N
N

N

HAL

open science

Memoryless systems generate the class of all discrete
systems

Erwan Beurier, Dominique Pastor, David 1. Spivak

» To cite this version:

Erwan Beurier, Dominique Pastor, David I. Spivak. Memoryless systems generate the class of all
discrete systems. [Research Report] RR-2018-02-SC, IMT Atlantique. 2018. hal-01909539v2

HAL Id: hal-01909539
https://hal.science/hal-01909539v2
Submitted on 21 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01909539v2
https://hal.archives-ouvertes.fr

IMT Atlantique

Dépt. Signal & Communications
Technopole de Brest-Iroise - CS 83818
29238 Brest Cedex 3

Téléphone: +33 (0)2 29 00 13 04
Télécopie: +33 (0)229 00 10 12

URL: www.imt-atlantique.fr

Erwan Beurier, IMT Atlantique, Lab-STICC,
UBL, 29238 Brest, France

Dominique Pastor, IMT Atlantique, Lab-STICC,
UBL, 29238 Brest, France

David I. Spivak, MIT, Cambrige, USA

Collection des rapports de recherche d’'IMT Atlantique
Erwan Beurier was supported by IMT-Atlantique (Bourse d’excellence
de I'IMT-Atlantique)

David Spivak was supported by AFOSR grants FA9550-14-1-0031 and
FA9550-17-1-0058, as well as NASA grant NNH13ZEAO0IN-SSAT

The work of Dominique Pastor was supported by Region Bretagne
(France) and the European Regional Development Fund (ERDF)

Date d’édition : December 11, 2018
Version du document : 1.2

IMT Atlantique

Bretagne-Pays de la Loire
Ecole Mines-Télécom

http://www.imt-atlantique.fr/

SUMMARY

Summary

1. INtroduction 2
L1, NOAtION . o ettt e e e e e 3

2. Background........... ..o 3
2.1. Background in category theoryo 3
2.2. Boxes and wiring diagrams ool 8
2.2.1. The category of typed finitesetsol 8

22.2. Dependent productsoo i 9

2.2.3. The category of boxes and wiring diagrams 10

2.2.4. Monoidal structure of the category of boxes..................... 13

2.2.5. Dependent productof boxes.............. ... 14

3. Discrete systems and their equivalencesoo 15
3.1. Definition and basic propertiesooo 15
3.2. An external equivalence relation on dynamical systems................... 19
3.3. Aninternal equivalence relation on dynamical systems 19

4, Main 1eSUlS . ..o oo 22
4.1. Algebrasand closures.................ooiiiiiiiiiiii 22
4.2. Memoryless Systemsc.oiiiiiiiiii 22
4.3. Finite-state systems............ ... 26

B, CONCIUSION. . .. 27
R OIONCES . . . oo oot e e e e e e 29

IMTA-RR-2018-02-5C 1

1. INTRODUCTION

Abstract

Automata are machines, which receive inputs, accordingly update their internal state,
and produce output, are acommon abstraction for the basic building blocks used in engineer-
ing and science to describe and design complex systems. These arbitrarily simple machines
can be wired together—so that the output of one is passed to another as its input—to form
more complex machines. Indeed, both modern computers and biological systems can be de-
scribed in this way, as assemblies of transistors or assemblies of simple cells. The complexity
is in the network, i.e., the connection patterns between simple machines. The main result
of this paper is to show that the range of simplicity for parts as compared to the complexity
for wholes is in some sense complete: the most complex automaton can be obtained by
wiring together direct-output memoryless components. The model we use—discrete-time
automata sending each other messages from a fixed set of possibilities—is certainly more
appropriate for computer systems than for biological systems. However, the result leads
one to wonder what might be the simplest sort of machines, broadly construed, that can be
assembled to produce the behavior found in biological systems, including the brain.

Keywords: automata, category theory, discrete system, memoryless system, monoidal cat-
egory, wiring diagram.

1. Introduction

Automata represent systems that receive inputs, alter their internal states, and produce outputs.
The state set of the automaton is to be interpreted as the set of all potential memories, or storable
experiences. In automata theory, the state set is typically finite. In this case, one can view this
memory capacity as limited. On the contrary, when the memory of the automaton is not
assumed to be limited (human brain), or its capacity can always be extended (RAM-machines
or Turing machines as models of computers in computation theory), the automaton should have
an infinite state set.

In the theory of dynamical systems, we use a generalisation of automata in which the size
of the state space is not restricted to finiteness, or even to countability. Dynamical systems
with the behaviour of an automaton, that is, taking inputs in discrete time, are called discrete
systems. The state space of such a system acts as a sort of memory of the inputs. Each input
influences the current state of the automaton, and the current state is the result of the system’s
own form—how it deals with inputs—together with the system’s history.

One can imagine a dynamical system whose state space is that of all possible input-histories;
a new input simply appends to the existing history to become a new history. On the other
hand, one can imagine the "opposite" kind of system: one that completely forgets the previous
inputs. These systems are referred to as "simple-reflex" in [1, p. 49], reactive, or memoryless
in this paper. The transitions of these automata depend only on the input, as no experience
is stored. The system decides according to the current perception of the world, rather than
current perception together with past perception. In fact, these memoryless systems could act
by making a single distinction in the input—a yes/no Boolean response—and nothing more;
we call these Boolean reactive systems.

In this paper, we will study the links between systems that have memory and those that do
not. More precisely, we prove that systems with memory can be simulated by wiring together
systems without memory. Our result provides a theoretical framework that supports artificial
neural network approaches. Memory is carried by connections, and not only by individuals,
within a compositional hierarchy of parts.

This article lies between two fields of mathematics: category theory and dynamical systems.
In Section 2, we introduce all the background related to category theory and its use in the study

IMTA-RR-2018-02-5C 2

2. BACKGROUND 2.1. Background in category theory

of discrete systems. Readers with a background in category theory are invited to skip Section
2.1. We need no more than the basic definitions of categories, functors, natural transformations,
monoidal categories, and monoidal functors. Readers already familiar with the study of boxes
and discrete systems from a category-theoretic point of view (as in [2]) can skip Section 2.2. Here
again, we only need the basic understanding of ¢-typed-finite sets, ¢-boxes, wiring diagrams
and discrete systems inside a ¢™-box.

In Section 3, we introduce discrete systems and a specific mapping that will serve our
purposes (Section 3.1). We then introduce two equivalence relations between discrete systems.
Both are bigger than the usual bisimulation used in automata theory (in the sense of set
inclusion). One corresponds to an external point of view; two systems are equivalent if they
transform input streams into output streams in the same way (Section 3.2). The other relation
corresponds to an internal point of view: two systems are equivalent if they have "the same
structure" (in a sense that is defined in Section 3.3). We prove that these are just two perspectives
on the same relation.

This equivalence relations plays a crucial role in the two results we show in Section 4. First,
we show that any discrete system is equivalent to some wiring-together of memoryless systems
(Section 4.2). Second, we show that any discrete system with a finite state set is equivalent to a
combination of finitely many Boolean reactive systems (Section 4.3).

1.1. Notation

In this article, we will use the following notation.

» Let N denote the set of all natural numbers, N := {0,1,2,...}.

» By default, the variable n will refer to a natural number: n € N. We will also see the
integers n as their set-theoretic counterparts, thatis 0 = 0, and n = {0,1,...,n - 1}; in
that context, i € n simply meansi € {0,...,n — 1}. Note that the set n contains exactly n
elements and this is what really matters in this notation.

» When the size of a sequence (x, x1, . . ., x,—1) does not matter, it will be denoted X, which
makes it easier to write and read. If each x; is an element of the same set X, then we will
write x € X, instead of defining an n = length (x) and writing x € X". If x; € X; for possibly
different X;, and if there exists a compact notation X for Xo X X1 X -+ X X,_1, then we will
write ¥ € X too.

» Sets is the usual category of sets; it will be defined in section 2.1.

2. Background

In this chapter, we will present the background necessary for the understanding of this paper,
namely that of category theory and dynamical systems. Both will be reduced to the absolute
minimum used in this article.

2.1. Background in category theory

This section will present some basic notions about category theory. If the reader is already famil-
iar with the notions of category, functor, natural transformation, product, monoidal category,
and lax monoidal functor, they can skip directly to section 2.2.

