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Abstract For the first time, a mm-wave personal exposure meter (mm-PEM)
for the 5th generation of mobile networks (5G) exposure assessment in in-
door diffuse fields is presented. The design is based on simulations and on-
phantom calibration measurements in a mm-wave reverberation chamber (RC)
at 60 GHz. The mm-PEM consists of an array of nine antennas on the body.
Using the mm-PEM, the incident power density (IPD) is measured in the un-
loaded RC, for the antenna(s) on the phantom and RC loaded with phantom.
The uncertainty of the mm-PEM is then determined in terms of its response,
which is defined as the ratio of antenna aperture for the above measurement
scenarios. Using nine antennas, the designed meter has a response of 1.043
(0.17 dB) at 60 GHz which is very close to 1 (0 dB), the desired ideal response
value. The mm-PEM measured an IPD of 96.6 W.m−2 at 60 GHz in the RC,
for an input power of 1 W. In addition, the average absorption cross section of
the phantom is determined as 225 cm2, which is an excellent agreement with
its physical dimensions.
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1 Introduction

The Fifth generation of mobile networks (5G) is expected to become com-
mercially available by 2020 [1]. Current research activities on 5G [1,2] involve
various topics including large data rates (up to 10 Gbps [1]), reliability, and
security, among others. 5G technology will mainly deploy the available spec-
trum above 10 GHz including the mm-wave band [1,3,4] to facilitate such high
speed data transmission. Once this technology is commercially available, the
general population will be exposed to EM fields at these frequencies. There-
fore, it becomes crucial to measure the personal exposure to electromagnetic
fields (EMFs) in the mm-waves band. Any wireless device has to comply with
exposure limits such as those issued by the International Commission on Non-
Ionizing Radiation Protection (ICNIRP) [5]. According to the ICNIRP, the
incident power density (IPD) is used as a dosimetric quantity. The IPD is
limited to 1 mW/cm2 and 5 mW/cm2 for general public and occupational
exposure, respectively.

A typical approach to measure the personal exposure to RF EMFs is to
use personal exposure meters (PEMs) [6]. PEMs are body-worn devices that
are equipped with an antenna and receiver electronics to register the EMFs
on body. Research has shown that PEMs may underestimate the EMFs due
to the presence (shadowing) of the body [6–9]. A review of different sources of
PEMs’ uncertainties can be found in [10]. Wearable personal distributed expo-
sure meters (PDEs) have been demonstrated for single [8] and multi telecom-
munication bands [11]. A PDE consists of multiple antennas on the body. The
use of multiple locations reduces the variations on the measurements and thus
the uncertainty. The necessity of using multiple locations for mm-wave per-
sonal exposure assessment is shown in [12]. A similar approach is used in [13]
for the 60 GHz band. Using three antennas, the 60 GHz exposure meter [13]
has been calibrated on the arm of a human subject in anechoic conditions.

Current research on the 5G exposure is mainly focused on assessment of
human exposure to mm-wave antennas used for user devices and portable
equipments. An example is [14] in which the human exposure to phased arrays
is studied in the range of 10-60 GHz. similarly, [15] studied human body ex-
posure to a 5G mobile terminal operating at mmW. The previous dosimetric
research at mm-waves have been mainly focused on animal [16], cells [17, 18]
and human skin [19–21] exposure.

On the one hand, high propagation loss and low building penetration at
60 GHz, makes mm-waves suitable for low range indoor but high speed com-
munications [4]. Consequently, a high isolation between outdoor and indoor
networks exists. On the other hand, research shows that people spend most
(more than 80%) of their time indoors [22]. This could increase the exposure
to EMFs at mm-waves in indoor environments. The total power in an indoor
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environment consists of specular and dense (or diffuse) multipath components
(DMC) [23]. The former is the result of coherent reflections from large sur-
faces i.e., walls. The latter is the reason of non-coherent reflections, due to the
presence of different objects in an indoor area. The contribution of the DMC
to the power density in an indoor area may increase up to 95% [24] compared
to outdoor areas.

