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ABSTRACT 

In this paper we report on the possibility to use particle-based Monte Carlo techniques 

to incorporate all relevant quantum effects in the simulation of semiconductor nano-

transistors. Starting from the conventional Monte Carlo approach within the semi-classical 

Boltzmann approximation, we develop a multi-subband description of transport to include 

quantization in ultra-thin body devices. This technique is then extended to the particle 

simulation of quantum transport within the Wigner formulation. This new simulator includes 

all expected quantum effects in nano-transistors and all relevant scattering mechanisms which 

are taken into account the same way as in Boltzmann simulation. This work is illustrated by 

analyzing the device operation and performance of multi-gate nano-transistors in a convenient 

range of channel lengths and thicknesses to separate the influence of all relevant effects: 

significant quantization effects occurs for thickness smaller than 5 nm and wave mechanical 

transport effects manifest themselves for channel length smaller than 10 nm. We also show 

that scattering mechanisms still have an important influence in nanoscaled double-gate 

transistors, both in the intrinsic part of the channel and in the resistive lateral extensions. 
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I. INTRODUCTION 

The particle-based Monte Carlo (MC) technique is acknowledged as a powerful method 

for accurately describing the carrier transport in semiconductor materials and devices within 

the semi-classical approximation, i.e. the Boltzmann transport equation (BTE) for the 

distribution function. It has been developed by many groups to study a wide variety of 

transport problems in many kinds of devices, to such a point that it is impossible to 

summarize here the most significant examples of its applications. Extensive overviews of this 

method may be found in [1,2]. In spite of disadvantages due to large computational 

requirements and some limitations inherent in the finite number of simulated particles, this 

technique of transport simulation is turned out to be robust, versatile, essentially free from 

numerical difficulties and thus suitable for device simulation even in three-dimensional (3D) 

real space.  

However, with the downscaling of field-effect transistors into the nanometer regime, the 

semi-classical approximation resulting in the BTE fails to capture rigorously the quantum 

effects occurring in modern devices. For instance, in ultra-thin body (UTB) MOSFET as FD-

SOI-FET, Fin-FET or Double-Gate (DG) MOSFET which are considered as the most 

promising device architectures likely to overcome short-channel effects that dramatically 

affect conventional bulk-MOSFET, Si channel thickness as small as 5 nm has to be 

considered in the near future. It yields a strong quantization of the electron gas in the 

direction perpendicular to the gate stack, which results in a significant change in the space 

and energy distributions of particles and may be reflected on the device operation and 

characteristics. Furthermore, for gate length aggressively downscaled in the sub-10 nm range, 

the wave-like nature of electrons may give rise to source-drain tunneling through the channel 

barrier and to quantum reflections in the channel. In this context it may be considered as 

meaningless to still use point particles in the transport description including properly all 

relevant quantum effects. In fact, this paper aims at showing the ability of the particle MC 

method to accurately describe quantum effects in self-consistent device simulation in such a 

way that the transition between classical and quantum transport appears clearly. 

Today, most quantum simulators make use of a recursive technique to compute either 

the Green's function [3,4] or the wave function itself [5]. These methods, initially developed 

in the ballistic approximation, are now reaching a good level of maturity by including 

scattering affects, at least electron-phonon scattering, with different levels of approximation 
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[4 and references therein, 5 and references therein, 6]. However, including all relevant 

scattering mechanisms in 2D or 3D simulation of MOSFET still remains a difficult problem 

within these approaches. Instead of computing the wave function or the Green's function, one 

can equivalently use the Wigner's function (WF) that is defined in the phase space as a 

Fourier transform of the density operator [7]. In the classical limit this function reduces to the 

classical distribution function. The dynamical equation of the WF, i.e. the Wigner transport 

equation (WTE), is very similar to the BTE, except in the influence of the potential whose 

rapid space variations generate quantum effects. Again, in the classical limit of slow potential 

gradients the WTE becomes nothing but the BTE. The strong analogy between Wigner and 

Boltzmann formalisms makes possible and appealing to adapt the standard MC technique to 

solve the BTE by just considering the WF as an ensemble of pseudo-particles [8,9]. Scattering 

effects may be easily included by using the same collision operator as in the BTE.  

The description of quantization effects in standard Boltzmann MC simulation (BMC) is 

often considered through so-called "quantum corrections" aiming at empirically reproducing 

the repulsive effects of interfaces related to the vanishing of the normal component of wave 

function, while keeping a 3D description of particles [10,11]. Within the effective mass 

approximation, this quantization effect can be rigorously accounted for by coupling self-

consistently the standard algorithm with the 1D Schrödinger equation at each channel position 

[12]. This multi-subband mode-space approach is very appropriate to the simulation of ultra-

thin body transistors [13] where the coupling between subbands is essentially due to inter-

subband phonon scattering [14].  

