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In this work we initiate the study of Szilard languages of labelled insertion grammars. It is wellknown that there exist context-free languages which cannot be generated by any insertion grammar.

We show that there exist some regular languages which cannot be Szilard language of any labelled insertion grammar. But any regular language can be given as a homomorphic image of Szilard language obtained by a labelled insertion grammar of weight 1. Also, any context-free language can be obtained as a homomorphic image of Szilard language of a labelled insertion grammar of weight 2.

We show that even though insertion grammars of weight 1 can generate only context-free languages, there exist some context-sensitive language which can be obtained as Szilard language of a labelled insertion grammar of weight 1. At the end we show that any recursively enumerable language can be characterized by the homomorphic image of Szilard language obtained by a labelled insertion grammar of weight 5.

Introduction

Insertion and deletion operations are well-known in formal language theory. In insertion operation, a string is inserted in the specified contexts when the insertion rule is applied, i.e., the string uv is transformed into uxv after application of the insertion rule (u, λ/x, v). Similarly, the deletion operation removes strings from the specified contexts and the string uxv is transformed into uv after application of the deletion rule (u, x/λ, v) where u and v are contexts. Ins-Del (i.e., insertion-deletion) systems work as a language generating device. These systems are powerful and with only finite set of rules and axioms can characterize recursively enumerable languages. Ins-Del systems and their variants have been investigated in [START_REF] Takahara | On the computational power of insertion-deletion systems[END_REF][START_REF] Kari | At the crossroads of DNA computing and formal languages: Characterizing recursively enumerable languages using insertion-deletion systems, DNA Based Computers[END_REF][START_REF] Author | Recent developments on insertion-deletion systems[END_REF][START_REF] Author | Contextfree insertion-deletion systems[END_REF][START_REF] Pȃun | Representations and Characterizations of Languages in Chomsky Hierarchy by Means of Insertion-Deletion Systems, 9th International Workshop on Descriptional Complexity of Formal Systems -DCFS 2007[END_REF][START_REF] Verlan | On Minimal Context-Free Insertion-Deletion Systems[END_REF][START_REF] Kari | Contextual Insertions/Deletions and Computability[END_REF][START_REF] Krassovitskiy | Further Results on Insertion-Deletion Systems with One-Sided Contexts, Language and Automata Theory and Applications[END_REF][START_REF] Matveevici | Insertion-Deletion Systems with One-Sided Contexts[END_REF]. The study of insertion grammars (semicontextual grammars) was initiated in [START_REF] Galiukschov | Semicontextual grammars, Mathematika Logicia i Mathematika Linguistika[END_REF]. Computational power, closure properties etc. of the insertion systems have been discussed in [START_REF] Sosík | On the weight of universal insertion grammars[END_REF][START_REF] Pȃun | Representations and Characterizations of Languages in Chomsky Hierarchy by Means of Insertion-Deletion Systems, 9th International Workshop on Descriptional Complexity of Formal Systems -DCFS 2007[END_REF][START_REF] Martín | Characterizations of Recursively Enumerable Languages by Means of Insertion Grammars[END_REF][START_REF] Pȃun | On semicontextual grammars[END_REF][START_REF] Pȃun | Two theorems about Galiukschov semicontextual languages[END_REF][START_REF] Marcus | Contextual grammars[END_REF][START_REF] Squier | Semicontextual grammars: An example[END_REF]. In [START_REF] Pȃun | DNA Computing -New Computing Paradigms[END_REF] it was proved that the linear language {a n ba n |n ≥ 1} cannot be generated by any insertion grammar. But any recursively enumerable language can be generated by insertion grammars of weight 3 when a homomorphism and weak coding is applied [START_REF] Sosík | On the weight of universal insertion grammars[END_REF][START_REF] Onodera | A note on homomorphic representation of recursively enumerable languages with insertion grammars[END_REF].

Moreover, in the study of matrix insertion grammars initiated in [START_REF] Fernau | Universal Matrix Insertion Grammars with Small Size[END_REF], it has been shown that matrix insertion grammars can even characterize recursively enumerable languages. The computational power of the insertion-deletion systems and insertion grammars combined with the parallel distributed computing models such as P systems, also have been discussed in [START_REF] Krassovitskiy | On the power of Insertion P Systems of small size[END_REF][START_REF] Alhazov | P Systems with Insertion and Deletion Exo-Operations[END_REF].