The novelties of this research are as follows. The goal is to, for the first
time, design and calibrate a personal exposure meter (mm-PEM) for RF ex-
posure assessment at 60 GHz in indoor (diffuse) environments. The mm-PEM
is designed based on calibrations in a mm-wave reverberation chamber (RC).
The design of the mm-wave RC is presented in [25,26]. The goal of calibrations
is as follows: First, to find the configuration for the nodes on body (location
and orientation); Second, to measure the actual IPD in free space in diffuse
fields and correct the measurements for the presence of the human body. In
addition, the IPD in a mm-wave RC is measured using an isotropic tri-axial
probe. Finally, the uncertainty of the proposed mm-PEM consisting of an array
of nine antennas is determined.

2 Materials and Methods

The mm-PEM is calibrated in a mm-wave RC in the frequency range of 59.5
to 60.5 GHz. The antenna used for the mm-PEM is presented in Section 2.1.
A horn antenna (Section 2.2) and a broadband isotropic probe (Section 2.3)
are used as reference to measure the IPD in the RC (Section 2.4). These
reference values are then compared with the measured values with the mm-
PEM. The measurement uncertainty of the mm-PEM is studied experimentally
(Section 2.5) and numerically (Section 2.6).

2.1 Single antenna for mm-PEM

The 60 GHz antenna used in this study is a microstrip four-patch single layer
antenna array (denoted as Rx in the text) [27] and is shown in Fig. 1. This
four-patch antenna will be used as an individual element of the nine-element
array configuration resulting in the mm-PEM in Section 2.5 (see Fig. 5(a)).
The antenna is printed on a thin (127 µm) RT Duroid 5880 substrate. At
60 GHz, the Rx has a gain of 11.8 dBi, directivity of 13.9 dBi and a total
radiation efficiency of 60% in free space.

2.2 Horn antenna

A standard gain V-band horn antenna is used to measure the IPD (denoted
as Sinc in the text) in the empty RC. The antenna has a gain of 20 dBi. The
measured values using the horn antenna are used as a reference to be compared
to the measurements of the mm-PEM in the unloaded (empty) RC.
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Fig. 1 The 60 GHz four-patch antenna array that is used for the mm-PEM and is denoted
as Rx in the text. The antenna is fabricated on an RT Duroid 5880 substrate.

2.3 Broadband isotropic field meter

An isotropic E-field probe (EF6092, Narda, Hauppauge, NY, USA) is used
with a broadband field meter (NBM 550, Narda, Hauppauge, NY, USA) to
measure Sinc in the empty RC. The frequency range of the probe (EF6092) is
100 MHz to 60 GHz. This probe has isotropic tri-axial sensors that measure the
E-field components in the RC. The measured Sinc could be used as a reference
for calibration of the mm-PEM.

2.4 Reverberation chamber

The RC is made of aluminum walls with a thickness of 10 mm (Fig. 3). The
inner dimensions of the RC are 0.58×0.592×0.595 m3. A metallic mode stirrer
and a DC motor continuously rotate to generate random fields in the RC. The
RC operates in the 58.5-61.5 GHz range and has a measured Q-factor in the
order of 104 to 105. A WR-15 open-ended waveguide is used as a transmitter
(Tx); it is fed by either a signal generator or a vector network analyzer.

2.5 Calibration Measurement Setup

Figure 2 shows the diagram of the proposed setup for the calibration measure-
ments to design an array resulting in the mm-PEM. Calibrations are performed
for two scenarios: empty RC and loaded RC.

Setup 1 (see Section 2.5.1) is proposed to measure the IPD in the empty
RC using a broadband isotropic field probe and a standard gain horn antenna
as a reference.

The aim of Setup 2 (see Section 2.5.2) is to determine a response for the
proposed mm-PEM. The S-parameters are used to calculate the IPD and re-
sponse of the mm-PEM. The latter is defined as the ratio of the antenna
apertures (AA)s for the above-mentioned scenarios.

