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Abstract

In this work we initiate the study of Szilard languages of labelled insertion grammars. It is well-

known that there exist context-free languages which cannot be generated by any insertion grammar.

We show that there exist some regular languages which cannot be Szilard language of any labelled

insertion grammar. But any regular language can be given as a homomorphic image of Szilard

language obtained by a labelled insertion grammar of weight 1. Also, any context-free language can

be obtained as a homomorphic image of Szilard language of a labelled insertion grammar of weight 2.

We show that even though insertion grammars of weight 1 can generate only context-free languages,

there exist some context-sensitive language which can be obtained as Szilard language of a labelled

insertion grammar of weight 1. At the end we show that any recursively enumerable language can

be characterized by the homomorphic image of Szilard language obtained by a labelled insertion

grammar of weight 5.

Insertion grammar, Szilard languages, Labelled insertion grammar, Chomsky hierarchy

1 Introduction

Insertion and deletion operations are well-known in formal language theory. In insertion operation,

a string is inserted in the specified contexts when the insertion rule is applied, i.e., the string uv is

transformed into uxv after application of the insertion rule (u, λ/x, v). Similarly, the deletion operation

removes strings from the specified contexts and the string uxv is transformed into uv after application

of the deletion rule (u, x/λ, v) where u and v are contexts. Ins-Del (i.e., insertion-deletion) systems

work as a language generating device. These systems are powerful and with only finite set of rules

and axioms can characterize recursively enumerable languages. Ins-Del systems and their variants have
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been investigated in [30, 34, 29, 7, 32, 9, 18, 33, 23]. The study of insertion grammars (semicontextual

grammars) was initiated in [28]. Computational power, closure properties etc. of the insertion systems

have been discussed in [2, 32, 3, 27, 6, 25, 26]. In [5] it was proved that the linear language {anban|n ≥
1} cannot be generated by any insertion grammar. But any recursively enumerable language can be

generated by insertion grammars of weight 3 when a homomorphism and weak coding is applied [2, 19].

Moreover, in the study of matrix insertion grammars initiated in [12], it has been shown that matrix

insertion grammars can even characterize recursively enumerable languages. The computational power of

the insertion-deletion systems and insertion grammars combined with the parallel distributed computing

models such as P systems, also have been discussed in [20, 31].

The main contribution of the paper is the association of the well-known concept of Szilard languages

with insertion grammars and compare the Szilard languages obtained by these grammars with the family

of languages in Chomsky hierarchy. The idea of Szilard languages is well investigated in formal language

theory and their closure properties, decidability aspects, complexity aspects for Chomsky grammars, ma-

trix grammars, parallel communicating grammar systems, communicating distributive grammar systems

have been investigated in [22, 16, 14, 17, 15]. Also, the idea of derivation languages (as Szilard and

Control languages) has been introduced for DNA and membrane computing models in [13, 21]. In [13],

derivation languages have been associated with splicing systems and in [21] the same were introduced for

splicing P systems.

In this work, we show that there exist some regular languages which cannot be obtained as Szilard

language by any insertion grammar. But some labelled insertion grammars of weight 1 can obtain

context-sensitive languages as a Szilard language. We also show that labelled insertion grammars with

rules of weight 5 can characterize recursively enumerable languages when a morphism is applied and any

regular language can be represented as a homomorphic image of a Szilard language obtained by labelled

insertion grammar of weight 1. In [24], it has been shown that there exist some context-free languages

which cannot be represented as a homomorphic image of any context-free language. But in this paper,

we show that any context-free language can be obtained as a homomorphic image of Szilard language of

a labelled insertion grammar of weight 2.

The paper is organized as follows. In section 2 we recall the basic definitions required for this paper

along with some well-known results of insertion grammars. In section 3, we define labelled insertion

grammar and the main results have been discussed in section 4. The section 5 is conclusive in nature.

2 Preliminaries

For the basic definitions and notions of formal language theory we refer to [1].

Chomsky normal form [1]: For every context-free grammar G, a grammar G
′

= (N,T, S, P ) can be

effectively constructed where the rules in P are of the form A→ BC and A→ a such that L(G) \ {λ} =

L(G
′
) \ {λ}.

Type-0-grammar : A type-0-grammar is a construct G = (N,T, S, P ) where N is the non-terminal
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alphabet and T is the terminal alphabet such that N ∩ T = ∅. The starting symbol S ∈ N and the rules

in P are ordered pairs (u, v) where u ∈ (N ∪ T )∗N(N ∪ T )∗ and v ∈ (N ∪ T )∗.

Kuroda normal form: Every type-0 grammar G = (N,T, S, P ) is in Kuroda normal form if the rules

of the grammar G has one of the following forms:

A→ BC,AB → CD,A→ a,A→ λ for A,B,C,D ∈ N and a ∈ T.
Homomorphism: A homomorphism is a mapping h from Σ∗ to ∆∗ where Σ,∆ are alphabets, preserving

concatenation, i.e., h(v.w) = h(v).h(w), v, w ∈ Σ∗.

Weak coding : A weak coding is a morphism which maps each letter onto a letter or empty string.

Szilard languages [1]: Let G = (N,T, S, P ) be Chomsky grammar and F be an alphabet such that

the cardinality of the sets F and P is same. Let f be a mapping from P to F such that for each p ∈ P
a unique label f(p) is associated with p and is called the label of the rule p. A derivation in G is called

successful if a string over T is generated staring from S. With each successful derivation of G, a string

over F can be associated if labels of the any successful derivation are concatenated sequentially. The

language generated in this manner is called Szilard language of the grammar G and is denoted by SZ(G).

Example 1. Let G = ({S}, {a, b}, S, {S → aSb, S → ab}) be a context-free grammar. The rules are

labelled in the following manner: f1 : S → aSb, f2 : S → ab. Hence, the Szilard language obtained by the

grammar is SZ(G) = {fn1 f2 | n ≥ 0}.

The family of finite, linear, regular, context-free, context-sensitive and recursively enumerable lan-

guages is denoted by FIN,LIN,REG,CF,CS,RE respectively.

Insertion grammar [3]: An insertion grammar is a construct G = (V,A, P ) where V is the set of

alphabets, A is the set of initial strings and P is the set of insertion rules.