Definition 2.1 (Category [3]). A category € consists of the following data:

= A collection of objects, denoted Oby

IMTA-RR-2018-02-5C 3

2. BACKGROUND 2.1. Background in category theory

» A collection of morphisms, denoted Mor¢

» A map dom : Mory — Oby; for each morphism f, dom(f) is called the domain of f

A map cod : Morg — Obg; for each morphism f, cod(f) is the called codomain of f

For each morphism f € Mory, we write f : A — Bif A = dom(f) and B = cod(f)

A composition law o such that, forall f : A —» Band g : B — C, there is a chosen morphism
gof:A—-C

For each object A € Obg, there is a chosen morphism 14 : A — A called identity morphism
of A

The composition law is required to be associative: VA,B,C,D € Obyg, Vf : A — B and
g:B—=Candh:C — D,(hog)o f=ho(go f). Identity morphisms are required to act like
identities: YA,B € Oby, ¥f : A— B, folp=1go f = f.

By abuse of notation, we will often write C € ¢ instead of C € Oby, and (f : C —» D) € ¢
instead of (f : C — D) € Morg. It should be clear from the way these are written that we refer
respectively to an object and a morphism.

In the rest of the article, a category ¢ will be described according to the following presen-
tation:

Objects: An object in ¢ is...

Morphisms: A morphism in ¢ is...

Identities: An identity morphism is...

Composition: The composition law for morphisms is...

Usually, the description of morphisms suffices to implicitly define dom and cod, as in the
following example.

Example 2.2. We define the category Sets as the following;:

Objects: An object in Sets is any set
Morphisms: A morphism in Sets is any function f : A — B
Identities: An identity morphism is an identity functionids : A — A

Composition: The composition law for morphisms is the usual composition of functions

Similarly, we can define the category FinSets whose objects are the finite sets.

We also define mappings somewhat similar to functions, or homomorphisms, between
categories.

Definition 2.3 (Functor [3]). Let ¥ and Z be categories.
A functor F : ¢ — 2 is a mapping from ¢ to 2 such that:

VC € Obyg, F(C) € Obgy

Vf:A— BeMoryg, F(f): F(A) - F(B) € Mory

VA € Ob(lg, F(lA) = 1F(A)

Vf:A—Bg:B— CeMorg, F(gof)=F(g)oF(f)

IMTA-RR-2018-02-5C 4

2. BACKGROUND 2.1. Background in category theory

In other words, a functor F : ¥ — Z sends the objects (resp. morphisms) in ¢ to objects
(resp. morphisms) in &, preserving domains and codomains of morphisms, as well as identities
and composition.

Functors are maps between categories; there also exist maps between functors.

Definition 2.4 (Natural transformation [3]). Let € and 2 be two categories, and let F,G :
¢ — 2 be functors. A natural transformation 6 : F — G consists of a collection of morphisms
(6c : F(C) = G(C))ceob,, such that, forall C,D € ¢, and forall 4 : C — D, the following square
commutes:

c F(©) —% 3 G(0)
h ~ F(h) G(h)
D F(D) — G(D)

For each object C € &, the morphism 6c¢ is called the C-component of 6.

Depending on the context, and for the sake of readability, the C-component of a natural
transformation 6 can be written 6¢ as above (C as an index) or 6(C) (C as a parameter).

Definition 2.5 (Natural isomorphism [3]). A natural transformation 6 : F — G is called a natural
isomorphism when all of its components 6¢ : F(C) — G(C) are isomorphisms.

Basic constructions inside categories include the product of a pair of objects, defined as
follows.

Definition 2.6 (Product [3]). Let ¢ be a category and let A; and A3 be objects of %'

A product of A; and A, written A; X Ay, is an object in ¢, together with two morphisms
m Ay X A — Ay and 1 : A} X Ay — Ay such that, for all objects P with two morphisms
p1: P — A and ps : P — Ay, there exists a unique morphism u : P — A; X Ay such that
71 ou = py and mp o u = po, that is, such that the following diagram commutes:

P1 p2

A1 A2

T2

We call 7, 2 projections, and we denote u by u = (p1, p2).

The above can be generalized from n = 2 to any n € N; the result is called an n-ary product.
The 1-ary product of A; is just A; and the projection m1: A1 — A; is the identity. The 0O-ary
product is an object * such that for all objects P, there exists a unique morphism u: P — #; itis
called a terminal object

Note that products need not exist in arbitrary categories, however they do exist in many
categories of interest here. For example, in Sets, 2-ary products are given by the usual product
of sets, and 0-ary products is any set {*} with one element.

Definition 2.7 (Category with finite products). A category ¢ is said to be a category with finite
products when Vn € N, VA4, ..., A, objects of €, the product A; X --- x A, exists.

IMTA-RR-2018-02-5C 5

2. BACKGROUND 2.1. Background in category theory

An important class of categories is that of monoidal categories.

Definition 2.8 (Monoidal category [4]). A monoidal category is a 6-tuple (¢, ®,1,a,r,l), consisting
of a category ¥, a functor ® : € x ¢ — %, an object I € ¢, and three natural isomorphisms a,
r, and [of the following form

1. a(A,B,C): A®(B®C) > (A®B)®C
2.r(A): AT — A
3.1(A): I A— A

such that, for all objects A, B, C and D of €, the following rules hold:

1. The following diagram commutes:

A®(I® B) “@ALB) Al ®B
A®m A@B
A®B
2. The following diagram commutes too:
AQ(BQ®(C® D))
A®a(V ch)
A®((B®C)® D) (A® B)®(C® D)

u(A,B@C,D)l la(A@B,C,D)
(A®(B®C))®D

a(A,B,C)®D > (A®B)®C)®D

We also say that (®,1,a,r,[) forms a monoidal structure on €.

Roughly, a monoidal category is a category with an operation ® which can be seen as
associative (items 1 and 2), and a distinguished element 7 that behaves like a unit for the
operation (items 2, 3 and 1).

The category (Sets, x,1,a,r,l) is monoidal for the usual product of sets, where a,r,/ are the
obvious isomorphisms and 1 is the singleton 1 = {x}.

Remark 2.9. Readers not familiar with category theory may wonder what functors were used to
define the natural transformations a, r and [.

The natural transformation a is defined in item 1 by its (A, B, C)-component: a(A,B,C) :
A®(B®C)— (A® B) ® C. Define the two functors:

ECXECXE — '

P CXCxEC — ¢
(A,B,C) +— (A®B)®C

(A,B,C) +— A®(B®C) and G:{

then a is defined as the natural transformation a : F — G. The same holds for r and [. Define:

R:{%—> v L:{%—> v idg:{f

€
A — AQRI A

—
—

IMTA-RR-2018-02-5C 6

2. BACKGROUND 2.1. Background in category theory

then r is the natural transformation r : R — idy and [is the natural transformation ! : L — idy.

Definition 2.10 (Symmetric monoidal category [4]). A symmetric monoidal category is a 7-tuple
(¢,®,1,a,r,1,5) such that (¢,®,1,a,r,1) is a monoidal category, and s is a natural isomorphism
S(A,B) : A® B — B ® A such that, for all A, B and C of &, the following diagrams commute:

AeB —AB pea Al —D g4
\ / (1) \ /)
Lnes S(B.A) r(A) 1(A)
A® B A
A,B,C
Ao BeC) — P9 L seBeC
A®s(B,C) s(A®B,C)
A®(C®B) C®(A®B) 3)
a(A,C,B) a(C,A,B)
-
(A®C)®B WA.C)oB (C®A)®B

A symmetric monoidal category has an associative and commutative law, with a unit object.
Again, Sets is a symmetric monoidal category.

Definition 2.11 (Lax monoidal functor [5]). Let (%,®8,1,a¢,r¢,l¢) and (2,®,J,a9,r9,ly) be
monoidal categories.

A monoidal functor between 4" and ¥ is a 3-tuple (F, o, 0’) where:

» F:% — 2 isa functor

= o is a natural transformation o = (04,5 : F(A) ® F(B) — F (A& B)) ABE? between two
€ X € — 2 functors

» g’ isamorphism o’ : J — F(I)

such that, for all A, B,C € €, the following three diagrams commute:

ag(F(A),F(B),F(C))

(F(A)® F(B)) ® F(C) > F(A)® (F(B)® F(C))
TA.B®LlF(C) 1ra)®0B.Cc
F(AmB é; ® F(C) F(A)® ;(B @ C) @)
F(ABB)BmC) FaeAB.0) > F(Ae(Bm())
F(A) e F(I) £9°7 Faye J F(ly® F(A) 22 o F(a)
rm,;l lr_@(F(A))) O'I,A\L ll@(F(A)) 3)
FARD ——b F(A) FUBA) —d F(A)

IMTA-RR-2018-02-5C 7

2. BACKGROUND 2.2. Boxes and wiring diagrams

The pair (o, 0’) is called the coherence maps of F. We sometimes refer to o as the first coherence
map of F.

