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Abstract. This paper introduces a novel method for the representation of images
that is semantic by nature, addressing the question of computation intelligibility
in computer vision tasks. More specifically, our proposition is to introduce what
we call a semantic bottleneck in the processing pipeline, which is a crossing point
in which the representation of the image is entirely expressed with natural lan-
guage, while retaining the efficiency of numerical representations. We show that
our approach is able to generate semantic representations that give state-of-the-
art results on semantic content-based image retrieval and also perform very well
on image classification tasks. Intelligibility is evaluated through user centered
experiments for failure detection.

1 Introduction

Image-to-text tasks have made tremendous progress since the advent of deep learning
approaches (see e.g., [1]). The work presented in this paper builds on these new types
of image-to-text functions to evaluate the capacity of textual representations to seman-
tically and fully encode the visual content of images for demanding applications, in
order to allow the prediction function to host a semantic bottleneck somewhere in its
processing pipeline (Fig. 1). The main objective of a semantic bottleneck is to play the
role of an explanation of the prediction process since it offers the opportunity to ex-
amine meaningfully on what ground will further predictions be made, and potentially
decide to reject them either using human common sense knowledge and experience, or
automatically through dedicated algorithms. Such an explainable semantic bottleneck
instantiates a good tradeoff between prediction accuracy and interpretability [2].

Reliably evaluating the quality of an explanation is not straightforward [3, 4, 2, 5].
In this work, we propose to evaluate the explainability power of the semantic bottleneck
by measuring its capacity to detect failure of the prediction function, either through an
automated detector as [6], or through human judgment. Our proposal to generate the
surrogate semantic representation is to associate a global and generic textual image
description (caption) and a visual quiz in the form of a small list of questions and
answers that are expected to refine contextually the generic caption. The production of
this representation is adapted to the vision task and learned from annotated data.

The main contributions of this paper are: (i) The design of two processing chains
for content-based image retrieval and multi-label classification hosting a semantic bot-
tleneck; (ii) An original scheme to select sequentially a list of questions and answers
to form a semantic visual quiz; (iii) A global fusion approach jointly exploiting the
various components of the semantic representation for image retrieval or multi-label
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a man that is on a tennis court 

with a racquet

q1: can you see his racquet? 

q2: what color is it?      

q3: can you see the ball?              

q4: is the ball yellow?                   

q5: is he about to serve the ball?                   

q6: is it day time?

q7: is it indoors?                 

q8: is the picture bright?                   

q9: any other people?                   

q10: can you see the net?

a1: yes          

a2: not sure, but it 's a wilson racket 

a3: yes it 's in his hand

a4: yes

a5: maybe                   

a6: i don't think so               

a7: can't tell                 

a8: yes                   

a9: no                   

a10: no 
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Fig. 1: Semantic bottleneck approach: images are replaced by purely but rich textual
representations, for tasks such as multi-label classification or image retrieval.

classification; (iv) A complete evaluation on the MS-COCO database exploiting Visual
Dialog annotations [1] showing that it is possible to enforce a semantic bottleneck with
only 5% of performance loss on multi-label classification, but a 10% performance gain
for image retrieval, when compared to image feature-based approaches; (v) An evalu-
ation of the semantic bottleneck explanation capacity as a way to detect failure in the
prediction process and improve its accuracy by rejection.

2 Related works

Extracting semantic information from images. The representation of images with se-
mantic attributes has received a lot of attention in the recent literature. However, with
the exception of the DAP model [7], which is not performing very well, such models
produce vector representations that are not intelligible at all. In contrast, image caption-
ing [8, 9] is by nature producing intelligible representations and can be used to index
images. As an illustration, Gordo et al. [10] addressed the task of retrieving images
that share the same semantics as the query image using captions. Despite the success
of such recent methods, it has been observed [11] that such approaches produce cap-
tions that are similar when they contain one common object, despite their differences
in other aspects. Addressing this issue, [12] proposed a contrastive learning method for
image captioning encouraging distinctiveness, while maintaining the overall quality of
the generated captions. Another way to enrich the caption is to generate a set of ques-
tions/answers such as proposed in the Visual Dialog framework [1, 13, 14]. This is what
we propose to do by learning how to build dialogs complementary to image captions.