Starting from our BMC simulator MONACO [15,16], we recently developed a multi-

subband approach (MSBMC) for the simulation of DG MOSFET [13] and extended the MC 

algorithm to solve the WTE in 1D structures as RTDs [17]. By mixing these two versions we 

have generated a multi-subband Wigner MC code (MSWMC) which gives a full quantum 

description of transport in thin-film transistors including all relevant scattering mechanisms, 

i.e. by phonons, impurities and rough interfaces [18]. In this paper we use successively BMC, 

MSBMC and MSWMC and compare the results obtained for different designs of unstrained 

UTB MOSFETs to highlight the main relevant physical effects according to channel thickness 

and length. Section II is devoted to BMC simulation of multigate MOSFETs with channel 

length and thickness of 19 nm and 8 nm, respectively. We introduce MSBMC in Section III to 

detail the quantization effects occurring in DG MOSFET when the body thickness is reduced 

and MSWMC in Section IV to discuss the quantum transport effects and the ballistic 
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approximation in DG transistors with channel length smaller than 10 nm.  

II. THIN FILM AND MULTIGATE ARCHITECTURES – SEMI-CLASSICAL APPROACH 

This section is dedicated to 2D and 3D BMC simulation of multigate MOSFETs on SOI 

substrate. Such structures with undoped thin-film channel and appropriate design are expected 

to provide high performance thanks to quasi-ballistic transport and reduced short-channel 

effects [19] without the need of aggressively small equivalent gate oxide thickness [16]. We 

consider here a physical gate length LG = 21 nm for three device architectures: FD-SOI 

MOSFET with a single-gate (SG), double-gate MOSFET (DG) and gate-all-around MOSFET 

(GAA). Simulated structures are schematized in Fig. 1. Source and drain extensions are 

15 nm-long and doped to 1020 cm-3. Source/channel and drain/channel junctions are assumed 

to be abrupt with a gate overlap of 1 nm. The effective channel length is thus Lch = 19 nm. The 

channel body and equivalent oxide thicknesses are TSi = 8 nm and TOX = 1 nm, respectively. 

The work function ΦM = 4.56 eV is assumed for the metallic gate material. In SG the buried 

oxide is 20 nm thick and ground biased. In GAA the body width WSi is equal to the thickness 

TSi.  

A. The model of BMC simulation 

In order to make clear the relationship between Boltzmann and Wigner formalisms in 

Section IV, we briefly summarize here the basic principles of semiclassical transport of 

electrons used in standard particle MC simulation. This theory is based on the BTE for the 

distribution function ( ), ,f tr k  defined as proportional to the density of particles in phase 

space 

1
r k

f f f C f
t

∂
+ ⋅ + ⋅ =

∂
v F∇ ∇  (1) 

where 1
k E−=v ∇  is the group velocity, re V=F ∇  is the classical electrostatic force 

derived from the potential ( )V r  and C is the collision (or scattering) operator. In the particle 

MC approach the distribution function is conveniently represented by an ensemble of 

electrons as 

( ) ( )( ) ( )( ), , i i

i

f t t tδ δ= − −∑r k r r k k  (2) 

where ( )i tr  and ( )i tr  are the position and wave vector, respectively, of the ith electron. 
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In device simulation the electron trajectories are determined self-consistently with Poisson's 

equation which is solved at regular time steps ∆t. The potential distribution ( )V r  being 

approximated as constant during one time step, within an energy band ( )E k  each electron 

obeys the classical Newton's equation of motion 

( )

( )

1
k

r

d E
dt
d e V
dt

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

r k

k r

∇

∇
 (3) 

to be integrated during each time step by including possible scattering events likely to 

change instantaneously the particle's wave vector. Scattering events are considered 

statistically through scattering rates calculated according to the Fermi rule [1]. According to 

the scattering rates, the Monte Carlo game consists in selecting randomly the times of free 

flight between two successive scattering events, the type and the effect of scattering at the end 

of flight. 