Remark 2.12. Just like we call R a field without clarifying its two laws and its two units, we often
write (¢, ®,), omitting the natural isomorphisms a, r and /, because they are only a matter of
"bookkeeping". We may even write ¢ for a monoidal category when the context makes it clear
what the unit and monoidal product are.

2.2. Boxes and wiring diagrams

We will now apply the categorical framework to build discrete systems. Our approach is differ-
ent from the one in [6]. The dynamical systems presented here are defined as a generalisation
of automata whose input and output spaces are predetermined. We will define a category of
lists, a category of boxes, and diverse operations on them.

In this section, ¢ will be any category with finite products (typically Sets). Most of the
following notions were already defined in [2]; we only recall them without proving their
properties. We also give examples in order to help for comprehension.

2.2.1. The category of typed finite sets

Before defining proper boxes, we need to define the notion of input and output ports. These
will eventually be the sides of our boxes.

Definition 2.13 (Category of ¢-typed finite sets [2]). The category TFS of €-typed finite sets is
defined as follows:

Objects: An object is any pair (P, 7) such that P is a finite set and 7 : P — Oby is a function
Morphisms: A morphism from (P,7) to (P’,7’) is a functiony : P — P’ such thatt = 1" oy
Identities: The identity morphism on (P, 1) is the identity function of the set P

Composition: The composition of morphisms is the usual composition of functions

An object in TFSy is called a €-typed finite set; a morphism in TFS¢ is called a €-typed
function.

We can rewrite a ¢-typed finite set (P,7) as the finite sequence (7(py),...,7(pn-1)), Where
P ={po,...,pn-1}. A €-typed finite set is simply a list of objects in ¢, indexed by a finite set P.
If € = Sets, a Sets-typed finite set is a list of sets.

A ¢-typed function y : (P,7) — (P’,7’) can be then seen as a means to obtain the for-
mer list (7(po),...,7(pn-1)) from the latter list (7'(po),...,7’(pn-1)), by reordering, duplicating
or even ignoring its elements. As v = 7’ oy, the list (7(po),...,7(ps-1)) can be rewritten
(" (y(po)),. ... 7" (¥(pn-1))). Beware of the inversion: y goes from (P, 1) to (P’,7’) and we see it
as a transformation of the list (P’,7’) into the list (P, 7).

Example 2.14. Let A, B and C be objects of ¢ and consider the following two ¢-typed finite sets:

» (2,79) such that 75(0) = A and 79(1) = B; thus (2, 1) is the list (A, B)
» (3,73) such that 3(0) = B, 13(1) = C and 13(2) = A; thus (3, 13) is the list (B, C, A)
» (4,74) such that 74(0) = 74(1) = 74(2) = A and 14(3) = B; thus (4, 74) is the list (A, A, A, B)

IMTA-RR-2018-02-5C 8

2. BACKGROUND 2.2. Boxes and wiring diagrams

(Remember our set-theoretic notation: 2 = {0,1}, 3 = {0,1,2} and 4 = {0,1,2,3}.)

The list (A, B) can be obtained from the list (B, C, A) by taking its third and first elements in
this order. A €-typed function from (2, 72) to (3,73) could be y : 2 — 3 such that y(0) = 2 and
y(1) =0.

Similarly, the morphisms y’ : 2 — 4 that convert the list (A, A, A, B) to (A, B) are such that
v'(0) =0and y’(1) = 3,0or y’(0) = 1 and y’(1) = 3, or y’(0) = 2 and y’(1) = 3.

We let the reader find the morphisms (4,74) — (3,73) and the morphism (4,74) — (2,12),
that is, the morphisms that transform the list (B, C, A) into the list (A, A, A, B) and the (unique)
morphism that transforms the list (A, B) into the list (A, A, A, B).

What about the morphisms from (3,73) to (2,72)? The list (A, B) does not contain the object
C. There is simply no morphism (3,73) — (2,72). The same argument applies to morphisms
from (3,73) to (4, 74).

Definition 2.15 (Sum of typed finite sets [2]). Let (Py,70),(P1,71) € TFS¢ be two €-typed finite
sets.

We define their sum by (P, 79) + (P1,71) = (Po + P1,79 + 71) as the usual disjoint union of sets
Po+Piand g+ 1y ast;on P; fori € 2.
Definition 2.16 (Sum of typed functions [2]). Let y; : (P;,7;) — (P/,7]) (i € 2) be two ¢-typed
functions.

We define their sum as the ¢-typed function yo + y1 : (Po,70) + (P1,71) — (P}, 7}) + (P, 7])
such thatVx € Py + Py, (yo +v1) (x) = yi(x)if x € P; (i € 2).

We can view the sum (P,7) + (P’,7’) as the concatenation of the lists (t(pg),...,7(p,)) and

(T’(pé),. . .,T'(p;l,)>, that is, the list <T(p0), s TP T(P))s - .,T'(p;l,)>, and the sum of ¢-typed
functions as a action on each part of the concatenated list.

Proposition 2.17. The category TFS has the following properties:

» The sum of ¢ -typed finite sets is a coproduct.
» There is only one € -typed finite set (P, 7) where P = 0. We denote it by 0.
» TFSy has a symmetric monoidal structure for the sum +, with 0 as the unit.

Proof. See [2]. m|

2.2.2. Dependent products

In this subsection, we define the dependent product functor. If a ¢-typed finite set can be
viewed as a list of objects of ¢, then the dependent product of this list is simply the product of
its elements.

Definition 2.18 (Dependent product [2]). We define the dependent product as the functor = :
TFS%D — %€ such that:

Action on objects: (P,/?) =[Ipep 7(p)

Action on morphisms: If y : (P,7) — (P’,7’), then y : (ﬁ) — (P,/?) is defined as the
function ¥ : [I,ep 7'(p") — Ilpep 7(p) such that V(ap’)p'ep/ € (P,7), ¥ ((ap’)p'eP') =
(@) pep-

IMTA-RR-2018-02-5C 9

2. BACKGROUND 2.2. Boxes and wiring diagrams

The interpretation of the dependent productis actually quite straightforward: the dependent
product of a ¢-typed finite set, viewed as a list, is the product of the elements of the list in the
same order as they appear in the list.

We remind that ¢ has finite products; as a consequence, the dependent product always
exists.

Example 2.19. Consider the same A, B and C objects of 4" and ¢-typed finite sets as in Example
2.14:

" (212) =(AB)
= (3,13) = (B,C.A)
= (4,74) = (A,A,A,B)

The dependent products of these €-typed finite sets are:

" (212)=AXB
» (3,13)=BXCXA
» (4,74))=AXAXAXB

In order to see what the dependent product does to morphisms, take a morphismy : 2 — 4
that converts the list (A, A, A, B) to (A, B), for example the morphlsm defined by y(0) = 0 and

¥(1) = 3. Its dependent product y will be the function (4 T4) — (2 T9))=AXAXAXB— AXB
such that ¥(xo, x1, X2, X3) = (X)(0), Xy(1)) = (X0, X3)-
We let the reader find the other dependent products as an exercise.

The dependent product is thus a functor that packages the usual operations of diagonal
A — A XA, projection AX B — A, and swapping A X B — B X A.

Proposition 2.20. There is a natural isomorphism (m) = (P/O,T\o) X (P/l,T\l); in other words,
the dependent product functor sends coproducts in TFS¢ to products in €.

Proof. See [2]. O

This property is also quite intuitive: if one views the coproduct in TFS¢ as the concatenation
of lists, and the dependent product as the product of the elements of the list, then the dependent
product of the concatenation of two lists is the product of the dependent products of each lists.

2.2.3. The category of boxes and wiring diagrams

The category TFS¢ is not the main purpose of this article; however its properties will be useful
for the rest of this article.

In the following, by abuse of notation, we will write X € TFS¢ for (X,7), and X for (X/,?)
Definition 2.21 (¢-box [2]). We call ¢-box any pair X = (X', X°%) € TFS¢ x TFSq.

A €-box is a pair of €-typed finite sets (X™ X°"), where X' represent the list of inputs
ports, and X°" represent the list of outputs ports.