Transferring information from other domains. Producing semantic description of
images in natural languages is barely possible without transferring semantic informa-
tion – expressed as semantic attributes, natural language expressions, dictionaries, etc.–
from auxiliary datasets containing such information to novel images. This is exactly
what Visual Question Answering models can do, the VQA challenge offering impor-
tant resources, in the form of semantic images, questions, or possible answers. Research
on VQA has been very active during the last two years. [15] proposed an approach re-
lying on Recurrent Neural Network using Long Short Term Memory (LSTM). In their
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approach, both the image (CNN features) and the question are fed into the LSTM to
answer a question about an image. Once the question is encoded, the answers can be
generated by the LSTM. [16] study the problem of using VQA knowledge to improve
image-caption ranking. [17], motivated by the goal of developing a model based on
grounded regions, introduces a novel dataset that extends previous approaches and pro-
poses an attention-based model to perform this task. On their side, [18] proposed a
model receiving the answers as input and predicts whether or not an image-question-
answer triplet is correct. Finally, [19] proposes another VQA method combining an in-
ternal representation of the image content with the information extracted from general
knowledge bases, trying to make the answering of more complex questions possible.

Producing intelligible representations. The ubiquitousness of deep neural networks
in modern processing chains, their structural complexity and their opacity have moti-
vated the need of bringing some kind of intelligibility in the prediction process to better
understand and control its behavior. The vocabulary and concepts connected to intelli-
gibility issues are not clearly settled. (explanation, justification, transparency, etc.) Sev-
eral recent papers have tried to clarify those expressions [20, 3, 21, 4, 22, 2, 23, 5] and
separate the various approaches in two goals: build interpretable models and/or pro-
vide justification of the prediction. [24] for instance, described an interpretable proxy
(a decision tree) able to explain the logic of each prediction of a pretrained convolu-
tional neural networks. The generation of explanations as an auxiliary justification has
been addressed in the form of a visual representation of informative features in the in-
put space, usually heat maps or saliency maps [25–27], as textual descriptions [28], or
both [29]. A large body of studies [30–33] have been interested in visually revealing the
role of deep network layers or units. Our semantic bottleneck approach fuses those two
trends: it provides a directly interpretable representation, which can be used as a justifi-
cation of the prediction, and it forces the prediction process itself to be interpretable in
some way, since it causally relies on an intermediate semantic representation.

Evaluating explanations. The question of clearly evaluating the quality or usability
of explanations remains an active problem. [25] described a human-centered experi-
mental evaluation assessing the predictive capacity of the visual explanation. [27] pro-
posed to quantify explanation quality by measuring two desirable features: continuity
and selectivity of the input dimensions involved in the explanation representation. [34]
and [35] described geometric metrics to assess the quality of the visual explanation with
respect to landmarks or objects in the image. [36] questioned the stability of saliency
based visual explanations by showing that a simple constant shift may lead to uninter-
pretable representations. In our work, we take a dual approach: rather than evaluating
the capacity of the explanation to be used as a surrogate or a justification of an ideal
predictive process, we evaluate its quality as an ability of detecting bad behavior, i.e.
detect potential wrong predictions.

Generating distinctive questions. If the generation of questions about text corpora
has been extensively studied (see e.g., [37]), the generation of questions about images
has driven less attention. We can, however, mention the interesting work of [38] where
discriminative questions are produced to disambiguate pairs of images, or [39] which
introduced the novel task (and dataset) of visual question generation. We can also men-
tion the recent work of Das et al. [40] which bears similarity with our approach but
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(d) Semantic Representation Encoder

Fig. 2: Functional diagrams of the various components of the global algorithm.

differs in the separation between the question generator and semantic representation
encoder, and is not applied to the same tasks. Our work builds on the observation made
by [41, 42] – questions that are asked about an image provide information regarding the
image and can help to acquire relevant information about an image – and proposes to
use automatically generated discriminative questions as cues for representing images.

3 Approach

This paper proposes a method allowing to turn raw images into rich semantic represen-
tations — a semantic bottleneck — which can be used alone (without using the image
itself) to compare images or classify them. At the heart of this image encoder is a pro-
cess for generating an ordered set of questions related to the image content, which are
used, jointly with the answers to these questions, as an image substitute. Questions are
generated sequentially, each question (as well as its answer) inducing the next questions
to be asked. Such a set of questions/answers should semantically represent the visual
information of images and be useful for disambiguating image representations in re-
trieval and classification task. Answering the question is done with a VQA model, used
as an oracle, playing the role of a fine-grained information extractor. Furthermore, this
sequence of Q/A is designed to be complementary to an image caption which is also
automatically generated. We can use the analogy of human reasoning, starting with the
image caption as a starting point and asking question to an oracle to get iteratively more
information on the image. The proposed visual dialog allows to enrich image caption
representations and leads to a stronger semantic representation. Finally, captions and
visual dialogs are combined and turned into a compact representation that can be used
easily to compare images (for retrieval task) or to infer class labels (classification tasks).