The BMC simulator used here was described in previous works [15,16] and extensively 

applied for device analysis. It couples the MC algorithm of transport [20] with either a 2D or 

a 3D Poisson solver, depending on whether we simulate a device with infinite (SG, DG) or 

finite width (GAA). The time step between two solutions of Poisson's equation is typically 

∆t = 0.1 fs. We consider an analytical conduction band structure of silicon consisting of six 

ellipsoidal non parabolic ∆ valleys located along the [100] directions at 85% of the Brillouin 

zone edge [20]. The energy-dependent scattering rates are calculated prior to the simulation 

and stored in a look-up table used throughout the simulation. We consider all relevant 

scattering mechanisms, i.e. electron-phonon, electron-impurity and roughness scattering [20]. 

Throughout this work, we will assume bulk phonon energies and the same coupling constants 

as in bulk Si without including possible effects related to ultra-thin layers, which is still an 

unsolved problem [21,22]. A particle multiplication technique [23] is used to statistically 

enhance the number of rare events in pre-defined crucial regions, which is especially useful 

here to compute subthreshold currents. A particle entering such a region is duplicated M-1 

times, and a charge weight 1/M is assigned to resulting sub-particles. A sub-particle leaving 

this region is kept in the device with probability 1/M and with initial charge weight, which 

ensures statistically the conservation of charge, total energy and momentum. It should be 

noted that for 3D simulation we systematically consider sub-particles having a weight less 

than unity. It allows us to reduce the particle noise to get an average number of particles per 
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cell greater than one, which is crucial to stabilize the solution of Poisson's equation in quasi-

equilibrium regime.  

B. Simulation results for SG, DG and GAA devices 

Figure 2 shows the ID-VGS characteristics obtained for the three devices at VDS = 0.9 V. 

To make easier the comparison, for GAA the drain current is here divided by the channel 

width WSi although other definitions of current normalization may be used. The intrinsic gate 

delay will be conveniently used later to provide an unambiguous figure of merit for the 

comparison of transistors. The subthreshold behaviour of SG turns out to be poor with 

unacceptably high subthreshold slope S = 124 mV/dec. It is an expected consequence of the 

quite small form factor Lch/TSi = 2.375 which does not allow to control short channel effects in 

a single-gate device. In contrast, both DG and GAA exhibit good subthreshold slope of 

67 mV/dec and 64 mV/dec, respectively.  

In Figs. 3 and 4 we plot the ID-VGS characteristics for DG and GAA, respectively, at 

both VDS values of 0.05 V and 0.9 V. By defining the threshold voltage VT for a constant 

current I0 = 10 µA/µm at low VDS, the same value VT = 0.42 V is obtained for these two 

devices. While the drain-induced barrier-lowering (DIBL) is 70 mV in DG, it is significantly 

reduced to 20 mV in GAA thanks to an excellent electrostatic gate control of the channel. 

However, as shown in Fig. 2, the on-current ION of GAA is not 2 times higher than that 

of DG. So, as already observed for other designs of multigate transistors [16] the drive current 

is not proportional to the number of gates, even if the current is simply normalized to the 

channel width.  

The intrinsic delay /G DD ONC V I  is plotted in Fig. 5 as a function of IOFF for the three 

devices and compared to ITRS targets for the technological nodes LSTP 32 nm and HP 50 nm 

[24]. The value of IOFF is tuned by just changing the gate work function ΦM. Because of too 

high IOFF SG cannot reach any ITRS specifications. The GAA structure takes advantage of 

very small DIBL to get smaller IOFF than DG but the ION enhancement in GAA is too limited 

to compensate the gate capacitance increase. Finally, DG appears as the best compromise in 

terms of intrinsic delay. 

We now examine the electron transport in the channel of GAA and DG in the on-state 

(VGS = VDS = VDD). We plot in Fig. 6 the fraction of electrons which have crossed the channel 

from the source-end to the drain-end as a function of the number of scattering events they 

have experienced in this interval. In both cases the curve decays quasi-exponentially but less 
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rapidly in GAA, which may be attributed to slightly more effective roughness scattering than 

in DG. For these 19 nm-long channel devices the intrinsic ballisticity Bint, i.e. the fraction of 

ballistic electrons, reaches 38% in GAA and 43% in DG. In inset is shown the parameter Bint 

as a function of channel length for DG devices with a body thickness TSi = 5 nm. The 

ballisticity is negligible for Lch > 100 nm and reaches 48% for Lch = 15 nm. The value obtained 

here for Lch > 100 nm and TSi = 8 nm (closed circle in the inset) matches very well the curve for 

TSi = 5 nm, which indicates that Bint is weakly dependent on the film thickness in this range.  