Example 2.22. From the typed finite sets in Example 2.14, we can build the following ¢ -boxes:

= B2 =((2,72),(2,72)) = (A, B), (A, B))

IMTA-RR-2018-02-5C 10

2. BACKGROUND 2.2. Boxes and wiring diagrams

= 32,4 = ((29 72)7(47 T4)) = (<A7 B) s <A’ A’ A’ B))
u 84,3 = ((4> T4)7(3v T3)) = (<A’ Aa A’ B> 5 <B7 C! A>)

These ¢-boxes are represented here:

A A A B
A A A A
B B A

In the rest of the paper, the ports will no longer be labelled, for the sake of readability.
Definition 2.23 (Wiring diagram [2]). Let X = (X™, X°") and Y = (Y™,Y°") be ¢-boxes.
A wiring diagam ¢ : X — Y is a pair of ¢-typed functions (¢™, ¢°*) such that:

- ‘pin . Xin N Yin+Xout
"y

out . Yout N Xout

The ¢-typed function ¢™ tells what feeds the input ports of the box X: each input port of
X is either connected to an input port of ¥ or to an output port of X (in case of feedback); the
% -typed function ¢°* tells what feeds the output ports of Y: each output port of ¥ is connected
to some output port of X.

Example 2.24. Given B3 5 and B, 4 defined in Example 2.22, the wiring diagrams ¢ : 82 2 — B2 4
will have the following form:

» 0" (2,10) = (2,70) +(2,12) = (A,B) — (A, B, A, B)
" <p°ut 1 (4,14) > (2,10) = (A,A,A,B) —> (A, B)

We can build specific wiring diagrams such as:

_ ¢ (0) =0
¢ (0)=0 eg"(1) =0
on(1) =1 #5(2) = 0

2U(3) = 1

' ¢$"(0) =0
#(0) =0 @31 = 0
oP(1) =3 #(2) =0

¢ree) =1

Let us consider a wiring diagram ¢ : 84,3 — B2 (defined in Example 2.22). It will look like:

= Y (41) = (2,12) + (3,73) = (A, A A B) — (A, B,B,C,A)
- wout 1 (2,19) = (3,13) = (A,B) —> (B,C,A)

IMTA-RR-2018-02-5C 11

2. BACKGROUND 2.2. Boxes and wiring diagrams

We can build specific wiring diagrams:

' B2
Yy (0) =0 t
Yy (1) =0 i i wSut(0) = 2
hey— 1 Yo U9 (1) = 0
Uo'(3) = i
, B2
Y"(0)=0 i
Y"1 =0 K-B Yoi(0) = 2
e] RS
1 =

What about the reverse wiring diagram p : 82 9 — B43? It will look like:

= o (2,19) = (4,74) + (2,10) = (A,B) — (A, A, A B,A B)
= p%U: (3,13) = (2,12) = (B,C,A) — (A,B)

There is no problem with the first ¥-typed function, but we already know that there is no

¢-typed function (3,73) — (2, 72) (cf. Example 2.14).

We can now compose the wiring diagrams:

Definition 2.25 (Composition of wiring diagrams [2]). Let ¢ : X —» Y and ¢ : Y — Z be two
wiring diagrams. We define their composition, denoted ¥ o ¢, as the pair ((o ¢)™, (¥ o ¢)°™),

where (i o)" is defined such that the following diagram commutes:

Xin ________________ i Zin + Xout
Soin\L
yin 4 yout Z 4V out

l/’m"'idxoutl

Zin +Yout +X0ut 3 Zin +X0ut +X0ut
idin +‘P0ut+idxout

and (¥ o ¢)°" is defined such that the following diagram commutes:

Zout _______ > Xout
w‘m\k /ga"‘“
Yout

IMTA-RR-2018-02-5C

12

2. BACKGROUND 2.2. Boxes and wiring diagrams

Example 2.26. We can compose ¢; : By 3 — Boo with ¢; : Boo — By 4 (i,j € 2) (defined in
Example 2.24).

®o © Yo ®o oY1
82,4 82,4
Bao i Bao i
T i T o i
&: Bu3 [Bus
L /] L
1 ‘\ 1 ‘\

®1 0 Yo 1oy
82,4 82,4
B2 i r B2 i
T | T |
&: Bu3 ~1 Bus

(=% (=N

Definition 2.27 (Category of €-boxes and wiring diagrams [2]). The category % of €-boxes and
wiring diagrams is defined as follows:

Objects: An object in #4 is a ¢-box
Morphisms: A morphism between two ¢-boxes X and Y is a wiring diagram ¢ : X — Y
Identities: An identity morphism on X is the identity wiring diagram
Composition: The composition of wiring diagrams is the composition defined in definition
2.25
2.2.4. Monoidal structure of the category of boxes

The category #4 has a monoidal structure for the parallel composition of boxes, that corresponds
to the intuitive idea of parallelising boxes.

Definition 2.28 (Parallel composition of boxes [2]). Let X = (X', X°U) and ¥ = (Y™, Y°") be two
@ -boxes.

The parallel composition, or sum, of X and Y, denoted X@Y, is thebox X@Y = (X™ + Y, XOut 4 yout),
where + is the sum of ¢-typed finite sets (cf. Definition 2.15).

The parallel composition of two %-boxes summarises to the concatenation of both input
ports, and both output ports.

IMTA-RR-2018-02-SC 13

2. BACKGROUND 2.2. Boxes and wiring diagrams

Example 2.29. Any two %-boxes can be put in parallel. For example:

Boo B By3 By 8 Bs o
k 3 17 ™ __/—
+—=_| <22 nagy o 82’4 41—
_ - Tt :X_
LNt SEERY|

L - _
| Bu3 1+—>— RN
__a/—_ N i 82’2 _ﬂ_
|gu N T Rl

Definition 2.30 (Parallel composition of wiring diagrams [2]). Let ¢ : X - Y = (¢, ¢ and

Y Y > Z = (™, y°") be two wiring diagrams.

out)

The parallel composition, or sum, of ¢ and y, denoted ¢ B y, is the wiring diagram ¢ 8y =
(«,01“ + i, pout 4 ¥°u), where + is the sum of ¢-typed functions (cf. Definition 2.16).

Example 2.31. Using the notations of Example 2.24, we can build ¢; By; : Bo 208843 — By 4B8Bs o
(ie2):

wo B Yo v1 BYn
BB B Bo 4B B o
1. | Be2BBu3 1| B8B83
__ 1 7 L _k_ 1 7] L
Pan Bao 1.] T Bao I
7 - T -
NamBiy Al
] _Y_: 84,3 T 7 f: 84’3 41
f—/— _—____ | A N i

Proposition 2.32. The category W has the following properties:

» The closed box [J, defined as O = (0,0), where 0 is ¢-typed finite set (0,0 — €) defined in 2.17,
is the unit for the sum of boxes B.
» W has a symmetric monoidal structure for the sum of boxes 8, with O as the unit.

Proof. See [2]. m|

2.2.5. Dependent product of boxes

The aim of this section is to extend the notion of dependent product (Definition 2.18) to ¢-boxes
and wiring diagrams.

Definition 2.33 (Dependent product of a €-box [2]). The dependent product X of the %-box

X = (X™, X°U) is the pair X = (Xin,XOut

IMTA-RR-2018-02-5C 14

3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES 3.1. Definition and basic properties

—— —~)

Remark 2.34. The dependent product of Xy ® X; is Xo @ X; = (Xm X X, XU x Xout

Definition 2.35 (Dependent product of wiring diagrams [2]). The dependent product X of the
wiring diagram ¢ : X — Y is the pair ¢ = (goin, cpout).
Remark 2.36. The dependent product ¢ 8 ¢ is ¢o B ¢1 = (900 X ¢ ,ng“t X goo‘“).

Proposition 2.37. Let ¢ : X — Y and ¢ : Y — Z. The dependent product of y o ¢ is the pair
Jogp= ((lﬂ o @), (¢ o w)out) where:

“ ol (n2) = ¢ (47 (2.4°())
= 0 @)(w) = g (¢ ()

Proof. See [2]. m|

Remark 2.38. The dependent product of ¢-boxes and wiring diagrams could be described in
terms of monoidal functors; however the codomain of this functor is not ¢’ x % as expected, but
a category that has the same objects (pairs of objects (A, B) of €) but whose morphlsms are pairs

of morphisms (j/”?1 jm) (Ag, Bg) — (A1, By) such that fm is the morphism fm A1 X By — Ay

in ¢ and f°" is the morphism f°": By — Bj in ¢. The composition law is the one given in
Proposition 2.37.

Until now, we have only defined a category of ¢-boxes, with interesting properties. These
¢-boxes are exactly as their name suggests: empty boxes. The extension of the dependent
product to €-boxes is a necessary step in order to define the "inhabitants" of ¢-boxes.