Consequently, our model is composed of two main components: i) a discriminative
visual question generator ii) an encoding block taking Q/A and captions as inputs and
producing an image representation. These two blocks, trained end-to-end, rely on two
oracles: i) an image caption generator which visually describes images with natural
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language sentences. ii) a visual question answering model capable of answering free-
from questions related to images. We call these last 2 parts of the model oracles as they
are trained independently of the main tasks and used as external knowledge base.

3.1 Vector space embedding, encoders, decoders

The core objective of our approach is to generate semantic expressions in natural lan-
guage (questions, answers or captions) that could represent images compactly and in-
formatively. We define the various natural language elements as sequences of words
from a fixed vocabulary of words and punctuation {w0, . . . , wnw}, where w0 has the
special meaning of marking the end of all phrases as a “full stop”. The space of all
possible sequences in natural language is denoted by P . Any caption (c), question (q)
or answer (a) belongs to the same set P .

Most of learning based algorithms exploit vector space representations as inner
states, or in the optimized criterion. A first issue is therefore to make possible the em-
bedding of natural language expressions, and also images, into a vector space. For sim-
plicity of design, we made all the necessary embeddings belong to a S-dimensional real
valued vector space. Typically, to give an order of magnitude, we took S = 512 in our
experiments. We therefore define semantic encoders as mappings from P to RS , and
semantic decoders or generators as mappings from the vector space RS to P .

Image encoder The first element to be encoded is the source image I ∈ I. The encoder
(denoted as fI ) is a mapping fI : I → RS , provided by last FC layer (fc7) of a VGG-
VeryDeep-19 network [43] (pre-trained on Imagenet [44]) followed by a non-linear
projection (fully connected layer + tanh non-linearity unit) reducing the dimensionality
of the fc7 features (4096-d) to S. The parameters of the non-linear projection, denoted
as wI , are the only parameters of this embedding that have to be learned, the parame-
ters of the VGG-VeryDeep-19 being considered as fixed. We write fI(I;wI) to make
apparent the dependency on the parameters wI , when needed.

Natural language encoder This encoder maps any set of words and punctuation s ∈
P (captions, questions, answers) to the embedding space RS . We will use 3 different
natural language encoders in the global algorithm, for captions, questions and answers,
all sharing the same structure and the same weights. We hence refer to them using the
same notation (fp). The encoder uses a standard Long Short Term Memory network
(LSTM) [45]. Used as an encoder, the LSTM is simply a first order dynamic model:
yt = LSTMp(yt−1, pt) where yt is the concatenation of the long-term cell state and
the short-term memory, and pt is the current input at time t. Given a natural language
sequence of words p = {pt}t=1:Tp

, its encoding fp(p) is equal to the memory state
yt after iterating on the LSTM Tp times and receiving the word pt at each iteration.
Denoting wp the set of weights of the LSTM model, the natural language embedding is
therefore defined as: yTp = fp(p;wp) with the initial memory cell y0 = 0.

In practice, instead of using words by their index in a large dictionary, we encode
the words in a compact vector space, as in the word2vec framework [46]. We found it
better since synonyms can have similar encodings. More precisely, this local encoding is
realized as a linear mapping ww2vec, where ww2vec is a matrix of size nw2vec×nw and
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each original word is encoded as a one-hot vector of size nw, the size of the vocabulary.
The size of the word embedding nw2vec was 200 in our experiments. This local word
embedding simply substitutes ww2vec.pt to pt in the LSTM input.

Semantic decoder The semantic decoder is responsible for taking an embedded vector
s ∈ RS and producing a sequence of words in natural language belonging to P . It is
denoted by fs. All the semantic decoders we exploit have the structure of an LSTM
network. Several semantic decoders will be used for questions, answers and captions
in the overall algorithm, but with distinct weights and different inputs. These LSTMs
have an output predicting word indexes according to a softmax classification network:
pt+1 = Softmax(yt) which is re-injected as input of the LSTM at each iteration.

Formally, we can write the semantic decoder as a sequence of words generated
by an underlying LSTM first order dynamic process with observations pt as yt =
LSTMs(yt−1, pt). At time t the input receives the word generated at the previous state
pt, and predicts the next word of the sentence pt+1. When the word w0 meaning ”full
stop” is generated at time Ts, it ends the generation. The global decoding is therefore a
sequence of words of length Ts − 1: fs(s;w) = {pt}t=1:Ts−1 with the initial state of
the LSTM being the embedded vector to decode (y0 = s) and the first input being null
(p0 = 0). The symbol w refers to the learned weights of the LSTM and the softmax
weights , and is different for each type of textual data that will be generated (captions,
questions and answers).

