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ABSTRACT

A cryo Electron Microscopy dataset is composed of tomo-
graphic projections of an object (e.g. a macromolecule). The
projection orientation information is unknown. The scope of
this paper is the tomographic reconstruction of the observed
object in the ab-initio case where the volume has to be esti-
mated only from a raw projection dataset. A new approach
based on a parametric model of the volume is presented. The
description of the model and the search of the parameters are
detailed. The accuracy and robustness of the proposed recon-
struction method is shown on synthetic and real databases.

Index Terms— tomography, cryo EM, parametrization,
unknown directions

1. INTRODUCTION

In biology, the 3D structure of a protein plays an essential
role in the determination of its biological functions. Cryo
Electron Microscopy (Cryo EM) is one of the main imaging
modalities used for macromolecule structure determination.
It enables, after reconstruction to visualize the 3D electron
density of large macro molecules (1,000 to 10,000 atoms). A
Cryo EM dataset is composed of a large number (thousands
to million) of images, each including a tomographic projec-
tion of the same molecule. Due to the acquisition principle,
the projection direction (orientation) of each projection is un-
known. Therefore, the construction of a 3D object from the
Cryo EM dataset is a difficult problem with important biolog-
ical consequences .

Because of the problem complexity, the computational
cost of reconstruction methods is still an issue and can reach
several hundreds of hours of CPU time for an ab-initio re-
construction. Recent softwares (SIMPLE [?], RELION [?]
or Cryo-SPARC [?]) use massively parallelized implementa-
tions to reduce the execution time. Nevertheless, it is impor-
tant to look forward the complexity reduction so as to treat
bigger datasets (as heterogeneous datasets) or to reduce the
computation time. We propose in this paper a method for ab-
initio reconstruction with a reduced number of operations that
can be implemented in parallel.

The ab-initio reconstruction methods construct the den-
sity volume from a raw projection image dataset without prior
volume information. Most of the ab-initio reconstructions in-
volve two steps. In the first one, the orientations are esti-
mated. Different approaches have been proposed in the lit-
erature: some are based on the common line property [?],
some use non-linear dimension reduction to represent the pro-
jection images in a space where orientations can directly be
estimated [?], and some use specific metrics as the moment
based angular distance [?, ?]. In a second time, the volume
is constructed. Several methods exist, using algebraic recon-
struction [?], using iterative back propagation algorithms [?]
or Fourier representation of the volume [?]. Other approaches
propose to estimate jointly the orientations and the 3D vol-
ume. As in [?] where the construction is based on a cost op-
timization taking into account the common line property and
the similarity between the projections of the estimated vol-
ume and the dataset. Facing the high computational cost of
3D computerized tomography, a reconstruction method based
on a parametric model is presented in this study. The re-
duced number of parameters allows fast reconstruction result-
ing from an optimization.

The paper is structured as follows. In Section 2, the to-
mographic problem is defined and the reconstruction method
is described. In Section 3, the implementation of our method
including our optimization strategy is detailed and the evalu-
ation of the proposed algorithm is given in Section 4. Finally,
the conclusion of the study and some future works are given
in the last section.

2. RECONSTRUCTION ALGORITHM

Let ρ : R3 7→ R be a continuous function with compact sup-
port standing for the volume, and let R ∈ SO(3), the orien-
tation, be a rotation matrix. Let Pρ(R) be the projection of ρ
for the orientation R. The projection is given by the Radon
transform with the formula:

Pρ(R)(y, z) =

∫ +∞

−∞
ρ
(
R−1(x, y, z)

)
dx . (1)

We note π the projection given by the sampling, possibly
noisy, of Pρ(R), and m the width of the projection image



(and also the sampling resolution). Let Π be a finite set of
sampled projections: Π = {πk, k ∈ [[1, np]]} where np is the
number of projections.

We propose to approximate the volume ρ by a sum of
radial Gaussians

∑ng

l=1 ρl where ng is the number of Gaus-
sians and ρl a radial Gaussian parametrized by its position,
Xl = (xl, yl, zl), its width, δl and its intensity ωl:

ρl(x, y, z) =
ωl

(
√

2πδl)3ng
exp

(
− R2

l

2δ2l

)
, (2)

where R2
l = (x − xl)

2 + (y − yl)
2 + (z − zl)

2. We note
S(ng) the set of the ng × 5 parameters of the Gaussian sum
and V (S(ng)) the Gaussian sum (abbreviated in V if no am-
biguity). Note that the linearity of the Radon transform im-
plies that the projection of the volume V is given by the sum
of the projections of the Gaussians (ρl)l. For a given orienta-
tion, R, the projection of the volume V is given analytically
by:

PV (R)(s, t) =

ng∑
l=1

ωl
2πδ2l ng

exp

(
− (s− sl)2 + (t− tl)2

2δ2l

)
(3)

where (rl, sl, tl)
t = R× (xl, yl, zl)

t.
Note that we choose the Gaussian functions nevertheless

other integrable spherical functions can also be used.
The tomographic reconstruction is performed by jointly

estimating the volume parameters, Ŝ, and the orientation pa-
rameters, {R̂k, k ∈ [[1, np]]} that minimize cost function
given by:

E =

np∑
k=1

m∑
i=1

m∑
j=1

(πk,i,j − π̂k,i,j)2 , (4)

where πk,i,j is the (i, j) pixel of the kth projection and π̂k the
sampled projection of V (Ŝ(ng)) with the estimated orienta-
tion R̂k.