Let G be an insertion grammar, then the relation ⇒ is defined in the following manner:

w ⇒ z if and only if w = w1uvw2, z = w1uxvw2 for (u, λ/x, v) ∈ P,w1, w2 ∈ V ∗.
The language generated by the insertion grammar G is:

L(G) = {z ∈ V ∗|w ⇒∗ z, w ∈ S}.
Moreover, an insertion grammar G is called of weight n [2] if and only if

n = max{|u| | (u, λ/x, v) ∈ P or (v, λ/x, u) ∈ P, x ∈ V ∗}.
The family of languages generated by the insertion grammars of weight n is denoted as INSn and

union of all these families is denoted as INS∞.

The followings are well known results in insertion grammars [28, 27, 6, 26]:

(1)FIN ⊂ INS1 ⊂ INS2 ⊂ INS3 . . . ⊂ INS∞ ⊂ CS.
(2) REG is incomparable with all families INSn, n ≥ 1 and REG ⊂ INS∞.
(3) INS1 ⊂ CF but CF is incomparable with all INSn, n ≥ 2 and INS∞. Also INS2 contains

non-semilinear languages.

(4) LIN is incomparable with all INSn, n ≥ 0 and INS∞.

(5) Each regular language is the homomorphic image of a language in INS1.
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The following characterization of recursively enumerable language was proved by Kari and Sosik in [2] and

Onodera in [19] independently where S3 denotes the family of languages generated by insertion grammars

of weight at most 3:

Theorem 2.1. For each recursively enumerable language L there exists a morphism h, a weak coding g

and a language L1 ∈ S3 such that L = g(h−1(L1)).

3 Labelled insertion grammar

A labelled insertion grammar is a construct Γ = (V1, A1, P1, Lab) where V1 ∩Lab = ∅ and the rules of P1

are labelled in one-to-one manner with the elements from the set Lab. A derivation of insertion grammar

is called a terminal derivation if it is as follows:

x0 ⇒a1 x1 ⇒a2 x2 ⇒a3 . . .⇒an xn where x0 ∈ A1 and no rule of Γ is applicable to xn.

If the labels of the applied insertion rules in the above terminal derivation are concatenated in the

order of application, a string over Lab is obtained and the set of all such strings forms a language which

is different from the language generated by the insertion grammar. It is called Szilard language of the

labelled insertion grammar Γ. From the above derivation, the string a1a2 . . . an ∈ SZINSm(Γ) where

m = max{|u| | (u, λ/α, v) ∈ P1 or (v, λ/α, u) ∈ P1}.
The notation SZINSm(Γ) denotes the Szilard language of the labelled insertion grammar Γ of weight

m. The family of Szilard languages SZINSm(Γ) of the labelled insertion grammars with insertion rules

of size m, is denoted as SZINSm. When m is not specified, it is replaced by ∗.
In the next section, we discuss the main results of the Szilard languages of the insertion grammars

with respect to the weight. At first, we prove that there exist some regular languages which cannot be

obtained as a Szilard language by any labelled insertion grammar. But any regular language can be

given as homomorphic image of a Szilard language of a labelled insertion grammar of weight 1. Also, any

context-free language can be given as a homomorphic image of Szilard language of a labelled insertion

grammar of weight 2. Furthermore, any recursively enumerable language can be characterized by Szilard

language of the labelled insertion grammar of weight 4 when a homomorphism is applied.

4 The Main Results

It is very well-known that languages such as {aa} are not a Szilard language of any Chomsky grammar.

But we show that it can be Szilard language of a labelled insertion grammar.

Theorem 4.1. {aa} is a Szilard language of a labelled insertion grammar.

Proof. We construct a labelled insertion grammar Γ such that SZINSm(Γ) = {aa}. Let Γ = (V1, A1, R1,

Lab) be a labelled insertion grammar where, V1 = {S,Xa, Y }, T1 = {S, Y }, A = {SY SY }, R = {a :

(S, λ/Xa, Y )}, Lab = {a}.
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Initially only the string SY SY is present and after application of the a-rule, it is transformed into

either SY SXaY or SXaY SY. But if the a-rule is applied once again, then the string SXaY SXaY is

obtained. No further computation is possible. Hence, SZINS1(Γ) = {aa}.

In the next theorem, we show that there exist some regular languages which cannot be obtained as

Szilard language by any labelled insertion grammar.

Theorem 4.2. {an | n ≥ 1} /∈ SZINS∗.

Proof. Suppose {an | n ≥ 1} is Szilard language of a labelled insertion grammar Γ = (V1, A1, R1, Lab)

where R1 = {a : (u, λ/k, v)} and Lab = {a}. Hence there exists a terminal derivation such that

x00 ⇒a x01. . . . (1)

where x00 ∈ A1 and the insertion rule a : (u, λ/k, v) is not applicable to x01.

Similarly, the terminal derivation of the word a2 is as follows:

x10 ⇒a x11 ⇒a x12. . . . (2)

where x10 ∈ A1 and the insertion rule a : (u, λ/k, v) is applicable to x11 but not to x12.

But, the x00 in (1) and the x10 in (2) cannot be same. Because, if (1) is true, then (2) cannot be true

for x00 = x10.

Again, following is the terminal derivation for a3:

x20 ⇒a x21 ⇒a x22 ⇒a x23. . . . (3)

So, from (3) we can infer that the x20 ∈ A1 must be different from the x00 in (1) and x10 in (2).

Hence, to obtain {an | n ≥ 1} as Szilard language, all xi0(i ∈ N ∪ {0}) ∈ A1 must be distinct.

Since any derivation starts from a xi0 ∈ A1, the language {an | n ≥ 1} cannot be obtained as Szilard

language by the labelled insertion grammar Γ where A1 contains only finite number of elements.

Although {an | n ≥ 1} cannot be the Szilard language of any labelled insertion grammar, any regular

language can be represented as a homomorphic image of the Szilard language of labelled insertion grammar

of weight 1.

Theorem 4.3. Any non-empty regular language can be obtained as a homomorphic image of Szilard

language of a labelled insertion grammar of weight 1.

Proof. Let L be a λ-free regular language and let G = (N,T, S, P ) be a right linear grammar such that

L = L(G). Suppose N = {D1, D2, . . . , Dn} where D1 = S is the start symbol. Now we construct a

labelled insertion grammar Γ such that L = L(G) = h(SZINS1(Γ)) where h is a homomorphism. The

rules in P are of the form Di → aDi, Di → aDj(i 6= j), and Di → a, Di, Dj ∈ N , and a ∈ T .

