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Learning SPECT detector angular response function 1 with neural network for accelerating Monte-Carlo 2 simulations 3

A method to speed-up Monte-Carlo simulations of Single Photon Emission 9 Computed Tomography (SPECT) imaging is proposed. It uses an artificial neural 10 network (ANN) to learn the Angular Response Function (ARF) of a collimator-detector 11 system. The ANN is trained once from a complete simulation including the complete 12 detector head with collimator, crystal, and digitization process. During the simulation, 13 particle tracking inside the SPECT head is replaced by a plane. Photons are stopped 14 at the plane and the energy and direction are used as input to the ANN that provide 15 detection probabilities in each energy windows. Compared to histogram-based ARF, 16 the proposed method is less dependent on the statistics of the training data, provides 17 similar simulation efficiency, and requires less training data. The implementation is 18 available within the GATE platform.

Introduction

20

SPECT imaging is widely used to provide 3D images of the spatial distribution of 21 single-photon emission radiotracers. A conventional SPECT system is composed of a 22 scintillation detector and photomultiplier tubes (PMTs) to record the location and the 23 energy of detected photons. In front of the detector, a lead or tungsten honeycomb 24 collimator is used to select photons traveling along a given direction in order to retrieve 25 an estimate of their point of origin within the patient. The detected photons are stored 26 according to energy windows defined either around the radionuclide photo-peaks and 27 such to account for lower-energy photons that have most likely undergone Compton 28 scatter prior to detection (and whose origin is therefore uncertain).

29

Monte-Carlo simulation of SPECT images is typically done in two main steps: 1) 30 tracking the particles inside the medium, e.g., a patient CT image, and 2) tracking the 31 particles in the SPECT detector head. The first step generates particles from an activity 32 distribution of a given radionuclide such as 99m Tc, 111 In or 177 Lu and tracks photons from 33 voxel to voxel until they escape from the patient. This process may be accelerated by We investigated the feasibility of using a Neural Network (NN) trained with data 76 obtained from simulations to replace ARF tables. We will refer to the ARF using 77 NN instead of tables as ARF-nn, while the original tabulated ARF model will be called 78 ARF-histo. Once trained, the ARF-nn is used like the ARF-histo in order to provide 79 the probability that a given photon with given incident angles and energy are counted 80 in an energy window. The first step is to train the NN, and the second step is to use 81 it to compute an image. All developments were performed in the open-source Gate 82 platform [START_REF] Sarrut | A review of the use and potential of the GATE Monte Carlo simulation code 385 for radiation therapy and dosimetry applications[END_REF] based on Geant4 [9] and will be available in the next release. Here, the 3D input space X is spanned by the two angles θ and φ, and the energy E.
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The input fed to the NN is an N × 3 matrix X containing N vectors x = (θ, φ, E) ∈ X , 123 one for each photon. The goal of the NN is to predict the output vector y, being the 124 probability of the input photon to be detected in one energy window. In the so-called 125 "one-hot" notation, y is a vector of size n (the number of energy window), and the The optimization was performed using Adam optimizer which is a first-order 145 gradient-based optimization based on adaptive estimates of lower-order moments [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. The ARF-nn method was decomposed into a two-step process. First, as with ARF-158 histo, the simulation is run with the SPECT head replaced by an empty plane of 1 nm 159 thickness, henceforth called the "ARF plane", located just in front of the collimator.
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The position, direction, and energy of the photons that reach the ARF plane are stored 161 in a dataset. In a second step, performed after the simulation, the image is computed as 162 follows using this dataset. For every photon, the coordinates (u, v) in the image plane, 163 sampled with 4×4 mm pixel size, is determined from the position in the ARF plane as 164 proposed in [START_REF] Song | Fast modelling of the collimator-377 detector response in Monte Carlo simulation of SPECT imaging using the angular response 378 function[END_REF], i.e. using the point where the incident photon direction vector intersects 165 the image plane located half-way of the crystal length. Figure 1 illustrates the process 166 with the ARF and image planes. For the values (E, θ, φ) of each incident photon, the 167 NN is used to get the probabilities h(E, θ, φ) = y i . I(u, v, i) is then incremented by y i , 168 with i the index of the energy window.

