
HAL Id: hal-01909539
https://hal.science/hal-01909539v2

Submitted on 21 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memoryless systems generate the class of all discrete
systems

Erwan Beurier, Dominique Pastor, David I. Spivak

To cite this version:
Erwan Beurier, Dominique Pastor, David I. Spivak. Memoryless systems generate the class of all
discrete systems. [Research Report] RR-2018-02-SC, IMT Atlantique. 2018. �hal-01909539v2�

https://hal.science/hal-01909539v2
https://hal.archives-ouvertes.fr


Erwan Beurier, IMT Atlantique, Lab-STICC,
UBL, 29238 Brest, France
Dominique Pastor, IMT Atlantique, Lab-STICC,
UBL, 29238 Brest, France
David I. Spivak, MIT, Cambrige, USA

IMT Atlantique
Dépt. Signal & Communications
Technopôle de Brest-Iroise - CS 83818
29238 Brest Cedex 3
Téléphone: +33 (0)2 29 00 13 04
Télécopie: +33 (0)2 29 00 10 12
URL: www.imt-atlantique.fr

Memoryless systems generate the class of all
discrete systems

Collection des rapports de recherche d’IMT Atlantique
Erwan Beurier was supported by IMT-Atlantique (Bourse d’excellence
de l’IMT-Atlantique)
David Spivak was supported by AFOSR grants FA9550-14-1-0031 and
FA9550-17-1-0058, as well as NASA grant NNH13ZEA001N-SSAT
The work of Dominique Pastor was supported by Region Bretagne
(France) and the European Regional Development Fund (ERDF)

Date d’édition : December 11, 2018
Version du document : 1.2

http://www.imt-atlantique.fr/


SUMMARY

Summary

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1. Background in category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Boxes and wiring diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. The category of typed finite sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2. Dependent products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3. The category of boxes and wiring diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4. Monoidal structure of the category of boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5. Dependent product of boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Discrete systems and their equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1. Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2. An external equivalence relation on dynamical systems. . . . . . . . . . . . . . . . . . . 19
3.3. An internal equivalence relation on dynamical systems . . . . . . . . . . . . . . . . . . . 19

4. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1. Algebras and closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2. Memoryless systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3. Finite-state systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

IMTA-RR-2018-02-SC 1



1. INTRODUCTION

Abstract

Automata are machines, which receive inputs, accordingly update their internal state,
andproduceoutput, are a commonabstraction for the basic buildingblocksused in engineer-
ing and science to describe and design complex systems. These arbitrarily simple machines
can be wired together—so that the output of one is passed to another as its input—to form
more complexmachines. Indeed, bothmodern computers and biological systems can be de-
scribed in this way, as assemblies of transistors or assemblies of simple cells. The complexity
is in the network, i.e., the connection patterns between simple machines. The main result
of this paper is to show that the range of simplicity for parts as compared to the complexity
for wholes is in some sense complete: the most complex automaton can be obtained by
wiring together direct-output memoryless components. The model we use—discrete-time
automata sending each other messages from a fixed set of possibilities—is certainly more
appropriate for computer systems than for biological systems. However, the result leads
one to wonder what might be the simplest sort of machines, broadly construed, that can be
assembled to produce the behavior found in biological systems, including the brain.

Keywords: automata, category theory, discrete system, memoryless system, monoidal cat-
egory, wiring diagram.

1. Introduction
Automata represent systems that receive inputs, alter their internal states, and produce outputs.
The state set of the automaton is to be interpreted as the set of all potential memories, or storable
experiences. In automata theory, the state set is typically finite. In this case, one can view this
memory capacity as limited. On the contrary, when the memory of the automaton is not
assumed to be limited (human brain), or its capacity can always be extended (RAM-machines
or Turingmachines asmodels of computers in computation theory), the automaton should have
an infinite state set.

In the theory of dynamical systems, we use a generalisation of automata in which the size
of the state space is not restricted to finiteness, or even to countability. Dynamical systems
with the behaviour of an automaton, that is, taking inputs in discrete time, are called discrete
systems. The state space of such a system acts as a sort of memory of the inputs. Each input
influences the current state of the automaton, and the current state is the result of the system’s
own form—how it deals with inputs—together with the system’s history.

One can imagine a dynamical systemwhose state space is that of all possible input-histories;
a new input simply appends to the existing history to become a new history. On the other
hand, one can imagine the "opposite" kind of system: one that completely forgets the previous
inputs. These systems are referred to as "simple-reflex" in [1, p. 49], reactive, or memoryless
in this paper. The transitions of these automata depend only on the input, as no experience
is stored. The system decides according to the current perception of the world, rather than
current perception together with past perception. In fact, these memoryless systems could act
by making a single distinction in the input—a yes/no Boolean response—and nothing more;
we call these Boolean reactive systems.

In this paper, we will study the links between systems that have memory and those that do
not. More precisely, we prove that systems with memory can be simulated by wiring together
systems without memory. Our result provides a theoretical framework that supports artificial
neural network approaches. Memory is carried by connections, and not only by individuals,
within a compositional hierarchy of parts.

This article lies between two fields of mathematics: category theory and dynamical systems.
In Section 2, we introduce all the background related to category theory and its use in the study

IMTA-RR-2018-02-SC 2



2. BACKGROUND 2.1. Background in category theory

of discrete systems. Readers with a background in category theory are invited to skip Section
2.1. We need nomore than the basic definitions of categories, functors, natural transformations,
monoidal categories, and monoidal functors. Readers already familiar with the study of boxes
anddiscrete systems froma category-theoretic point of view (as in [2]) can skip Section 2.2. Here
again, we only need the basic understanding of C -typed-finite sets, C -boxes, wiring diagrams
and discrete systems inside a C -box.

In Section 3, we introduce discrete systems and a specific mapping that will serve our
purposes (Section 3.1). We then introduce two equivalence relations between discrete systems.
Both are bigger than the usual bisimulation used in automata theory (in the sense of set
inclusion). One corresponds to an external point of view; two systems are equivalent if they
transform input streams into output streams in the same way (Section 3.2). The other relation
corresponds to an internal point of view: two systems are equivalent if they have "the same
structure" (in a sense that is defined in Section 3.3). We prove that these are just two perspectives
on the same relation.

This equivalence relations plays a crucial role in the two results we show in Section 4. First,
we show that any discrete system is equivalent to some wiring-together of memoryless systems
(Section 4.2). Second, we show that any discrete system with a finite state set is equivalent to a
combination of finitely many Boolean reactive systems (Section 4.3).

1.1. Notation

In this article, we will use the following notation.

� Let N denote the set of all natural numbers, N B {0,1,2, . . .}.
� By default, the variable n will refer to a natural number: n ∈ N. We will also see the
integers n as their set-theoretic counterparts, that is 0 = ∅, and n = {0,1, . . . ,n − 1}; in
that context, i ∈ n simply means i ∈ {0, . . . ,n − 1}. Note that the set n contains exactly n
elements and this is what really matters in this notation.

� When the size of a sequence (x0, x1, . . . , xn−1) does not matter, it will be denoted x, which
makes it easier to write and read. If each xi is an element of the same set X , then we will
write x ∈ X , instead of defining an n = length (x) andwriting x ∈ Xn. If xi ∈ Xi for possibly
different Xi, and if there exists a compact notation X

∧
for X0 × X1 × · · · × Xn−1, then we will

write x ∈ X
∧

too.
� Sets is the usual category of sets; it will be defined in section 2.1.

2. Background
In this chapter, we will present the background necessary for the understanding of this paper,
namely that of category theory and dynamical systems. Both will be reduced to the absolute
minimum used in this article.

2.1. Background in category theory

This sectionwill present some basic notions about category theory. If the reader is already famil-
iar with the notions of category, functor, natural transformation, product, monoidal category,
and lax monoidal functor, they can skip directly to section 2.2.

Definition 2.1 (Category [3]). A category C consists of the following data:

� A collection of objects, denoted ObC

IMTA-RR-2018-02-SC 3



2. BACKGROUND 2.1. Background in category theory

� A collection of morphisms, denoted MorC
� A map dom : MorC → ObC ; for each morphism f , dom( f ) is called the domain of f
� A map cod : MorC → ObC ; for each morphism f , cod( f ) is the called codomain of f
� For each morphism f ∈ MorC , we write f : A→ B if A = dom( f ) and B = cod( f )
� A composition law ◦ such that, for all f : A→ B and g : B→ C, there is a chosen morphism
g ◦ f : A→ C

� For each object A ∈ ObC , there is a chosen morphism 1A : A→ A called identity morphism
of A

The composition law is required to be associative: ∀A,B,C,D ∈ ObC , ∀ f : A → B and
g : B → C and h : C → D, (h ◦ g) ◦ f = h ◦ (g ◦ f ). Identity morphisms are required to act like
identities: ∀A,B ∈ ObC , ∀ f : A→ B, f ◦ 1A = 1B ◦ f = f .

By abuse of notation, we will often write C ∈ C instead of C ∈ ObC , and ( f : C → D) ∈ C
instead of ( f : C → D) ∈ MorC . It should be clear from the way these are written that we refer
respectively to an object and a morphism.

In the rest of the article, a category C will be described according to the following presen-
tation:

Objects: An object in C is...

Morphisms: A morphism in C is...

Identities: An identity morphism is...

Composition: The composition law for morphisms is...

