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Abstract—Failure risk assessment of electronic equipment to 

an electromagnetic aggression is the cornerstone of Intentional 

Electromagnetic Interference (IEMI). Such a failure may occur if 

the electromagnetic constraint reaches a threshold that is likely 

to produce a dysfunction. Due to the production variability of 

electric / electronic equipment under analysis, its susceptibility 

level may be considered as a random variable. Estimation of its 

distribution through susceptibility measurements of a limited set 

of available equipment is required. We compare the performance 

of the Bayesian Inference (BI) and the Maximum Likelihood 

Inference (MLI) according to their ability to choose the true 

distribution for different sample size, when the true distribution 

is theoretically known. Then we compare the performance of the 

BI and the MLI on a virtual electronic device for which the true 

distribution is not known a priori. We finally discuss the 

respective benefits of BI and MLI in estimating the failure 

probability of equipment. 

Keywords—IEMI; Susceptibility; maximum likelihood; 

bayesian inference; Monte Carlo 

I.  INTRODUCTION  

Evaluating the risk of failure of equipment is needed to set 
up electromagnetic protections. Electronic equipment are 
different from one another and complex. Although it is not 
impossible to establish models of some components it is very 
difficult to model the whole equipment for susceptibility 
simulations. It is in fact more straightforward to evaluate the 
susceptibility of equipment through experimental 
measurements. However, the variability of the geometry or 
electrical characteristics of every component leads to the 
variability of the susceptibility threshold from a copy to 
another. The equipment susceptibility is therefore best 
described by a probabilistic distribution of its susceptibility 
threshold. If the constraint is higher than the threshold, the 
equipment will suffer a failure. From a sample of measured 
susceptibility thresholds, the susceptibility distributions may be 
estimated. Due to time and cost limitations, the number of 
equipment available for tests is very limited to a few tens of 
units. Our goal is to determine the inference method that is best 
suited for this situation. For the EMC context, we reduce the 
possible susceptibilities distributions, or families of 
distributions, to the Normal (N), Lognormal (LN) and Weibull 
(W) distribution functions. This selection, which can be 
debatable, rests on the following arguments: 

 The N distribution function, parametrized by (µ, 

), does well represent a process resulting from 
additive contributions of multiple independent 
random variables. 

 The LN function, parametrized by (a, b),   linked 
to the N law, may be found in EMC problems 
involving crosstalk. The voltage magnitude on the 
victim wire (or track) is proportioned to the 
inverse of the logarithm of the distance between 
the two wires involved. 

 The W function, parametrized by (α, β), is often 
found in assessment of failure problems. It is also 
a general distribution function that encompasses 
other ones such as the exponential and Rayleigh 
distributions.  

The problem stated is in fact that of a statistical inference: 
estimating unknown characteristics (nature and parameters of 
the underlying distribution function) of a population 
(susceptibility levels) from a limited sample (susceptibility 
measurements) of the population. Two types of inference can 
be distinguished, the Bayesian inference (BI) and the 
maximum likelihood inference (MLI). BI is not commonly 
used in the EMC community yet. Recently, BI has been 
considered to deal with uncertainty measurements [1] and to 
estimate the probability density function of a single measured 
susceptibility sample [2]. For small and very small sample size 
we want to determine which inference (BI or MLI) is best 
suited to select the nature of the distribution function among 
the three possible ones described above. The selection criterion 
BIC (Bayesian inference criterion) selects for both inferences 
the most probable law among these three possibilities. For 
comparison we also use a classical fitting test (Anderson-
Darling) even though these tests are very conservative for small 
samples [3].  

This paper is organized as follows. First, we give a 
reminder about the two inferences (section II). Then we study 
the proximity of the three distributions (N, LN and W) for 
different coefficient of variation (CV) (section III). With a 
particular CV value, we compare the performance of the two 
inferences at selecting the appropriate distribution function for 
different sample sizes (section IV).  Finally, we apply both 



 

inferences on a virtual electronic device (section V). We 
conclude about both inference approaches.  