169

The time gain of the method compared to Monte-Carlo is that 1) the simulation 170 required to generate the image is expected to be faster than a full simulation including 171 tracking in the detector head, and 2) the ARF model (histograms or NN) gives the 172 probability in all energy windows thus contributing to variance reduction. 

Simulation tests and validation 186

We evaluated the accuracy and efficiency of both ARF methods compared to brute- Test datasets Three tests were performed, each with a different source. In Test1,
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one isotropic spherical source of 1 cm radius and 364 keV energy was used. In Test2, 239 over all pixels in P 5% . As a control, it was checked that this method led to similar 246 uncertainty estimation as with the conventional batch method. However, for the ARF 247 methods, detected photons are accumulated with scalar weights not integer counts and 248 the uncertainty cannot be estimated after the simulation. We calculated the uncertainty 249 σ k according to equation 2 below following the history by history method [START_REF] Chetty | Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning[END_REF], where 250 N is the number of primary events in the simulation, i a given event, and c k,i the 251 count probability, given by the ARF, of event i in pixel k. The global uncertainty σ 252 is averaged over all pixels in P 5% . Here also, we verified that this history by history 253 method led to a similar uncertainty estimation as with the conventional batch method.

(MAE) δ = 1 |P 5% | P 5% k |c ref k -c k | (1 

254

To our knowledge, the efficiency of the ARF method was never explicitly quantified.

255

Like in [START_REF] Cajgfinger | Fixed Forced Detection for fast SPECT 369 Monte-Carlo simulation[END_REF], the efficiency ε k of a method in pixel k is computed with equation 4 taking 

σ k = 1 N -1   N i c 2 k,i N - N i c k,i N 2   (2) 
σ global = 1 |P 5% | k∈P 5% σ k (3) 
A c c e p t e d M a n u s c r i p t Poisson noise is illustrated in the second row.

ε k = 1 t × σ 2 k ; ε mean = 1 |P 5% | k∈P 5% ε k (4 
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Table 3 summarizes the simulation times with and without tracking in the detector.
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The second phase of ARF image generation that uses ARF tables to create the image 307 took about 100 seconds for ARF-nn and 200 seconds for ARF-histo for 10 8 primaries.

308

However, this latter comparison was not fair as the vectorial operations of neural network uncertainties were comparable between analog with 10 10 primary particles and ARF-nn 314 with 4 × 10 7 particles, leading to a 90 to 400 times higher efficiency depending on the 315 energy window.

316 A c c e p t e d M a n u s c r i p t Carlo when the optimal binning is used. However, the binning parameters for which the 319 best accuracy was achieved varied for each test simulation. For example, Test1 leads 320 to best results with binning = 50, while for Test3 the best binning was 100. We also 321 observed that ARF-nn lead to similar results for 10 9 to 10 should be added to retrieve similar noise properties as with analog Monte-Carlo. We 330 also show (figure 8) that mean count differ very little between analog and ARF (less than 331 1%). In figure 9, image profiles showed some differences that may partly be attributed to 332 the stochastic nature of the process. The ARF image also tends to depict slightly higher 333 count values compared to the analog image near high gradient areas. The origin of this 334 behavior may be linked to the approximation made by ARF regarding the photon's 335 impact location on the detector as shown in [START_REF] Song | Fast modelling of the collimator-377 detector response in Monte Carlo simulation of SPECT imaging using the angular response 378 function[END_REF].
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The efficiency of the ARF methods was evaluated per pixel, for three different test 337 cases. Speedup compared to analog Monte-Carlo laid between 10 to 3000 and was similar 338 for ARF-nn and ARF-histo. We showed that the ARF methods are more efficient for 339 low count areas (speedup of 1000-3000) than for high count areas (speedup of 20-300).