Usually, the description of morphisms suffices to implicitly define dom and cod, as in the
following example.
Example 2.2. We define the category Sets as the following:

Objects: An object in Sets is any set

Morphisms: A morphism in Sets is any function f : A→ B

Identities: An identity morphism is an identity function idA : A→ A

Composition: The composition law for morphisms is the usual composition of functions

Similarly, we can define the category FinSetswhose objects are the finite sets.

We also define mappings somewhat similar to functions, or homomorphisms, between
categories.

Definition 2.3 (Functor [3]). Let C and D be categories.
A functor F : C → D is a mapping from C to D such that:

� ∀C ∈ ObC , F(C) ∈ ObD
� ∀ f : A→ B ∈ MorC , F( f ) : F(A) → F(B) ∈ MorD
� ∀A ∈ ObC , F (1A) = 1F(A)
� ∀ f : A→ B,g : B→ C ∈ MorC , F(g ◦ f ) = F(g) ◦ F( f )

IMTA-RR-2018-02-SC 4



2. BACKGROUND 2.1. Background in category theory

In other words, a functor F : C → D sends the objects (resp. morphisms) in C to objects
(resp. morphisms) inD , preserving domains and codomains ofmorphisms, aswell as identities
and composition.

Functors are maps between categories; there also exist maps between functors.

Definition 2.4 (Natural transformation [3]). Let C and D be two categories, and let F,G :
C → D be functors. A natural transformation θ : F → G consists of a collection of morphisms
(θC : F(C) → G(C))C∈ObC

such that, for all C,D ∈ C , and for all h : C → D, the following square
commutes:

C F(C) G(C)

 

D F(D) G(D)

h F(h)

θC

G(h)

θD

For each object C ∈ C , the morphism θC is called the C-component of θ.

Depending on the context, and for the sake of readability, the C-component of a natural
transformation θ can be written θC as above (C as an index) or θ(C) (C as a parameter).

Definition 2.5 (Natural isomorphism [3]). Anatural transformation θ : F → G is called a natural
isomorphism when all of its components θC : F(C) → G(C) are isomorphisms.

Basic constructions inside categories include the product of a pair of objects, defined as
follows.

Definition 2.6 (Product [3]). Let C be a category and let A1 and A2 be objects of C .
A product of A1 and A2, written A1 × A2, is an object in C , together with two morphisms

π1 : A1 × A2 → A1 and π2 : A1 × A2 → A2 such that, for all objects P with two morphisms
p1 : P → A1 and p2 : P → A2, there exists a unique morphism u : P → A1 × A2 such that
π1 ◦ u = p1 and π2 ◦ u = p2, that is, such that the following diagram commutes:

P

A1 A1 × A2 A2

p1 p2
u

π1 π2

We call π1, π2 projections, and we denote u by u = (p1, p2).
The above can be generalized from n = 2 to any n ∈ N; the result is called an n-ary product.

The 1-ary product of A1 is just A1 and the projection π1 : A1 → A1 is the identity. The 0-ary
product is an object ∗ such that for all objects P, there exists a unique morphism u : P → ∗; it is
called a terminal object

Note that products need not exist in arbitrary categories, however they do exist in many
categories of interest here. For example, in Sets, 2-ary products are given by the usual product
of sets, and 0-ary products is any set {∗} with one element.

Definition 2.7 (Category with finite products). A category C is said to be a category with finite
productswhen ∀n ∈ N, ∀A1, . . . , An objects of C , the product A1 × · · · × An exists.

IMTA-RR-2018-02-SC 5



2. BACKGROUND 2.1. Background in category theory

An important class of categories is that of monoidal categories.

Definition 2.8 (Monoidal category [4]). Amonoidal category is a 6-tuple (C ,⊗, I,a,r, l), consisting
of a category C , a functor ⊗ : C × C → C , an object I ∈ C , and three natural isomorphisms a,
r , and l of the following form

1. a(A,B,C) : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C
2. r(A) : A ⊗ I → A
3. l(A) : I ⊗ A→ A

such that, for all objects A, B, C and D of C , the following rules hold:

1. The following diagram commutes:

A ⊗ (I ⊗ B) (A ⊗ I) ⊗ B

A ⊗ B

a(A,I ,B)

A⊗l(B) r(A)⊗B

2. The following diagram commutes too:

A ⊗ (B ⊗ (C ⊗ D))

A ⊗ ((B ⊗ C) ⊗ D) (A ⊗ B) ⊗ (C ⊗ D)

(A ⊗ (B ⊗ C)) ⊗ D ((A ⊗ B) ⊗ C) ⊗ D

A⊗a(B,C ,D) a(A,B,C⊗D)

a(A,B⊗C ,D) a(A⊗B,C ,D)

a(A,B,C)⊗D

We also say that (⊗, I,a,r, l) forms a monoidal structure on C .

Roughly, a monoidal category is a category with an operation ⊗ which can be seen as
associative (items 1 and 2), and a distinguished element I that behaves like a unit for the
operation (items 2, 3 and 1).

The category (Sets,×,1,a,r, l) is monoidal for the usual product of sets, where a,r, l are the
obvious isomorphisms and 1 is the singleton 1 = {∗}.
Remark 2.9. Readers not familiar with category theory may wonder what functors were used to
define the natural transformations a, r and l.

The natural transformation a is defined in item 1 by its (A,B,C)-component: a(A,B,C) :
A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C. Define the two functors:

F :

{
C × C × C −→ C
(A,B,C) 7−→ A ⊗ (B ⊗ C)

and G :

{
C × C × C −→ C
(A,B,C) 7−→ (A ⊗ B) ⊗ C

then a is defined as the natural transformation a : F → G. The same holds for r and l. Define:

R :

{
C −→ C
A 7−→ A ⊗ I

L :

{
C −→ C
A 7−→ I ⊗ A

idC :

{
C −→ C
A 7−→ A

IMTA-RR-2018-02-SC 6



2. BACKGROUND 2.1. Background in category theory

then r is the natural transformation r : R→ idC and l is the natural transformation l : L → idC .

Definition 2.10 (Symmetric monoidal category [4]). A symmetric monoidal category is a 7-tuple
(C ,⊗, I,a,r, l, s) such that (C ,⊗, I,a,r, l) is a monoidal category, and s is a natural isomorphism
s(A,B) : A ⊗ B→ B ⊗ A such that, for all A, B and C of C , the following diagrams commute:

A ⊗ B B ⊗ A

A ⊗ B

s(A,B)

1A⊗B s(B,A)

(1)
A ⊗ I I ⊗ A

A

s(A,I )

r(A) l(A)

(2)

A ⊗ (B ⊗ C) (A ⊗ B) ⊗ C

A ⊗ (C ⊗ B) C ⊗ (A ⊗ B)

(A ⊗ C) ⊗ B (C ⊗ A) ⊗ B

a(A,B,C)

A⊗s(B,C) s(A⊗B,C)

a(A,C ,B) a(C ,A,B)

s(A,C)⊗B

(3)

A symmetric monoidal category has an associative and commutative law, with a unit object.
Again, Sets is a symmetric monoidal category.

Definition 2.11 (Lax monoidal functor [5]). Let (C ,�, I,aC ,rC , lC ) and (D,⊗, J,aD,rD, lD ) be
monoidal categories.

A monoidal functor between C and D is a 3-tuple (F, σ,σ′)where:

� F : C → D is a functor
� σ is a natural transformation σ =

(
σA,B : F(A) ⊗ F(B) → F (A � B)

)
A,B∈C between two

C × C → D functors
� σ′ is a morphism σ′ : J → F(I)

such that, for all A,B,C ∈ C , the following three diagrams commute:

(F(A) ⊗ F(B)) ⊗ F(C) F(A) ⊗ (F(B) ⊗ F(C))

F (A � B) ⊗ F(C) F(A) ⊗ F (B � C)

F ((A � B) � C) F (A � (B � C))

aD (F(A),F(B),F(C))

σA,B ⊗1F (C) 1F (A)⊗σB ,C

σA�B ,C σA,B�C

F(aC (A,B,C))

(1)

F(A) ⊗ F(I) F(A) ⊗ J

F (A � I) F(A)

σA, I

1F (A)⊗σ
′

rD (F(A))

F(rC (A))

(2)

F(I) ⊗ F(A) J ⊗ F(A)

F (I � A) F(A)

σI ,A

σ′⊗1F (A)

lD (F(A))

F(lC (A))

(3)

IMTA-RR-2018-02-SC 7



2. BACKGROUND 2.2. Boxes and wiring diagrams

The pair (σ,σ′) is called the coherence maps of F. We sometimes refer to σ as the first coherence
map of F.

Remark 2.12. Just like we call R a field without clarifying its two laws and its two units, we often
write (C ,⊗, I), omitting the natural isomorphisms a, r and l, because they are only a matter of
"bookkeeping". We may even write C for a monoidal category when the context makes it clear
what the unit and monoidal product are.

2.2. Boxes and wiring diagrams

Wewill now apply the categorical framework to build discrete systems. Our approach is differ-
ent from the one in [6]. The dynamical systems presented here are defined as a generalisation
of automata whose input and output spaces are predetermined. We will define a category of
lists, a category of boxes, and diverse operations on them.

In this section, C will be any category with finite products (typically Sets). Most of the
following notions were already defined in [2]; we only recall them without proving their
properties. We also give examples in order to help for comprehension.

2.2.1. The category of typed finite sets

Before defining proper boxes, we need to define the notion of input and output ports. These
will eventually be the sides of our boxes.