From the results obtained here using standard BMC, different questions come to light 

regarding the electron transport in more advanced CMOS generations with channel length 

reduced below 15 nm or even 10 nm and channel thickness smaller than 5 nm in order to 

prevent from short channel effects. These questions are  

- on the quantization effect related to channel thickness reduction below 5nm 

- on the quantum transport effects related to channel length reduction below 10 nm 

- on the ballistic approximation for channel length below 10 nm 

We will examine these relevant problems in the next sections by making use of 

appropriate transport models. 

III. REDUCTION OF FILM THICKNESS – QUANTIZATION EFFECTS 

In this Section we focus our interest on DG devices with a channel length Lch of 15 nm 

and a channel thickness TSi of either 4 nm or 3 nm. We intend to analyze the quantization 

effects related to TSi shrinking by making use of multi-subband Boltzmann MC simulation, 

whose results will be compared with that of standard BMC simulation. In the devices 

simulated using MSBMC, four subbands are taken into account in unprimed valleys (with a 

quantization mass of 0.916 m0) and two subbands are considered in primed valleys (with a 

quantization mass of 0.19 m0). 

A. The multi-subband approach (2D-k electron gas, MSBMC) 

This approach is based on the mode-space approximation which decouples the gate-to-

gate z direction and the xy plane parallel to interfaces. Assuming the potential V to be 

y-independent, the formation of uncoupled subbands resulting from reduced channel thickness 

may be simply deduced from the effective 1D Schrödinger's equation within parabolic band 

approximation 
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( ) ( ) ( ) ( ) ( )
2 2

2 , , , ,
2 n n n n

z
x z eV x z x z E x x z

m z
ξ ξ ξ∂

− − =
∂

 (4) 

where ( )nE x  and ( ),n x zξ  are the quantized energy and envelope function, 

respectively, associated with n-th subband.  

According to the real-space meshing used for solving Poisson's equation, Eq. (4) has to 

be solved self-consistently at each position ix  in the channel to determine the subband profile 

( )nE x  to be used as potential energy for the particle transport along the source-to-drain axis 

in n-th subband. For such a 2D device, the Monte Carlo procedure is then applied for each 

occupied subband in a phase space reduced to three dimensions ( ), ,x yx k k , instead of five 

dimensions in standard BMC simulation ( ), , , ,x y zx z k k k . To solve the 2D Poisson's equation 

after each time step, the electron density ( ),n x z  is updated by distributing along the 

confinement direction z the charge of each electron present in subband n at position ix  

according to the appropriate probability density ( ) 2,n ix zξ . 

However the requirement of solving Schrödinger's equation (4) increases the 

complexity of the overall algorithm. In particular, updating ( )nE x  and ( ),n ix zξ  at each time 

step considerably increases the computation time compared with standard BMC. 

Alternatively, it is possible to solve rigorously Eq. (4) each N time step only and to update the 

eigenvalues ( )nE x  at other time steps according to the first order correction 

( ) ( ) ( ) ( ) ( ), , ,j j j
n i n i n i i n iE x E x x z e V x z x zξ ξ= + − ∆  (5) 

where ( ), )iV x z∆  is the difference between the new electrostatic potential and that used 

for the last j-th Schrödinger solution. There is no need to correct the envelope function 

between two Schrödinger solutions, and for a Poisson time step ∆t = 0.1 fs, solving Eq. (4) 

each 10 fs, i.e. choosing N = 100, turns out to be correct [14], which drastically reduces the 

computation time by a factor of about 15.  

It should be mentioned that in this work we do not apply any non-parabolocity 

correction to the solution of Eq. (4) [12], which may modify high energy levels, and we 

assume the envelope function to vanish at Si/SiO2 interfaces. The problem of the influence of 

wave function penetration into the oxide layers on the propagation of particles along the 

channel is not trivial and should be addressed in further works. 
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The MC procedure makes use here of scattering rates for 2D electron gas to be 

calculated according to the envelope functions ( ),n ix zξ  whose dependence on time and 

position generates an additional difficulty. In contrast to the case of standard BMC it is no 

longer possible to store the scattering rates in a look-up table prior to the simulation. They 

have to be regularly up-dated throughout the simulation, which contributes to weigh down the 

simulation time. Phonon and impurity scattering rates are derived as in Ref. [25] where 2D 

electron mobility in Si/SiGe heterostructures was calculated in good agreement with 

experimental results. The Si/SiO2 roughness rate is calculating by considering both the 

classical effect of electrostatic potential fluctuations [26] and the quantum effect on eigen 

energies [27] which becomes significant for Si film thickness smaller than 5 nm [Esseni 03]. 