340

The mean efficiency depends on the configuration of the simulation and could not be (even in image areas with a low number of counts as illustrated figure 9).

350

To conclude, the proposed method is an alternative to the ARF-histo method that 
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  variance reduction techniques (VRT) such as ray-tracing based methods [1, 2, 3] and/or 35 A c c e p t e d M a n u s c r i p t 2. Method 75

83 2 . 1 .

 21 photon reaching the detector: the incident angles θ and φ, the incident energy E, and 98

112 2 . 2 .

 22 Training the Neural Network 113 Machine learning with Artificial Neural Networks (ANN) recently (re)gained attention 114 in a large variety of tasks, notably natural image classification. An ANN works as a 115 mapping function from an input space to an output space. Inspired from biological 116 neural networks, the mapping function is in the form of a network of weighted additive 117 values with non-linear (but differentiable) transfer functions, organized in layers of 118 neurons. Training the network consists in optimizing a loss function that minimizes 119 some sort of difference between the known and predicted output, performed on a large 120 training dataset.121

126

  photon to be detected in the i th upright energy window. The purpose of the NN is to 128

137

  optimisation process aims to find the values of the weights w that minimize a difference 138 (loss) between the input dataset y data and the output of the network h(x) = y. The 139 loss function was the multiclass cross entropy between the two probability distributions 140 p y data and p y . This criterion encourages the model to assign higher probability values to 141 the correct labels across the training samples. It combines the negative log-likelihood 142 loss with the normalized exponential activation function (the softmax function), that 143 normalizes the exponential probabilities between 0 and 1.

  144

146

  At each iteration (referred to as epoch), back-propagation is used to calculate the 147 derivative of the loss function with respect to each weight and a fraction of this derivative 148 is subtracted from that weight. The fraction is determined by the learning rate α, 149 which controls the balance between convergence speed and precision. We used an 150 A c c e p t e d M a n u s c r i p t adaptive learning rate starting at α = 0.0001 and decaying by a constant factor when 151 improvement in the cost function is lower than a given value. A maximum of 1000 152 iterations with stochastic batches of 5000 samples at each iteration was used. Input 153 data X where normalized according to mean and standard deviation. At the end of the 154 optimisation, we ended up with a set of about 1.6 × 10 5 weights which define the NN 155 (e.g. with N W = 8).

156 2 . 3 .

 23 Generating an image with ARF-nn 157
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  The simulation was implemented in Gate version 8.0[START_REF] Sarrut | A review of the use and potential of the GATE Monte Carlo simulation code 385 for radiation therapy and dosimetry applications[END_REF], using Geant4 version 10.3. A 175 new actor was provided, called Gate_NN_ARF_Actor. When the flag train_mode is set, it 176 stores a training dataset composed of the input parameters θ, φ, E and the corresponding 177 energy window output i. The coordinates of the photons are not stored in this phase. 178 When the flag test_mode is set, the actor stores the parameters u, v, θ, φ, E that will be 179 used by the ARF model (with u and v the coordinates of photons in the ARF plane). 180 All output files are in raw binary file format. Neural network operations (training, 181 image generation) were implemented in Python with the pytorch framework [11] using 182 CUDA GPU acceleration. Source code is open-source and will be available in the next 183 Gate release. All computations were performed on an Intel Xeon CPU E5-2640 v4 @ 184 2.40GHz, and an NVIDIA Titan Xp (GP102-450-A1) with 12 GB memory.

Figure 1 .