Definition 2.13 (Category of C -typed finite sets [2]). The category TFSC of C -typed finite sets is
defined as follows:

Objects: An object is any pair (P, τ) such that P is a finite set and τ : P→ ObC is a function

Morphisms: A morphism from (P, τ) to (P′, τ′) is a function γ : P→ P′ such that τ = τ′ ◦ γ

Identities: The identity morphism on (P, τ) is the identity function of the set P

Composition: The composition of morphisms is the usual composition of functions

An object in TFSC is called a C -typed finite set; a morphism in TFSC is called a C -typed
function.

We can rewrite a C -typed finite set (P, τ) as the finite sequence 〈τ(p0), . . . , τ(pn−1)〉, where
P = {p0, . . . , pn−1}. A C -typed finite set is simply a list of objects in C , indexed by a finite set P.
If C = Sets, a Sets-typed finite set is a list of sets.

A C -typed function γ : (P, τ) → (P′, τ′) can be then seen as a means to obtain the for-
mer list 〈τ(p0), . . . , τ(pn−1)〉 from the latter list 〈τ′(p0), . . . , τ′(pn−1)〉, by reordering, duplicating
or even ignoring its elements. As τ = τ′ ◦ γ, the list 〈τ(p0), . . . , τ(pn−1)〉 can be rewritten
〈τ′ (γ(p0)) , . . . , τ′ (γ(pn−1))〉. Beware of the inversion: γ goes from (P, τ) to (P′, τ′) and we see it
as a transformation of the list (P′, τ′) into the list (P, τ).
Example 2.14. Let A, B and C be objects of C and consider the following two C -typed finite sets:

� (2, τ2) such that τ2(0) = A and τ2(1) = B; thus (2, τ2) is the list 〈A,B〉
� (3, τ3) such that τ3(0) = B, τ3(1) = C and τ3(2) = A; thus (3, τ3) is the list 〈B,C, A〉
� (4, τ4) such that τ4(0) = τ4(1) = τ4(2) = A and τ4(3) = B; thus (4, τ4) is the list 〈A, A, A,B〉

IMTA-RR-2018-02-SC 8



2. BACKGROUND 2.2. Boxes and wiring diagrams

(Remember our set-theoretic notation: 2 = {0,1}, 3 = {0,1,2} and 4 = {0,1,2,3}.)
The list 〈A,B〉 can be obtained from the list 〈B,C, A〉 by taking its third and first elements in

this order. A C -typed function from (2, τ2) to (3, τ3) could be γ : 2 → 3 such that γ(0) = 2 and
γ(1) = 0.

Similarly, the morphisms γ′ : 2 → 4 that convert the list 〈A, A, A,B〉 to 〈A,B〉 are such that
γ′(0) = 0 and γ′(1) = 3, or γ′(0) = 1 and γ′(1) = 3, or γ′(0) = 2 and γ′(1) = 3.

We let the reader find the morphisms (4, τ4) → (3, τ3) and the morphism (4, τ4) → (2, τ2),
that is, the morphisms that transform the list 〈B,C, A〉 into the list 〈A, A, A,B〉 and the (unique)
morphism that transforms the list 〈A,B〉 into the list 〈A, A, A,B〉.

What about the morphisms from (3, τ3) to (2, τ2)? The list 〈A,B〉 does not contain the object
C. There is simply no morphism (3, τ3) → (2, τ2). The same argument applies to morphisms
from (3, τ3) to (4, τ4).

Definition 2.15 (Sum of typed finite sets [2]). Let (P0, τ0) , (P1, τ1) ∈ TFSC be two C -typed finite
sets.

We define their sum by (P0, τ0)+ (P1, τ1) = (P0 + P1, τ0 + τ1) as the usual disjoint union of sets
P0 + P1 and τ0 + τ1 as τi on Pi for i ∈ 2.

Definition 2.16 (Sum of typed functions [2]). Let γi : (Pi, τi) →
(
P′i , τ

′
i

)
(i ∈ 2) be two C -typed

functions.
We define their sum as the C -typed function γ0 + γ1 : (P0, τ0) + (P1, τ1) →

(
P′0, τ

′
0

)
+

(
P′1, τ

′
1

)
such that ∀x ∈ P0 + P1, (γ0 + γ1) (x) = γi(x) if x ∈ Pi (i ∈ 2).

We can view the sum (P, τ) + (P′, τ′) as the concatenation of the lists 〈τ(p0), . . . , τ(pn)〉 and〈
τ′(p′0), . . . , τ

′(p′n′)
〉
, that is, the list

〈
τ(p0), . . . , τ(pn), τ′(p′0), . . . , τ

′(p′n′)
〉
, and the sum of C -typed

functions as a action on each part of the concatenated list.

Proposition 2.17. The category TFSC has the following properties:

� The sum of C -typed finite sets is a coproduct.
� There is only one C -typed finite set (P, τ) where P = ∅. We denote it by 0.
� TFSC has a symmetric monoidal structure for the sum +, with 0 as the unit.

Proof. See [2]. �

2.2.2. Dependent products

In this subsection, we define the dependent product functor. If a C -typed finite set can be
viewed as a list of objects of C , then the dependent product of this list is simply the product of
its elements.

Definition 2.18 (Dependent product [2]). We define the dependent product as the functor −∧ :
TFS

op
C
→ C such that:

Action on objects: (P, τ)
∧

=
∏

p∈P τ(p)

Action on morphisms: If γ : (P, τ) → (P′, τ′), then γ
∧

: (P′, τ′)
∧

→ (P, τ)
∧

is defined as the
function γ

∧
:
∏

p′∈P′ τ
′(p′) →

∏
p∈P τ(p) such that ∀

(
ap′

)
p′∈P′ ∈ (P

′, τ′)
∧

, γ
∧ ((

ap′
)
p′∈P′

)
=(

aγ(p)
)
p∈P.

IMTA-RR-2018-02-SC 9



2. BACKGROUND 2.2. Boxes and wiring diagrams

The interpretationof thedependentproduct is actually quite straightforward: thedependent
product of a C -typed finite set, viewed as a list, is the product of the elements of the list in the
same order as they appear in the list.

We remind that C has finite products; as a consequence, the dependent product always
exists.
Example 2.19. Consider the same A, B and C objects of C and C -typed finite sets as in Example
2.14:

� (2, τ2) = 〈A,B〉
� (3, τ3) = 〈B,C, A〉
� (4, τ4) = 〈A, A, A,B〉

The dependent products of these C -typed finite sets are:

� (2, τ2)
∧

= A × B
� (3, τ3)
∧

= B × C × A
� (4, τ4)
∧

= A × A × A × B

In order to see what the dependent product does to morphisms, take a morphism γ : 2→ 4
that converts the list 〈A, A, A,B〉 to 〈A,B〉, for example the morphism defined by γ(0) = 0 and
γ(1) = 3. Its dependent product γ

∧
will be the function (4, τ4)

∧
→ (2, τ2)
∧

= A × A × A × B → A × B
such that γ

∧
(x0, x1, x2, x3) =

(
xγ(0), xγ(1)

)
= (x0, x3).

We let the reader find the other dependent products as an exercise.

The dependent product is thus a functor that packages the usual operations of diagonal
A→ A × A, projection A × B→ A, and swapping A × B→ B × A.

Proposition 2.20. There is a natural isomorphism (P0, τ0) + (P1, τ1)
∧

� (P0, τ0)
∧

×(P1, τ1)
∧

; in other words,
the dependent product functor sends coproducts in TFSC to products in C .

Proof. See [2]. �

This property is also quite intuitive: if one views the coproduct inTFSC as the concatenation
of lists, and the dependent product as the product of the elements of the list, then the dependent
product of the concatenation of two lists is the product of the dependent products of each lists.

2.2.3. The category of boxes and wiring diagrams

The category TFSC is not the main purpose of this article; however its properties will be useful
for the rest of this article.

In the following, by abuse of notation, we will write X ∈ TFSC for (X, τ), and X
∧

for (X, τ)
∧

.

Definition 2.21 (C -box [2]). We call C -box any pair X =
(
X in,Xout) ∈ TFSC × TFSC .

A C -box is a pair of C -typed finite sets
(
X in,Xout) , where X in represent the list of inputs

ports, and Xout represent the list of outputs ports.
Example 2.22. From the typed finite sets in Example 2.14, we can build the following C -boxes:

� B2,2 = ((2, τ2) , (2, τ2)) = (〈A,B〉 , 〈A,B〉)

IMTA-RR-2018-02-SC 10



2. BACKGROUND 2.2. Boxes and wiring diagrams

� B2,4 = ((2, τ2) , (4, τ4)) = (〈A,B〉 , 〈A, A, A,B〉)
� B4,3 = ((4, τ4) , (3, τ3)) = (〈A, A, A,B〉 , 〈B,C, A〉)

These C -boxes are represented here:

B2,2
A

B

A

B
B2,4

A

B

A

A

A

B

B4,3

A

A

A

B

B

C

A

In the rest of the paper, the ports will no longer be labelled, for the sake of readability.

Definition 2.23 (Wiring diagram [2]). Let X =
(
X in,Xout) and Y =

(
Y in,Yout) be C -boxes.