3.2 Captioning Model

The visual captioning part of the model is used as an external source of knowledge,
and is learned in a separate phase. It takes an image (I) and produces a sentence in
natural language describing the image. We used an approach inspired by the winner of
the COCO-2015 Image Captioning challenge [8]. This approach, trainable end-to-end,
combines a CNN image embedder with a LSTM-based Sentence Generator (Fig. 2(b)).
More formally, it combines an image encoder and a semantic decoder, such are de-
scribed previously, which can be written as: c(I) = fs(fI(I;wI);wcg) where wcg is
the specific set of learned weights of the decoder. This caption model acts as an ora-
cle, providing semantic information for the Visual Discriminative Question Selection
component, and to the Semantic Representation Encoder.

3.3 Visual Question Answering Model

The VQA model is the second of the two components of our model used as oracles to
provide additional information on images. Its role is to answer independent free-form
questions about an image. It receives questions (Q) in natural language and an image (I)
and provides answers in natural language (a(Q, I)). Our problem is slightly different
from standard VQA because the VQA model now has to answer questions sequentially
from a dialog. It means that the question Qk can be based on the answer of the previous
questions Qk−1 and answers a(Qk−1, I). We first present the formulation of a standard
VQA and then show how to extend it so it can answer questions from a dialog.
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Inspired by [47], our VQA model combines two encoders and one decoder of those
described previously (Fig. 2-a):

a(Q, I) = fs(fI(I;wIqa)� fp(Q;wpqa);wqa) (1)

The fusion between image and question embeddings is done by an element wise product
(�) between the two embeddings, as proposed by [47].

We now consider the case where questions are extracted from a dialog by extend-
ing Eq (1), where k represents the k-th step of the dialog. We introduce another term hk
in the element-wise product to encode the history of the dialog as:

ak(Qk, I) = fs(fI(I;wIqa)� fp(Qk;wpqa)� hk;wqa) (2)

The history hk is simply computed as the mean of the previously asked questions/answers,
and encoded using fp. This state integrates past questions and is expected to help the an-
swering process. We tried other schemes to summarize history (concatenation, LSTM)
without clear performance increase.

We prefer the VQA model to the Visual Dialog model [1], as this latter is optimized
for the task of image guessing, while we want to fine-tune the question/answer sequence
for different tasks (multi-label prediction and image retrieval).

3.4 Discriminative Question Generation

This part of the model is responsible for taking an image and a caption – which is
considered as the basic semantic representation of the image – and produces a sequence
of questions/answers that are complementary to the caption for a specific task (multi-
label classification or retrieval).

The caption describing the image is generated using the captioning model presented
in Section 3.2, and denoted c(I) ∈ P . This caption is encoded with fp(c(I);wp) ∈
RS . Image and caption embeddings are then combined by an element-wise product
fp(c(I))� fI(I) used as an initial encoded representation of the image.

This representation is then updated iteratively by asking and answering question,
one by one, hence iteratively proposing a list of discriminative questions. Again, we
use a LSTM network (Fig. 2-c), but instead of providing a word at each iteration as
for fs(s;w) we inject a question/answer [q̃k, ãk] pair encoded in a vector space from
the natural language question/answer [Qk, Ak] using fp, with initial memory y0 =
fI(I)�fp(c(I)) and initial input q̃0 = ã0 = 0: yk = LSTMq(yk−1, [q̃k, ãk])The actual
questions are then decoded from the inner LSTM memory yk and fed to the VQA model
to obtain the answer using Eq.(2): Qk+1 = fs(yk;wsq), and, Ak+1 = ak+1(Qk+1, I)

Using this iterative process, we generate, for each image, a sequence of questions-
answers refining the initial caption: fq(I;wq) = {Qk, Ak}k=1:Kwhere wq is the set
of weights of the underlying LSTM network of the previous equation, and K is an
arbitrary number of questions.

3.5 Semantic Representation Encoder

Our objective is to evaluate the feasibility of substituting a rich semantic representation
to an image and achieve comparable performance than an image feature based approach,
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for several computer vision tasks. This representation has to be specifically generated
to the target task, to be efficient.

Once again, many modern computer vision approaches relying on a learning phase
require that data are given as fixed dimension vectors. The role of the module described
here is to encode the rich semantic representation in RS to feed the retrieval or the
multi-label classification task.

The encoder makes use of a LSTM network where the question/answer sequence
{Qk, Ak}k=1:K is used as input, yk = LSTMe(yk−1, [q̃k, ãk]) and the initial memory
state y0 is equal to the encoded caption fp(c(I);wp) (Fig. 2(d)).