Finally, the average absorption cross section (AACS) of the phantom is
calculated from the measured Q-factors of the RC using the mm-PEM.
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Fig. 2 The diagram of the proposed setup for calibration measurements. Sinc: incident
power density. For setup 2, the values are averaged over nine antennas. AA: antenna aperture;
AACS: average absorption cross section.

2.5.1 Setup 1: Measurements using broadband field meter

The goal is to measure the IPD in the empty RC. Figure 3 depicts the proposed
measurement setup in the empty RC. A mm-wave source (Quinstar Technology
Inc, Torrance, CA, USA) generates EM fields in the range of 58.3-61.6 GHz
and an open-ended waveguide radiates the generated fields inside the RC.
During a full rotation, the stirrer goes through 100 positions. A broadband
isotropic probe (EF6092) is placed in the center of RC and is connected to a
field meter (NBM550) located outside the RC measuring the IPD at 60 GHz
and a bandwidth of 3.2 GHz. The EF6092 probe has been calibrated by the
manufacturer prior to the measurements. Additionally, a receiving V-band
horn antenna connected to an E4418B (Agilent, Santa Clara, CA, USA) power
meter is used to measure the power in the empty RC. The received power
density on the horn antenna Sinc,horn is calculated as:

Sinc,horn =
Pr,horn
AAhorn

(1)

where Pr,horn is the recorded power received by the horn antenna and
AAhorn is the effective area of the horn antenna inside the RC [28]:

AAhorn =
ηλ2

8π
(2)

where η is radiation efficiency of the horn antenna (0.94) and λ is the
wavelength.
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Fig. 3 The proposed measurement setup in the empty RC (setup 1 in Fig. 2): (1) open-
ended waveguide (Tx); (2) waveguide from mm-wave source; (3) stirrer; (4) horn antenna
connected to the power meter; (5) Narda EF6092 probe; (6) designed interface for the Narda
probe; (7) Narda NBM-550 broadband field meter; (8) reverberation chamber (RC).

2.5.2 Setup 2: on-phantom calibration using the Rx antenna

The goal is to calibrate the single-antenna exposure meter (Rx) on a tissue-
equivalent phantom in the RC in the 60 GHz band. Figure 4 demonstrates the
measurement setup. A ZVA 67 (Rohde&Schwarz, Munich, Germany) vector
network analyzer (VNA) is used to feed a standard open-ended waveguide
(0 dBm) and to measure the S-parameters. The Rx is fed with a V-connector
that has a loss of 0.8 dB [29]. The on-body calibration consists of three types
of measurements: on-phantom (step 1 in Fig. 3), far from the phantom (step 2)
and in free space (step 3, in the empty chamber).

For on-phantom measurements a skin-equivalent phantom [30] is used. The
phantom mimics the dielectric properties of human skin in the range of 55-
65 GHz. The dimensions of the phantom are 15×15×1 cm3 and its composition
is presented in Table 1. The complex permittivity of the phantom is measured
using an open-ended coaxial probe (DAK 1.2E, Speag, Switzerland) and is
equal to 7.4− j11.4 at 60 GHz. This is very close to the complex permittivity
of dry skin at 60 GHz that is 7.98−j10.90 [31]. Figure 5 shows a grid composed
of nine antenna locations (denoted as i) on the phantom. The distance between
locations are about 8λ, well above the spatial correlation of fields in RC (λ/2).

In the first step (Fig. 2: step 1), the Rx is placed at every location i
(i = 1 : 9) of Fig. 5(a) and the scattering (S) parameters were measured
for 100 positions of the stirrer in the range of 59.5 to 60.5 GHz and for every
positions of the Rx on the phantom.

The Q-factor of the chamber is calculated from the S-parameters [28]:
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Fig. 4 The proposed measurement setup (setup 2 in Fig. 2) for on-body calibrations: (1)
open-ended waveguide; (2) Rx holder for free space measurements either in loaded or empty
RC; (3) stirrer; (4) skin phantom; (5) four-patch antenna array (Rx).