 1 photonsCollimator

  187 force Monte-Carlo method without variance reduction technique which we called analog 188 Monte-Carlo. We further studied the influence of the training dataset size and histogram 189 binning. The following paragraphs describe the two types of simulations, one to the 190 generate the training dataset and one to generate the data from which the image is 191 built. 192 Training datasets We simulated a head of the GE Discovery 670 with NaI(Tl) crystal 193 equipped with Medium Energy General Purpose (MEGP) and High Energy General 194 Purpose (HEGP) parallel-hole collimators, respectively, notably used for 111 In and 195 131 I sources. Hole diameters were 3 and 4 mm, respectively, with a septal thickness 196 of 1.05 and 1.8 mm. Crystal thickness was 9.525 mm (3/8 inch). The effect of the 197 digitizer chain was modeled by applying a spatial Gaussian blurring of 3.97 mm [12]. 198 Table 1 displays the energy windows considered, 5 windows for 111 In and 7 for 131 I. The 199 source was defined as described in section 2.1 with photon energy ranges [150 -270] 200 and [200 -780] keV, respectively. The source plane was positioned at the collimator 201 A c c e p t e d M a n u s c r i p t entrance. The russian-roulette factor was set to w = 40, i.e., only 1/40 of the photons 202 which did not traverse the collimator were stored. One billion primary photons were 203 generated. Two NN were trained, one for each collimator/digitizer configuration, with 204 the same set of parameters.

207 9 217to 2 ×

 92 the source was composed of spheres of 4 cm radius with energies corresponding to 208 the 131 I energy windows described previously. The sources were linearly positioned 209 at 20 cm distance from the SPECT head, regularly spaced apart by 7 cm. The 210 source geometry in Test3 was identical to Test2, but with energies corresponding to 211 the 111 In energy windows. Test1 and Test2 were performed with HEGP, and Test3 with 212 MEGP collimators. All tests were done in air without attenuating media. 213 For each test, two types of simulations were performed: one reference analog 214 Monte-Carlo simulation which included the geometry of the detector, in particular the 215 collimator; and one simulation in which the detector head was replaced by a simple 216 detector plane. Reference analog Monte-Carlo simulations were performed with 2 × 10 10 10 primary photons. The output data were projection images containing the 218 same number of channels as the number of energy windows. For both ARF methods, 219 i.e., NN and histogram, the simulation was performed to record photon positions, angles, 220 and energy in the ARF detector plane. ARF-histo generated images were built using 221 different numbers of bins. We selected the following numbers of bins: 200, 150, 120, 222 100, 80, 50, 25, 12, used for all three parameters θ, φ and E to study the effect of the 223 bins size on the constructed image. 224 End to end simulation under realistic conditions For illustration purpose, we also 225 performed Test4, a simulation of a patient CT image with a voxelised 131 I source having 226 uniform activity located in the patient tyroid. The image and the source were sampled 227 at 3×3×3 mm 3 . The imaging system was the GE Discovery 670 with HEGP collimator.228 10 10 primary photons corresponding to the 131 I photo peaks were simulated, 6.227% at 229 284.31 keV, 81.3% at 364.49 keV, and 7.132% at 636.99 keV. Tracking cuts were set 230 A c c e p t e d M a n u s c r i p t to 1 m inside the patient to avoid generating and tracking electrons in this region, and 231 were set to 1 mm in the SPECT head. 232 Evaluation criterion We evaluated the difference between images generated with 233 analog Monte-Carlo and ARF methods as the Mean Absolute Error δ (MAE) for all 234 pixels having more than 5% of the maximum counts in the image, denoted P 5% . In 235 equation 1 below, c k and c ref k refer to the number of counts in pixel k computed with 236 ARF or reference analog Monte-Carlo, and |P 5% | is the cardinality of the set P 5% . The 237 evolution of this error as a function of training dataset size and binning parameters were 238 also studied.