Let Γ = (V1, A1, R1, Lab) be a labelled insertion grammar where

• V1 = {X,Y,D1, D2, . . . , Dn} ∪ T ;

• A1 = {XD1Y };
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• The rules in R1 are of the form

aik : (Di, λ/aDk, Y ) for Di → aDk, Dk ∈ N, a ∈ T

ai : (Di, λ/a, Y ) for Di → a, a ∈ T ;

• Lab = {aik | Di → aDk, Dk ∈ N, a ∈ T} ∪ {ai | Di → a, a ∈ T}.

The non-erasing homomorphism h : (Lab)∗ → T ∗ is defined as h(aik) = a and h(ai) = a where

aik, a
i ∈ Lab.

Every non-terminal rule (Di → aDk) in G is simulated by an insertion rule with the label aik and

every terminal rule (Di → a) of G is associated with label ai. If the labelled insertion rules simulating

the rules of a terminal derivation in G are applied in the same order, then concatenation of the labels of

the insertion rules will obtain a string w1 ∈ (Lab)∗ such that h(w1) = w. Hence, w ∈ h(SZINS1(Γ)).

For the proof of the inclusion h(SZINS1(Γ)) ⊆ L(G), first assume that w ∈ h(SZINS1(Γ)). Hence,

there exists a terminal derivation in Γ such that h(w1) = w where w1 ∈ SZINS1(Γ). If the rules in G are

applied in the same order as in the terminal derivation obtaining w1, the string w ∈ L(G) is generated.

Hence, h(SZINS1(Γ)) ⊆ L(G). This will imply, L(G) = h(SZINS1(Γ)).

It has been shown in [3] that INS1 ⊂ CF. In fact, the linear language {anban | n ≥ 1} cannot be

generated by any insertion grammar [5]. We show that there exists a context-sensitive language which is

Szilard language of a labelled insertion grammar of weight one.

Theorem 4.4. CS ∩ SZINS1 6= ∅.

Proof. We construct a labelled insertion grammar Γ which has a context-sensitive language as a Szilard

language.

Let Γ = (V1, A1, R1, Lab) be a labelled insertion grammar where

• V1 = {X,A,A′
, A

′′
, Y };

• A1 = {XAY };

• R1 = {a : (A, λ/A, Y ), b : (A, λ/A
′
, A), c : (A, λ/A

′′
, A

′
)};

• Lab = {a, b, c}.

Any computation in Γ starts from the string XAY . When the a-rule is applied, one “A” is added between

A and Y . Application of the b-rule inserts A
′

between the two A’s of the string AA and hence AA
′
A

is obtained. Similarly, when the c-rule is applied, the string AA
′

is transformed into AA
′′
A

′
. Hence, if

the labeled rules are applied in a particular order, we have SZINS1(Γ) ∩ a∗b∗c∗ = {anbncn | n ≥ 1}.
Since the intersection of SZINS1(Γ) and the regular language a∗b∗c∗ is a context-sensitive language.

The language SZINS1(Γ) must be non context-free.
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Păun showed in [24] that there exist context-free languages which cannot be given as a homomorphic

image of Szilard language of any context-free language. Also,

Theorem 4.5. [24] The families of context-free languages and homomorphic image of the Szilard lan-

guages of the context-free languages are incomparable.

But any context-free language can be obtained as a homomorphic image of Szilard language of insertion

grammar of weight 2. We show it in the following theorem.

Theorem 4.6. Any context-free language can be given as a homomorphic image of Szilard language of

a labelled insertion grammar of weight 2.

Proof. Let L be a non-empty context-free language and let G = (N,T, S, P ) be a Chomsky normal

form grammar such that L = L(G). The rules in P are of the form, A → BC and A → a, where

A,B,C ∈ N, a ∈ T and each rule in G is assigned with a unique label ri. Also each element of L can be

obtained by initial application of the non terminal rules and then by application of the terminal rules in

the leftmost manner.

We construct a labelled insertion grammar Γ = (V1, A1, R1, Lab) such that L = h(SZINSm(Γ)) where

h is a morphism from Lab∗ to T ∗. The grammar Γ = (V1, A1, R1, Lab) is the labelled insertion grammar

where

• V1 = {X,Y,E}∪N∪T ∪∆1∪∆2∪{#, $} where ∆1 = {[ri] | ri : A→ BC},∆2 = {[ri] | ri : A→ a};

• A1 = {XSEY };

• R1 contains the following rules:

For ri : A→ BC:

r
′

i : (A, λ/[ri]BC,α1α2) where

α1 ∈ N ∪ {E}, α2 ∈ N ∪ {Y,E} ∪∆1, α1α2 /∈ N{Y } ∪ {EE} ∪ {E}N ∪ {E}∆1,

For ri : A→ a:

ria : ($A, λ/[ra], α1), α1 ∈ N ∪ {E}

and

r3 : (X,λ/#, α2), α2 ∈ N,

r4 : (α1α2, λ/$, α3), α1 ∈ {#, $}, α2 ∈ N ∪∆1 ∪∆2,

α3 ∈ ∆1 ∪∆2 ∪N,α1α2 /∈ {#}∆1 ∪ {#}∆2.

• Lab = {r′

i | [ri] ∈ ∆1} ∪ {ria | [ri] ∈ ∆2} ∪ {r3, r4}.

Finally, we define the morphism h : Lab∗ → T ∗ by h(r
′

i) = h(r3) = h(r4) = λ, h(ria) = a where

r
′

i, r
i
a, r3, r4 ∈ Lab and a ∈ T.
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We first prove that L(G) = L ⊆ h(SZINS2(Γ)). The rule ri : A → BC can be simulated by

application of the r
′

i-rule in the following manner: Xw1Aw2Y →r
′
i Xw1A[ri]BCw2Y where the α1α2 is

a subword of w2Y and the r
′

i-rule is applicable only when α1α2 satisfy the predefined conditions. The

r3-rule transforms the word XβwEY into X#βwEY where β ∈ N,w ∈ V ∗1 . The r4-rule inserts $ into

the word X#wEY,w ∈ V +
1 to identify the leftmost non-terminal where ria-rule can be applied. The

ri : A → a rule can be simulated in the following manner: X#w1$Aβ1w2Y →ria X#w1$A[ra]β1w2Y

where β1 ∈ N ∪ {E}, w1, w2 ∈ V ∗1 . Moreover, after application of the ria-rule, no rule will be applicable

to the subword $A.