Intuitively, for a Gaussian number ng small against the
voxel number, this approach is faster than a voxel based vol-
ume as the optimization is done on a smaller set of param-
eters, e.g. for a 2563 volume and ng = 50, there are 250
parameters for the proposed method in comparison to 2563

for a voxel based one. In addition, each estimated projection
is computed in O(m2) instead of O(m3) when line integrals
are computed.

The optimization implementation is done with a stochas-
tic gradient descent; it is easily parallelizable and is adapted
to a multi-scale approach. The detail of the optimization is
given in the next Section.

3. IMPLEMENTATION

The parameter estimation is done alternatively on the orien-
tations and the volume, as described in Algorithm 1. Both

optimizations are described in the next subsections.

Algorithm 1: Reconstruction algorithm
Data: Π
Result: Ŝ and {R̂k, k ∈ [[1, np]]}
initialization: random set Ŝ;
while not converged do

for k ∈ [[1, np]] do
R̂k = Orientations Estimation(Ŝ);

end
Ŝ = Volume Estimation(Ŝ, {R̂k, k ∈ [[1, np]]});

end

3.1. Volume parameter estimation

For a given set of orientations, {R̂k, k ∈ [[1, np]]}, the volume
parameters Ŝ are computed performing a gradient descent.
The optimization step is initialized with the last estimated pa-
rameters.

At each iteration, the gradient of E is computed using the
expressions given in Equations (5, 6, 7).

∂E

∂ωl
= 2

np∑
k=1

m∑
i=1

m∑
j=1

(
(π̂k,i,j − πk,i,j)

1

ωl
π̂l,k,i,j

)
, (5)

∂E

∂δl
= 2

np∑
k=1

m∑
i=1

m∑
j=1

(
(πk,i,j − π̂k,i,j)×

( 2

δl
− (sl,k − s)2 + (tl,k − t)2

δ3l

)
π̂l,k,i,j

) , (6)

∂E

∂Xl
= 2

m∑
i=1

m∑
j=1

((
πk,i,j − π̂k,i,j

)∂π̂k,i,j
∂Xl

)
, (7)

where

∂π̂k,i,j
∂Xl

= R̂k ×

 0
sl,k − s
tl,k − t

 1

δ2l
π̂k,i,j . (8)

The image π̂l,k is the discrete projection of V (Ŝ(ng)) with
the estimated orientation R̂k.

The position, width and intensity parameters are updated
independently, due to their heterogeneity. To be independent
from the normalization of the projection dataset, the intensi-
ties are updated with a constant step and the positions and the
widths are updated using a global constant norm:

ng∑
l=1

||X(n)
l −X(n+1)

l ||22 = λ1 ,

ng∑
l=1

(δ
(n)
l − δ(n+1)

l )2 = λ2 ,



where ·(n) correspond to the nth gradient iteration. The fixed
λ1 and λ2 parameters depend on the desired precision of the
parameter estimation.

Note that our updating rules imply that passed a finite
number of iterations, the resulting cost oscillate. Therefore,
the volume optimization is terminated when the cost function
stops decreasing.

Besides, to reduce computational cost and increase ro-
bustness to local minimums, each iteration is performed on
a random subset of projections.

3.2. Projection orientation estimation

For a given volume parameter set, the search of the orienta-
tions is done independently for each projection. For a given
projection, πk, the cost in function of the orientation is not a
convex function. For the tested objects presented in 4.1, the
cost function may have several dozens of local minimums as
shown in Figure 1.

1 2 3 4 5 6

−1.5

−1

−0.5

0

0.5

1

1.5

θ

ϕ

 

 

0.13

0.14

0.15

0.16

Fig. 1: Cost function for a projection from our real dataset
in function of the angles θ and ϕ (on the sphere). For each
orientation on the sphere, the in plane rotation is chosen to
minimize the cost function.

Orientations are pre-estimated by an exhaustive search on
a fixed grid containing 162 × 24 orientations regularly sam-
pled on SO(3) then refined by convex optimization.

Due to the stochastic gradient descent, the whole opti-
mization converge in a local minimum. Nevertheless only the
resulting volume, V (Ŝ(ng)), is important, not the parameter
set, Ŝ(ng). In addition, empirical evaluations show that the
volume converges to an acceptable optimum that allows the
orientations to converge to the global optimum.

4. EVALUATION

The reconstruction algorithm is performed on synthetic and
real datasets to evaluate its ability to reconstruct finely the
volume and to estimate the projection orientations.