A wiring diagam ϕ : X → Y is a pair of C -typed functions
(
ϕin, ϕout

)
such that:

� ϕin : X in → Y in + Xout

� ϕout : Yout → Xout

The C -typed function ϕin tells what feeds the input ports of the box X : each input port of
X is either connected to an input port of Y or to an output port of X (in case of feedback); the
C -typed function ϕout tells what feeds the output ports of Y : each output port of Y is connected
to some output port of X .
Example 2.24. Given B2,2 and B2,4 defined in Example 2.22, the wiring diagrams ϕ : B2,2 → B2,4
will have the following form:

� ϕin : (2, τ2) → (2, τ2) + (2, τ2) = 〈A,B〉 → 〈A,B, A,B〉
� ϕout : (4, τ4) → (2, τ2) = 〈A, A, A,B〉 → 〈A,B〉

We can build specific wiring diagrams such as:

ϕin0 (0) = 0
ϕin0 (1) = 1 B2,2

B2,4 ϕout0 (0) = 0
ϕout0 (1) = 0
ϕout0 (2) = 0
ϕout0 (3) = 1

ϕin1 (0) = 0
ϕin1 (1) = 3 B2,2

B2,4 ϕout1 (0) = 0
ϕout1 (1) = 0
ϕout1 (2) = 0
ϕout1 (3) = 1

Let us consider a wiring diagram ψ : B4,3 → B2,2 (defined in Example 2.22). It will look like:

� ψin : (4, τ4) → (2, τ2) + (3, τ3) = 〈A, A, A,B〉 → 〈A,B,B,C, A〉
� ψout : (2, τ2) → (3, τ3) = 〈A,B〉 → 〈B,C, A〉

IMTA-RR-2018-02-SC 11



2. BACKGROUND 2.2. Boxes and wiring diagrams

We can build specific wiring diagrams:

ψin
0 (0) = 0
ψin
0 (1) = 0
ψin
0 (2) = 0
ψin
0 (3) = 1

B4,3

B2,2

ψout
0 (0) = 2
ψout
0 (1) = 0

ψin
1 (0) = 0
ψin
1 (1) = 0
ψin
1 (2) = 4
ψin
1 (3) = 1

B4,3

B2,2

ψout
1 (0) = 2
ψout
1 (1) = 0

What about the reverse wiring diagram ρ : B2,2 → B4,3? It will look like:

� ρin : (2, τ2) → (4, τ4) + (2, τ2) = 〈A,B〉 → 〈A, A, A,B, A,B〉
� ρout : (3, τ3) → (2, τ2) = 〈B,C, A〉 → 〈A,B〉

There is no problem with the first C -typed function, but we already know that there is no
C -typed function (3, τ3) → (2, τ2) (cf. Example 2.14).

We can now compose the wiring diagrams:

Definition 2.25 (Composition of wiring diagrams [2]). Let ϕ : X → Y and ψ : Y → Z be two
wiring diagrams. We define their composition, denoted ψ ◦ φ, as the pair

(
(ψ ◦ φ)in, (ψ ◦ φ)out

)
,

where (ψ ◦ φ)in is defined such that the following diagram commutes:

X in Z in + Xout

Y in + Xout

Z in + Yout + Xout Z in + Xout + Xout

ϕin

(ψ◦ϕ)in

ψin+idXout

idZ in+ϕout+idXout

Z in+∇Xout

and (ψ ◦ φ)out is defined such that the following diagram commutes:

Zout Xout

Yout

(ψ◦ϕ)out

ψout ϕout

IMTA-RR-2018-02-SC 12



2. BACKGROUND 2.2. Boxes and wiring diagrams

Example 2.26. We can compose ψi : B4,3 → B2,2 with ϕj : B2,2 → B2,4 (i, j ∈ 2) (defined in
Example 2.24).

ϕ0 ◦ ψ0 ϕ0 ◦ ψ1

B4,3

B2,2

B2,4

B4,3

B2,2

B2,4

ϕ1 ◦ ψ0 ϕ1 ◦ ψ1

B4,3

B2,2

B2,4

B4,3

B2,2

B2,4

Definition 2.27 (Category of C -boxes and wiring diagrams [2]). The category WC of C -boxes and
wiring diagrams is defined as follows:

Objects: An object in WC is a C -box

Morphisms: A morphism between two C -boxes X and Y is a wiring diagram φ : X → Y

Identities: An identity morphism on X is the identity wiring diagram

Composition: The composition of wiring diagrams is the composition defined in definition
2.25

2.2.4. Monoidal structure of the category of boxes

The categoryWC has amonoidal structure for theparallel compositionof boxes, that corresponds
to the intuitive idea of parallelising boxes.

Definition 2.28 (Parallel composition of boxes [2]). Let X =
(
X in,Xout) andY =

(
Y in,Yout) be two

C -boxes.
Theparallel composition, or sum, of X andY , denoted X�Y , is thebox X�Y =

(
X in + Y in,Xout + Yout) ,

where + is the sum of C -typed finite sets (cf. Definition 2.15).

The parallel composition of two C -boxes summarises to the concatenation of both input
ports, and both output ports.

IMTA-RR-2018-02-SC 13



2. BACKGROUND 2.2. Boxes and wiring diagrams

Example 2.29. Any two C -boxes can be put in parallel. For example:

B2,2

B4,3

B2,2 � B4,3

B2,4

B2,2

B2,4 � B2,2

Definition 2.30 (Parallel composition of wiring diagrams [2]). Let ϕ : X → Y =
(
ϕin, ϕout

)
and

ψ : Y → Z =
(
ψin,ψout) be two wiring diagrams.

The parallel composition, or sum, of ϕ and ψ, denoted ϕ � ψ, is the wiring diagram ϕ � ψ =(
ϕin + ψin, ϕout + ψout) , where + is the sum of C -typed functions (cf. Definition 2.16).

Example 2.31. Using the notations of Example 2.24, we can build ϕi�ψi : B2,2�B4,3 → B2,4�B2,2
(i ∈ 2) :

ϕ0 � ψ0 ϕ1 � ψ1

B2,2

B4,3

B2,2 � B4,3

B2,4 � B2,2

B2,2

B4,3

B2,2 � B4,3

B2,4 � B2,2

Proposition 2.32. The category WC has the following properties:

� The closed box �, defined as � = (0,0), where 0 is C -typed finite set (∅,∅ → C ) defined in 2.17,
is the unit for the sum of boxes �.

� WC has a symmetric monoidal structure for the sum of boxes �, with � as the unit.

Proof. See [2]. �

2.2.5. Dependent product of boxes

The aim of this section is to extend the notion of dependent product (Definition 2.18) to C -boxes
and wiring diagrams.

Definition 2.33 (Dependent product of a C -box [2]). The dependent product X
∧

of the C -box
X =

(
X in,Xout) is the pair X

∧
=

(
X in
∧

,Xout
∧)

.

IMTA-RR-2018-02-SC 14



3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES 3.1. Definition and basic properties

Remark 2.34. The dependent product of X0 � X1 is X0 � X1

∧
=

(
X in
0

∧
× X in

1

∧
,Xout

0

∧
× Xout

1

∧)
.

Definition 2.35 (Dependent product of wiring diagrams [2]). The dependent product X
∧

of the
wiring diagram ϕ : X → Y is the pair ϕ

∧
=

(
ϕin
∧

, ϕout
∧)

.

Remark 2.36. The dependent product ϕ0 � ϕ1 is ϕ0 � ϕ1
∧

=
(
ϕin0

∧
× ϕin1

∧
, ϕout0

∧
× ϕout1

∧)
.

Proposition 2.37. Let ϕ : X → Y and ψ : Y → Z . The dependent product of ψ ◦ ϕ is the pair
ψ ◦ ϕ
∧

=
(
(ψ ◦ ϕ)in
∧

, (ψ ◦ ϕ)out
∧)

where:

� (ψ ◦ ϕ)in
∧

(x, z) = ϕin
∧(

ψin
∧(

z, ϕout
∧
(x)

)
, x

)
� (ψ ◦ ϕ)out
∧

(x) = ψout
∧(

ϕout
∧
(x)

)
Proof. See [2]. �

Remark 2.38. The dependent product of C -boxes and wiring diagrams could be described in
terms of monoidal functors; however the codomain of this functor is not C ×C as expected, but
a category that has the same objects (pairs of objects (A,B) of C ) but whose morphisms are pairs
of morphisms

(
f in
∧

, f out
∧)

: (A0,B0) → (A1,B1) such that f in
∧

is the morphism f in
∧

: A1 × B0 → A0

in C and f out
∧

is the morphism f out
∧

: B0 → B1 in C . The composition law is the one given in
Proposition 2.37.

Until now, we have only defined a category of C -boxes, with interesting properties. These
C -boxes are exactly as their name suggests: empty boxes. The extension of the dependent
product to C -boxes is a necessary step in order to define the "inhabitants" of C -boxes.

3. Discrete systems and their equivalences
In this chapter and in the rest of this paper, we will consider the special case where C = Sets.
Thus, in general, we will simply call "boxes" what we introduced as "Sets-boxes". We denote
the symmetric monoidal category of boxes as WSets.

3.1. Definition and basic properties

The notions introduced in this section come from [2]. The properties stated here are proven in
the same article.

Definition 3.1 (Discrete systems [2]). Let X =
(
X in,Xout) ∈ WSets be a box.

A discrete system for the box X , or discrete system for short, is a 4-tuple F =
(
SF, f rdt, f upd, sF ,0

)
where:

� SF ∈ Sets is the state set of F
� f rdt : SF → Xout

∧
is its readout function

� f upd : X in
∧
× SF → SF is its update function

� s0 ∈ SF is its initial state

We denote by DS (X) the set of all discrete systems for the box X .