  ) 240 We computed the efficiency of the ARF variance reduction technique. Photon 241 detection in SPECT is a Poisson process and the statistical uncertainty of the analog 242 Monte-Carlo simulation is the square root of the number of counts. The relative 243 uncertainty can therefore be estimated at the end of a simulation for all pixels in the 244 images as: σ(k) = √ c k /c k . The global uncertainty is defined as the mean uncertainty 245

256

  into account the computed time t and the uncertainty, and the mean efficiency ε mean 257 for the entire image is calculated by averaging over all voxels in P 5% . The speedup of 258 one method compared to another was computed as the pixelwise ratio of efficiencies ε k .259Note that for Test1, Test2, and Test3, the efficiency considers the computation 260 time for particles tracked inside the detector head, without taking into account the time 261 required to track particles in the phantom or in the patient.

  262

Figures 2 , 3 ,W 2 × 5 ×Figure 9

 23259 Figures 2, 3, and 4 depict MAE errors for the three tests for different histogram binnings 275
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  were performed on GPU, while the histogram-based task was on CPU. The training of 310 the neural network took between 35-45 minutes according to the dataset sizes. For Test4 311 with the patient CT, most of the time is spent in tracking the particles inside the CT 312 image and the speed decreases to about 5,000 particles per seconds (PPS). Statistical

  313

Figure 2 .

 2 Figure 2. Mean Absolue Errors (MAE see eq. 1) results for Test1 (single peak source, HEGP) for ARF methods with several histogram binnings (in blue), with ARF-nn (in red), and for four training dataset sizes (10 9 , 5 × 10 8 , 2 × 10 8 and 10 8 ).

A c c e p t eFigure 5 .

 5 Figure 5. Typical star effect of the HEGP collimator for high energy gamma, clearly visible with the analog Monte-Carlo simulation (2 × 10 10 particles, top image), visible with ARF-nn (10 7 particles, bottom right) and not visible with ARF-histo (10 7 particles, bottom left). Colorscale is saturated and is the same for all three images. A c c e p t e d M a n u s c r i p t

Figure 6 . 10 ARF-nn 4x10 7 Figure 7 .

 61077 Figure 6. Top-left: simulated SPECT image for test2 (HEGP, 131 I) for W SC [392-414] keV window. The simulation was obtained with analog Monte-Carlo, 4 × 10 10 primaries. Several sources are visible, the maximum number of counts in a voxel was 17392. Top-right: simulated SPECT image for the same simulation, but performed with ARF-nn and only 4 × 10 7 primaries. By comparison, analog Monte-Carlo with 4 × 10 7 is shown bottom-right. Bottom left: speedup per voxel between analog and ARF-nn, for the same image. High count areas depicted speedup around 200, while low count regions may reach a speedup around 10 4 .

Figure 8 .

 8 Figure 8. Count distributions in a homogeneous image area obtained from three analog Monte-Carlo simulations with increasing number of primary particles (5 × 10 8 , 10 9 and 2 × 10 9 ), and for an ARF-nn simulation with 5 × 10 7 particles. Distributions from analog Monte-Carlo were fitted with a Poisson distribution, while distributions from ARF-nn were fitted with Gaussian (black dashed lines).

Figure 9 .

 9 Figure 9. Complete SPECT simulation with patient CT and voxelized 131 I source. Top row images: CT image with source. Middle row images: SPECT images for the W Peak 364 keV window: analog, ARF-nn, ARF-nn with Poisson noise. Note that the intensity scale is adapted to illustrate the 'star' effect. Bottom row: plots of SPECT profile for all energy windows comparing analog and ARF methods.

A c c e p t e d M a n u s c r i p t 5 .

 5 Figures 2,[START_REF] Cajgfinger | Fixed Forced Detection for fast SPECT 369 Monte-Carlo simulation[END_REF][START_REF] Garcia | Accelerated GPU based SPECT 371 Monte Carlo simulations[END_REF] show that ARF-nn and ARF-histo are equally close to analog Monte-318
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341generalized.