4.1. Description of our datasets

Synthetic datasets are generated from Protein Data Bank files
(PDB) where the centroids of the atoms which constitute the
protein are given. The volume is generated with a sum of
bounded Gaussians:

ρa(x) = exp
(
1− 1/(1− ||x||

2

d2a
)
)
,

where da is the average size of the amino acids. To reduce
the complexity of the volume, each Gaussian is centered on
amino acid centroids. An example of volume is shown in
Figure 2.
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(a) Amino acid centroids (b) Synthetic 3D volume

Fig. 2: Synthetic dataset generated from a PDB.

Our synthetic dataset is composed of 7 datasets of 5,000
projections with resolution 128 × 128. The datasets are gen-
erated from different proteins. Noisy dataset are noised by
additive white Gaussian noise with the desired signal-to-noise
ratio (SNR).
The real dataset is composed of 1,000 projections from the
TAF7 (TAFII55 complex), with resolution 160 × 160, aver-
aged and corrected according to the contrast transfer func-
tion. Examples of projection images from different datasets
are shown in Figure 3.

(a) SNR +∞ (b) SNR 1/64 (c) Real projection

Fig. 3: Example of projection images. (a) synthetic projec-
tion, (b) noisy realization of (a), (c) averaged projection from
TAF7.

4.2. Results

The reconstructions are evaluated on the volume correlations:

〈ρ|V 〉
||ρ|| ||V ||

,



where 〈·|·〉 is the canonical scalar product. The estimated ori-
entations are evaluated with the average angular difference
between estimated and true orientations.

Two series of tests were performed, one to evaluate the
ability to reconstruct finely the volume in the noiseless case,
and one to evaluate the robustness of the reconstruction algo-
rithm to the noise. The number of Gaussians used for the re-
construction are respectively 115 Gaussians and 35 Gaussians
for the dataset with SNR +∞ and SNR 1/64. The results are
given in Table 1

Volume angular Volume angular
n Corr. difference (rad) Corr. difference (rad)

SNR +∞ SNR 1/64

1 0.9966 0.0368 ±0.1326 0.9554 0.2700 ±0.0458
2 0.9662 0.0106 ±0.0065 0.9014 0.0275 ±0.0168
3 0.9762 0.0137 ±0.0076 0.9587 0.0200 ±0.0115
4 0.9663 0.0139 ±0.0087 0.8182 0.5249 ±0.9615
5 0.9820 0.0147 ±0.0079 0.9329 0.0500 ±0.0345
6 0.9903 0.0122 ±0.0064 0.9413 0.0224 ±0.0123
7 0.9966 0.0190 ±0.0104 0.9703 0.0334 ±0.0241

Table 1: Reconstruction evaluation for synthetic datasets.

The volume correlations in the noise free case are close
to one. Therefore, our proposed method is able to reconstruct
finely the volumes. In addition, the estimated orientation er-
ror is smaller than 0.02 rad (1.15 deg), except the first volume
where 13 orientations error are higher than 1 rad due to the
quasi symmetry of the volume.
The results in Table 1 shows the robustness of our method
to the noise, even with SNR 1/64 (−18 dB). Indeed, the
constructed volumes have correlations higher than 0.9 except
for one reconstruction. For totally asymmetric volumes, the
orientation error is smaller than 0.05 rad.
Our reconstructed volumes have been compared to the ones
obtained by Cryo-SPARC for the 7 noisy datasets (SNR
1/64). The average correlation and angular difference are
respectively 0.7881 and 0.7479 rad, in comparison to 0.9255
and 0.1355 rad for our reconstruction method. The estimated
volume and orientations are more accurate for our ab-initio
reconstruction that allow faster post processing refinement.

The reconstruction from real dataset is geometrically sim-
ilar to a reference ab-initio volume obtained with a tilt acqui-
sition as shown in Figure 4. Note that the reference volume is
not finely reconstructed therefore the correlation coefficient is
0.858.

A test on 1283 volumes where the number of Gaussians
ng is set to 50 and np = 1.7×128, gives reconstruction times
for our method more than ten times faster than the integral
based reconstruction method of [?].

(a) Our reconstructed volume (b) Reference volume

Fig. 4: Reconstructed volumes.

5. CONCLUSION

This paper present a new 3D tomographic reconstruction
method, based on a parametric model, that estimates jointly
the volume of the observed object and the orientations of
the projection dataset. The reconstruction is performed by
optimizing the orientations and the model parameters to min-
imize a global cost function.
Due to its low number of parameters in comparison to the
number of voxels in the desired 3D volume, our approach
allows fast reconstruction even from very noisy dataset (SNR
1/64 for 128× 128 projection images).
The existing demonstration algorithm will be developed in
C++ and parallelized for GPU implementation. The optimal
translation search will be added to the orientation estimation
to improve the robustness of the reconstruction on real Cryo
Electron Microscopy datasets.
This method will be extended to heterogeneous datasets, aris-
ing from deformable volumes, where the deformations can be
discrete or continuous.
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