3. Discrete systems and their equivalences

In this chapter and in the rest of this paper, we will consider the special case where ¢ = Sets.
Thus, in general, we will simply call "boxes" what we introduced as "Sets-boxes". We denote
the symmetric monoidal category of boxes as #sets.

3.1. Definition and basic properties

The notions introduced in this section come from [2]. The properties stated here are proven in
the same article.

Definition 3.1 (Discrete systems [2]). Let X = (X', X°U) € #gets be a box.
A discrete system for the box X, or discrete system for short, is a 4-tuple F = (SF, frdt, pupd, SF,o)

where:

= S; € Sets is @gstate set of F

w1t S — XU s its readout function

n fUPd . XN Sp — Sp is its update function
= 50 € Sg is its initial state

We denote by DS (X) the set of all discrete systems for the box X.

IMTA-RR-2018-02-5C 15

3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES 3.1. Definition and basic properties

Remark 3.2. In Proposition 2.32, we defined the closed box 0 = (0,0), where 0 denotes (0,7 : 0 — Sets).
Its dependent product is 0= (H peo T(P) [peo T(p)) = (1’,1’), where 1’ is any typed finite set of
the form (1,7 : 1 — Sets). As a consequence, we have:

DS(0) = {(SF, prdt pupd sF,o) |S € Sets, /18— 1, f9P 1% Sp — Sp, spo € SF}

In other words, an inhabitant of a closed box is a dynamical system with no inputs and no
outputs, just a set S and a function § — S.

Remark 3.3. From a set-theoretic point of view, DS (X) is too big to be a set. A potential solution
is to define the DS (X) within a set big enough for our purposes; for example, the set V,,, from
the von Neumann hierarchy of sets, which contains the usual sets, vector spaces, measurable
spaces, Hausdorff spaces, fields, etc. used in mathematics (V,,x2 suffices [7, Lemma 2.9]).

In the following, we will continue to write DS (X) (and similarly for mappings) with the state
setin Sr € Sets for the sake of understandability, but in case set-theoretic problems emerge, we
should not write Sr € Sets but Sg € V,,,.

Note that discrete systems can be viewed as a generalisation of automata. They have no final
states, the transition function is always a function, i.e. all discrete systems are deterministic, the
input alphabet can be infinite, and the transition function is always defined on every input and
every state. Discrete systems are not automata that recognize a language, but rather, automata
that take any input stream and return an output stream based on the states it transitioned to;
that is, discrete systems are a generalisation of transducers as defined in [8]. Alternatively,
discrete systems exactly correspond to the sequential automata in [9].

Example 3.4. For this example, we generalise the notation seen in Definition 2.13 to the set TFSg
of R-typed finite sets, seen as lists of real numbers, that is, finite sequences of real numbers:

TFSg = {(n,7) |neN,7:n > R}

Here, this is a set, not a category; besides, we use n € N instead of P € FinSets so that we
define a set. As a discrete category (having only identity morphisms), it is equivalent to TFS4R
obtained by also considering R as a discrete category.

We also generalise the sum of finite sequences, seen as the concatenation.

Consider the box Xy = ((R),(R)) € #sets. We define the following discrete system Fy €
DS (Xp):

» Sr, = TFSg
. upd { R x TFSg - TFSg

0 . (a’ <a07' N "an—1>) = <a0$' . -’an—l,a>
. prdt { TFSr — R

0 (ag,...,an,_1) +— max({ag,...,dn_1))

* 5r,,0 = 0 (Where 0 is the empty list as defined in Proposition 2.17)

In this example, the state set S, = TFSr is uncountably infinite and clearly works as a
memory. This discrete system Fj takes a real number as an input, appends it to its memory,
and computes the maximum value of the stored list.

A more complicated discrete system could return several results; for example, in the box
X; = ((R),{R,R,R,R)) € #5ets, Wwe can define F; € DS (X7) such that:

IMTA-RR-2018-02-5C 16

3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES 3.1. Definition and basic properties

» Sp, = Sp, = TFSg, 1“ pd _ fouP 4 and sF,,0 = 0 (same state set, update function and initial
state as Fp)

TFSgr — RxRxXxRxXxR
s frd: S (ag,. . an1) > (max((ag,. . ., an-1)),min ({ao,dn-1)),
mearn (<a09 AR) an—l)) ” var (<a0’ AR an—1>))

Or we could add a switch so that we can decide what output we want; in the box X, =
((R,4),(R)), we define F; as:

» Sr, = TFSg X 4 (here we see 4 as its set-theoretic counterpart: 4 = {0,1,2,3})

_fupd' Rx4x TFSgr x 4 — TFSg x 4
2 ’ (Cl,b, <a03~'-’an—l>’c) — (<a03- '~’an—laa>7b)
TFSk x 4 — R
max ({ag,...,an—1)) ifb=0
rdt : ;
. frt min ({ag,...,a,-1)) ifb=1
(a0, an-1),0) mean ({ag,...,a,_1)) if b =2
var ({ag, . . .,dp-1)) otherwise
u SFQ,O = (07 0)

We could even add a reset button on the discrete system; in the box X3 = ({(R,4,2),(R)), we
define F; as:

= Sp, = Sp, = TFSg x 4, f14 = I and sp, o = 55,0 = (0,0) (same state set, same readout
function and same initial state as F»)

. RXx4x2xTFSg x4 — TFSg x 4
-fup .

3 ¢ SF3.,0 ifr=0
(@b.r. Ao, an-1),€) { ({ao, . ..,an-1,a),b) otherwise

We previously viewed general boxes (objects in #sets) as empty frames. Discrete systems
are the objects that "live" inside. One can draw a parallel with programming: a ¢-box is the
signature of the function, that is, its accepted types of inputs and outputs, and the discrete
system is the actual code of the function.

In the rest of the article, we will often represent a discrete system F = (S 7, frat, pupd F,g) as
the following two-arrow graph:

fupd frdt —

F: X" x Sp > S » xout

The first function describes how a state and an input are transformed into a new state; the
second describes how the state is output, or "read out”. In general, the initial state sr o € Sr
will not be represented in these diagrams, though it is implicitly there.

Discrete systems are part of the more general class of dynamical systems. We can define other
types of dynamical systems depending on the category ¢ that we are interested in. If ¢’ is the
category Euc of Euclidean spaces, then we will refer to continuous systems. For more examples,
see [2].

IMTA-RR-2018-02-5C 17

3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES 3.1. Definition and basic properties

Definition 3.5 (DS-application of a wiring diagram [2]). Let ¢ : X — Y be a wiring diagram.
Let F = (SF, frdt pupd sm) e DS (X).

The DS-application of ¢ to F, denoted DS (¢) (F), is the discrete system DS (¢) (F) = (S(;, gt gupd, sG,o) €
DS (Y) such that:

» Sg =SF

- grdt RN (’;oit (frdt(s))

= 2P (s) o P (o (3,9)

" 5G,0 = SF,0

We can view DS (¢) (F) as the discrete system we obtain from F by implementing the wiring
diagram ¢.
Definition 3.6 (Parallel composition of discrete systems [2]). Let Xy, X; be boxes and let F; =
(SF,-, frae fP 4 sF,.,g) € DS(X;) (i € 2) be discrete systems.

The parallel composition of Fy and Fy, denoted FomFj, is the discrete system (Sc;, gt gupd, SG,O) €
DS (Xp 8 X1) such that:

SG = SFO X SF1
" SG,0= (SFO,OesFl,O)

rdt _ prdt rdt . out out
=g _j/fo\ xﬁ\ 1Sk, X SFp — XU X XT

= gUPd: XIN x XIN x Sg, X Sk, — Sp, X Sp, makes the following diagram commute:

~ —~ gupd
X' X X" X Spy X Spp ———— SFy X SEy

_ _ upd cupd I

. : 7P,
XN x Sp, x XN x Sp, =———— Sk, X Sk,

We also define the parallel composition of DS (Xp) and DS (X;), denoted DS (Xp) ® DS (X1),
by:
DS (X()) x DS (Xl) = {F() R F | Fy € DS (X()),F1 e DS (Xl)} .

Proposition 3.7. Parallel composition (Fy, F1) — Fy & F; provides a natural map DS (Xp) X DS (X1) —
DS (X() H Xl).

Proof. See [2]. O

Theorem 3.8. Definitions 3.1, 3.5, and 3.6 define a lax monoidal functor DS: Wsets — Sets.