Since, any terminal string w ∈ L can be obtained by application of non-terminal rules and then by

leftmost application of terminal rules, if the corresponding labelled insertion rules are applied in the

same order, a terminal derivation can be obtained in Γ. In fact, a string over V1 can be obtained where

no rules further can be applied. If the labels of the applied insertion rules are concatenated in order

of application, a string over Lab, say, w1 is obtained. Application of the morphism h to w1, replaces

each occurrence of r
′

i, r3 and r4 by the empty string and ria is replaced by a. Hence, if w ∈ L(G), then

w = h(w1) ∈ h(SZINS2(Γ)) where w1 ∈ SZINS2(Γ).

Next we prove the inclusion h(SZINS2(Γ)) ⊆ L(G) = L. Let w = h(w1) where w1 = a1a2 . . . an ∈
SZINS2(Γ). If the rules in G are applied in the same order as the labelled rules in Γ, a terminal string is

obtained. Moreover, after application of each ria-rule where ri : A→ a, the subword $A becomes inactive.

Hence, no extra derivation is possible in Γ. Again, h(r
′

i) = h(r3) = h(r4) = λ and h(ria) = a, and hence,

h(w1) = w ∈ L(G). So, we can conclude h(SZINS2(Γ)) ⊆ L(G).

Kari and Sosik [2] and Onodera [19] proved that insertion grammars of weight 3 can characterize

recursively enumerable languages when an inverse morphism and a weak coding is applied. Next, we

show that any recursively enumerable language can be obtained as a homomorphic image of Szilard

language of a labelled insertion grammar of weight 5. Moreover, we construct the insertion grammar in

such a way that it simulates the derivations of G where the terminal symbols in any sentential form are

generated from right to left order, i.e., in leftmost manner as in [2, 3].

Theorem 4.7. Each recursively enumerable language can be obtained as a homomorphic image of the

Szilard language of a labelled insertion grammar of weight 5.

Proof. Let L ∈ RE and G = (N,T, S, P ) be a grammar in Kuroda normal form such that L(G) = L. The

rules of the grammar G are of the form A → BC,AB → CD,A → a,A → λ. Moreover, as in the proof

of Theorem 1 in [3], we can assume that each element x ∈ L can be generated initially by application of

the nonterminal rules and then by application of the terminal rules in leftmost manner. In this proof,

we construct a labelled insertion grammar Γ = (V1, A1, R1, Lab) such that L = h(SZINS5(Γ)) where

V1 ∩ Lab = ∅.
Initially, the rules in G are labelled in one-to-one manner, i.e., each rule has a unique label ri. The

set ∆ contains the labels of the rules in P . It is defined in the following manner
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∆ = ∆1 ∪∆2 ∪∆3 ∪∆4, where

∆1 = {[ri] | ri : A→ BC ∈ P};
∆2 = {[ri] | ri : AB → CD ∈ P};
∆3 = {[ri] | ri : A→ a ∈ P};
∆4 = {[ri] | ri : A→ λ ∈ P};
Let Γ = (V1, A1, R1, Lab) be a labelled insertion grammar, where

• V1 = {X,Y } ∪N ∪ {kia|ri : A→ a} ∪ {kiλ|ri : A→ λ} ∪ {[ri] | ri ∈ ∆} ∪ {[rm]};

• A1 = {XSY };

• R1 contains the following rules

(R11) For ri : A→ BC:

r1i : (A, λ/[ri]BC, Y ),

r2i : (A, λ/[ri]BC,α1Y ), α1 ∈ N ,

r3i : (A, λ/[ri]BC,α1α2Y ), α1, α2 ∈ N ,

r4i : (A, λ/[ri]BC,α1α2α3Y ), α1, α2, α3 ∈ N ,

r5i : (A, λ/[ri]BC,α1α2α3α4),

where α1 ∈ N,α2 ∈ N ∪∆1, α3 ∈ N ∪∆1 ∪∆2, α4 ∈ N ∪∆1 ∪∆2,

α2α3 /∈ (∆1)(∆1 ∪∆2), α3α4 /∈ (∆1 ∪∆2)(∆1 ∪∆2),

r6i : (A, λ/[ri]BC,α1α2α3α4α5), where α1 ∈ N,α2 ∈ ∆2, α3 ∈ N,α4 ∈ ∆1 and

α2 = α5.

(R12) For ri : AB → CD:

r7i : (AB, λ/[ri]CD,α1α2), α1 ∈ N,α2 ∈ N ,

r8i : (AB, λ/[ri]CD, Y ),

r9i : (AB, λ/[ri]CD,α1Y ), α1 ∈ N .

The application of the rules r10i , r
11
i and r12i in order also can simulate the rule ri : AB → CD :

r10i : (A, λ/[ri], α1α2), α1 ∈ N,α2 ∈ ∆1,

r11i : ([ri]α1β1, λ/[ri], α2α3), α1 ∈ N,α2 ∈ N,α3 ∈ ∆1 ∪N, [ri] ∈ ∆2, β1 ∈ ∆1,

r12i : (β1[ri]B, λ/[ri]CD,α1α2), α1 ∈ N,α2 ∈ N ∪ {Y } ∪∆1, [ri] ∈ ∆2, β1 ∈ ∆1

and

r13i : (AB, λ/[ri]CD,α1α2α3α4α5),

where α1 ∈ N,α2 ∈ ∆2, α3 ∈ N,α4 ∈ ∆1 and α2 = α5.

(R13) For ri : A→ a:
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a1i : (XA,λ/kia, Y ),

a2i : ([rm]A, λ/kia, Y ),

a3i : ([rm]A, λ/kia, α1Y ), α1 ∈ N ,

a4i : ([rm]A, λ/kia, α1α2Y ), α1, α2 ∈ N ,

a5i : ([rm]A, λ/kia, α1α2α3Y ), α1, α2, α3 ∈ N ,

a6i : ([rm]A, λ/kia, α1α2α3α4),

where α1 ∈ N,α2 ∈ N ∪∆1, α3 ∈ N ∪∆1 ∪∆2, α4 ∈ N ∪∆1 ∪∆2,

α2α3 /∈ (∆1)(∆1 ∪∆2), α3α4 /∈ (∆1 ∪∆2)(∆1 ∪∆2),

a7i : ([rm]A, λ/kia, α1α2α3α4α5),

where α1 ∈ N,α2 ∈ ∆2, α3 ∈ N,α4 ∈ ∆1 and α2 = α5,

rim+1 : ([rm]Akia, λ/[rm], α1α2), α1 ∈ N,α2 ∈ {Y } ∪N ∪∆1 ∪∆2.