II. INFERENCE METHODS 

In this section we briefly introduce the MLI and BI 
principles. These two inference methods differ according to the 

estimation of the vector of parameters  of the underlying 
supposed distribution function. As far as the MLI is concerned 
the vector parameter to be estimated is deterministic whereas 
for the BI it is a random variable. The result of the BI is 

therefore a probability distribution of the random variable  
whereas the result of the MLI is a likelihood function. 
However, the likelihood function is also expressed in terms of 
probabilities and can be interpreted as a probability 
distribution. Confidences intervals are therefore computed in 
the same way for both inferences. There is no need to provide a 
prior distribution for the MLI. In fact, when performing an 
MLI, the prior is necessary uniform. For the BI, the user is free 
to choose an adequate prior. 

A. Inference based on the maximum likelihood 

Amongst all the classical methods we select the most 
popular, the maximum likelihood one. For each of the 
considered underlying distribution, N, LN and W, the vector of 
their two parameters are estimated from a maximum likelihood 
function. These estimators can be found in [4] and [5] for the N 
distribution. In turn, they are derived for the LN distribution, 
applying the invariance principle on the distribution estimators. 
Finally, parameters estimators for the W distribution are found 

in [6]. The estimators of (2) are biased. For the N and LN 
distribution functions a correction can be easily applied. For 
the W distribution its correction requires Monte Carlo tables 
corrections [7]. We rather choose to keep the uncorrected 
estimator.  

B. Bayesian inference 

According to Bayes’ theorem, the result of the BI is 
expressed as a density function called fpost of the estimated 
parameters: 


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       fprio is the a priori density. The likelihood function is fLike. 

A normalization operation is needed to obtain a density 

function. If a scalar estimator is needed, the maximum of fpost  

is chosen as the most probable estimated , written as *̂  

The BI needs a prior distribution of the parameters to be 
estimated. It is therefore possible to benefit from knowledge 
learned from previous experiences. However, if no knowledge 
is available, the less informative prior has to be selected. In 
order to find such priors, two conditions have to be fulfilled. 
The first one is the maximal entropy and the second one is the 
parameter space scale invariance [8][9]. The prior choice 
depends on the target distribution and on the method used to 
find it. There are three classical methods to obtain non 
informative priors: 

 The Maximal Data information Prior (MDIP) of 
Zellner [10] which is based on the maximization of an 

information criterion. This criterion is the mean of the 
information in the data density minus the information 
contained in the prior density. 

 The Jeffrey’s prior which is based on the Fisher 
information matrix [11]. 

 The so called Reference prior [12] which is a 
modification of the Jeffrey’s prior. 

For one targeted distribution, more than one prior is possible. 
But different methods can lead to the same prior. There is a 
catalog of priors for popular distributions including the N, L, 
W [13]. We used the MDIP for the N distribution (which is the 
same as the Reference prior):  
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The Jeffrey’s prior is used for the W distribution (which is 

also the same as the reference prior): 
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For the LN distribution we chose the Jeffrey’s prior such as 
[14]: 

22
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Note that the reference [15] proposed a more complex prior 
based on a generalized inverse Gaussian, not used in this paper.  

The prior choice is less important as the sample size increases.  
For a large enough sample size the prior choice does not affect 
the posterior distribution. Furthermore, using a uniform 
distribution, the BI is equivalent to the MLI. 

The likelihood function is written: 
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The function ψ is the cumulated distribution function (cdf) 

of the hypothetical distribution (N, L or W). The  variable is 
the step precision of the levels of constraint applied during the 
susceptibility test. nte is the level of constraint applied that 
provoked a failure of the e

th 
equipment while the constraint nte -

  had no effect. Once the susceptibility threshold is reached 
we suppose the equipment remains in failure. Therefore, the 
test stops at nte. 

III. PROXIMITY BETWEEN THE THREE DISTRIBUTIONS 

The sample mean µ is fixed (arbitrary equal to 10) and the 

standard deviation  is adjusted in order to get a CV variation 
from 1% to 100%. The three distributions are parametrized to 
reach the prescribed CV. Then, we compute their mean 
distances between their cdf (expressed in absolute values). We 
plot in Fig. 1 the distances between W and N (W-N), LN and 
W (LN-W) and finally between N and LN (N-LN). We notice 
that the distances W-N and LN-W increases with the CV. It’s 
also true for LN-W after a local minimum at CV=32.6%.  