Standard parameters, i.e. root-mean-square ∆m = 0.5 nm and correlation length Lc = 1.5 nm, 

are used to characterize the surface roughness. 

B. Comparison between 3D-k and 2D-k descriptions of electron gas 

First of all we plot in Fig. 7 the effective mobility computed in undoped long channel 

structures as a function electron sheet density for both film thicknesses considered in this 

section. As expected, in the case of 3Dk calculation (dashed lines) the mobility is weakly 

dependent on the Si thickness and very similar to that obtained in bulk Si inversion layers 

[Aubry 05]. In contrast, from 3Dk calculation (solid lines) we observe an enhancement for 

TSi = 4 nm (circles) and a reduction of mobility for TSi = 3 nm (squares). This trend was 

previously observed from transport calculation based on the momentum relaxation time 

approximation [28]. The mobility reduction in the thinnest structure is due to the increasing 

influence of roughness scattering while the small increase obtained for TSi = 4 nm is attributed 

to a redistribution of most electrons in the first unprimed subband where the effective mass 

along transport direction is small. On a small range of film thickness, the latter effect may 

surpass the roughness influence. However this mobility behavior does not seem to strongly 

influence the characteristics of short-channel device, as shown below. 

For the DG devices investigated here the gate length LG and the channel length Lch are 

both equal to 15 nm. The oxide thickness is now TOX = 1.2 nm and the gate work function is 

ΦM = 4.36 eV. We will consider two values of body thickness TSi, 4 nm and 3 nm, 

respectively. The power supply is VDD = 0.7 V. 

Figure 8 shows the ID-VGS characteristics obtained for both devices at VDS = 0.05 V by 

BMC simulation (3Dk, triangles) and by MSBMC simulation (2Dk, circles). In each case we 



   

 10

essentially observe a shift between 3Dk and 2Dk results, this shift being greater for TSi = 3 nm 

(Fig. 8b) than for TSi = 4 nm (Fig. 8a). It illustrates the expected VT-shift induced by 

quantization of the electron gas, which can be predicted from electrostatics considerations.  

However, the situation is quite different at VDS = VDD = 0.7 V, as illustrated in Fig. 9a 

(TSi = 4 nm) and Fig. 9b (TSi = 3 nm). In such drain bias condition, similar shift is observed at 

low VGS but an unexpected crossing of curves is observed at VGS greater than about 0.5 V, 

which yields higher current in 2Dk gas than in 3Dk gas. This effect is very significant in the 

thinnest structure.  

It is clearly illustrated by the behavior of the gate capacitance CG as a function of gate 

voltage, which is obtained by differentiating the total charge in the device with respect to VGS. 

At low VDS, CG evolves the same way as the current ID (not shown) but at high VDS (Fig. 10), a 

crossing of 3Dk and 2Dk curves is still observed. Again, at given high VGS the difference of 

CG between 3Dk and 2Dk cases is stronger for TSi = 3 nm (squares) than for TSi = 4 nm 

(circles). All other things being equal, this effect is certainly a consequence of carrier 

repopulation among the different subbands by phonon scattering. 

For TSi = 3 nm and VGS = 0.7 V, Fig. 11 shows the distribution of electron density among 

the most important subbands (E1, E2 and two E'1 subbands) along the sourc-drain axis in both 

cases of low VDS (dashed lines) and high VDS (solid lines). It illustrates the hot electron 

transfer from the lowest subband E1 to higher subbands. At the drain-end of the channel 

(x = 15 nm) the density in primed subbands is even higher than in unprimed subbands, which 

locally modifies the shape of density along quantization axis according to the envelope 

functions. It should be noted that under such high gate bias, the electron transfer starts to 

occur in the source access. It is a consequence of the electric field which is built in this 

resistive region, as shown in Fig. 12 that is a plot of the subband energy profiles for 

VGS = VDS = 0.7 V. This heating effect in the source extension is not observed at smaller gate 

bias (not shown here).  

Finally, we would like to mention that the mode-space approximation turns out to be a 

good approximation in such thin devices. Indeed, we have checked that the coupling 

potentials between subbands are always smaller than 0.5 meV, which is less than all energies 

involved in this transport problem. 
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IV. REDUCTION OF CHANNEL LENGTH – QUANTUM TRANSPORT AND BALLISTIC 

LIMIT 

In this Section we study the quantum transport in DG transistors with a channel 

thickness fixed to the value of 3 nm and a channel length reduced to 9 nm and 6 nm, 

respectively. The multi-subband approach is still used as in the previous section but the 

Wigner formalism is developed for the transport along source-to-drain direction. The results 

obtained using this MSWMC simulation will be compared to MSBMC calculation to analyze 

the actual impact of quantum transport on device performance and characteristics. They will 

be also compared to ballistic Green's function calculation to emphasize the important part that 

scattering mechanisms still take in such small silicon devices at room temperature. 