(R14) For ri : A→ λ:

r14i : (XA,λ/kiλ, Y ),

r15i : ([rm]A, λ/kiλ, Y ),

r16i : ([rm]A, λ/kiλ, α1Y ), α1 ∈ N ,

r17i : ([rm]A, λ/kiλ, α1α2Y ), α1, α2 ∈ N ,

r18i : ([rm]A, λ/kiλ, α1α2α3Y ), α1, α2, α3 ∈ N ,

r19i : ([rm]A, λ/kiλ, α1α2α3α4),

where α1 ∈ N,α2 ∈ N ∪∆1, α3 ∈ N ∪∆1 ∪∆2, α4 ∈ N ∪∆1 ∪∆2,

α2α3 /∈ (∆1)(∆1 ∪∆2), α3α4 /∈ (∆1 ∪∆2)(∆1 ∪∆2),

r20i : ([rm]A, λ/kiλ, α1α2α3α4α5),

where α1 ∈ N,α2 ∈ ∆2, α3 ∈ N,α4 ∈ ∆1 and α2 = α5.

rim+2 : ([rm]Akiλ, λ/[rm], α1α2), α1 ∈ N,α2 ∈ {Y } ∪N ∪∆1 ∪∆2.

(R15) rm : (Xα1β1, λ/[rm], α2), α1, α2 ∈ N, β1 ∈ ∆1,

rm+1 : ([rm]α1α2β1, λ/[rm], α3), α1, α2, α3 ∈ N, β1 ∈ ∆2,

rm+2 : ([rm]α1β1, λ/[rm], α2β2β1), α1, α2 ∈ N, β1 ∈ ∆2, β2 ∈ ∆1,

rm+3 : ([rm]α1β1, λ/[rm], α2α3), α1 ∈ N,α2 ∈ N,α3 ∈ N ∪∆1 ∪∆2, β1 ∈ ∆1,

rm+4 : ([rm]α1β1β2, λ/[rm], α2β2), α1, α2 ∈ N, β2 ∈ ∆2, β1 ∈ ∆1,

rm+5 : ([rm]α1β1β2, λ/[rm], α2α3β2), α1 ∈ N,α2 ∈ N,α3 ∈ ∆1,β1 ∈ ∆1, β2 ∈ ∆2,

rm+6 : ([rm]α1β1, λ/[rm], α2α3), α1, α2 ∈ N,α3 ∈ N ∪∆1 ∪∆3 ∪∆4, β1 ∈ ∆2.
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• Lab = {r1i , r2i , r3i , r4i , r5i , r6i | [ri] ∈ ∆1}

∪{r7i , r8i , r9i , r10i , r11i , r12i , r13i | [ri] ∈ ∆2}

∪{a1i , a2i , a3i , a4i , a5i , a6i , rim+1 | [ri] ∈ ∆3}

∪{r14i , r15i , r16i , r17i , r18i , r19i , r20i , rim+2 | [ri] ∈ ∆4}

∪{rm, rm+2, rm+1, rm+3, rm+4, rm+5, rm+6}.

The homomorphism h : (Lab)∗ → T ∗ is defined by h(a1i ) = h(a2i ) = h(a3i ) = h(a4i ) = f(a5i ) = f(a6i ) =

f(a7i ) = a and h(l) = λ for l ∈ Lab \ {a1i , a2i , a3i , a4i , a5i , a6i , a7i }.
In this proof we construct an insertion grammar with labelled rules such that any recursively enumer-

able language can be obtained as a homomorphic image of the Szilard language of the labelled insertion

grammar. Moreover, the labelled insertion grammar Γ is constructed in such a manner that each terminal

derivation in G can be properly simulated by the rules in R1. We also show that no word except the

words in L(G) can be obtained as the homomorphic image of the Szilard language of the labelled insertion

grammar Γ. In this proof, the rules in (R11) and (R12) simulate the nonterminal rules and the rules in

(R13) and (R14) simulate the terminal rules. The rules in (R15) are constructed to simulate the leftmost

derivations.

The working of the rules ri : A→ BC, ri : AB → CD, ri : A→ a and ri : A→ λ has been discussed

in the sections (I), (II), (III) and (IV) respectively.

(I) The simulation of the rule ri : A→ BC in different contexts is as follows:

XwAY →r1i XA[ri]BCY,w ∈ V ∗1
XwAαY →r2i XwA[ri]BCαY, α ∈ N,w ∈ V ∗1
XwAα1α2Y →r3i XwA[ri]BCα1α2Y, α1, α2 ∈ N,w ∈ V ∗1
XwAα1α2α3Y →r4i XwA[ri]BCα1α2α3Y, α1, α2, α3 ∈ N,w ∈ V ∗1
Xw1Aα1α2α3α4w2Y →r5i XwA[ri]BCα1α2α3α4Y,w1, w2 ∈ V ∗1 ,

where α1 ∈ N,α2 ∈ N ∪∆1, α3 ∈ N ∪∆1 ∪∆2, α4 ∈ N ∪∆1 ∪∆2,

α2α3 /∈ (∆1)(∆1 ∪∆2), α3α4 /∈ (∆1 ∪∆2)(∆1 ∪∆2).

Note that after application of the rules r1i , r
2
i , r

3
i , r

4
i and r5i , the subword A[ri] becomes inactive (i.e.,

no rules can be applied to A[ri]) and becomes active once again when a word Xw1[rm]A[ri]w2Y, w1,

w2 ∈ V +
1 is obtained. The rm+3-rule only can be applied to Xw1[rm]A[ri]w2Y . It has been discussed in

Case 3.

(II) Simulation of the rules ri : AB → CD in different contexts:

XwABY →r8i XwAB[ri]CDY,w ∈ V +
1 . . . . (1)

XwABαY →r9i XwAB[ri]CDαY, α ∈ N,w ∈ V +
1 . . . . (2)

Xw1ABα1α2w2Y →r7i Xw1AB[ri]CDα1α2w2Y,w1 ∈ V +
1 , w2 ∈ V ∗1 , α1, α2 ∈ N .