The main contribution of the paper is the association of the well-known concept of Szilard languages with insertion grammars and compare the Szilard languages obtained by these grammars with the family of languages in Chomsky hierarchy. The idea of Szilard languages is well investigated in formal language theory and their closure properties, decidability aspects, complexity aspects for Chomsky grammars, matrix grammars, parallel communicating grammar systems, communicating distributive grammar systems have been investigated in [START_REF] Mäkinen | On homomorphic images of Szilard languages[END_REF][START_REF] Cojocaru | On the Complexity of Szilard Languages of Matrix Grammars[END_REF][START_REF] Cojocaru | On some derivation mechanisms and the complexity of their Szilard languages[END_REF][START_REF] Mäkinen | On Context-Free and Szilard Languages[END_REF][START_REF] Cojocaru | The Complexity of Szilard Languages of Matrix Grammars Revisited[END_REF]. Also, the idea of derivation languages (as Szilard and Control languages) has been introduced for DNA and membrane computing models in [START_REF] Mahalingam | On Derivation Languages of a Class of Splicing Systems[END_REF][START_REF] Mahalingam | Derivation languages of Splicing P systems, BIC-TA[END_REF]. In [START_REF] Mahalingam | On Derivation Languages of a Class of Splicing Systems[END_REF],

derivation languages have been associated with splicing systems and in [START_REF] Mahalingam | Derivation languages of Splicing P systems, BIC-TA[END_REF] the same were introduced for splicing P systems.

In this work, we show that there exist some regular languages which cannot be obtained as Szilard language by any insertion grammar. But some labelled insertion grammars of weight 1 can obtain context-sensitive languages as a Szilard language. We also show that labelled insertion grammars with rules of weight 5 can characterize recursively enumerable languages when a morphism is applied and any regular language can be represented as a homomorphic image of a Szilard language obtained by labelled insertion grammar of weight 1. In [START_REF] Pȃun | On some families of Szilard languages[END_REF], it has been shown that there exist some context-free languages which cannot be represented as a homomorphic image of any context-free language. But in this paper, we show that any context-free language can be obtained as a homomorphic image of Szilard language of a labelled insertion grammar of weight 2.

The paper is organized as follows. In section 2 we recall the basic definitions required for this paper along with some well-known results of insertion grammars. In section 3, we define labelled insertion grammar and the main results have been discussed in section 4. The section 5 is conclusive in nature.

Preliminaries

For the basic definitions and notions of formal language theory we refer to [START_REF] Rozenberg | Handbook of Formal Languages[END_REF]. Homomorphism: A homomorphism is a mapping h from Σ * to ∆ * where Σ, ∆ are alphabets, preserving concatenation, i.e., h(v.w) = h(v).h(w), v, w ∈ Σ * .

Chomsky normal form

Weak coding: A weak coding is a morphism which maps each letter onto a letter or empty string.

Szilard languages [START_REF] Rozenberg | Handbook of Formal Languages[END_REF]: Let G = (N, T, S, P ) be Chomsky grammar and F be an alphabet such that the cardinality of the sets F and P is same. Let f be a mapping from P to F such that for each p ∈ P a unique label f (p) is associated with p and is called the label of the rule p. A derivation in G is called successful if a string over T is generated staring from S. With each successful derivation of G, a string over F can be associated if labels of the any successful derivation are concatenated sequentially. The language generated in this manner is called Szilard language of the grammar G and is denoted by SZ(G).

Example 1. Let G = ({S}, {a, b}, S, {S → aSb, S → ab}) be a context-free grammar. The rules are labelled in the following manner: f 1 : S → aSb, f 2 : S → ab. Hence, the Szilard language obtained by the

grammar is SZ(G) = {f n 1 f 2 | n ≥ 0}.
The family of finite, linear, regular, context-free, context-sensitive and recursively enumerable languages is denoted by F IN, LIN, REG, CF, CS, RE respectively.

Insertion grammar [START_REF] Martín | Characterizations of Recursively Enumerable Languages by Means of Insertion Grammars[END_REF]: An insertion grammar is a construct G = (V, A, P ) where V is the set of alphabets, A is the set of initial strings and P is the set of insertion rules.

Let G be an insertion grammar, then the relation ⇒ is defined in the following manner:

w ⇒ z if and only if w = w 1 uvw 2 , z = w 1 uxvw 2 for (u, λ/x, v) ∈ P, w 1 , w 2 ∈ V * .

The language generated by the insertion grammar G is:

L(G) = {z ∈ V * |w ⇒ * z, w ∈ S}.
Moreover, an insertion grammar G is called of weight n [START_REF] Sosík | On the weight of universal insertion grammars[END_REF] if and only if

n = max{|u| | (u, λ/x, v) ∈ P or (v, λ/x, u) ∈ P, x ∈ V * }.
The family of languages generated by the insertion grammars of weight n is denoted as IN S n and union of all these families is denoted as IN S ∞ .