Proof. See [2] O

IMTA-RR-2018-02-5C 18

3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES3.3. An internal equivalence relation on dynamical systems

3.2. An external equivalence relation on dynamical systems

Via the monoidal functor DS, a box contains a specified sort of discrete system (depending on
the ports of the box). For an exterior spectator, the content of the box does not matter; what
matters is the way it transforms input streams to output streams. Thus, even if two boxes
contain different discrete systems, for example one with an infinite state set, and the other with
a finite state set, as long as they both give the same output in response to the same input, then
they are viewed as "equivalent" from an external point of view.

The following definitions formalise this idea.
Definition 3.9 (Input and output streams). Let F = (SF, frdt, fupd,sF,o) € DS (X).

An input stream (for X) is a finite sequence x" = (xm

—~\n
mn) € (Xm) ,wheren e N.
1€ENn

The output stream produced by F when given x", denoted F (W), is the stream x°U¢ defined by
the following recursive system:

So = SFO0
siy1 = fupd (x™, 57)
x0ut = (g)

We refer to the state s that F reaches after having processed the input stream X" as resulting

state of F, and denote it Fres(xﬁ). Formally, if xin = (xin

");c,s then according to the previous

recursive system, the resulting state of F is Fres(xﬁ) =5,.

—_ . —~\n
Remark 3.10. According to the notation proposed in section 1.1, x" = (x;n)l. en € (Xm) will be
written xi" € XM,

Remark 3.11. Definition 3.9 is a continuation of the definitions of run maps and behaviours in
[9], which are functions that assign respectively the resulting state and the last output of the
automaton given an input stream. The results we obtain with our notations are similar to those

in [9].
Definition 3.12 (Equivalence as stream transducers). Let F = (SF, frdt fupd, SF’(]) and G =

(SG, grdt, gupd, Sc,o) be two discrete systems.

We say that F and G are equivalent as stream transducers, and we write F = G, when, Vxin e
X, £ () = 6 ().

It is easy to see that:

Proposition 3.13. The relation = is an equivalence relation on the set DS (X), for any box X.

3.3. An internal equivalence relation on dynamical systems

The relation = defined above does not give any information on the links between two discrete
systems that are equivalent as stream transducers. In this subsection, we define another equiv-
alence relation that provides an internal point of view. We then prove that the two equivalence
relations are the same.

In the following, X = (X', X°") is any box.

IMTA-RR-2018-02-5C 19

3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES3.3. An internal equivalence relation on dynamical systems

Definition 3.14 (Simulation relation). Suppose given F = (SF, frdt pupd sF,o) and G = (SG,grdt, g"Pd, sG,o)
in DS (X).
We say that F simulates G, and we write F + G, if there exists @ : S — Sg such that
56,0 = @ (sF,0) and such that @ o fuPd = guPd o (id;ﬁ—,a), and frdt = g™t o @; that is, preserving
the initial state and making the following two diagrams commute:

~ upd rdt —

F Xix §p —T 5§ — T xout
s l [@

G: XM x S i Sa T xout

We refer to @ as a simulation function: it witnesses the simulation F + G.

A priori, the simulation relation does not relate the output of the two discrete systems F and
G (though this does follow; see Lemma 3.19); it only declares a correspondence between both
their state sets and update and readout functions. Both discrete systems can work in parallel;
their state sets need not be the same, nor even of the same cardinality, but they somehow
coordinate via the map @. The function @ draws the parallel between the internal machinery of
F and that of G.

For the rest of the article, we will be more interested in the simulation relation F + G than
any particular simulation function witnessing it: any one will do.

Remark 3.15. Definition 3.14 refers to the existence of morphisms between two automata as
described in the automata theory litterature [9]. The existence of such morphisms suffices
for our purposes. We are a bit more restrictive here, as the outputs need to be the same in
both automata, while in the usual definition of morphisms, automata can have different output
alphabets, as long as there is a function to convert one output into the other.

The simulation relation is not necessarily an equivalence relation and is not enough for our
purpose, but we can use it to generate the equivalence relation we actually need.
Definition 3.16 (Internal equivalence relation on DS (X)). Let F,G € DS (X).

We say that F and G are simulation-equivalent, and we write F ~ G, if there exists a finite
sequence (H;);cn € DS(X) such that:

F n G

H, ... Hy P
N A /\ /\ /\ /\ N
H1 RN R H2n+1
It is not hard to check that:

Theorem 3.17. The equivalence relation ~ is the equivalence relation generated by v, that is, ~ is the
smallest equivalence relation R such that + C R.

Finally, we need to show that the equivalence relation ~ actually groups discrete systems
that have the same behaviour as a stream transducer, in the sense of Definition 3.12; that is, the
external and the internal equivalence relation are the same.

Lemma 3.18. Let F,G € DS(X). If F = G then 3H € DS (X) such that H + F and H + G.

IMTA-RR-2018-02-5C 20

3. DISCRETE SYSTEMS AND THEIR EQUIVALENCES3.3. An internal equivalence relation on dynamical systems

PTOOf. Let F = (SF,frdt,fupd, SF,O) and G = (SG’grdt’gupd’ SG,()).

Take H = (SH,hrdt, hPd, SH,o) such that:

Sy = {(s,s') € Sp X S | 3 such that Fres(x") = s and Gres(x") = s’ }

B (x (s.57) = (£9P (). 8P (x,))
jrdt (s,s") = frdt(s)
sH.0 = (SF,0.5G.0)

Take as simulation functions the respective projections rs, and xs,, .

It is easy to see that the required diagrams in Definition 3.14 do commute. For all (s, s") € Sy,
we have /™ o g, (s,5) = f™(s) by defintion of ™. Also, for all (s,s") € Sy, i o 75, (5,5") =
frt(s) = g"¥(s’) because there exists some stream xi" such that F results in s and G results in s’;
besides, as F = G, we have F ()F) =G (x?), which implies f rdt(g) = grdt(s”). Consequently, the
diagrams commute and H simulates both F and G.

Lemma 3.19. Let F,G € DS(X). If F+ G then F = G.

Proof. Follows by induction on the length of an input stream (x"),_ € X, O

Theorem 3.20. VF,G € DS(X),F =G & F ~ G; or equivalently: = = ~.

Proof. To prove==~,weneed=C ~and ~ C

Suppose first that F,G € DS(X) are dynamical systems such that F = G. According to
Lemma 3.18, there exists a H € DS(X) such that H + F and H + G, and hence F ~ G by
Definition 3.16. This establishes = C ~.

We now show that ~ C =. According to Proposition 3.13, = is an equivalence relation, and
according to Lemma 3.19, = contains +. Theorem 3.17 states that ~ is the smallest equivalence
relation that contains ; necessarily, we have ~ C =. O

The goal of this article is to show that the behaviour of a general discrete system can be
emulated by some specific wiring of some other discrete system, chosen with constraints (for
example, on its internal structure). As far as we know, this result cannot be obtained with a
pure equality. However, we have a description of what it means to be equivalent, both from
an internal and from an external point of view, with the assurance that, seen as a blackbox, the
"inhabited" box remains unchanged.

As we are not using real equalities, we need to define relations between sets that correspond
to the usual inclusion and equality.
Definition 3.21 (Inclusion/equality up to equivalence). Let A,B € DS(X). We consider the
equivalence relation ~ from Definition 3.16 (or, equivalently, in Definition 3.12).

We say that A is a subset of B up to equivalence, and we write A C B, whenVa € A,3b € B,a ~ b.

We say that A is equal to B up to equivalence, or A is equivalent to B, and we write A ~ B, when
AC Band AJB.

IMTA-RR-2018-02-5C 21

4. MAIN RESULTS 4.2. Memoryless systems

If F,G : #sqs — Sets are functors, then we write F C G when, for all box X, we have
F(X)C G(X). We write F ~ G,when FC Gand F 1 G.

If M,N : #sets — Sets are mappings (not necessarily functors), then we write M C N when,
for all boxes X and Y, we have M(X) € N(X) and Morgets (M(X), M(Y)) € Morgets (N(X), N(Y)).

4. Main results
Before we introduce the actual results of the paper, we need a few more notions.
4.1. Algebras and closures

Definition 4.1 (Algebra). Given a monoidal category ¢, a functor F' : ¥ — Sets is called an
algebra over € when it is a lax monoidal functor.

In our case, ¢ = #sets, and DS is an algebra by Theorem 3.8.

Definition 4.2 (Subalgebra). Let A : #gets — Sets be an algebra over #ges. Let ox,y @ A(X) X
A(Y) = A(X BY) denote its first coherence map (we recall that & is the parallel composition of
boxes (cf. Definition 2.28)).