Q(f) =
16π2V f3

c3
〈Pr,i(f)〉
Pt(f)

(3)

where V is the volume of the chamber, f is the frequency, c is the speed
of light, 〈Pr,i〉 is the average received power on the Rx during the stirring
process (at every location i) and Pt is the transmitted power by the VNA.
The relationship between the received power and the transmitted power in the
RC can be expressed by the transmission factor G [32,33] and is obtained from
the measured S-parameters:

G =

〈
|S21|2 − |〈S21〉|2

〉
(

1− |〈S11〉|2
)(

1− |〈S22〉|2
)
ηeηr

(4)

where |S21| is the magnitude of forward transmission coefficient, S11 and
S22 are the measured reflection coefficients of the transmitting and receiving
antennas, respectively. Moreover, ηe and ηr denote the radiation efficiencies of
the Tx and the Rx, respectively. The notation 〈〉 stands for an average over the

stirrer’s positions. It must be noted that the term |〈S21〉|2 in the nominator is
to take any direct or unstirred path during the measurements into account [33].
Considering (3) and (4), the Q-factor for every position of i can be written as:

Q =
16π2V G

λ3
(5)
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Table 1 Composition of the proposed human skin-phantom.

Ingredients Mass (g)

Water 200
Polyethylene 40
TX-151 4
Agar 3

(a) (b)

Fig. 5 The proposed locations and orientations of the antenna(s) on the skin phantom. (a)
The geometry of the proposed antenna locations. The thickness of the phantom is 1 cm. (b)
The proposed orientations of the antenna(s) on the skin phantom: (1) default orientation of
the nodes; (2) rotated antenna by 90 degrees.

where λ is the wavelength. The Q-factor is averaged over nine positions
of the Rx and the average IPD 〈Sinc〉 on the phantom is calculated from the
average Q-factor 〈Q〉 [26]:

〈Sinc〉 =
〈Q〉Ptλ

2πV
(6)

For Pt the loss in the cable connecting the VNA to the Tx is considered
(Pt = PV NA + losscable). Although calibration of the exposure meter requires
the IPD to be measured in presence and absence of the phantom (in empty
RC), the power density inside the RC is proportional to the loaded Q-factor
and the input power [26]. Therefore, moving the phantom in the RC or out of
the RC at mm-waves affects the Q-factor significantly (loaded vs. empty) [26,
28]. Due to its large size with respect to the wavelength any modification of the
phantom position in the RC induces a random modification of the plane wave
spectrum and might introduce coupling effects with Rx antennas. Removing
the phantom from the RC decreases the losses in the RC and yield an increase
of the Q-factor. Should no direct coupling occurred in presence of the phantom,
Q-factor variation is theoretically retrieved from phantom properties.
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In the second step (see Fig. 2), the phantom is moved at least 50λ away
from the Rx, and calibration measurements are repeated for the Rx antenna
(with the phantom far from the Rx) exactly at the same (nine) locations in
the previous step. This is to emulate the free space conditions for the Rx in
the loaded RC.

In the third step (Fig. 2), the phantom was removed out of the RC and
measurements were repeated on the same locations of Rx and the IPD and
Q-factor were determined for the empty RC.

The four-patch antenna array (Rx) has a narrow beam width and a thick
ground plane. Therefore, in order to study the effect of lossy phantom on its
radiation pattern and thus on the response of the exposure meter, the Rx is
rotated 90◦ (see Fig. 5(b)) and the calibration measurements are repeated for
three locations of Rx on the phantom (i = 1, 2, 3) and 〈Sinc〉 and 〈Q〉 are
calculated.

2.5.3 Measured response of the mm-PEM

The response R of the proposed exposure meter is defined as the ratio of the
received power on the four-patch antenna array placed on the phantom (Pr,ph)
to the antenna placed in free space (Pr,free), meaning that the Rx is far from
the phantom or is in the empty RC:

R =
Pr,ph
Pr,free

(7)

The received power (Pr) on the antenna can be written as:

Pr =
λ2

8π
η
c

z0
S11 = AAηS11

c

z0
= S2

21 × Pin (8)

Using equations (7) and (8), R can be calculated from the ratio of the
antenna apertures for the antenna on phantom and in free space. AA is deter-
mined from the average Q-factor [33] in each measurement scenario:

R =
AAph
AAfree

=

〈
|S21,ph|2 − |〈S21,ph〉|2

〉
〈
|S21,free|2 − |〈S21,free〉|2

〉 (9)

where AAph is the antenna aperture for the Rx on the phantom and AAfree
is the antenna aperture for the Rx in absence of the phantom (far from the
phantom: loaded RC or no phantom i.e. empty RC).