IMTA-RR-2018-02-SC 15



3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES 3.1. Definition and basic properties

Remark 3.2. InProposition2.32,wedefined the closedbox� = (0,0), where0denotes (∅, τ : ∅ → Sets).
Its dependent product is�

∧
=

(∏
p∈∅ τ(p),

∏
p∈∅ τ(p)

)
� (1′,1′), where 1′ is any typed finite set of

the form (1, τ : 1→ Sets). As a consequence, we have:

DS (�) �
{(

SF, f rdt, f upd, sF ,0
)
| S ∈ Sets, f rdt : S → 1, f upd : 1 × SF → SF, sF ,0 ∈ SF

}
In other words, an inhabitant of a closed box is a dynamical system with no inputs and no
outputs, just a set S and a function S → S.
Remark 3.3. From a set-theoretic point of view, DS (X) is too big to be a set. A potential solution
is to define the DS (X) within a set big enough for our purposes; for example, the set Vω1 from
the von Neumann hierarchy of sets, which contains the usual sets, vector spaces, measurable
spaces, Hausdorff spaces, fields, etc. used in mathematics (Vω×2 suffices [7, Lemma 2.9]).

In the following, wewill continue towrite DS (X) (and similarly formappings) with the state
set in SF ∈ Sets for the sake of understandability, but in case set-theoretic problems emerge, we
should not write SF ∈ Sets but SF ∈ Vω1 .

Note that discrete systems can be viewed as a generalisation of automata. They have no final
states, the transition function is always a function, i.e. all discrete systems are deterministic, the
input alphabet can be infinite, and the transition function is always defined on every input and
every state. Discrete systems are not automata that recognize a language, but rather, automata
that take any input stream and return an output stream based on the states it transitioned to;
that is, discrete systems are a generalisation of transducers as defined in [8]. Alternatively,
discrete systems exactly correspond to the sequential automata in [9].
Example 3.4. For this example, we generalise the notation seen in Definition 2.13 to the set TFSR
of R-typed finite sets, seen as lists of real numbers, that is, finite sequences of real numbers:

TFSR = {(n, τ) | n ∈ N, τ : n→ R}

Here, this is a set, not a category; besides, we use n ∈ N instead of P ∈ FinSets so that we
define a set. As a discrete category (having only identity morphisms), it is equivalent to TFSCR

obtained by also considering R as a discrete category.
We also generalise the sum of finite sequences, seen as the concatenation.
Consider the box X0 = (〈R〉 , 〈R〉) ∈ WSets. We define the following discrete system F0 ∈

DS (X0):

� SF0 = TFSR

� f upd0 :

{
R × TFSR → TFSR

(a, 〈a0, . . . ,an−1〉) 7→ 〈a0, . . . ,an−1,a〉

� f rdt0 :

{
TFSR → R

〈a0, . . . ,an−1〉 7→ max (〈a0, . . . ,an−1〉)

� sF0,0 = 0 (where 0 is the empty list as defined in Proposition 2.17)

In this example, the state set SF0 = TFSR is uncountably infinite and clearly works as a
memory. This discrete system F0 takes a real number as an input, appends it to its memory,
and computes the maximum value of the stored list.

A more complicated discrete system could return several results; for example, in the box
X1 = (〈R〉 , 〈R,R,R,R〉) ∈ WSets, we can define F1 ∈ DS (X1) such that:

IMTA-RR-2018-02-SC 16



3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES 3.1. Definition and basic properties

� SF1 = SF0 = TFSR, f upd1 = f upd0 and sF1,0 = 0 (same state set, update function and initial
state as F0)

� f rdt1 :


TFSR → R × R × R × R

〈a0, . . . ,an−1〉 7→ (max (〈a0, . . . ,an−1〉) ,min (〈a0, . . . ,an−1〉) ,
mean (〈a0, . . . ,an−1〉) ,var (〈a0, . . . ,an−1〉))

Or we could add a switch so that we can decide what output we want; in the box X2 =

(〈R,4〉 , 〈R〉), we define F2 as:

� SF2 = TFSR × 4 (here we see 4 as its set-theoretic counterpart: 4 = {0,1,2,3})

� f upd2 :

{
R × 4 × TFSR × 4 → TFSR × 4
(a, b, 〈a0, . . . ,an−1〉 , c) 7→ (〈a0, . . . ,an−1,a〉 , b)

� f rdt2 :


TFSR × 4 → R

(〈a0, . . . ,an−1〉 , b) 7→


max (〈a0, . . . ,an−1〉) if b = 0
min (〈a0, . . . ,an−1〉) if b = 1
mean (〈a0, . . . ,an−1〉) if b = 2
var (〈a0, . . . ,an−1〉) otherwise

� sF2,0 = (0,0)

We could even add a reset button on the discrete system; in the box X3 = (〈R,4,2〉 , 〈R〉), we
define F3 as:

� SF3 = SF2 = TFSR × 4, f rdt3 = f rdt2 and sF3,0 = sF2,0 = (0,0) (same state set, same readout
function and same initial state as F2)

� f upd3 :


R × 4 × 2 × TFSR × 4 → TFSR × 4

(a, b,r, 〈a0, . . . ,an−1〉 , c) 7→
{

sF3,0 if r = 0
(〈a0, . . . ,an−1,a〉 , b) otherwise

We previously viewed general boxes (objects in WSets) as empty frames. Discrete systems
are the objects that "live" inside. One can draw a parallel with programming: a C -box is the
signature of the function, that is, its accepted types of inputs and outputs, and the discrete
system is the actual code of the function.

In the rest of the article, we will often represent a discrete system F =
(
SF, f rdt, f upd, sF ,0

)
as

the following two-arrow graph:

F : X in
∧
× SF SF Xout

∧
f upd f rdt

The first function describes how a state and an input are transformed into a new state; the
second describes how the state is output, or "read out”. In general, the initial state sF ,0 ∈ SF
will not be represented in these diagrams, though it is implicitly there.

Discrete systems are part of the more general class of dynamical systems. We can define other
types of dynamical systems depending on the category C that we are interested in. If C is the
category Euc of Euclidean spaces, then we will refer to continuous systems. For more examples,
see [2].

IMTA-RR-2018-02-SC 17



3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES 3.1. Definition and basic properties

Definition 3.5 (DS-application of a wiring diagram [2]). Let ϕ : X → Y be a wiring diagram.
Let F =

(
SF, f rdt, f upd, sF ,0

)
∈ DS (X).

TheDS-application of ϕ toF, denotedDS (ϕ) (F), is thediscrete systemDS (ϕ) (F) =
(
SG,grdt,gupd, sG,0

)
∈

DS (Y ) such that:

� SG = SF
� grdt : s 7→ ϕout

∧(
f rdt(s)

)
� gupd : (y, s) 7→ f upd

(
ϕin
∧(

y, f rdt(s)
)
, s

)
� sG,0 = sF ,0

We can view DS (ϕ) (F) as the discrete systemwe obtain from F by implementing the wiring
diagram ϕ.

Definition 3.6 (Parallel composition of discrete systems [2]). Let X0, X1 be boxes and let Fi =(
SFi , f rdti , f updi , sFi ,0

)
∈ DS (Xi) (i ∈ 2) be discrete systems.

Theparallel composition ofF0 andF1, denotedF0�F1, is thediscrete system
(
SG,grdt,gupd, sG,0

)
∈

DS (X0 � X1) such that:

� SG = SF0 × SF1

� sG,0 =
(
sF0,0, sF1,0

)
� grdt = f rdt0 × f rdt1 : SF0 × SF1 → Xout

0

∧
× Xout

1

∧

� gupd : X in
0

∧
× X in

1

∧
× SF0 × SF1 → SF0 × SF1 makes the following diagram commute:

X in
0

∧
× X in

1

∧
× SF0 × SF1 SF0 × SF1

X in
0

∧
× SF0 × X in

1

∧
× SF1 SF0 × SF1

gupd

� =

f
upd
0 × f

upd
1

We also define the parallel composition of DS (X0) and DS (X1), denoted DS (X0) � DS (X1),
by:

DS (X0) �DS (X1) = {F0 � F1 | F0 ∈ DS (X0) ,F1 ∈ DS (X1)} .

Proposition 3.7. Parallel composition (F0,F1) 7→ F0�F1 provides a natural map DS (X0)×DS (X1) →

DS (X0 � X1).

Proof. See [2]. �

Theorem 3.8. Definitions 3.1, 3.5, and 3.6 define a lax monoidal functor DS : WSets → Sets.

Proof. See [2] �

IMTA-RR-2018-02-SC 18



3.DISCRETESYSTEMSANDTHEIREQUIVALENCES3.3.An internal equivalence relation ondynamical systems

3.2. An external equivalence relation on dynamical systems

Via the monoidal functor DS, a box contains a specified sort of discrete system (depending on
the ports of the box). For an exterior spectator, the content of the box does not matter; what
matters is the way it transforms input streams to output streams. Thus, even if two boxes
contain different discrete systems, for example one with an infinite state set, and the other with
a finite state set, as long as they both give the same output in response to the same input, then
they are viewed as "equivalent" from an external point of view.

The following definitions formalise this idea.

Definition 3.9 (Input and output streams). Let F =
(
SF, f rdt, f upd, sF ,0

)
∈ DS (X).