  Figures 6 and 7 illustrated the differences in the uncertainty distributions 342 between analog and ARF simulations, showing an inverse behavior: Analog is slow to 343 converge in low event areas while ARF is faster in those regions. Hence, the efficiency is 344 higher for simulations with a large number of scattered photons such as with 131 I than for 345 simulations with 111 In. For a complete SPECT simulation with photons tracked inside 346 a patient CT, the overall speedup was between 80 and 400. As a practical example, an 347 ARF image obtained in 2.5 hours of CPU time with 4×10 7 photons and an analog image 348 obtained in 25 days CPU time with 10 10 photons were visually almost indistinguishable 349

351

  provides more consistent results and requires less training data. ARF efficiency has 352 been characterized. The principle to learn a detector response with a neural network 353 is general and may be extended to characterize the response function of other types of 354 detector response systems.

355A c c e p t e d M a n u s c r i p t

  

Table 1 .

 1 Energy windows for 111 In (MEGP) and 131 I(HEGP) simulations.

	205		
	Radionuclide	Windows	Energy ranges
	111 In	W Peak 171 keV	[156 ; 186] keV
	(MEGP)	W Peak 245 keV	[224 ; 272] keV
		W SC 1,2,3	[150 ; 156] [186 ; 192] [218 ; 224] keV
	131 I	W Peak 364.5 keV	[336 ; 392] keV
	(HEGP)	W Peak 637 keV	[595 ; 679] keV
		W Peak 722 keV	[679 ; 765] keV
		W SC 1,2,3,4	[314 ; 336] [392 ; 414] [414 ; 556] [556 ; 595] keV

  )

	263	
	264	Noise analysis The analog Monte-Carlo method accumulates discrete counts. Hence,
	265	the variation of the counts in a pixel follows a Poisson distribution, with the mean counts
	266	equal to the variance. However, the ARF method is a variance reduction technique that
	267	accumulates fractions of counts. Hence, the distribution of counts is not expected to be
	268	Poissonian. In order to analyze the difference between the noise distributions of analog
	269	and ARF methods, simulations of a 20 cm radius circular source with uniform energy
	270	distribution in the range [336 -392] keV were performed. Such simulations generate
		images with a large area containing homogeneous values, where the count distribution
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can be plotted and analyzed. Count values were sampled from pixels in the area and 272 binned to form a histogram.

Table 2 .

 2 Range of obtained speedups in the energy windows between analog and ARF methods for the three test cases. The number of particules used and the mean statistical uncertainty (eq. 2) is also depicted. For Test2, we indicate speedup (ratio of ε, eq. 4) in high count regions (more than 1000) and low count regions (around 200).

  Mean Absolue Errors (MAE see eq. 1) results for Test3 (MEGP, 111 In) for ARF methods with several histogram binnings (in blue), with ARF-nn (in red), and for four training dataset sizes (10 9 , 5 × 10 8 , 2 × 10 8 and 10 8 ).

		60			
		50			
	Mean Absolute Error (MAE)	20 30 40			
		10	1e9	5e8	2e8	1e8
		0			
						2 5 h is t o 1 2 n n
			Figure 4. Simulation		Reference ARF
			Test1 (HEGP) PPS	76,000	90,000
			Test2 (HEGP) PPS	50,000	90,000
			Test3 (MEGP) PPS	36,000	46,000
			Test4 (Patient) PPS	5,120	5,430

Table 3 .

 3 Computation time in PPS (Particle Per Seconds) for the different types of simulation. The column "reference" depicts PPS for the complete Monte-Carlo simulation including tracking in the detector. The column "ARF" depicts PPS for ARF simulations (no collimator, no crystal).

  8 events in the training dataset, 322 while the results with ARF-histo degraded with decreasing dataset size. For example, 323 Test1 required 10 9 primaries, while Test2 leads to correct results with 10 8 primaries, 324 but using a different binning value. Figure5also illustrates that ARF-nn provides a 325 better approximation than ARF-histo for the typical star effect of HEGP collimator. As 326 a conclusion, ARF-nn requires less training data and provides more consistent results
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than ARF-histo in all evaluated cases.
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It is shown that the ARF count distribution is Gaussian and that Poisson noise
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