values given in Tables 1 and 2 yields equilibrium points with numer-
ical values as follows:

(a) P0 {β = 0, I = 0, G = 680, R = .92, F = 1681, GH = 1.7},

This equilibrium point is considered as a pathological equilibrium point in which in-
sulin and β-cell mass are equal to zero and consequently a very high value of glucose
(680mg/dl) occurs, indicating a dangerous hyperglycemia as it happens in people with
type1 diabetes at a late diagnosis. This pathological point is also associated with a high
level of FFA (1681µmol/l) and a relatively low value of GH (1.7ng/ml) which is in
agreement with known biological statements since, under physiological conditions, high
levels of glucose and FFA inhibits secretion of growth hormone [7].

(b) P1 {β = 855, I = 12.67, G = 82, R = .84, F = 333, GH = 2.7}

This second equilibrium point is considered as a physiological equilibrium point in which
all the variables have usual average physiological values. Indeed, it shows that glucose
(82mg/dl) is in the range of a no diabetic person, the β-cells are functioning normally
and consequently, insulin is also in the physiological range (12.74 µU

ml ). Similarly, free
fatty acids and growth hormone correspond to a normal physiological state.

(c) P2 {β = 211.6, I = 6.14, G = 145, R = .88, F = 475, GH = 2.6}

The third equilibrium point is between the physiological and the pathological states. It
indicates low values of β-cell mass (211mg) and insulin (6.14 µU

ml ) and consequently
a value of glucose (145mg/dl) exceeding the threshold needed for a no diabetic per-
son. Free fatty acids appear also to be higher while the level of GH is in the acceptable
range. This intermediate equilibrium point is practically interesting since it implies three
possibilities of evolution:

– Evolution towards the pathological point if apoptosis of β-cells is continued until
the death of all cells, yielding zero insulin production.

– Evolution towards the physiological point if apoptosis of β-cells is stopped and
eventually reversed in such a way to increase production of insulin. This could be the
case of obese people doing no physical activity and eating unhealthy diet who change
their behavior completely to do physical activity, loose weight and eat healthy diet.

– No evolution or small perturbations around high levels of glucose and FFA, and low
levels of insulin and β-cells.
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Variation in concentrations of βcells, insulin, glucose, receptors, FFA and growth hor-
mone is illustrated by the Figure below.

NOTE. — In the physiological state (in case of no diabetes), reference values for β-cells
mass, insulin, glucose, FFA and growth hormone fall within the following ranges :
β-cell mass = 850mg, I = 10µU/ml, G = 100mg/dl (FFA) F = 380µmol/ml ,
Growth hormone: GH < 5ng/ml for men and GH < 10ng/ml for women.

Figure 1. Concentrations of βcells, insulin, glucose, receptors, FFA and growth hormone
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4. Simulation

4.1. Insulin sensitivity (c)
Studies have shown that on the one hand, physical exercise can increase insulin sensitivity
by 36% and on the other hand, insulin resistance due to obesity and/or other factors can
decrease insulin induced glucose uptake by 50% to 100% [4], [8], and [17]. Following
this, a simulation was carried out with different values of the parameter c to check how
the intermediate equilibrium point P2 may vary. It was found that variation of c does not
affect glucose, insulin receptors, FFA nor GH but it affects β-cells mass and insulin as
indicated in Table 3.

c-value β-cell mass Insulin
1 180 5.19

0.85 212 6.14
0.42 429 12.98

Table 3. Variation of β-cell mass and insulin with respect to c-values

4.2. Production of GH by the somatotropic cells (p)
Simulation with different values of the parameter p have shown that, in the intermediate
equilibrium point P2, values of β-cell mass, Insulin, Glucose, Insulin Receptors are not
affected while FFA and GH increase with increased values of p as indicated in Table 4

p-value FFA Growth hormone
363 475.4 2.59
400 476.6 2.86
600 483.4 4.32
900 493.6 6.52

Table 4. Variation of FFA and growth hormone with respect to p-values

4.3. Growth Hormone clearance / absorption by the liver (w)
Simulation with different values of the parameter w have shown that, in the intermedi-
ate equilibrium point, values of β-cell mass, Insulin, Glucose, Insulin Receptors are not
affected while FFA and GH decrease with increased w as indicated in Table 5.
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w-value FAA Growth hormone
20 543.2 17.25
80 483.7 4.39

300 468.8 1.17
136 475.4 2.59

Table 5. Variation of FFA and growth hormone with respect to w-values

5. Conclusion
While there is an abundant literature on mathematical models dealing with glucose dy-
namics in interaction with insulin, very few models are devoted to the effect of growth
hormone on glucose homeostasis. To our knowledge, this paper is the first to introduce
the combined interaction between the variables glucose, insulin, free fatty acids (FFA)
and growth hormone. Local stability analysis showed that, beside the stable patholog-
ical and stable physiological equilibrium points, there is a saddle point with levels of
β-cells mass and insulin lower than the corresponding values required in the physiolog-
ical case. The unstable point indicates also a value of glucose higher than the value
needed in a nondiabetic person. Pragmatically, this intermediate equilibrium point refers
to a prediabetic stage and our mathematical model indicates that evolution towards di-
abetes may be avoided or at least delayed provided efficient action on risk factors like
obesity/overweight, unhealthy diet, physical inactivity and smoking. Simulations using
different values of parameters illustrated the importance of insulin sensitivity and how
to avoid insulin resistance caused mainly by weight excess and lack of physical activ-
ity. The rates of production and clearance (and eventually deficiency) of growth hormone
were also used to simulate variation of free fatty acids and growth hormone.
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