An input stream (for X) is a finite sequence xin =
(
xini

)
i∈n
∈

(
X in
∧)n

, where n ∈ N.

The output stream produced by F when given xin, denoted F
(
xin

)
, is the stream xout defined by

the following recursive system: 
s0 = sF ,0
si+1 = f upd

(
xini , si

)
xouti = f rdt (si+1)

We refer to the state s that F reaches after having processed the input stream xin as resulting
state of F, and denote it Fres(xin). Formally, if xin =

(
xini

)
i∈n

, then according to the previous
recursive system, the resulting state of F is Fres(xin) = sn.

Remark 3.10. According to the notation proposed in section 1.1, xin =
(
xini

)
i∈n
∈

(
X in
∧)n

will be

written xin ∈ X in
∧

.
Remark 3.11. Definition 3.9 is a continuation of the definitions of run maps and behaviours in
[9], which are functions that assign respectively the resulting state and the last output of the
automaton given an input stream. The results we obtain with our notations are similar to those
in [9].

Definition 3.12 (Equivalence as stream transducers). Let F =
(
SF, f rdt, f upd, sF ,0

)
and G =(

SG,grdt,gupd, sG,0
)
be two discrete systems.

We say that F and G are equivalent as stream transducers, and we write F ≡ G, when, ∀xin ∈

X in
∧

, F
(
xin

)
= G

(
xin

)
.

It is easy to see that:

Proposition 3.13. The relation ≡ is an equivalence relation on the set DS (X), for any box X .

3.3. An internal equivalence relation on dynamical systems

The relation ≡ defined above does not give any information on the links between two discrete
systems that are equivalent as stream transducers. In this subsection, we define another equiv-
alence relation that provides an internal point of view. We then prove that the two equivalence
relations are the same.

In the following, X =
(
X in,Xout) is any box.

IMTA-RR-2018-02-SC 19



3.DISCRETESYSTEMSANDTHEIREQUIVALENCES3.3.An internal equivalence relation ondynamical systems

Definition3.14 (Simulation relation). SupposegivenF =
(
SF, f rdt, f upd, sF ,0

)
andG =

(
SG,grdt,gupd, sG,0

)
in DS (X).

We say that F simulates G, and we write F ` G, if there exists α : SF → SG such that
sG,0 = α

(
sF ,0

)
and such that α ◦ f upd = gupd ◦

(
id

Xin
∧, α

)
, and f rdt = grdt ◦ α; that is, preserving

the initial state and making the following two diagrams commute:

F : X in
∧
× SF SF Xout

∧

G : X in
∧
× SG SG Xout

∧

(
id

X in
∧, α

)
f upd

α

f rdt

=

gupd grdt

(4)

We refer to α as a simulation function: it witnesses the simulation F ` G.

A priori, the simulation relation does not relate the output of the two discrete systems F and
G (though this does follow; see Lemma 3.19); it only declares a correspondence between both
their state sets and update and readout functions. Both discrete systems can work in parallel;
their state sets need not be the same, nor even of the same cardinality, but they somehow
coordinate via the map α. The function α draws the parallel between the internal machinery of
F and that of G.

For the rest of the article, we will be more interested in the simulation relation F ` G than
any particular simulation function witnessing it: any one will do.
Remark 3.15. Definition 3.14 refers to the existence of morphisms between two automata as
described in the automata theory litterature [9]. The existence of such morphisms suffices
for our purposes. We are a bit more restrictive here, as the outputs need to be the same in
both automata, while in the usual definition of morphisms, automata can have different output
alphabets, as long as there is a function to convert one output into the other.

The simulation relation is not necessarily an equivalence relation and is not enough for our
purpose, but we can use it to generate the equivalence relation we actually need.

Definition 3.16 (Internal equivalence relation on DS (X)). Let F,G ∈ DS (X).
We say that F and G are simulation-equivalent, and we write F ∼ G, if there exists a finite

sequence (Hi)i∈N ∈ DS (X) such that:

F H2 . . . H2n G

H1 . . . . . . H2n+1

It is not hard to check that:

Theorem 3.17. The equivalence relation ∼ is the equivalence relation generated by `, that is, ∼ is the
smallest equivalence relation R such that ` ⊆ R.

Finally, we need to show that the equivalence relation ∼ actually groups discrete systems
that have the same behaviour as a stream transducer, in the sense of Definition 3.12; that is, the
external and the internal equivalence relation are the same.

Lemma 3.18. Let F,G ∈ DS (X). If F ≡ G then ∃H ∈ DS (X) such that H ` F and H ` G.

IMTA-RR-2018-02-SC 20



3.DISCRETESYSTEMSANDTHEIREQUIVALENCES3.3.An internal equivalence relation ondynamical systems

Proof. Let F =
(
SF, f rdt, f upd, sF ,0

)
and G =

(
SG,grdt,gupd, sG,0

)
.

Take H =
(
SH, hrdt, hupd, sH ,0

)
such that:

� SH =
{
(s, s′) ∈ SF × SG | ∃xin such that Fres(xin) = s and Gres(xin) = s′

}
� hupd (x, (s, s′)) =

(
f upd (x, s) ,gupd (x, s′)

)
� hrdt (s, s′) = f rdt(s)
� sH ,0 =

(
sF ,0, sG,0

)
Take as simulation functions the respective projections πSF and πSG .

It is easy to see that the required diagrams in Definition 3.14 do commute. For all (s, s′) ∈ SH ,
we have hrdt ◦ πSF (s, s

′) = f rdt(s) by defintion of hrdt. Also, for all (s, s′) ∈ SH , hrdt ◦ πSG (s, s
′) =

f rdt(s) = grdt(s′) because there exists some stream xin such that F results in s and G results in s′;
besides, as F ≡ G, we have F

(
xin

)
= G

(
xin

)
, which implies f rdt(s) = grdt(s′). Consequently, the

diagrams commute and H simulates both F and G.
�

Lemma 3.19. Let F,G ∈ DS (X). If F ` G then F ≡ G.

Proof. Follows by induction on the length of an input stream
(
xini

)
i∈n
∈ X in
∧

. �

Theorem 3.20. ∀F,G ∈ DS (X) ,F ≡ G ⇔ F ∼ G; or equivalently: ≡ = ∼.

Proof. To prove ≡ = ∼, we need ≡ ⊆ ∼ and ∼ ⊆ ≡.
Suppose first that F,G ∈ DS (X) are dynamical systems such that F ≡ G. According to

Lemma 3.18, there exists a H ∈ DS (X) such that H ` F and H ` G, and hence F ∼ G by
Definition 3.16. This establishes ≡ ⊆ ∼.

We now show that ∼ ⊆ ≡. According to Proposition 3.13, ≡ is an equivalence relation, and
according to Lemma 3.19, ≡ contains `. Theorem 3.17 states that ∼ is the smallest equivalence
relation that contains `; necessarily, we have ∼ ⊆ ≡. �

The goal of this article is to show that the behaviour of a general discrete system can be
emulated by some specific wiring of some other discrete system, chosen with constraints (for
example, on its internal structure). As far as we know, this result cannot be obtained with a
pure equality. However, we have a description of what it means to be equivalent, both from
an internal and from an external point of view, with the assurance that, seen as a blackbox, the
"inhabited" box remains unchanged.

As we are not using real equalities, we need to define relations between sets that correspond
to the usual inclusion and equality.

Definition 3.21 (Inclusion/equality up to equivalence). Let A,B ⊆ DS (X). We consider the
equivalence relation ∼ from Definition 3.16 (or, equivalently, in Definition 3.12).

We say that A is a subset of B up to equivalence, and wewrite A v B, when ∀a ∈ A,∃b ∈ B,a ∼ b.
We say that A is equal to B up to equivalence, or A is equivalent to B, and we write A ≈ B, when

A v B and A w B.

IMTA-RR-2018-02-SC 21



4. MAIN RESULTS 4.2. Memoryless systems

If F,G : WSets → Sets are functors, then we write F v G when, for all box X , we have
F(X) v G(X). We write F ≈ G, when F v G and F w G.

If M,N : WSets → Sets are mappings (not necessarily functors), then we write M ⊆ N when,
for all boxes X and Y , we have M(X) ⊆ N(X) and MorSets (M(X),M(Y )) ⊆ MorSets (N(X),N(Y )).

4. Main results
Before we introduce the actual results of the paper, we need a few more notions.

4.1. Algebras and closures

Definition 4.1 (Algebra). Given a monoidal category C , a functor F : C → Sets is called an
algebra over C when it is a lax monoidal functor.

In our case, C = WSets, and DS is an algebra by Theorem 3.8.

Definition 4.2 (Subalgebra). Let A : WSets → Sets be an algebra over WSets. Let σX ,Y : A(X) ×
A(Y ) → A (X � Y ) denote its first coherence map (we recall that � is the parallel composition of
boxes (cf. Definition 2.28)).

A functor B : WSets → Sets is called a subalgebra of A when:

� ∀X ∈ WSets, B(X) ⊆ A(X)
� ∀X,Y ∈ WSets,∀F ∈ B(X),∀G ∈ B(Y ), σX ,Y (F,G) ∈ B(X � Y )
� ∀ϕ : X → Y ∈ WSets,∀F ∈ B(X), A(ϕ)(F) ∈ B(Y )

Here, A and B are functors that transform boxes into sets. In our setting, the conditions can
be interpreted as follows:

� (First item) Discrete systems generated by B are included in those generated by A;
� (Second item) The parallel composition of two discrete systems F and G generated by B
is also generated by B.