A functor B : #sets — Sets is called a subalgebra of A when:

" VX € Wgets» B(X) C A(X)
» VX,Y € Wgets, VF € B(X),VG € B(Y),ox y(F,G) e B(X®Y)
= Vo : X =Y € Wsets, VF € B(X), A(p)(F) € B(Y)

Here, A and B are functors that transform boxes into sets. In our setting, the conditions can
be interpreted as follows:

= (First item) Discrete systems generated by B are included in those generated by A;

» (Second item) The parallel composition of two discrete systems F and G generated by B
is also generated by B.

» (Third item) B is stable through wiring diagrams: wiring a discrete system generated by
B gives another discrete system generated by B.

Note that a subalgebra is itself an algebra.

Definition 4.3 (Closure). Let A : #ses — Sets be an algebra over #gegs.

Let B : Oby,,,, — Obsets be any map such that VX € #sets, B(X) C A(X). The closure of B,
denoted Clos (B), is the intersection of all subalgebras of A that contain B(X) for all X € #gets.
(Any intersection of subalgebras is a subalgebra.)

The closure of a map B can be understood as the minimal lax monoidal functor (or algebra)
containing B.

4.2, Memoryless systems

Our first main result concerns the subclass of discrete systems that we call memoryless. We show
that wiring together memoryless systems can lead to systems that have memory.

IMTA-RR-2018-02-5C 22

4. MAIN RESULTS 4.2. Memoryless systems

Definition 4.4 (Memoryless discrete systems). Let X = (X', X°U) be a box.

A memoryless discrete system for the box X, or memoryless discrete system for short, is a discrete
system F = (S . f rdt f upd, sF,o) € DS (X) such that f upd immediately discards the previous state

and uses only the current input; more precisely, such that f%P9 factors as
o "xin o S
fupd = xin Sp xin Rkl Sr

——

for some f* : X™ — Sg.
We denote by DSME (X) the set of all memoryless discrete systems for the box X : DSME (X) =
{(SF, e pupd, sF,O) eDS(X) | If*: X — S, fopd = fu o nXA}
We call these discrete systems memoryless because we see the states as a kind of memory
(as in Example 3.4). The discrete systems defined above transition from one state to another
without checking their current state, i.e. without checking their memory.

The following definition is a natural restriction of memoryless discrete systems; as these
systems are memoryless, the only goal of their states is to produce the output via their readout
function. The simplest case is when the readout function is the identity.

Definition 4.5 (Direct-output discrete systems). Let X = (X™, X°%) be a box.

A direct-output memoryless discrete system for the box X, or direct-output discrete system for short,
is a discrete system F = (SF, frdt, fupd, sF,o) € DS (X) such that:

n SF =)?(Ht
. frdt =id—

xout
—

w fupd = fu, . for some f* : X™ — XU

We denote by DSME (X) the set of all direct-output discrete systems for the box X:

out

DSME (X) = {(Sr, £, £, s10) € DSME () |18 = X0, £ =i}

out X

= {(XO% i 179, 50) € DS (x) | 3 XM - X, popd = po
Remark 4.6. The maps DSML . %4 — Sets and DSI(;% . Wsets — Sets are not functors, because
they are not closed under wiring. Indeed, the whole point is that the result of wiring together
memoryless systems is not necessarily memoryless.

We can now prove one of the main results of this paper, which is that every discrete system
can be obtained by memoryless systems and feedback loops. The feedback loop is responsible
for holding the state that was originally in the discrete system.

Here is the formal statement.

Theorem 4.7. Clos (DSML) ~ DS.

out

out out out

Proof. We have DSML ¢ DSML ¢ DS, so Clos (DSML) c DS, thus Clos (DSML) C DS. We need

out

the opposite inclusion (up to equivalence) Clos (DSML) 2 DS.

IMTA-RR-2018-02-5C 23

4. MAIN RESULTS 4.2. Memoryless systems

Let Y = (Y'",Y°U) € #4uy, and let G = (S, g™, g%, 5,0) € DS(Y). We will find X € #ses,
F € DSME(X) and ¢ : X — Y such that DS (¢) (F) ~

out

Let 65, = (Sg) € TFSgets be the list with one element, S, and consider the box (ds,;,ds;)
with only that port on the left and the right. We define X as the parallel composition of this box
(654 0s;) and Y, that is:

X — (Xil’l XOU.t)
= (656,556) BY
= (05, + Y™ ds + YOU)

Note that X = =S¢ X yin and XOUt = =S¢ X yout, Thus, if xin €)/(EI, then xin = (s, yﬁ) Similarly,
if yout ¢ ﬁf’ then xout = (S’ yout)‘

We choose ¢ : X — Y as the pair (¢™, ¢°*) of coproduct inclusions:

. on Osg +Y™ — Y™ 455, + YO0
X —> X
t
. <p0ut : You SN (5SG + Yout
X > X

It follows from 2.35 that their dependent products ¢™ : Y x Sg x YU — S5 x Y and ¢ :
SG X Y°ut — y°ut are projections.

Recall that the goal is to find F = (s , frdt pupd o 0) e DSML (X) such that DS (¢) (F) ~
So define F as follows:

- S — Xout S X Yout
- frdt id—

xout

» fupd (xm, xouf) = fupd (S,F,s’, y"“t) = (gupd (yﬁs) ,gdt (gupd (y?s)))

" Sp,0 = (SG,o,grdt (SG,O))

L (X) because 4t and fPd have the correct form. So let
(SH, prdt pupd SH,o) = DS (¢) (F); we need to show it is equivalent to G. We compute each part
of DS (¢) (F) according to Definition 3.5.

Its state set is as follows:

It is easy to see that F is in DSY.

out

Sy = Sp = XOUt = §; x yout
Its readout function is defined on an arbitrary x°" as follows:
et (wout) = prde (s, your
-)

= Mo (idxm (S yout))

IMTA-RR-2018-02-5C 24

4. MAIN RESULTS 4.2. Memoryless systems

Its update function is defined on an arbitrary (y?, s, yout) as follows:

hPd (y? SW) = fupd (9;1?1 (y? A (SW)) : (SW))
= fupd (S,yﬁ, svﬁ)

e) o)

Finally, its start state is as follows:

SF,0 = (SG,o,grdt (SG,O))

Consequently, the following diagram commutes:

—~ upd rdt —

G: Yin x Sg 8 s SG 8 y yout
ld;E‘ XO’J/ QJ/ :]i

DS (¢) (F) : YR X SG X YO ——mp S X YO — o YO

where a = (idSG, grdt). This yields G + DS (¢) (F) and hence DS (¢) (F) ~ G, which concludes
the proof. o

Corollary 4.8. Clos (DSML) ~ DS.

Corollary 4.9. Forall G € DS (Y), if G has finite state set, then there exists H € Clos (DSML) (Y) with
finite state set such that H ~ G.

Proof. In the proof of Theorem 4.7, take H = DS(¢) (F), but instead of Sr = Sg X @, take
Sk = Sg x g% (Sg) € Sg x YU If S is finite, so is Sg.

In that case, H is no more in Clos (DSML) (Y) but in Clos (DSML) ¥). m|

out

Corollary 4.10. (Assuming the axiom of choice) For all G € DS (Y), if G has an infinite state set, then
there exists H € Clos (DSML) (Y) with a state set of the same cardinality as G, such that H ~ G.

Proof. In the proof of Theorem 4.7, take H = DS(¢) (F), but instead of Sr = Sg X 170&, take
Sr = Sexg"™ (Sg) € SGxY°!. The axiom of choice gives card (S¢) = card (Sg)xcard (grdt (Sc;)) =
card (Sg).

In that case, H is no more in Clos (DSML) (Y) but in Clos (DSML)). |

out

Theorem 4.7 states that systems without memory can be wired together to form systems
with memory. In fact, the result is more subtle. It states that for any discrete system, we can
find (or build) a memoryless discrete system with the certain wiring such that both systems
are equivalent as stream transducers. The internal equivalence relation described in Theorem
3.20 is instrumental to prove Theorem 4.7, while the result is stated with regard to the external
equivalence relation.

IMTA-RR-2018-02-5C 25

4. MAIN RESULTS 4.3. Finite-state systems

4.3. Finite-state systems
The second result is a refinement of Theorem 4.7, and is somewhat similar to it. We show that
wiring together two-state discrete systems can generate a finite-state system with memory.

We can view the result as the generalisation of transistors being wired together in order to
build a computer, or a system of neurons wired together to form a brain with finite memory.
Definition 4.11 (Finite-state systems). Let X = (X™, X°") be a box.