 

 
Fig. 1. Mean distances in absolute value between the three distributions. 

The CV will therefore influence the quality of the 
estimation of the underlying distribution. In particular with a 
CV of 32.6%, the distance between N and W is very small. It is 
no longer relevant to try to distinguish them as they have a 
similar distribution.   From all the simulated CV, we choose to 
present in this paper only the results for a CV=62%. Such a 
value may be realistic in a EMC context.  

IV. DISTRIBUTION ESTIMATION 

The following analysis is performed through a Monte Carlo 
simulation process. In order to compare the inferences 
performance, we draw 1000 independent samples of size n 
from every possible distribution function (N, LN and W) with a 
CV=62%. Both inferences are applied on every sample. The 
selection criterions detailed in this section are then used to 
select a distribution. Finally we estimate the probability to 
choose the true distribution among the three possibilities. The 
performance of the two inference schemes are compared thanks 
to this estimated probability. In addition, these are compared to 
a goodness-of-fit test approach. 

A. Goodness-of-fit  test 

A goodness-of-fit test quantifies the agreement between a 
statistical model and the available data. For small samples (a 
few tens) such tests are in fact very conservative [16]. We have 
chosen the Anderson Darling (AD) test, an improvement of the 
Kolmogorov-Smirnov test. It is based on the distance between 
the estimated cdf (based on the MLI) and the empirical cdf. We 
apply the AD test for the three possible distributions (N, LN, 
W). Every sample is drawn from a true distribution (fj ) which 
is: 

 N if j=1 

 LN if j=2 

 W if j=3 

For every sample, the AD test is applied consecutively 
according to the three null hypothesis called Hi : 

 N if i=1 

 LN if i=2 

 W if i=3 

For every sample the hypothesis Hi with the smallest 
statistical test value (AD distance criterion) is chosen. 

B. BIC 

The BIC is used for the two methods of inferences. The 
BIC quantifies the likelihood (as a probability) of the estimated 
cdf (BI or MLI) according to the data (empirical cdf). In 
general, the BIC is used to discriminate different models of k’ 
parameters according to a data set of size n. There are other 
criterions for that purpose like the AIC [17]. The sample size n 
and the number of parameters k’ intervene in the computation 
of these criterions to penalize more complex models and to 
choose the simplest one (smaller k’). It is the penalizing 
process which lead to the choice of either BIC or AIC. In our 
case, the three distributions have the same number of 
parameters (k’=2). Therefore, we can choose one of them 
arbitrarily.  

The BIC is computed as follow: 

(L)(n)k'=BIC 2lnln   (6) 

L is the likelihood function expressed in function of the 

realization (se , e=1,..,n)  of the random variable S 

(susceptibility thresholds) and the estimated most probable  (
*θ̂ ): 
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As the realizations are independent: 
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fBino is the binomial probability function. Its parameters are the 

number of failed equipment ke at the constraint level se, n and 

the estimated probability of failure from the inference )(sp e
*ˆ . 

When s=se the number ke of equipment is equal to the 

empirical cdf of S evaluated at se .  

The hypothesis leading to the smallest BIC is therefore the 

most probable hypothesis and will be selected accordingly.  

C. Comparaison  

The number of samples drawn from fj (the number of 
Monte Carlo steps) is 1000. At the end of the Monte Carlo we 
count the success rate a test (AD, BIC with BI and BIC with 
MLI) has chosen the right hypothesis (Hi=fj with i=j). These 
proportions are in fact estimated probabilities because of the 
finite number of  Monte Carlo steps. The results are gathered in 
Fig .2. (f1) and Fig. 3 (f2 and f3). 

Whatever the test, the proportions increase with n. If n is 
large enough, all these tests are similar. The results of the AD 
and the BIC (MLI) are relatively close as they are both using 
the MLI. Whatever the test, the proportions converge quicker 
to 100% with f1 than with f2 and f3. If there is at least one 
negative realization within the sample (only possible with f1 ) 
every test selects H1. 

 

 

 



 

 

Fig. 2. Estimated probabilities of choosing N if the true distribution is N (f1) 

 

Fig. 3. Estimated probabilities of choosing LN (resp. W) if the true 

distribution is LN  (f2) (resp.  W (f3)) 

For f1, AD has the highest proportion of success, closely 
followed by the BIC(MLI). The success rate of the BIC(BI) for 
very small samples are very low.  