. . . (3)

Similarly as above, after application of r8i , r
9
i and r7i -rule, no other rule can be applied to the

subword AB[ri]. Moreover, this subword cannot be further used for simulation of any other rule

rj : A1A → B1C1. In fact, the r7i , r
8
i and r9i -rule cannot be applied to the subword A1AB[ri]CD of
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the word Xw1A1AB[ri]CDw2Y,w1, w2 ∈ V ∗1 . Hence, no rule in (R12) is applicable to the subword

AB[ri]. So, the subword AB[ri] becomes inactive. It becomes active once again when the word Xw1[rm]

AB[ri]w2Y,w1 ∈ V +
1 , w2 ∈ V +

1 is obtained. This has been discussed futher in Case 4.

In Case 1 and Case 2 we discuss the simulation of the rule ri : AB → CD in the contexts different

than the contexts discussed above.

Case 1: Now, we discuss the simulation of the rule ri : AB → CD in the word

Xw1AwBαn+1w2Y where w1 ∈ V ∗1 , w2 ∈ V ∗1 , w = α1[r1]α2[r2] . . . αn[rn], αi ∈ N,αn+1 ∈ N, rj ∈
∆1. . . . (4)

If w = α1[r1] where α1 ∈ N, [r1] ∈ ∆1, then

Xw1Aα1[r1]Bαn+1w2Y

→r10i Xw1A[ri]α1[r1]Bαn+1w2Y

→r11i Xw1A[ri]α1[r1][ri]Bαn+1w2Y

→r12i Xw1A[ri]α1[r1][ri]B[ri]CDαn+1w2Y. . . . (5)

If w = α1[r1]α2[r2] where α1, α2 ∈ N, [r1], [r2] ∈ ∆1, then

Xw1Aα1[r1]α2[r2]Bαn+1w2Y

→r10i Xw1A[ri]α1[r1]α2[r2]Bαn+1w2Y

→r11i Xw1A[ri]α1[r1][ri]α2[r2]Bαn+1w2Y

→r11i Xw1A[ri]α1[r1][ri]α2[r2][ri]Bαn+1w2Y

→r12i Xw1A[ri]α1[r1][ri]α2[r2][ri]B[ri]CDαn+1w2Y. . . . (6)

Hence, the application of the r10-rule is followed by repeated application of the r11-rule and then one

time application of r12-rule can simulate the application of the rule ri : AB → CD on the words in (4).

Moreover, the above derivations can be further extended for words Xw1Aα1[r1]α2[r2] . . . αn[rn] Bαn+1

w2Y where n ≥ 3, αi ∈ N(1 ≤ i ≤ n+ 1), w1 ∈ V ∗1 , w2 ∈ V ∗1 , [rj ] ∈ ∆1(1 ≤ j ≤ n).

Also, for each rl : A1 → B1C1, the corresponding r5l - rule is applicable to the above word Xw
′

1A1A

α1[r1]α2[r2] . . . αn[rn]B αn+1w2Y where w1 = w
′

1A1, w
′

1 ∈ V ∗1 , A1 ∈ N . The r5l -rule can change it into

Xw
′

1A1[rl]B1 C1Aα1[r1]α2[r2] . . . αn[rn]B αn+1w2Y . But if the r10i -rule is applied at first as in Case 1,

then [ri] ∈ ∆2 is inserted into the word and Xw
′

1A1A[ri] α1[r1]α2[r2] . . . αn[rn]Bαn+1 w2Y is obtained.

This forbids the insertion rules in (R11) to be applied to the subword A1A[ri]α1[r1]α2[r2] . . . αn[rn]B.

Again, if there exist a rule r
′

l : B → C
′
D

′
and the corresponding insertion rule in (R11) is ap-

plied to the word Xw1A[ri]α1[r1][ri]α2 [r2][ri] . . . αn[rn][ri]Bαn+1w2Y , then the word Xw1A[ri]α1[r1][ri]

α2[r2][ri] . . . αn[rn][ri]B[rl]C
′
D

′
αn+1w2Y is obtained. The r12i -rule is not applicable to it. Hence, if the

simulation of the rule ri : AB → CD has started, then no other rule can be applied to the subword

A[ri]α1[r1][ri]α2 [r2][ri] . . . αn[rn][ri]B[ri] except the r10i , r
11
i and r12i -rule.

Moreover, once the simulation is complete, the subword A[ri]α1[r1][ri]α2 [r2][ri] . . . αn[rn][ri]B [ri] be-

comes inactive and will be active again when the subword [rm]A[ri]α1[r1][ri]α2 [r2][ri] . . . αn [rn] [ri]B[ri]

is obtained. We discuss about it in Case 5.

Case 2: In this case we discuss the simulation of consecutive application of two rules in (R12).
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If a word of the form Xw1A1B1A[ri]α1[r1][ri]α2 [r2][ri] . . . αn[rn][ri] B[ri] w2Y,w1 ∈ V ∗1 , w2 ∈ V +
1 is

obtained during any stage of the computation and also there exist a rule rj : A1B1 → C1D1 , then the

application of the rule can be simulated by r13j -rule.

Xw1A1B1A[ri]α1[r1][ri]α2 [r2][ri] . . . αn[rn][ri]B[ri]w2Y

→r13j Xw1A1B1[rj ]C1D1A[ri]α1[r1][ri]α2 [r2][ri] . . . αn[rn][ri]B[ri]w2Y.

. . . (7)

Also, since no rule from (R11), (R12), (R13) and (R14) is applicable to the subword A1B1[rj ], it becomes

inactive after the simulation. It becomes active again when the word Xw
′

1[rm] A1B1[rj ] w
′

2Y,w
′

1, w
′

2 ∈ V +
1

is obtained.