Ideally, we target the response R of the mm-PEM to be equal to 1, so the
mm-PEM measures the same IPD in free space and on the body (phantom).
Our hypothesis is that this can be achieved by combining nine elements.
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2.5.4 Average absorption cross section (AACS) of the phantom

The average absorption cross section of the phantom (AACS) placed in the
RC is determined from the Q-factors of the loaded RC (Rx far from the phan-
tom) and the empty (unloaded) RC and are denoted as Qfar and Qempty,
respectively [32]:

AACS =
2πV

λ

(
1

Qfar
− 1

Qempty

)
(10)

2.6 Numerical Modeling

The goal is to numerically determine the response of the exposure meter
around 60 GHz (in the range of 59.5 GHz to 60.5 GHz) in diffuse environ-
ments. Figure 6 illustrates the proposed numerical model for the mm-wave
exposure meter. The finite-difference time-domain (FDTD) simulation plat-
form, Sim4Life [34], is used. The penetration depth of mm-waves into the
body is very shallow and is limited to 0.48 mm at 60 GHz [35]. Therefore,
a homogenous model of human skin is employed for simulations. The dimen-
sions and the dielectric properties of the numerical skin model are considered
as 15×15×1 cm3 [36] and dry skin at 60 GHz (εr =7.97, σ =36.39 S/m) [31], re-
spectively. The antenna is placed at 5.6 mm from the surface of the skin model
due to the geometry of the connector (see Fig. 6). The absorbing boundary
conditions are set to uniaxial perfectly matched layers with a thickness of 7
layers. The skin model is resolved by a non-uniform mesh with maximum grid
step of 100 µm. The simulation time is set to 50 periods to reach a steady state
convergence. The entire geometry of the skin model and antenna is meshed by
197×106 voxels.

Fig. 6 The proposed model for numerical simulations. Small circle: location and orientation
of the antenna on the phantom; large circle: the antenna is rotated by 90◦.



5G personal exposure meter 11

2.6.1 Simulated response of the mm-PEM

The simulated response of the mm-PEM is determined for five frequencies
(59.5, 59.8, 60, 60.2 and 60.5 GHz) as follows. First, a simulation is performed
using the antenna in free space. Second, an on-body simulation is performed,
and thus the antenna is placed on the center and at 5.6 mm from the surface
of the skin model because of the connector size (see Fig. 6). Since the stirrer
and the real RC are not modeled and the structure of the phantom is not
symmetric, changing the antenna’s location on the model will not affect the
results. Therefore, a single simulation would suffice. The simulated response
Rsim is defined as the ratio of the average received power on the skin P skinr,sim

to the average received power in free space P freer,sim:

Rsim =
P skinr,sim

P freer,sim

(11)

The received power Pr,sim on an antenna can be determined from its an-
tenna aperture (AA) [37]:

Pr,sim = Sinc ×AA(ϕ, θ) (12)

The AA(ϕ, θ) is obtained from the simulated directive gain D(ϕ, θ) of the
antenna as:

AA(ϕ, θ) = ηrad(1− |S11|2)D(ϕ, θ)
λ2

4π
(13)

where ηrad is the radiation efficiency, |S11| is the antenna’s power reflec-
tion coefficient and λ is the wavelength. AA(ϕ, θ) can be determined for two
orthogonal polarizations on the incident electric fields: θ and ϕ. These are po-
larizations parallel to the unity vectors 1θ and 1φ. Using AA(ϕ, θ), the Pr,sim
can be determined in diffuse fields. For multiple plane waves incident on the
antenna, Pr,sim is not necessarily equal to the sum of the incident powers in-
duced by each single plane wave, since the incident plane waves can interfere
with each other. Therefore, the Pr,sim is calculated as a function of the inci-
dent electric fields (the sum of the induced voltages on the antenna) [9,13]. The
phase, polarization, polar (θ) and azimuth (ϕ) angles of the plane waves are
assumed to have a uniform distribution (from which 1000 samples are drawn
for each parameter) in the range of [0, π] (θ and polarization) and [0, 2π] (ϕ
and phase) [23]. This results in a distribution for Pr,sim.