A finite-state discrete system for the box X, or finite-state system for short, is a discrete system

F = (Sp,frdt, fupd, sF,o) € DS (X) such that Sg is a finite set.

We denote by DSgin (X) the set of all finite-state discrete systems for the box X : DSpin (X) =
{(SF, frdt fupd, SF’(]) € DS(X) | card (SF) € N}. For a wiring diagram ¢, we set DSgin (¢) =
DS ().

It is easy to see that:

Proposition 4.12. The map DSriy, : #sets — Sets is a subalgebra of DS.

Proof. Follows from Definition 4.2. o

Definition 4.13 (Boolean systems). Let X = (X™, X°") be a box.

A boolean memoryless discrete system for the box X, or boolean system for short, is a discrete
system F = (Sp,frdt, fupd, SF,O) € DSrin (X) such that F is memoryless and Sr = 2" = {0,1}".

We denote by DSlg/éLol (X) the set of all boolean memoryless discrete systems for the box X :
DSYL, (%) = { (S £, 749,570) € DSME () | 85 = {0,1)"}.

Remark 4.14. The map DSlg/f)LO‘l : Wsets — Sets is not a functor, for the same reason as in remark
4.6.

Lemma 4.15. DS%&Z ~ DSML N DSy

Proof. By construction, DSI]\S/EZ)I ¢ DSML N DSpiy, sO DSI]\Q;)I C DSME N DSpi,. We need to show the
other inclusion, so let G = (Sc;, g"dt, gupd, sG,o) e DML (X) N DSgin (X), and it suffices to show

that there is F € DSI%@LOI (X)with G ~ F.

We have g"Pd = g% o n.» and Sg finite. Let N = [log, (card (Si))]. There exists an injection
i : S¢ — 2V and a surjection p : 2V — Sg such that p oi = ids,. This is just a binary encoding
of S(;.

Define F = (Sp,frdt, fupd, SF,O) such that:

IMTA-RR-2018-02-5C 26

5. CONCLUSION

Then the following diagram commutes:

—~ gupd grdf —
G: Yy x Sc > S > xout
id/T\Xl'J/ J/ :I
xm i
F X0 x 2N 5 oN y xout
: fupd - frdt

We have F € DS%&)I (X) and G + F (with i as simulation function), so F ~ G, hence the
result. O

Lemma 4.16. DSg;,, = Clos (DSML) N DSgiy,.

Proof. Observe that DSgin, = DS N DSgin. By Corollary 4.8, we have DS =~ Clos (DSML). In
particular, Clos (DSML) c DS, so Clos (DSML) N DSgin € DS N DSgin. This gives one inclusion,
Clos (DSML) A DSgin C DS N DSgip.

As for the reverse inclusion (up to equivalence), let X be a box and let F € (DS N DSgip) (X).

By Corollary 4.8, there exists G € Clos (DSML) such that G ~ F. By Corollary 4.9, we can choose
G so that G € DSgj, (X), hence the result. O

Theorem 4.17. Clos (DS%I;Z) ~ DSgjy,.

Proof. Clearly, Clos (DS%&I) C DSkin. By Lemma 4.15, in order to prove DSgi, C Clos (DS%/LLOI), it
suffices to prove DSgin, E Clos (DSML N DSFm). Furthermore, since DSg;, ~ Clos (DSML) N DSgin
(Lemma 4.16), we reduce to proving that: Clos (DSML) N DSgin E Clos (DSML N DSFm).

LetY € #seis be abox, and let G € (Clos (DSML) N DSFm) (Y). We have G € Clos (DSML) ;),

so according to Corollary 4.8, there exist a box X € #gets, @ wiring diagram ¢ : X — 7Y,
and a F € DSM(X) such that DS(¢) (F) ~ G. Furthermore, according to Corollary 4.9, we

can choose F with finite state set. Finally, F' € (DSML N DSFm) (X), and DS(¢)(F) ~ G, so
Clos (DSML) N DSg;iy E Clos (DSML N DSFin), hence the result.

5. Conclusion

Boxes are empty frames that condition the inputs and outputs of their content, a generalisation
of automata called discrete systems. Such systems come with a state set that represents their
memory of previous inputs. In a sense, discrete systems can learn. However, we can define
a subclass of discrete systems that do not store any experience of their past. We see these
as reactive, in the sense that they still react to any input, but their past experience does not
influence that reaction. Unlike typical discrete systems, they do not keep a memory of the
previous inputs.

IMTA-RR-2018-02-5C 27

5. CONCLUSION

In this paper, we use a category-theoretic framework to give a constructive proof that any
discrete system with memory can be simulated by some correctly-wired memoryless system.
This result can be understood as a phenomenon of emergence in a complex system.

This construction opens a number of new questions. A possible question might consist in
finding the "best" memoryless system, where "best" could depend on the definition of some
valuation function, e.g. the most parsimonious in terms of state set. A similar question could
be asked with respect to wiring diagrams, whose number of feedback loops could be bounded
by a cost function.

Possible extensions of this work could concern dynamical systems other than DS. For in-
stance, can we establish the same kind of results when considering measurable or continuous
dynamical systems?

IMTA-RR-2018-02-5C 28

REFERENCES

References

[1] S.J. Russel and P. Norvig, Artificial Intelligence: a modern approach, 3rd ed., ser. Prentice Hall
series in artifical intelligence. Upper Saddle River, NJ, USA: Prentice Hall Press, 2010.

[2] D. I Spivak, “The steady states of coupled dynamical systems compose according to matrix
arithmetic,” Available online: https:/ /arxiv.org/abs/1512.00802, 2016.

[3] S. Awodey, Category Theory, 2nd ed., ser. Oxford Logic Guides. Oxford University Press,
Oxford, 2010, vol. 52.

[4] M. Barr and C. Wells, Category Theory for Computing Science. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1998.

[5] F. Borceux, Handbook of Categorical Algebra, ser. Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, 1994, vol. 2.

[6] M. Behrisch, S. Kerkhoff, R. Poschel, F. M. Schneider, and S. Siegmund, “Dynamical
systems in categories,” Applied Categorical Structures, vol. 25, no. 1, pp. 29-57, Feb 2017.
[Online]. Available: https://doi.org/10.1007 /s10485-015-9409-8

[7] K. Kunen, Set theory - An introduction to independence proofs, 7th ed., ser. Studies in logic and
the foundations of mathematics. North-Holland Publishing Company, 1999, vol. 102.

[8] M. Sipser, Introduction to the theory of computation, 3rd ed. Cengage Learning, 2012.

[9] J. Adamek and V. Trnkova, Automata and Algebras in Categories, 1st ed. Norwell, MA, USA:
Kluwer Academic Publishers, 1990.

IMTA-RR-2018-02-5C 29

https://arxiv.org/abs/1512.00802
https://doi.org/10.1007/s10485-015-9409-8

OUR WORLDWIDE PARTNERS UNIVERSITIES - DOUBLE DEGREE AGREEMENTS 3 CAMPUS, 1 SITE

IMT Atlantique Bretagne—Pays de la Loire — http://www.imt-atlantique.fr/

Campus de Brest Campus de Nantes Campus de Rennes Site de Toulouse
Technopole Brest-Iroise 4, rue Alfred Kastler 2, rue de la Chataigneraie 10, avenue Edouard Belin
CS 83818 CS 20722 CS 17607 BP 44004
29238 Brest Cedex 3 44307 Nantes Cedex 3 35576 Cesson Sévigné Cedex 31028 Toulouse Cedex 04
France France France France
T +33(0)2290011 11 T +33 (0)2 51 85 81 00 T +33 (0)2 99 12 70 00 T +33 (0)5 61 33 83 65
F +33 (0)2 29 00 10 00 F +33 (0)299 12 70 08 F +33 (0)2 51 85 81 99
I MT Atla ntiq ue © IMT Atlantique, 2018

_ ; Imprimé a IMT Atlantique
Bretagne-Pays de la Loire Dépot légal : Mai 2018

Ecole Mines-Télécom ISSN : 2556-5060

http://www.imt-atlantique.fr/

	Introduction
	Notation

	Background
	Background in category theory
	Boxes and wiring diagrams
	The category of typed finite sets
	Dependent products
	The category of boxes and wiring diagrams
	Monoidal structure of the category of boxes
	Dependent product of boxes

	Discrete systems and their equivalences
	Definition and basic properties
	An external equivalence relation on dynamical systems
	An internal equivalence relation on dynamical systems

	Main results
	Algebras and closures
	Memoryless systems
	Finite-state systems

	Conclusion
	References