For f2, AD has again the highest success rate but the 
BIC(MLI) is very similar. The performance of the BIC(BI) is 
again poor for small samples 

For f3, the BIC(BI) has high proportions of success, even 
for very small n, whereas the AD and BIC(MLI) fail most of 
the time.  

For the N and LN distribution it seems that the MLI 
performs better than the BI. For the W distribution it is best to 
use the BI.  In order to complete the comparison, the 
performance of the quality of the inferences estimators should 
also be studied. Such analysis (not shown in this paper) could 
modulate this conclusion. 

As mentioned in section II, the N and LN are biased 
corrected estimators whereas the estimator of the W 
distribution is still biased since its quite complex correction 
was not implemented. Therefore, the Bayesian inference for the 
W distribution in this context is an easy way to improve the 
performance of the uncorrected classical estimator.  

V. EMC APPLICATION 

In the previous simulation, the random generation was 
totally controlled. The true distribution (its type and 
parameters) were known. In practice, it is obviously not the 
case. Moreover it is very difficult to test a large number of 
equipment. Therefore we will never be able to obtain the true 
distribution with real equipment. That is why we suggest a 

virtual example as an application to test the BI and MLI. The 
random generation of susceptibility thresholds comes from an 
electromagnetic simulation of electronic equipment. It is an 
intermediate case between the theoretical simulation performed 
in section IV and a real case with susceptibility measurements. 
In the following example, the true distribution function is 
unknown as it is usually the case. However, we can simulate 
much more copies of equipment than it would be possible to 
test in practice. The example has to be simple enough so the 
simulation time is relatively short. The large sample allows us 
to obtain an estimation of the true distribution. Therefore this 
estimation can be considered as a pseudo-reference for smaller 
samples retrieved from the large sample. The inferences are 
tested on these smaller samples. We consider this example as 
an application since it is made of an electronic equipment (even 
if it is simple and arbitrary) and most of all, the variability of 
the susceptibility threshold is generated by variation of 
physical parameters. 

We designed simple electronic equipment presented in Fig.  
4. 

 

Fig. 4. Virtual equipment  

The equipment is a printed circuit board with two microstrip 

lines L1 and L2. L1 is ended by matched resistive loads. L2 is 

ended at one end by a resistor and at the other one by a 

transistor. L2 is entirely covered by a protective shielding 

whereas L1 is only covered partially. A small aperture is made 

at the shield interface so that the microstrip line gets out the 

shielded box. The uncovered portion of L1 is illuminated by a 

electromagnetic continuous plane wave, at 500MHz, with 

normal incidence and polarized in the parallel direction to the  

uncovered portion of the line L1. Underneath the shielding, L1 

and L2 are close to one another which cause a crosstalk 

coupling. The nominal dimensions of the design are: L1=205, 

L2=130mm, the ground plane has an area of 250 x 250mm 

and the Fr4 substrate thickness is 1.7mm. 

The equipment variability is ensured by the randomness of 
multiple parameters (lines length, charges, parasitic capacitor 
of the transistor [18]…) around the design nominal value 
(variability arbitrary set to 10%). Therefore, each device is a 
random realization. 

The field intensity is raised until provoking a failure. The 
failure criterion is associated to the output (Vds)  of a transistor 
mounted as a reverser. When no constraint is applied, the input 
voltage (Vgs) is at 0V and therefore the output (Vds) is at 5V. 

The transistor is blocked. If  dsV  is lower than an arbitrary 



 

threshold Vth the transistor is no longer considered blocked and 
this is considered as equipment failure.  

We were able to simulate nc=2000 copies of that 
equipment. We call that sample the reference sample. nc was 
chosen to be much larger than samples of size n of interest (a 
few tens) but not too large to be compatible with reasonable 
simulation times (about 6 hours). With Vth=4V, the nc 
simulated thresholds are represented in Fig. 5. The choice of 
Vth only translates (and preserve the shape) the thresholds 
distribution to higher levels if Vth decreases for example. 