(III) Now, we discuss the Simulation of the rule ri : A→ a in different contexts:

XAY →a1i XAkiaY,

Xw[rm]AY →a2i Xw[rm]AkiaY,w ∈ V +
1 ,

Xw[rm]Aα1Y →a3i Xw[rm]Akiaα1Y,w ∈ V +
1 , α1 ∈ N,

Xw[rm]Aα1α2Y →a4i Xw[rm]Akiaα1α2Y,w ∈ V +
1 , α1, α2 ∈ N,

Xw[rm]Aα1α2α3Y →a5i Xw[rm]Akiaα1α2α3Y,w ∈ V +
1 , α1, α2, α3 ∈ N,

Xw[rm]Aα1α2α3α4Y →a6i Xw[rm]Akiaα1α2α3α4Y,w ∈ V +
1 ,

where α1 ∈ N,α2 ∈ N ∪∆1, α3 ∈ N ∪∆1 ∪∆2, α4 ∈ N ∪∆1 ∪∆2,

α2α3 /∈ (∆1)(∆1 ∪∆2), α3α4 /∈ (∆1 ∪∆2)(∆1 ∪∆2).

(IV) Again, the simulation of the rule ri : A→ λ in different contexts is as follows:

XAY →r14i XAkiλY,

Xw[rm]AY →r15i Xw[rm]AkiλY,w ∈ V
+
1 ,

Xw[rm]Aα1Y →r16i Xw[rm]Akiλα1Y,w ∈ V +
1 , α1 ∈ N ,

Xw[rm]Aα1α2Y →r17i Xw[rm]Akiλα1α2Y,w ∈ V +
1 , α1, α2 ∈ N ,

Xw[rm]Aα1α2α3Y →r18i Xw[rm]Akiλα1α2α3Y,w ∈ V +
1 , α1, α2, α3 ∈ N ,

Xw1[rm]Aα1α2α3α4w2Y →r19i Xw[rm]Akiλα1α2α3α4Y,w1, w2 ∈ V +
1 ,

where α1 ∈ N,α2 ∈ N ∪∆1, α3 ∈ N ∪∆1 ∪∆2, α4 ∈ N ∪∆1 ∪∆2,

α2α3 /∈ (∆1)(∆1 ∪∆2), α3α4 /∈ (∆1 ∪∆2)(∆1 ∪∆2).

Now, we discuss the simulations of the leftmost derivation process in Γ in the following cases in detail.

To simulate the leftmost derivations in G, the rules in (R15) are constructed. They are constructed in

such a way that the symbol [rm] identifies the leftmost non-terminal in the word XwY,w ∈ V +
1 . The

working of the rules in (R15) has been discussed in detail in the Case 3 to Case 6.

At first, the simulation of the leftmost derivations start with the application of the rm-rule.

Xα[rj ]w2Y →rm Xα[rj ][rm]w2Y, where α ∈ N,w2 ∈ V +
1 , [rj ] ∈ ∆1. . . . (8)

Case 3: The subword A[ri] in the word Xw1[rm]A[ri]w2Y,w1 ∈ V +
1 , w2 ∈ V +

1 becomes active again

when the subword [rm]A[ri] is obtained and is followed by the following step:

Xw1[rm]A[ri]w2Y →rm+3 Xw1[rm]A[ri][rm]w2Y. . . . (9)

Case 4:
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The subword AB[ri] in (II) will be activated once again after obtaining the subword [rm]AB[ri]. It

is followed by insertion of the symbol [rm] into Xw1[rm]αk[rk]AB[ri]w2Y,w1, w2 ∈ V +
1 .

Xw1[rm]αk[rk]AB[ri]w2Y

→rm+3 Xw1[rm]αk[rk][rm]AB[ri]w2Y

→rm+1 Xw1[rm]αk[rk][rm]AB[ri][rm]w2Y ,

where αk ∈ N,w1, w2 ∈ V +
1 , [rk] ∈ ∆1, [ri] ∈ ∆2. . . . (10)

Moreover, in (10) after application of the rm+3-rule only the rm+1-rule is applicable to AB[ri].

Case 5:

In this case we discuss how the insertion rules insert [rm] such that the subword A[ri]α1[r1][ri]α2

[r2][ri] . . . αn[rn][ri]B[ri] becomes active again in Xw1[rm]α0[r0]A[ri]α1[r1]α2[r2][ri] . . . αn[rn]B [ri] w2Y

where [rj ] ∈ ∆1(j = 1, 2, . . . , n), [ri] ∈ ∆2, w1 ∈ V +
1 , w2 ∈ V +

1 and ri : AB → CD.

At first we explain the derivation for the word Xw1[rm]α0[r0]A[ri]α1[r1]B[ri] w2Y .

Xw1[rm]α0[r0]A[ri]α1[r1][ri]B[ri]w2Y

→rm+3 Xw1[rm]α0[r0][rm]A[ri]α1[r1][ri]B[ri]w2Y

→rm+2 Xw1[rm]α0[r0][rm]A[ri][rm]α1[r1][ri]B[ri]w2Y

→rm+4 Xw1[rm]α0[r0][rm]A[ri][rm]α1[r1][ri][rm]B[ri]w2Y

→rm+6 Xw1[rm]α0[r0][rm]A[ri][rm]α1[r1][ri][rm]B[ri][rm]w2Y. . . . (11)

Next we describe the above process for the word Xw1[rm]α0[r0]A[ri]α1[r1][ri] α2[r2][ri]B[ri] w2Y,w1 ∈
V +
1 , w2 ∈ V +

1 , [ri] ∈ ∆2, [rj ] ∈ ∆1(1 ≤ j ≤ 3).

Xw1[rm]α0[r0]A[ri]α1[r1][ri]α2[r2][ri]B[ri]w2Y

→rm+3 Xw1[rm]α0[r0][rm]A[ri]α1[r1][ri]α2[r2][ri]B[ri]w2Y

→rm+2 Xw1[rm]α0[r0][rm]A[ri][rm]α1[r1][ri]α2[r2][ri]B[ri]w2Y

→rm+5 Xw[rm]α0[r0][rm]A[ri][rm]α1[r1][ri][rm]α2[r2][ri]B[ri]w2Y

→rm+4 Xw1[rm]α0[r0][rm]A[ri][rm]α1[r1][ri][rm]α2[r2][ri][rm]B[ri]w2Y

→rm+6 Xw1[rm]α0[r0][rm]A[ri][rm]α1[r1][ri][rm]α2[r2][ri][rm]B[ri][rm]w2Y .

. . . (12)

The above derivations can be further extended for Xw1[rm]α0[r0]A[ri]α1[r1]α2[r2] . . . αn [rn]B w2Y

where αi ∈ N(0 ≤ i ≤ n), [rj ] ∈ ∆1(0 ≤ j ≤ n), [ri] ∈ ∆2. In this case, the symbol [rm] can be inserted

in specified location by application of the rules with label rm+2, rm+3, rm+4, rm+5 and rm+6.