If we is the set of weights from the underlying LSTM, the rich semantic represen-
tation yK is encoded as: yK = fenc ([{Qk, Ak}k=1:K , c(I)] ;we).

3.6 Training the model

The global training is divided in two phases. The first phase learns the two so-called
oracles independently: image captioning and VQA. The second phase learns to generate
the visual quiz, the image encoder and the semantic encoder jointly for a specific task,
based on information provided by the two oracles.

The parameters of the VQA, namely wIqa and wpqa for the encoders, and wqa

(Eq. 2) are learned in a supervised way on the Visual Dialog dataset [1]. The learning
criterion consists in comparing the answer words generated by the model with those of
the ground truth for each element of the sequence of questions, and is measured by a
cross entropy.

The captioning is also learned by comparing each word sequentially generated by
the algorithm to a ground truth caption, and is also measured by a cross entropy loss.

The question/answer generator fq(I;wq) and the semantic representation encoder
fenc are learned jointly end to end. Each of the modules manages its own loss: for
the question generator, the sequence of questions is compared to the ground truth of
questions associated with each image using a cross entropy at each iteration. The se-
mantic encoding, however, is specifically evaluated by a task-dependent loss: a cross
entropy loss for each potential label for the multi-label classification task, a ranking
loss for the image retrieval task. When the question generation model converges, only
the task-dependent loss is kept in order to fine-tune the question selection part.

The retrieval loss is a bit more complex than the others (cross entropy). Basically,
it is based on the assumption that ground truth captions are the most informative im-
age representations and that any other representation should follow the same similarity
ranking as captions provide. We follow the approach proposed in [10] to define the
retrieval loss as a function of triplet data q, d+ (positive pair) and d− (negative pair)
to be L(q, d+, d−) = max(0,m − φ(q)Tφ(d+) + φ(q)Tφ(d−)) where q and d+ are
expected to be more similar than q and d−, and φ is the representation function to be
learned, i.e. the output of fenc, and m is a free coefficient playing the role of a mar-
gin. The reference similarity comparison is computed from ground truth captions using
tf-idf representations, as suggested by [10].
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4 Experiments

We validated the proposed method on 2 tasks: i) content based image retrieval (CBIR)
based on semantics, where queries are related to the semantic content of the images
– which is more general and harder than searching for visually similar images. We
adopted the evaluation protocol proposed by Gordo et al. [10]. It uses captions as a
proxy for semantic similarity and compares tf-idf representations of captions, and mea-
sures the performance as the normalized discounted cumulative gain (NDCG), which
can be seen as a weighted mean average precision, the relevance of one item with re-
spect to the query being the dot product between their tf-idf representations. ii) Multi-
label image classification: each image can be assigned to different classes (labels), gen-
erally indicating the presence of the object type represented by the label. Per-class av-
erage precision and mAP are the performance metrics for this task.

Both series of experiments are done on the Visual Dialog dataset [1], relying on
images of MS COCO [48]. Each image is annotated with 1 caption and 1 dialog (10
questions and answers), for a total of 1.2M questions-answers. Ground truth Dialog has
been made in order to retrieve a query image from a pool of candidate images. A dialog
should visually describe a query image and be suitable for retrieval and classification
tasks. We use the standard train split for learning and validation split for testing, as the
test set is not publicly available.

Our approach has several hyper-parameters: the word embedding size, LSTM state
size, learning rate, m. They are obtained through cross-validation. In this procedure,
20% of training data is considered as validation set, allowing to choose the hyper-
parameters maximizing the NDCG/mean average precision on this so-obtained vali-
dation set. In practice, typical value for LSTM state size (resp. embedding size) is 512
(resp. 200). The margin m is in the range [1.0-2.0]. Model parameters are initialized
according to a centered Gaussian distribution (σ = 0.02). They are optimized with the
Adam solver [49] with a cross-validated learning rate (typically of 10−4), using mini-
batches of size 128. In order to avoid over-fitting, we use dropout [50] for each layer
(probability of a drop of 0.2 for the input layers and of 0.5 for the hidden layers). Both
oracles (captioning and VQA) are fine-tuned on the tasks. Finally, while it would be in-
teresting to average the performance on several runs, in order to evaluate the stability of
the approach, this would be prohibitive in terms of computational time. In practice, we
have observed that the performance is very stable and does not depend on initialization.

4.1 Experiments on Semantic Image Retrieval

We now evaluate our approach on semantic content-based retrieval, where the images
sharing similar semantic content with an image query have to be returned by the system.
As described before, the retrieval loss is optimized with triplets: an image query and
two similar/dissimilar images. For triplet selection, we applied hard negative mining by
sampling images according to the loss value (larger loss meaning higher probability to
be selected). We found hard negative mining to be useful in our experiments.