 

Fig. 5. Reference susceptibility distribution  

A fitting with the three distributions is also plotted. The W and 
N distribution seem both fitting well (at least visually) the data. 
The LN fitting is further away from the empirical distribution. 
The CV is equal to 23.45%. We showed on Fig.1 that W and N 
distribution are in fact very similar for CV closed to 30%.  

We proceed now to a Monte Carlo study. At each step we 
randomly selected n equipment from the nc sample. We then 
apply the BI and the MLI. We select the hypothesis 
corresponding to the minimum BIC. Once all Monte Carlo 
computations are performed, we compute the proportions of 
good decisions. As evidenced in Fig. 5, W and N distributions 
fit better the data than a LN distribution. That is why a good 
decision is choosing N or W, whereas choosing LN is 
considered as a bad decision. The results are gathered in Tab.2.  

TABLE I.  PROPORTIONS OF GOOD / BAD DECISIONS (%) (IN GREEN / RED 

COLOURS)   

 n 5 10 15 

BIC 

(BI) 

Hi=N 0.9 5.2 9.3 

Hi=L 13.4 12.9 11.4 

Hi=W 85.7 81.9 79.3 

BIC 

(MLI) 

Hi=N 31.4 38 40.9 

Hi=L 52.1 37.7 28.2 

Hi=W 16.5 24.3 30.9 

 

The BI rejects more often the L distribution than the MLI 
for the three tested n. Moreover, even if it is not crucial here, 
the BI seams to select more often W than N whereas the MLI 
selects more often N than W.  

In practice we have only one small sample. As mentioned 
in section II, both of them can lead to a probability density 
function of the estimated parameter. As a consequence, the 
estimated cdf of the susceptibility may be rather considered as 
a beam of plots.  More than identifying the most probable 

susceptibility distribution, it is relevant to express the bounds 
of the estimated cdf. Both inferrences (BI and MLI) give a 
multivariate density of the distribution parameter. Therefore 
the failure probability at a certain constraint level is also a 
density. At each constraint level, the quantiles of the failure 
probability can be computed. In Fig. 6 we plot the 95% interval 
of confidence for both inferences with one sample of 20 
equipment copies. The bounds resulting from the BI are 
slightly narrower than those resulting from the MLI. As the 
sample size increases (40 in Fig. 7 and 100 in Fig. 8), the 
bounds are narrower and the BI and MLI lead to the same 
bounds. 

 

Fig. 6. Empirical distribution (ecdf) and estimation of the upper and lower 

bound of the failure probability for both inferrences and a sample of 20 

equipment 

 

Fig. 7. Empirical distribution (ecdf) and estimation of the upper and lower 
bound of the failure probability for both inferrences and a sample of 40 

equipment 

 

Fig. 8. Empirical distribution (ecdf) and estimation of the upper and lower 

bound of the failure probability for both inferrences and a sample of 100 
equipment 



 

From the point of view of the susceptibility analysis, both 
inferences method lead to similar bounds of the susceptibility 
distribution. 

VI. CONCLUSION 

This paper is dedicated to the statistical inference of the 
susceptibility distribution of electronic equipment when the 
number of equipment available for test is small. The goal of the 
study was to estimate the distribution type from a limited set of 
susceptibility thresholds. We wanted to determine which 
approach, the Bayesian or the maximum likelihood, was best 
suited in that case. By Monte Carlo we applied the two 
inferences in order to select one distribution amongst three 
possibilities. Thanks to the selection criterion BIC we selected 
the most probable distribution. When the true distribution is 
either N or LN, the MLI is more effective than the BI, whereas 
when the true distribution is W it is the opposite. In the context 
of a particular case example, we showed that the BI is the best 
to rejects LN. This was expected according to the estimation of 
the distribution from a large sample. Finally, thanks to the 
posterior distribution of the estimated parameter from both 
inferences, the failure probability can be bounded. This 
information can be useful in the context of EMC failure risk 
analysis.   

However, this paper did not study the quality of the two 
inferences estimators. A comparison of their mean and 
variance should be done in order to further compare the two 
inferences and quantify the conclusion. Moreover in the 
Bayesian inference we used non informative priors. If prior 
knowledge is available (previous experiences, expert 
opinion…) the Bayesian inference can take it into account and 
most likely improve the performance. This is not possible with 
the maximum likelihood inference.   
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