A. The Wigner Monte Carlo approach of quantum transport 

To deal with quantum transport along a single real-space direction x, the Wigner 

formalism is based on the Wigner function fw defined for each subband in the phase-space 

( ),x k  as a Fourier transform of the density matrix [7] (for simplicity we omit here subscript x 

for kx). Although it is not positive definite, this function has similar properties to that of a 

distribution function via its relation with relevant physical quantities of the system as density, 

energy, current… The dynamical equation of the WF is the WTE 

w w
x w w

f f
v Q f C f

t x
∂ ∂

+ = +
∂ ∂

 (6) 

which is very similar to the 1D form of the BTE (1). The only difference comes from 

the term wQ f  that is the quantum term including the non-local effect of the potential, defined 

by 

( ) ( ) ( )1, ' , ' , '
2w w wQ f x k d k V x k f x k k
π

= +∫  (7) 

where the Wigner potential Vw in the n-th subband of potential energy ( )nE x  is given 

by 

( ) ( ) ' ', ' sin '
2 2w n n
x xV x k d x k x E x E x⎡ ⎤⎛ ⎞ ⎛ ⎞= + − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦∫  (8) 

An alternative form for the quantum term wQ f  leads to an expansion in powers of  

and high order derivatives of the potential energy [7]. For slowly varying potential the first 

order approximation of this form is nothing but the effect of the classical force on the 
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distribution function. Thus, the BTE can be seen as the classical approximation of the WTE if 

the same collision operator is used in both cases, i.e. if quantum collision effects are 

neglected. Here, in our MSWMC simulator we will use the same scattering rates as in 

MSBMC presented in the previous section, which makes very clear the analogy between both 

formalisms.  

To extend the particle MC algorithm to the BTE we use the affinity technique initially 

proposed by Shifren et al. [8]. It consists in describing the WF as an ensemble of pseudo-

particles defined by a position xi and a wave vector ki and weighted by a new quantity, the 

affinity Ai, that contains the full wave properties of particles. The WF takes then the form 

( ) ( ) ( )( ) ( )( ), k, k kw i i i

i

f x t A t x x t tδ δ= − −∑  (9) 

to be compared to the particle formulation (2) of the classical distribution function. 

Such pseudo-particles behave and scatter as classical particles, except that the potential does 

no longer influence the wave vector but only the affinity through the quantum evolution term 

( ),wQ f x k . The wave vector can change only after a scattering event. Inside a mesh ( ),M x k  

of the phase space the particle coordinates obey the following motion equations during a free 

flight 

( )

( )

1

0

,

i k

i

i w

i M

d x E k
dt
d k
dt

d A Q f x k
dt

∈

⎧
⎪ = ∇
⎪
⎪⎪ =⎨
⎪
⎪

=⎪
⎪⎩
∑

 (10) 

The affinity can thus take negative values, in accordance with the fact that the Wigner 

function may be negative too. Concretely, the affinity evolution equation is applied at the end 

of each Poisson time step. Finally, the simulation of 2D transistors studied in the present work 

consists in computing in a self-consistent manner the following loop: Wigner MC trajectories 

of particles for one time step, particle density ( ),n x z , electrostatic potential ( ),V x z  through 

2D Poisson's equation, subband energies ( )nE x  and envelope functions ( ),n x zξ  through 1D 

Schrödinger's equation (4) at each position xi in the channel, Wigner function (9), Wigner 

potential (8) and quantum evolution term ( ),wQ f x k  (7).  

A critical point of this technique is the particle injection in the device. In BMC 
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simulation, thermal particles are only injected at ohmic contacts to ensure the neutrality and 

quasi-equilibrium conditions in the cells adjacent to the contacts. In WMC it is of course 

necessary to still inject particles of affinity equal to 1 to get charge neutrality at contacts but 

also to inject particles with zero-affinity in the device to properly compute the Wigner 

function in the full phase space. Indeed, to correctly apply the affinity evolution equation in 

(10) and to ensure the conservation of the total affinity of particles, each mesh ( ),M x k  of the 

phase space must always contain at least one pseudo-particle. To fulfill this requirement, we 

showed that it is necessary to additionally inject zero-affinity particles in all empty mesh 

where the quantum evolution term ( ),wQ f x k  is not null [17]. This condition has to be paid 

by a quite large number of simulated particles, i.e. typically between 300 000 and 700 000 

according to the applied bias. 