Table 1 reports the NDCG performance for 3 values of R (R=k means that the top k
images are considered for computing the NDCG), and the area under the curve (for R
between 1 and 128) on 4 different models. The visual baseline exploits a similarity
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Table 1: NDCG on semantic re-
trieval. Performance/Area Under
the Curve for different values of R.
Method / R 8 32 128 AUC

fi(I) + ML (baseline) 45.8 51.7 59.3 69.7
I + [10] 47.6 55.9 62.3 72.7
{I, c(I)} + [10] 57.0 58.5 63.3 75.1
Our approach fenc(I) 59.3 61.7 67.1 79.9

Table 2: Semantic retrieval. NDCG/AUC after re-
moving some components of the model.
Modality / R 8 32 128 AUC

c(I) 55.1 56.3 62.4 73.6
{Qk, Ak}1:10 generic 41.8 50.4 57.7 65.7
{Qk, Ak}1:10 task adapted 45.8 55.7 60.0 71.9
tf − idf{c(I), {Qk, Ak}1:10} 54.9 57.2 63.4 75.1
Our approach fenc(I) 59.3 61.7 67.1 79.9

Table 3: Multi-label classification performance.
Modality mAP

fi(I) (baseline) 61.1
c(I) 51.6
{Qk, Ak}1:10 49.9
fenc(I) 56.0
{I, fenc(I)} 64.2

metric between image features extracted from the FC7 layer of a VGG19 network,
which is learned on the train set using the same triplet approach as described in Section
3.6. I + [10] corresponds to the visual embedding noted (V, V) in [10]. {I, c(I)} + [10]
is the joint visual and textual embedding (V+T, V+T) with the difference that we don’t
feed the ground truth captions but the generated one, for fair comparison.

We observed that the area under the curve improves by +4.8% with our semantic
bottleneck approach compared to the image feature similarity approach. We stress here
that, unlike [10], we only exploit a semantic representation and not image features.

Empirical results of Table 2 show the usefulness of our semantic encoder. Indeed,
with the same modalities (caption, questions and answers), tf−idf{c(I), {Qk, Ak}1:10}
performs 4.8% lower. Table 2 also shows the importance of adapting the VQA oracle to
the task with +6.2% gain compared to a generic oracle not fine-tuned to the task.

4.2 Experiments on Multi-Label Classification

With the MS COCO [48] dataset, each image is labeled with multi-object labels (80
object categories), representing the presence of broad concepts such as animal, vehicle,
person, etc. in the image. For the baseline approach, we used image features provided
by a VGG-VeryDeep-19 network [43] pre-trained on ImageNet [44] with weights kept
frozen up to the 4,096-dim top-layer hidden unit activations (fc7), and fed to a final
softmax layer learned on the common training set.

Table 3 (bottom) reports the per-class mean average precision for the visual base-
line and the various components of our model. Our fully semantic approach fenc(I)
underperforms only by 5% the baseline. This is quite encouraging as in our setting the
image is only encoded by a caption and 10 questions/answers. The main advantage
of our model is that one can have access to the intermediate semantic representation
for inspection, and may provide an explanation of the good or bad result (see section
4.3). Fig. 3 also reports the performance given by (i) generated caption c(I) only, (ii)
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Fig. 3: Combining captions and dialogs: query (top-left images), generated captions,
task-specific dialogs, images retrieved using the caption (first rows) and those given by
our model (second rows). Dialogs allowed to detect important complementary

Fig. 4: Adapting dialogs to tasks: query (top-left images), generated captions, generic
and task-specific dialogs, images retrieved using the caption and generic dialog (first
rows), and those given by our model (second rows).

questions/answers {Qk, Ak}1:10 only. These experiments shows that captions are more
discriminative than questions/answers (+ 1,7%), at least given the way they are gener-
ated. We also report the performance obtained by combining our image representation
with image features (denoted as {I, fenc(I)} ). This configuration gives the best perfor-
mance (+8,2%) and outperforms the baseline (+3.1%). As a sanity check, we also com-
puted the mAP when using ground truth annotations for both the captions and the VQA.
We obtained a performance of 72.2%, meaning that with good oracles it’s possible for
our semantic bottleneck to obtain a performance better than with images (61.1%).

4.3 Semantic Bottleneck Analysis

This section aims at giving some insights on i) why the performance is improved by
combining captions and dialogs and ii) why making the semantic bottleneck adapted to
the task improves the performance.