3 Results and Discussion

Section 3.1 presents the measured Sinc by the mm-PEM, horn antenna and
the isotropic probe in the empty RC. The Q-factor and the Sinc are calculated
for the mm-PEM (Rx) on the phantom, far from the phantom and the rotated
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Rx on the phantom (Section 3.2). Next, the response of the mm-PEM is calcu-
lated (see Section 3.3). In Section 3.4, the AACS of the phantom is presented.
Section 3.5 discusses the measurement uncertainties.

3.1 Power density in unloaded (empty) RC

Figure 7 shows the IPD Sinc measured in the RC using the Narda probe, the
horn antenna (eq 1) and the average over nine Rx elements (eq. 6). All the
measurements are averaged over 100 positions of the stirrer. The results are
normalized to an input power of 1 W. The Narda probe measured the highest
Sinc compared to the horn antenna and the array antenna. At 60 GHz, the
measured Sinc by the array antenna is 8.6 W.m−2 lower than the measured
one by the horn antenna. The measured Sinc (at 60 GHz) by the Narda probe
is 136 W.m−2 and 42.4 W.m−2 larger than the measurement of the four-patch
antenna array and the horn antenna, respectively. The difference for the two
antennas is due to their different antenna apertures (AA), which depend on the
directive gain and the antenna efficiency as well as the polarization (tri-axial
versus linear). At 60 GHz, the standard deviations of the mean values are 53.4,
79.1 and 4.2 W.m−2 for the Narda probe, horn antenna and the four-patch
antenna array, respectively. Since it is not possible to place the Narda probe on
the nine locations on the phantom to measure the Sinc, the measured values
by the four-patch antenna array are used for calibration.

Fig. 7 The measured incident power density (Sinc) in unloaded (empty) chamber. The
results are normalized to an input power of 1 W. All the values are averaged over 100
positions of the stirrer. Bars represent the standard deviations of the mean values for the
Narda broadband probe and the horn antenna.



5G personal exposure meter 13

3.2 Q-factor and incident power density: antenna array

Figure 8 depicts the measured quality factor of the empty and loaded RC
averaged over nine antennas (see Fig. 5(a)) and 100 positions of the stirrer
in the range of 59.5-60.5 GHz. At 60 GHz, the average quality factor Qavg
is estimated 26000 for the empty RC. Although loading the chamber with
the phantom decreases Qavg to 7820, these are sufficiently high values to en-
sure the correct functionality of the RC. The antenna on the phantom has a
negligible influence on Q-factor which is only affected by the presence of the
phantom itself. In other words, part of the radiation pattern of the four-patch
antenna array is affected by the phantom (reflection and absorption). When
the antenna is rotated 90◦ on the phantom, a direct coupling path between
antennas and the phantom results in higher losses and thus a lower Q-factor.
Also the radiation pattern of the rotated antenna on phantom is more affected
by the phantom. The Q-factor reduces from 7120 to 5990 when the antenna on
the phantom is rotated 90◦. The standard deviation of the average (over nine-
antenna elements and 100 positions of the stirrer) Q-factors are 2600, 705, 911
and 243 for the antennas in the empty chamber, far from the phantom (loaded
RC), on phantom and rotated on the phantom, respectively. This shows less
variation of the Q-factor when nine-antenna elements are used.