Moreover, after application of the rm+3-rule to Xw1[rm]α0[r0]A[ri]α1 [r1]α2[r2] . . . αn[rn]Bw2Y , the

word Xw1 [rm]α0[r0][rm]A[ri]α1[r1]α2[r2] . . . αn[rn]Bw2Y is obtained. No insertion rule except the rules

in the above derivation can be applied further to the subword [rm]α0[r0][rm]A[ri]α1[r1]α2[r2] . . . αn[rn]B.

Hence, for further steps a subwords of the form A[ri]α1[r1][ri] . . . αn[rn][ri] B[ri] must be obtained

whenever ri : AB → CD is simulated.

Case 6:

Now we discuss the application of the rules r6i , a
7
i and r20i where ri : AB → CD, ri : A→ a, ri : A→ λ.

The word Xw1A[ri]α1[r1][ri] . . . αn[rn][ri]B[ri]w2Y is obtained after simulation of the rule ri : AB →
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CD in case (1) of (II). Moreover, if w1 = w
′

1A1, w
′

1 ∈ V ∗1 , A1 ∈ N and there exist a rule rk : A1 → B1C1,

then

Xw
′

1A1A[ri]α1[r1][ri] . . . αn[rn][ri]B[ri]w2Y →r6i

Xw
′

1A1[rk]B1C1A[ri]α1[r1][ri] . . . αn[rn][ri]B[ri]w2Y,w
′

1 ∈ V ∗1 , w2 ∈ V +
1 . . . . (13)

The rule rj : A1 → a can be simulated in the following manner when the subword [rm]A1A[ri]α1

[r1][ri] . . . αn[rn]B[ri] is obtained.

Xw1[rm]A1A[ri]α1[r1][ri] . . . αn[rn][ri]B[ri]w2Y →a7j

Xw1[rm]A1k
j
aA[ri]α1[r1][ri] . . . αn[rn][ri]B[ri]w2Y. . . . (14)

Similarly, r20l -rule can simulate rl : A1 → λ as in (14). Moreover, the subwords A1[rk] becomes

inactive. But there exist insertion rules which can be applied to [rm]A1k
j
a and [rm]A1k

l
λ. It has been

discussed in Case 7.

Case 7:

The application of a7j -rule and r20l -rule is followed by the application of the insertion rules with label

rjm+1 and rlm+2 to proceed further. Note that no other insertion rule is applicable to the subwords

[rm]A1k
j
aA[ri]A[ri]α1[r1][ri] . . . αn[rn][ri]B[ri] and [rm]A1k

l
λA[ri]α1[r1][ri] . . . αn[rn][ri]B[ri].

Xw1[rm]A1k
j
aA[ri]α1[r1][ri] . . . αn[rn][ri]B[ri]w2Y →rjm+1

Xw1[rm]A1k
j
a[rm]A[ri]α1[r1][ri] . . . αn[rn][ri]B[ri]w2Y. . . . (15)

Xw1[rm]A1k
l
λA[ri]α1[r1][ri] . . . αn[rn][ri]B[ri]w2Y →rlm+2

Xw1[rm]A1k
l
λ[rm]A[ri]α1[r1][ri] . . . αn[rn][ri]B[ri]w2Y. . . . (16)

In fact, the rjm+1 and rlm+2-rule are applicable to words Xw1[rm]A1k
j
a w2Y and Xw1[rm]A1k

l
λ w2Y ,

respectively where w1, w2 ∈ V +
1 . Also, no insertion rules are applicable to the subwords [rm]A1k

j
a and

[rm]A1k
l
λ further.

From the above discussions we can say that whenever the non-terminal rules are applied, corre-

sponding labelled insertion rules in (R11) and (R12) can simulate it properly in the word XwY,w ∈
V +
1 . Also, the application of the rules in (R11), (R12), (R13) and (R14) , inactivates the subwords

A[ri], AB[ri], A[ri]α1[r1][ri]α2[r2][ri] . . . αn[rn][ri]B[ri] and A[ri] to be reactivated again by application

of the rules in (R15). Moreover, these subwords become active again only during the simulation of

leftmost derivations by the rules in (R13), (R14) and (R15). Hence, no extra derivation is possible in Γ.

Now at first we prove the inclusion L(G) ⊆ h(SZINS5(Γ)). Let w ∈ L(G). If the insertion rules in Γ

are applied in the same order as in a derivation of G obtaining w, a string over V1 is obtained where no

insertion rule can be applied further. Also, if the labels of the applied rules are concatenated, a string over

Lab is obtained. If the morphism h is applied to the string over Lab, then the terminal string w ∈ L(G)

is obtained. Hence, L = L(G) ⊆ h(SZINS5(Γ)).

Now we prove the inclusion h(SZINS5(Γ)) ⊆ L(G), i.e., no word except the elements of L(G) can be

obtained as homomorphic image of the Szilard language of insertion grammar of weight 5.

Let x ∈ h(SZINS5(Γ)). Then there exists a x1 ∈ SZINS5(Γ) such that x = h(x1). The string x1

is obtained when the labels of the rules in a terminal derivation of Γ are concatenated. In the string
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x1 ∈ Lab∗, all the symbols except the symbols a1i , a
2
i , a

3
i , a

4
i , a

5
i , a

6
i and a7i for each rule ri : A → a

are mapped to λ by the morphisn h. Since no extra terminal derivation is possible in Γ, the string

x is obtained when the rules of the grammar G are applied in the same order. So, x ∈ L. Hence,

h(SZINS5(Γ)) ⊆ L(G).

5 Conclusion

In this work we investigated Szilard languages obtained by the labelled insertion grammars and compared

them with the family of languages in Chomsky hierarchy. We showed that there exist regular languages

which cannot be obtained as a Szilard language by any labelled insertion grammar. But every regular,

context-free and recursively enumerable language can be obtained as a homomorphic image of the Szilard

language of labelled insertion grammars with some restricted bounds. The bounds obtained in this paper

are not optimal. One of the future direction of research can be to obtain the optimal bounds of these

results.
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[2] Lila and Petr Sośık, On the weight of universal insertion grammars, Theor. Comput. Sci., 1-3, 396,

264–270, 2008.
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