Regarding the first point, we did a qualitative analysis of the outputs of the semantic
retrieval task, by comparing the relevance of the first ranked images when adding the
dialogs to the captions (see Figure 3). The Figure gives both the caption and the dialog
automatically generated, as well as the images ranked first accordingly to the caption
(first rows) and accordingly to our model combining the caption and the dialog. We
marked in green the important complementary information added by the dialog. The
dialog was able to detect drinks as an important feature of the image.
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task/words classes playing eating wearing doing color how many in/outdoor day/night
classification 88% 19% 39% 29% 14% 42% 39% 42% 53%
retrieval 78% 14% 28% 21% 16% 85% 81% 54% 79%

Table 4: Statistics of generated words after fine tuning the generators to the tasks

Regarding the second point, we compared the quality of the retrieval with and with-
out adapting the dialogs to the task. Figure 4 illustrates our observations by giving both
captions and dialogs automatically generated, as well as the images ranked first ac-
cordingly to captions combined with generic dialogs (first rows) and with task adapted
dialogs (second rows). We marked in red the questions/answers that we found not rel-
evant to the query in the generic dialog and in green those that have been given by the
task adapted dialog to emphasize the complementary information they bring. The dia-
log was able to identify vehicles as an important feature of the image. Fig. 5 illustrates
the same type of caption correction by the dialog for the multi-label classification task.

Generated captions are, in general, brief and consistent with the images (see exam-
ples of Fig. 4, 5 and 7). Because we chose a simple sampling strategy (in order to have
a trade-off between computation and interpretation) a few captions are syntactically in-
correct. We argue that this should not impact the performance, as the generated captions
reflect the image content. We also observed that several questions are repeated. While
question repetition is not as critical as it is for the actual dialog generation, it can be
overcome if needed by encoding the question history (hk in Eq. (6)), for instance by ex-
plicitly penalizing repetitions in the LSTM criterion, or, by exploiting a reinforcement
learning approach such as in [40].

Table 4 illustrates the effect of fine-tuning question generation by showing the per-
centage of time each word in the first row occurs in a dialog, across the two tasks
(’classes’ means any of the object class names). We observed that the generated di-
alogs of the classification task contain more verbs that can be associated to the presence
of object classes (eating ⇒ food classes, playing ⇒ sport classes, wearing ⇒ clothes
classes). Generated dialogs for the retrieval task contain more words characterizing the
scene (in/outdoor, day/night) or referencing specific object features (color, how many).

We also made experiments showing how the semantic bottleneck can be modified
manually to make image search more interactive. Fig. 6 shows an example where we
changed 2 oracle answers (zebras becomes cows and their number is increased by one).
The 2nd row depicts the impact of this modification.

Semantic representation:
caption:
people are snowboarding down a mountain
dialog:
how many people are there? two
is there snow? no
where are they snowboarding? a lake
do you see any mountain? no
is it sunny? no cloudy
where are they snowboarding? a lake
is it day time? yes
is there snow? no
do you see any mountain? no
is it day time? yes

Predicted labels: person, skis, boat

Semantic representation:
caption:
a group of men talking
dialog:
how many people are there? can't count 
is it sunny? no
is it day time? yes
what are they wearing? a suit
what color? dark blue
is it raining now? yes
is it day time? yes
how many people are there? can't count
is it sunny? no
where are they? on a beach 

Predicted labels: person, tie, umbrella

Fig. 5: Left-hand side: incorrect caption corrected by the dialog. Right-hand side: ob-
jects missing from the captions discovered by asking relevant questions.
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Semantic representation:
a group of animals grazing on grass next to
each other.
what are the animals? zebras 
how many? 2
are there other animals ? : no
is this a zoo ? : probably
is the grass long ? : no
are they all grazing ? : yes all
can you see any trees ? : yes
any rocks ? : no
is it sunny ? yes
do you see any people ? no people

- what are the animals? zebras 
- how many? 2

+ what are the animals? there are horses 
                                       and cows
 + how many? 3

Fig. 6: Incrementally updating the representation.

Semantic representation:
caption:
two cars are crossing each other
dialog:
what color are vehicles? blue and white
do you see any people? no
is it day time? yes
is it sunny? yes
how many car do you see? 2
is it sunny? no
do you see any bulding? no
do you see any tree? yes
how many car do you see? 2
is it day time? yes

Predicted labels: car Missed labels: giraffe

Semantic representation:
caption:
a group of people riding surfboards on top of a wave
dialog:
do you see any people? yes
ihow many? 2
is it day time? yes
is it sunny? yes
what clothes? black swimsuits
male or female? male 
is it day time? yes
can yousee water? yes
what clothes? black swimsuits
is it day time? yes

Predicted labels: person, surfboard Missed labels: dog

Fig. 7: Predicting failure cases from the proposed semantic representation. Left-hand
side: caption and Q/A are consistent but not rich enough to predict the ’giraffe’ label.
Right-hand side: the semantic representation is incorrect leading to the inference of
erroneous labels. In such cases, the bottleneck representation can be used for debugging.