Using (6), the Sinc averaged over nine antennas is calculated from Qavg.
Figure 9 illustrates the measured Sinc for the antenna array in the empty and
loaded chamber for an input power of 1 W. The measured power density in the
unloaded (empty) RC is 96.6 W.m−2 at 60 GHz with a maximum measured
value of 104 W.m−2 (at 59.6 GHz). The measured Sinc for the loaded RC
(antenna far from the phantom) is 12.1 W.m−2 at 60 GHz which is at least 8.6
times lower when the RC is not loaded. Also rotating the antenna decreased
Sinc to 9.2 W.m−2 which is a 25% reduction in the received Sinc on the antenna
due to the presence of the phantom.

3.3 Response of the mm-PEM

3.3.1 Measured Response of mm-PEM (ratio of AA)

Figure 10 demonstrates the response (ratio of the antenna apertures) of the
exposure meter for the antenna on the phantom and in absence of the phantom
(loaded and the empty). It must be noted that the response is calculated for the
average over nine locations of the antennas. The response R of the exposure
meter is 1.043 at 60 GHz (Fig. 10) for the nine antennas on the phantom
considering the free space Sinc is measured in the loaded chamber (antenna
far from the phantom). Then the ideal value of R = 1 is approached excellently
by positioning the mm-PEM on the phantom. The response decreases to 0.27
(at 60 GHz) when the free space values in the empty RC are used. This is an
underestimation by a factor of 3.5. Similarly, when the antenna is rotated, the
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Fig. 8 The measured Q-factor of empty and loaded RC averaged over nine antennas and
100 positions of the stirrer. Error bars indicate the standard deviations.
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Fig. 9 The measured incident power density Sinc in the loaded and unloaded RC averaged
over nine antennas and 100 positions of the stirrer. The measurements are normalized for
an input power of 1 W. Blue solid line: unloaded (empty) RC; black dotted line: loaded RC
(antenna far from the phantom); red dashed line: loaded RC (antenna on phantom); green
dashed-dotted line: loaded RC (rotated antenna on phantom).

response is 0.88 applying the free space values of Sinc in the loaded chamber,
where the antenna is placed far from the phantom.
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When considering Sinc values in the empty chamber the response for the
rotated antenna on the phantom decrease from 0.88 to 0.21 which is a factor of
4. It can be concluded that at mm-waves, the calibration of the exposure meter
has to be performed for the antenna(s) in the loaded chamber. Firstly, loading
the RC affects its Q-factor. Figure 8 confirms this, in which, the Q-factor for
the antenna on the phantom is very close to the Q-factor of the antenna far
from the phantom. Secondly, the free space Sinc should be measured in the
loaded RC, where the antenna is far from the phantom. Using nine antennas
on the phantom, the Sinc can be estimated with a ratio of 0.85 (-0.66 dB) to
1.13 (0.55 dB) w.r.t. the Sinc in absence of the phantom (in this case far from
the phantom, 50λ) in the range of 59.5 to 60.5 GHz.

Previously, the response of a mm-PEM at 60 GHz has been reported in the
range of 0.75 (on a skin phantom) to 0.8 (on body) in specular conditions [13].
The actual exposure (i.e. Sinc) in a real environment should be in between
both (specular and diffuse) estimates. The exact value in a real environment
depends on the contribution of specular and diffuse fields.
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Fig. 10 Comparison of the response (ratio of antenna apertures) for two scenarios: empty
RC and loaded RC.

The response of the mm-PEM is illustrated in Fig. 11 at 60 GHz as a
function of the number of Rx antennas. Using less than 3 antennas on the
phantom leads to an overestimation of Sinc in the RC up to a factor of 1.25
(0.96 dB). Also using 4 nodes resulted in an underestimation of 0.9 (-0.45 dB).
Increasing the number of antennas up to nine decreases the response of mm-
PEM to 1.043 (0.17 dB) at 60 GHz and is very close to 1 (0 dB) which is the
desired response of the mm-PEM.
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Fig. 11 The response of mm-PEM as a function of number of antennas (elements) at
60 GHz using the free space values in the loaded RC.