� (Third item) B is stable through wiring diagrams: wiring a discrete system generated by
B gives another discrete system generated by B.

Note that a subalgebra is itself an algebra.

Definition 4.3 (Closure). Let A : WSets → Sets be an algebra over WSets.
Let B : ObWSets

→ ObSets be any map such that ∀X ∈ WSets, B(X) ⊆ A(X). The closure of B,
denoted Clos (B), is the intersection of all subalgebras of A that contain B(X) for all X ∈ WSets.
(Any intersection of subalgebras is a subalgebra.)

The closure of a map B can be understood as the minimal lax monoidal functor (or algebra)
containing B.

4.2. Memoryless systems

Our first main result concerns the subclass of discrete systems that we callmemoryless. We show
that wiring together memoryless systems can lead to systems that have memory.

IMTA-RR-2018-02-SC 22



4. MAIN RESULTS 4.2. Memoryless systems

Definition 4.4 (Memoryless discrete systems). Let X =
(
X in,Xout) be a box.

A memoryless discrete system for the box X , or memoryless discrete system for short, is a discrete
system F =

(
SF, f rdt, f upd, sF ,0

)
∈ DS (X) such that f upd immediately discards the previous state

and uses only the current input; more precisely, such that f upd factors as

f upd = X in
∧
× SF

π
Xin
∧

−−−→ X in
∧

fu
−→ SF

for some f u : X in
∧
→ SF .

We denote by DSML (X) the set of all memoryless discrete systems for the box X : DSML (X) ={(
SF, f rdt, f upd, sF ,0

)
∈ DS (X) | ∃ f u : X in

∧
→ SF, f upd = f u ◦ π

Xin
∧

}
.

We call these discrete systems memoryless because we see the states as a kind of memory
(as in Example 3.4). The discrete systems defined above transition from one state to another
without checking their current state, i.e. without checking their memory.

The following definition is a natural restriction of memoryless discrete systems; as these
systems are memoryless, the only goal of their states is to produce the output via their readout
function. The simplest case is when the readout function is the identity.

Definition 4.5 (Direct-output discrete systems). Let X =
(
X in,Xout) be a box.

A direct-output memoryless discrete system for the box X , or direct-output discrete system for short,
is a discrete system F =

(
SF, f rdt, f upd, sF ,0

)
∈ DS (X) such that:

� SF = Xout
∧

� f rdt = id
Xout
∧

� f upd = f u ◦ π
Xin
∧ for some f u : X in

∧
→ Xout
∧

We denote by DSML
out (X) the set of all direct-output discrete systems for the box X :

DSML
out (X) =

{(
SF, f rdt, f upd, sF ,0

)
∈ DSML (X) | S = Xout

∧
, f rdt = id

Xout
∧

}
=

{(
Xout
∧

, id
Xout
∧, f upd,S0

)
∈ DS (X) | ∃ f u : X in

∧
→ Xout
∧

, f upd = f u ◦ π
Xin
∧

}
Remark 4.6. The maps DSML : WSets → Sets and DSML

out : WSets → Sets are not functors, because
they are not closed under wiring. Indeed, the whole point is that the result of wiring together
memoryless systems is not necessarily memoryless.

We can now prove one of the main results of this paper, which is that every discrete system
can be obtained by memoryless systems and feedback loops. The feedback loop is responsible
for holding the state that was originally in the discrete system.

Here is the formal statement.

Theorem 4.7. Clos
(
DSML

out

)
≈ DS.

Proof. We have DSML
out ⊆ DSML ⊆ DS, so Clos

(
DSML

out

)
⊆ DS, thus Clos

(
DSML

out

)
v DS. We need

the opposite inclusion (up to equivalence) Clos
(
DSML

out

)
w DS.

IMTA-RR-2018-02-SC 23



4. MAIN RESULTS 4.2. Memoryless systems

Let Y =
(
Y in,Yout) ∈ WSets, and let G =

(
SG,grdt,gupd, sG,0

)
∈ DS (Y ). We will find X ∈ WSets,

F ∈ DSML
out (X) and ϕ : X → Y such that DS (ϕ) (F) ∼ G.

Let δSG = 〈SG〉 ∈ TFSSets be the list with one element, SG , and consider the box
(
δSG , δSG

)
with only that port on the left and the right. We define X as the parallel composition of this box(
δSG , δSG

)
and Y , that is:

X =
(
X in,Xout)

=
(
δSG , δSG

)
� Y

=
(
δSG + Y in, δSG + Yout)

Note that X in
∧
= SG ×Y in

∧
and Xout
∧

= SG ×Yout
∧

. Thus, if xin ∈ X in
∧

, then xin =
(
s, yin

)
. Similarly,

if xout ∈ Xout
∧

, then xout =
(
s, yout

)
.

We choose ϕ : X → Y as the pair
(
ϕin, ϕout

)
of coproduct inclusions:

� ϕin :

{
δSG + Y in −→ Y in + δSG + Yout

x 7−→ x

� ϕout :

{
Yout −→ δSG + Yout

x 7−→ x

It follows from 2.35 that their dependent products ϕin
∧

: Y in
∧
× SG × Yout

∧
→ SG × Y in

∧
and ϕout

∧
:

SG × Yout
∧

→ Yout
∧

are projections.

Recall that the goal is to find F =
(
SF, f rdt, f upd, sF ,0

)
∈ DSML

out (X) such that DS (ϕ) (F) ∼ G.
So define F as follows:

� SF = Xout
∧

= SG × Yout
∧

� f rdt = id
Xout
∧

� f upd
(
xin, xout

)
= f upd

(
s, yin, s′, yout

)
=

(
gupd

(
yin, s

)
,grdt

(
gupd

(
yin, s

)))
� sF ,0 =

(
sG,0,grdt

(
sG,0

) )
It is easy to see that F is in DSML

out (X) because f rdt and f upd have the correct form. So let(
SH, hrdt, hupd, sH ,0

)
= DS (ϕ) (F); we need to show it is equivalent to G. We compute each part

of DS (ϕ) (F) according to Definition 3.5.
Its state set is as follows:

SH = SF = Xout
∧

= SG × Yout
∧

Its readout function is defined on an arbitrary xout as follows:

hrdt
(
xout

)
= hrdt

(
s, yout

)
= ϕout
∧(

f rdt
(
s, yout

))
= π

Yout
∧

(
id

Xout
∧

(
s, yout

))
= yout

IMTA-RR-2018-02-SC 24



4. MAIN RESULTS 4.2. Memoryless systems

Its update function is defined on an arbitrary
(
yin, s, yout

)
as follows:

hupd
(
yin, s, yout

)
= f upd

(
ϕin
∧(

yin, f rdt
(
s, yout

))
,
(
s, yout

))
= f upd

(
s, yin, s, yout

)
=

(
gupd

(
yin, s

)
,grdt

(
gupd

(
yin, s

)))
Finally, its start state is as follows:

sF ,0 =
(
sG,0,grdt

(
sG,0

) )
Consequently, the following diagram commutes:

G : Y in
∧
× SG SG Yout

∧

DS (ϕ) (F) : Y in
∧
× SG × Yout

∧
SG × Yout

∧
Yout
∧

id
X in
∧×α

gupd

α

grdt

=

hupd hrdt

where α =
(
idSG ,g

rdt
)
. This yields G ` DS (ϕ) (F) and hence DS (ϕ) (F) ∼ G, which concludes

the proof. �

Corollary 4.8. Clos
(
DSML

)
≈ DS.

Corollary 4.9. For all G ∈ DS (Y ), if G has finite state set, then there exists H ∈ Clos
(
DSML

)
(Y ) with

finite state set such that H ∼ G.

Proof. In the proof of Theorem 4.7, take H = DS (ϕ) (F), but instead of SF = SG × Yout
∧

, take
SF = SG × grdt (SG) ⊆ SG × Yout

∧
. If SG is finite, so is SF .

In that case, H is no more in Clos
(
DSML

out

)
(Y ) but in Clos

(
DSML

)
(Y ). �

Corollary 4.10. (Assuming the axiom of choice) For all G ∈ DS (Y ), if G has an infinite state set, then
there exists H ∈ Clos

(
DSML

)
(Y ) with a state set of the same cardinality as G, such that H ∼ G.

Proof. In the proof of Theorem 4.7, take H = DS (ϕ) (F), but instead of SF = SG × Yout
∧

, take
SF = SG×grdt (SG) ⊆ SG×Yout

∧
. The axiomof choice gives card (SF ) = card (SG)×card

(
grdt (SG)

)
=

card (SG).

In that case, H is no more in Clos
(
DSML

out

)
(Y ) but in Clos

(
DSML

)
(Y ). �

Theorem 4.7 states that systems without memory can be wired together to form systems
with memory. In fact, the result is more subtle. It states that for any discrete system, we can
find (or build) a memoryless discrete system with the certain wiring such that both systems
are equivalent as stream transducers. The internal equivalence relation described in Theorem
3.20 is instrumental to prove Theorem 4.7, while the result is stated with regard to the external
equivalence relation.

IMTA-RR-2018-02-SC 25



4. MAIN RESULTS 4.3. Finite-state systems

4.3. Finite-state systems

The second result is a refinement of Theorem 4.7, and is somewhat similar to it. We show that
wiring together two-state discrete systems can generate a finite-state system with memory.