Using such a procedure, there is a full compatibility between Boltzmann and Wigner 

algorithms that can be applied in the same device depending on whether we consider the 

classical access regions or the quantumly active regions. 

B. The Green's function approach of quantum transport 

The Green's function formalism provides a general approach to describing the quantum 

transport in devices [29]. It has been widely developed this last years to study different kinds 

of mesoscopic and nanodevices. The description of this formalism is outside of the scope of 

this work devoted to particle MC technique. It will be used here in the next subsection to 

compare our diffusive Wigner approach to a model rigorously developed for fully ballistic 

transport calculation. Of course both Wigner and Green formalisms are strongly connected. It 

may be shown that the less-than Green's function G<  is proportional to the density matrix. 

The Wigner's function is thus a Fourier transform of G<  [29,30].  

Our Green's function simulator has been initially developed using the tight-binding 

formulation to treat 1D ballistic transport problems including self-consistent coupling with 

Poisson's equation [31]. It has been recently extended to the simulation of 2D structures as the 

DG-MOSFET in the multi-subband mode-space approximation. 

C. Comparison between Boltzman, Wigner and Green simulations 

As already mentioned the DG devices investigated in this section have a gate length LG 

and a channel length Lch which are both equal to 9 nm or 6 nm, with a channel thickness TSi 

fixed to 3 nm. The oxide thickness is now TOX = 1 nm and the gate work function is 
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ΦM = 4.36 eV. The power supply is still VDD = 0.7 V. The source and drain extensions are 

15 nm-long and doped to ND = 5×1019 cm-3. 

The computed drain current ID is plotted as a function of gate bias at high VDS in Fig. 13 

for Lch = 9 nm and in Fig. 14 for Lch = 6 nm. The results obtained from the three transport 

models are compared, i.e. from MSBMC (Boltzmann), MSWMC (Wigner) and ballistic 

Green simulation.  

It is remarkable that Wigner and ballistic-Green results closely coincide in the 

subthreshold regime, which confirms that scattering mechanisms have a very small impact in 

this regime. In contrast, they strongly differ at high VGS, which shows that scattering cannot 

be neglected to evaluate the drive current of nanotransitors, even for such small channel 

length.  

When comparing Boltzmann and Wigner results, one can observe quite different 

subthreshold behaviors. A small shift is obtained for Lch = 9 nm but by reducing the channel 

length to 6 nm a change of slope is perceptible and the shift increases. The additional drain 

current resulting from MSWMC is obviously due to the contribution of source-drain 

tunneling through the channel barrier, which of course is not accounted for in MSBMC. For 

Lch = 6 nm the tunneling current increases IOFF by a factor of about 5. At high VGS Wigner and 

Boltzmann results are much closer, the Wigner current being even slightly smaller than the 

Boltzmann one, which may be explained by the arising of quantum reflections in the channel 

induced by the steep potential drop [Querlioz 06].  

Figure 15 illustrates the effect of scattering in the channel and in access regions for 

Lch = 6 nm. We compare the ID-VGS curve obtained by Wigner simulation (squares) with that 

obtained by switching the scattering off in the channel only (circles). The significant 

discrepancy in on-state clearly shows that scattering in the channel still influences the 

transport for 6nm-long silicon devices. As shown in inset, the effective ballisticity /
ballD DI I  

decreases to 86% in on-state. Furthermore the comparison with fully ballistic Green 

calculation (diamonds) shows that the role of scattering in resistive access regions is even 

more important and may limit the intrinsic performance of ultra-thin transistors.  

We now discuss the electrical performance of this device (Lch = 6 nm) in terms of ION-

IOFF ratio and intrinsic delay /G DD ONC V I . In Figs. 16 and 17 we plot ION and the delay, 

respectively, as function of IOFF. Again, IOFF is artificially changed here by tuning the gate 

work function. We compared the results obtained from the three transport models with the 

ITRS target for the HP 16 nm technology node [24]. Even by using the optimistic ballistic 
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calculation it seems impossible to reach the targets. Including all quantum and scattering 

effects, i.e. using Wigner simulation, makes even the results very far from the objectives. 

Actually, the limitation of ION by strong access resistances in ultra-thin extensions seems to be 

redhibitory. Technological solutions should be developed in order to drastically reduce such 

access resistance, as for instance smaller extensions with higher doping or strain engineering. 