4.4 Evaluating Failure Predictions

The potential capacity of the semantic bottleneck to detect failure in the prediction
process is illustrated by Fig. 7. Failure is detected when the representation contains
incorrect semantic information — the caption or dialog are wrong — or insufficient
information for further inference. We focus our evaluation on multi-label image classi-
fication, since a clear definition of failure in the case of content based image retrieval
is complex, can be subjective (how decide if images are completely dissimilar from
the request?) and task oriented (what are retrieved images used for?). We developed
two evaluation protocols: one with humans in the loop, judging the semantic bottleneck
capacity to predict consistent labels, and an automatic model optimized to predict suc-
cess or failure for each class. We compare our approaches to a baseline based on score
prediction thresholding. In order to evaluate the semantic bottleneck capacity, we first
train our model for a multi-label classification task and extract the generated semantic
representation (caption and dialog) and class prediction.

Table 5: Failure prediction statistics.
false negative false positive

#true #predicted #true #predicted
GT. 614 - 588 -

users 308 379 213 485
classifier 250 490 180 530

Table 6: Multi-label classification.
label image

mAP % mAP %
no selection 54.3 100 54.3 100

users 84.2 96 86.1 53
classifier 79.8 93 81.7 49

conf. thresh. 66.1 93 73.5 49
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Human based failure prediction study. For 1000 randomly chosen test images, users
were instructed to evaluate the capacity of the semantic bottleneck to contain enough
information to predict the correct classes. The image and the generated semantic repre-
sentation are shown to the users, which can select for each of the 80 labels of MS-COCO
1 among 3 cases: i) false negative. The semantic representation missed the label (e.g.
caption and dialog do not mention about the horse in the picture). ii) false positive. The
semantic representation hallucinates the object (e.g. seeing a car in a kitchen scene).
iii) correct. The algorithm has succeeded to predict the label, either its absence or its
presence. Table 5 shows failure cases of the multi-label classification (614 false nega-
tive and 588 false positive). Human subjects were able to identify half of the failures
(308/614 FN and 213/588 FP) with a precision of ≈ 60% (308/379 and 213/485).

Failure detection can also be evaluated through two other sets of experiments: Label
rejection: suspicious labels are rejected, others are kept. Image rejection: when there is
a suspicious label, the image is rejected. Table 6 shows both experiments, and reads as
follows: classification performance is of 54.3% when evaluating on 100% of the test set.
When user rejects 4% of the labels, the performance goes to 84.2%. When our rejection
algorithm keeps 93% of the data, the performance improves to 79.8%, which is close
to human performance. We see a strong improvement for both our methods. Failure
prediction improves the average precision of 30% percent with 4% of deleted image in
average for each class.

We also proposed two automatic algorithms for failure prediction. The first one,
referenced as ’classifier’ in Tables 5 and 6, is based on an independent ternary linear
classifier for each class with 3 possible outputs: correct, FN, FP. The input is the im-
age I concatenated with the last hidden state of the semantic representation encoder
[{Qk, Ak}k=1:K , c(I)]. The ground truth is built by comparing the output from the
multi-label classification and the true classes. The model is optimized using a cross
entropy loss. It is less accurate (can detect ≈ 41% of false positive with ≈ 51% of pre-
cision) but has the advantage of reducing human effort. We also show in the last row of
Table 6 the performance of a second algorithm consistng in thresholding the confidence
score outputed by the multi-label classifier for each label, and tuned to reach the same
rejection rate as the other failure detection algorithm. This confidence thresholding al-
gorithm gives a smaller performance increase after rejection.

5 Conclusions

In this paper we have introduced a novel method for representing images with seman-
tic information expressed in natural language. Our primary motivation was to ques-
tion the possibility of introducing an intelligible bottleneck in the processing pipeline.
We showed that by combining and adapting several state-of-the-art techniques, our ap-
proach is able to generate rich textual descriptions that can be substituted for images in
two vision tasks: semantic content based image retrieval, and multi-label classification.
We quantitatively evaluated the usage of this semantic bottleneck as a diagnosis tool to
detect failure in the prediction process, which we think contributes to a clearer metric
of explainability, a key concern to mature artificial intelligence.
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