3.3.2 Simulated Response of mm-PEM

Figure 12 shows the simulated median response Rsim (eq. 11) of the mm-PEM
(single antenna) versus the measured response (ratio of AA, see Section 3.3.1)
averaged over nine Rx antennas. The simulated response is in the range of 0.91
(59.5 GHz) to 1.01 (60.2 GHz). For the rotated Rx on the phantom, the Rsim
decreases to the range of 0.15 (59.8 GHz) to 0.2 (60 GHz). At 60 GHz this
is a factor of 4.6 reduction. The reason is the Rx’s radiation along the skin’s
surface. The simulated Rsim for the Rx on the phantom is in good agreement
with the measured R when the free space values in the loaded RC are used for
calibration. But for the rotated Rx, the simulated Rsim is in good agreement
with the measured R when the free space in empty RC are used. It must be
noticed that the simulation does not consider the Q-factor and is based on
the received power on the antenna for two scenarios: in free space and on the
phantom. Also since the real RC is not modeled, changing the location of the
antenna on the phantom does not affect the results significantly.

3.4 AACS

Figure 13 depicts the average absorption cross section (AACS) of the phantom
as a function of frequency. The measured AACS of the phantom is 225 cm2

at 60 GHz. Considering the dimensions of the phantom (15 cm×15 cm), this
is an excellent agreement. A line is fitted to the measured data as a function
of frequency. The line shows that increasing the frequency, does not affect the
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Fig. 12 Simulated median response Rsim of (single antenna) mm-PEM vs. measured re-
sponse (AA ratio) of the mm-PEM with nine antennas. (M) Measurement; (S) simulation.
The measured R values are those depicted in Fig. 10.

AACS significantly and the AACS is almost constant in the range of 59.4 to
60.6 GHz.

3.5 Measurement uncertainty

Using EF6092 probe in combination with the NBM-550 field meter causes
a combined standard uncertainty of 1.86 dB (including linearity, frequency
sensitivity, isotropic and thermal responses [38]) on the measurements in empty
RC during the calibration measurements.

For the mm-PEM with nine antennas, the average Sinc is obtained from
measurements of the Q-factor (see eq. 6). Therefore, the uncertainty of Sinc is
related to the uncertainty of the measured Q-factor. The standard deviation
(σ) of Q is calculated as [39]:

σ =
1√

N × P
(14)

considering nine positions of the Rx (P = 9) and 100 positions of the stirrer
(N = 100), the standard deviation of the average power density is about 3.33%.
This results in a 95% confidence interval of ±6.66% on the measured average
Sinc using the mm-PEM in the RC.

It should be noticed that since placement of the broadband field probe
on the nine locations of the phantom was not possible in this measurement
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Fig. 13 The average absorption cross section of the phantom.

setup, the measurement uncertainty of the broadband probe and the proposed
mm-PEM are not comparable. In reality a prototype the mm-PEM uses a
power detector thus, the contributions due to stability issues of feed power
and sensor signal should be considered in the calibration which is part of the
future research.

4 Conclusion

A mm-wave personal exposure meter (mm-PEM) is designed for assessment
of personal exposure to 5G in indoor diffuse environments. The mm-PEM is
calibrated on a skin-equivalent phantom in a reverberation chamber (RC) in
the range of 59.5 to 60.5 GHz. We showed that increasing the number of an-
tennas up to nine, a response of 1.043 at 60 GHz is obtained. This response is
very close to 1, which is the desired response of the mm-PEM so the mm-PEM
can measure the IPD in free space but in the presence of human body. The
response of the mm-PEM in diffuse fields is also determined in terms of nu-
merical simulations using the FDTD. Good agreement between measurements
and simulations is achieved. According to the results, we recommend to cali-
bration the mm-PEM in the loaded RC. The average absorption cross section
of the skin-phantom is determined as 225 cm2 from the measurements, which
is in excellent agreement with the physical geometry of the phantom. Future
research includes design of acquisition nodes (antenna and receiver electronics)
for the mm-PEM to measure the IPD directly. Additionally, the calibrations
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will be performed on a cylindrical or spherical phantom to study the effect of
body shadowing on the response of the designed mm-PEM and to design a
distributed exposure meter for the mm-waves.
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