IV. CONCLUSION 

We have shown that the particle Monte Carlo technique can successfully handle all 

quantum effects in the self-consistent simulation of electron transport in semiconductor 

devices. Provided that appropriate formalism and particle treatment are used it is possible to 

include quantization effects in the simulation of thin-film transistors within the semiclassical 

Boltzmann approach and to rigorously extend this technique to the simulation of quantum 

transport within the Wigner approach. Both approaches are fully compatible and may be used 

together in the same device. If quantum collision effects can be neglected these approaches 

can easily include all relevant scattering mechanisms as in the standard Monte Carlo 

procedure. This work has been illustrated by the analysis of device operation and performance 

of nano-transistors in the appropriate range of typical lengths and thicknesses to separate the 

influence of all relevant transport effects: quantization for thickness smaller than 5 nm and 

wave mechanical transport for channel length smaller than 10 nm. We have also shown that 

scattering mechanisms still have an important influence at nanometer scale, both in the 

intrinsic part of the channel and in the resistive source extension. 
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FIGURE CAPTIONS 

 

Figure 1. Schematic view of simulated devices 

 

Figure 2. ID-VGS characteristics at VDS = 0.7V in SG, DG and GAA 

 

Figure 3. ID-VGS characteristics at VDS = 0.05V and VGS = 0.7V in DG 

 

Figure 4. ID-VGS characteristics at VDS = 0.05V and VGS = 0.7V in GAA 

 

Figure 5. Intrinsic delay /G DD ONC V I  As a function of IOFF for SG, DG and GAA and for 

various gate work functions indicated through the difference ∆Φ with a midgap gate. 

 

Figure 6. Fraction of electrons flowing from the source-end to the drain-end of DG and GAA 

as a function of the number of scattering events experienced (On-State). Inset: intrinsic 

ballisticity as a function of channel length. 

 

Figure 7. Effective mobility in long-channel DG devices for two body thicknesses including 

(solid lines) or not (dashed lines) quantization effects. 

 

Figure 8. ID-VGS characteristics at VDS = 0.05V for TSi = 4 nm (a) and TSi = 3 nm (b) 

 

Figure 9. ID-VGS characteristics at VDS = 0.7V for TSi = 4 nm (a) and TSi = 3 nm (b) 

 

Figure 10. Gate capacitance as a function of gate voltage at VDS = 0.7V for TSi = 4 nm (circles) 

and TSi = 3 nm (squares). 

 

Figure 11. Average sheet density in the first subbands at VGS = 0.7V and VDS = 0.05V (dashed 

lines) and VDS = 0.7V (solid lines). TSi = 3 nm.  

 

Figure 12. First subband energies along the x-axis for VGS = VDS = 0.7V.(TSi = 3 nm). 
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Figure 13. ID-VGS characteristics at VDS = 0.7V for Lch = 9 nm using three types of simulation 

 

Figure 14. ID-VGS characteristics at VDS = 0.7V for Lch = 6 nm using three types of simulation 

 

Figure 15. ID-VGS characteristics at VDS = 0.7V for Lch = 6 nm using Wigner including or not 

scattering in the channel. Comparison with Green's function calculation. 

 

Figure 16. ION-IOFF plot for various gate work functions indicated through the difference ∆Φ 

with a midgap gate (Lch = 6 nm). 

 

Figure 17. Intrinsic gate delay as a function of IOFF for various gate work functions indicated 

through the difference ∆Φ with a midgap gate (Lch = 6 nm). 
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Querlioz et al.   Figure 1 
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Querlioz et al.   Figure 2 
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Querlioz et al.   Figure 3  
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Querlioz et al.   Figure 4  
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Querlioz et al.   Figure 5 
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Querlioz et al.   Figure 6 
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Querlioz et al.   Figure 7 

 

 

 

 

 

100

1000

1012 1013

M
ob

ili
ty

 µ
ef

f (
cm

2 V
-1

s-1
)

Electron sheet density Ninv (cm-2)

circles: TSi = 4 nm

2Dk

squares: TSi = 3 nm

3Dk 2Dk

 
 

 

 



   

 28

Querlioz et al.   Figure 8 
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Querlioz et al.   Figure 9 
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Querlioz et al.   Figure 10 
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Querlioz et al.   Figure 11 
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Querlioz et al.   Figure 12 
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Querlioz et al.   Figure 13 
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Querlioz et al.   Figure 14 
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Querlioz et al.   Figure 15 
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Querlioz et al.   Figure 16 
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Querlioz et al.   Figure 17 
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