We can view the result as the generalisation of transistors being wired together in order to
build a computer, or a system of neurons wired together to form a brain with finite memory.

Definition 4.11 (Finite-state systems). Let X =
(
X in,Xout) be a box.

A finite-state discrete system for the box X , or finite-state system for short, is a discrete system
F =

(
SF, f rdt, f upd, sF ,0

)
∈ DS (X) such that SF is a finite set.

We denote by DSFin (X) the set of all finite-state discrete systems for the box X : DSFin (X) ={(
SF, f rdt, f upd, sF ,0

)
∈ DS (X) | card (SF ) ∈ N

}
. For a wiring diagram φ, we set DSFin (ϕ) =

DS (ϕ).

It is easy to see that:

Proposition 4.12. The map DSFin : WSets → Sets is a subalgebra of DS.

Proof. Follows from Definition 4.2. �

Definition 4.13 (Boolean systems). Let X =
(
X in,Xout) be a box.

A boolean memoryless discrete system for the box X , or boolean system for short, is a discrete
system F =

(
SF, f rdt, f upd, sF ,0

)
∈ DSFin (X) such that F is memoryless and SF = 2n = {0,1}n.

We denote by DSML
Bool (X) the set of all boolean memoryless discrete systems for the box X :

DSML
Bool (X) =

{(
SF, f rdt, f upd, sF ,0

)
∈ DSML (X) | SF = {0,1}n

}
.

Remark 4.14. The map DSML
Bool : WSets → Sets is not a functor, for the same reason as in remark

4.6.

Lemma 4.15. DSML
Bool ≈ DSML ∩DSFin.

Proof. By construction, DSML
Bool ⊆ DSML ∩DSFin, so DSML

Bool v DSML ∩DSFin. We need to show the
other inclusion, so let G =

(
SG,grdt,gupd, sG,0

)
∈ DSML (X) ∩ DSFin (X), and it suffices to show

that there is F ∈ DSML
Bool (X)with G ∼ F.

We have gupd = gu ◦ π
Xin
∧ and SG finite. Let N = dlog2 (card (SG))e. There exists an injection

i : SG → 2N and a surjection p : 2N → SG such that p ◦ i = idSG . This is just a binary encoding
of SG .

Define F =
(
SF, f rdt, f upd, sF ,0

)
such that:

� SF = 2N

� f rdt = grdt ◦ p
� f upd = gupd ◦ p
� sF ,0 = i

(
sG,0

)

IMTA-RR-2018-02-SC 26



5. CONCLUSION

Then the following diagram commutes:

G : Y in
∧
× SG SG Xout

∧

F : X in
∧
× 2N 2N Xout

∧

id
X in
∧×i

gupd

i

grdt

=

f upd f rdt

We have F ∈ DSML
Bool (X) and G ` F (with i as simulation function), so F ∼ G, hence the

result. �

Lemma 4.16. DSFin ≈ Clos
(
DSML

)
∩DSFin.

Proof. Observe that DSFin = DS ∩ DSFin. By Corollary 4.8, we have DS ≈ Clos
(
DSML

)
. In

particular, Clos
(
DSML

)
⊆ DS, so Clos

(
DSML

)
∩ DSFin ⊆ DS ∩ DSFin. This gives one inclusion,

Clos
(
DSML

)
∩DSFin v DS ∩DSFin.

As for the reverse inclusion (up to equivalence), let X be a box and let F ∈ (DS ∩DSFin) (X).
By Corollary 4.8, there exists G ∈ Clos

(
DSML

)
such that G ∼ F. By Corollary 4.9, we can choose

G so that G ∈ DSFin (X), hence the result. �

Theorem 4.17. Clos
(
DSML

Bool

)
≈ DSFin.

Proof. Clearly, Clos
(
DSML

Bool

)
v DSFin. By Lemma 4.15, in order to prove DSFin v Clos

(
DSML

Bool

)
, it

suffices to prove DSFin v Clos
(
DSML ∩DSFin

)
. Furthermore, since DSFin ≈ Clos

(
DSML

)
∩DSFin

(Lemma 4.16), we reduce to proving that: Clos
(
DSML

)
∩DSFin v Clos

(
DSML ∩DSFin

)
.

Let Y ∈ WSets be a box, and let G ∈
(
Clos

(
DSML

)
∩DSFin

)
(Y ). We have G ∈ Clos

(
DSML

)
(Y ),

so according to Corollary 4.8, there exist a box X ∈ WSets, a wiring diagram ϕ : X → Y ,
and a F ∈ DSML (X) such that DS (ϕ) (F) ∼ G. Furthermore, according to Corollary 4.9, we
can choose F with finite state set. Finally, F ∈

(
DSML ∩DSFin

)
(X), and DS (ϕ) (F) ∼ G, so

Clos
(
DSML

)
∩DSFin v Clos

(
DSML ∩DSFin

)
, hence the result.

�

5. Conclusion
Boxes are empty frames that condition the inputs and outputs of their content, a generalisation
of automata called discrete systems. Such systems come with a state set that represents their
memory of previous inputs. In a sense, discrete systems can learn. However, we can define
a subclass of discrete systems that do not store any experience of their past. We see these
as reactive, in the sense that they still react to any input, but their past experience does not
influence that reaction. Unlike typical discrete systems, they do not keep a memory of the
previous inputs.

IMTA-RR-2018-02-SC 27



5. CONCLUSION

In this paper, we use a category-theoretic framework to give a constructive proof that any
discrete system with memory can be simulated by some correctly-wired memoryless system.
This result can be understood as a phenomenon of emergence in a complex system.

This construction opens a number of new questions. A possible question might consist in
finding the "best" memoryless system, where "best" could depend on the definition of some
valuation function, e.g. the most parsimonious in terms of state set. A similar question could
be asked with respect to wiring diagrams, whose number of feedback loops could be bounded
by a cost function.

Possible extensions of this work could concern dynamical systems other than DS. For in-
stance, can we establish the same kind of results when considering measurable or continuous
dynamical systems?

IMTA-RR-2018-02-SC 28



REFERENCES

References
[1] S. J. Russel and P. Norvig, Artificial Intelligence: a modern approach, 3rd ed., ser. Prentice Hall

series in artifical intelligence. Upper Saddle River, NJ, USA: Prentice Hall Press, 2010.

[2] D. I. Spivak, “The steady states of coupled dynamical systems compose according to matrix
arithmetic,” Available online: https://arxiv.org/abs/1512.00802, 2016.

[3] S. Awodey, Category Theory, 2nd ed., ser. Oxford Logic Guides. Oxford University Press,
Oxford, 2010, vol. 52.

[4] M. Barr and C. Wells, Category Theory for Computing Science. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1998.

[5] F. Borceux, Handbook of Categorical Algebra, ser. Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, 1994, vol. 2.

[6] M. Behrisch, S. Kerkhoff, R. Pöschel, F. M. Schneider, and S. Siegmund, “Dynamical
systems in categories,” Applied Categorical Structures, vol. 25, no. 1, pp. 29–57, Feb 2017.
[Online]. Available: https://doi.org/10.1007/s10485-015-9409-8

[7] K. Kunen, Set theory - An introduction to independence proofs, 7th ed., ser. Studies in logic and
the foundations of mathematics. North-Holland Publishing Company, 1999, vol. 102.

[8] M. Sipser, Introduction to the theory of computation, 3rd ed. Cengage Learning, 2012.

[9] J. Adamek and V. Trnkova, Automata and Algebras in Categories, 1st ed. Norwell, MA, USA:
Kluwer Academic Publishers, 1990.

IMTA-RR-2018-02-SC 29

https://arxiv.org/abs/1512.00802
https://doi.org/10.1007/s10485-015-9409-8


OUR WORLDWIDE PARTNERS UNIVERSITIES - DOUBLE DEGREE AGREEMENTS 3 CAMPUS, 1 SITE

© IMT Atlantique, 2018
Imprimé à IMT Atlantique
Dépôt légal : Mai 2018
ISSN : 2556-5060

IMT Atlantique Bretagne–Pays de la Loire – http://www.imt-atlantique.fr/

Campus de Brest
Technopôle Brest-Iroise
CS 83818
29238 Brest Cedex 3
France
T +33 (0)2 29 00 11 11
F +33 (0)2 29 00 10 00

Campus de Nantes
4, rue Alfred Kastler
CS 20722
44307 Nantes Cedex 3
France
T +33 (0)2 51 85 81 00
F +33 (0)2 99 12 70 08

Campus de Rennes
2, rue de la Châtaigneraie
CS 17607
35576 Cesson Sévigné Cedex
France
T +33 (0)2 99 12 70 00
F +33 (0)2 51 85 81 99

Site de Toulouse
10, avenue Édouard Belin
BP 44004
31028 Toulouse Cedex 04
France
T +33 (0)5 61 33 83 65

http://www.imt-atlantique.fr/

	Introduction
	Notation

	Background
	Background in category theory
	Boxes and wiring diagrams
	The category of typed finite sets
	Dependent products
	The category of boxes and wiring diagrams
	Monoidal structure of the category of boxes
	Dependent product of boxes


	Discrete systems and their equivalences
	Definition and basic properties
	An external equivalence relation on dynamical systems
	An internal equivalence relation on dynamical systems

	Main results
	Algebras and closures
	Memoryless systems
	Finite-state systems

	Conclusion
	References