The followings are well known results in insertion grammars [START_REF] Galiukschov | Semicontextual grammars, Mathematika Logicia i Mathematika Linguistika[END_REF][START_REF] Pȃun | On semicontextual grammars[END_REF][START_REF] Pȃun | Two theorems about Galiukschov semicontextual languages[END_REF][START_REF] Squier | Semicontextual grammars: An example[END_REF]:

(1)F IN ⊂ IN S 1 ⊂ IN S 2 ⊂ IN S 3 . . . ⊂ IN S ∞ ⊂ CS.
( (5) Each regular language is the homomorphic image of a language in IN S 1 .

The following characterization of recursively enumerable language was proved by Kari and Sosik in [START_REF] Sosík | On the weight of universal insertion grammars[END_REF] and

Onodera in [START_REF] Onodera | A note on homomorphic representation of recursively enumerable languages with insertion grammars[END_REF] independently where S 3 denotes the family of languages generated by insertion grammars of weight at most 3:

Theorem 2.1. For each recursively enumerable language L there exists a morphism h, a weak coding g and a language L 1 ∈ S 3 such that L = g(h -1 (L 1 )).

Labelled insertion grammar

A labelled insertion grammar is a construct Γ = (V 1 , A 1 , P 1 , Lab) where V 1 ∩ Lab = ∅ and the rules of P 1 are labelled in one-to-one manner with the elements from the set Lab. A derivation of insertion grammar is called a terminal derivation if it is as follows:

x 0 ⇒ a1 x 1 ⇒ a2 x 2 ⇒ a3 . . . ⇒ an x n where x 0 ∈ A 1 and no rule of Γ is applicable to x n .

If the labels of the applied insertion rules in the above terminal derivation are concatenated in the order of application, a string over Lab is obtained and the set of all such strings forms a language which is different from the language generated by the insertion grammar. It is called Szilard language of the labelled insertion grammar Γ. From the above derivation, the string a 1 a 2 . . . a n ∈ SZIN S m (Γ) where

m = max{|u| | (u, λ/α, v) ∈ P 1 or (v, λ/α, u) ∈ P 1 }.
The notation SZIN S m (Γ) denotes the Szilard language of the labelled insertion grammar Γ of weight m. The family of Szilard languages SZIN S m (Γ) of the labelled insertion grammars with insertion rules of size m, is denoted as SZIN S m . When m is not specified, it is replaced by * .

In the next section, we discuss the main results of the Szilard languages of the insertion grammars with respect to the weight. At first, we prove that there exist some regular languages which cannot be obtained as a Szilard language by any labelled insertion grammar. But any regular language can be given as homomorphic image of a Szilard language of a labelled insertion grammar of weight 1. Also, any context-free language can be given as a homomorphic image of Szilard language of a labelled insertion grammar of weight 2. Furthermore, any recursively enumerable language can be characterized by Szilard language of the labelled insertion grammar of weight 4 when a homomorphism is applied.

The Main Results

It is very well-known that languages such as {aa} are not a Szilard language of any Chomsky grammar.

But we show that it can be Szilard language of a labelled insertion grammar.

Theorem 4.1. {aa} is a Szilard language of a labelled insertion grammar.

Proof. We construct a labelled insertion grammar Γ such that SZIN S m (Γ) = {aa}.

Let Γ = (V 1 , A 1 , R 1 ,
Lab) be a labelled insertion grammar where,

V 1 = {S, X a , Y }, T 1 = {S, Y }, A = {SY SY }, R = {a : (S, λ/X a , Y )}, Lab = {a}.
Initially only the string SY SY is present and after application of the a-rule, it is transformed into either SY SX a Y or SX a Y SY. But if the a-rule is applied once again, then the string SX a Y SX a Y is obtained. No further computation is possible. Hence, SZIN S 1 (Γ) = {aa}.

In the next theorem, we show that there exist some regular languages which cannot be obtained as Szilard language by any labelled insertion grammar.

Theorem 4.2. {a n | n ≥ 1} / ∈ SZIN S * . Proof. Suppose {a n | n ≥ 1} is Szilard language of a labelled insertion grammar Γ = (V 1 , A 1 , R 1 , Lab)
where R 1 = {a : (u, λ/k, v)} and Lab = {a}. Hence there exists a terminal derivation such that

x 0 0 ⇒ a x 0 1 . . . . (1) 
where x 0 0 ∈ A 1 and the insertion rule a : (u, λ/k, v) is not applicable to x 0 1 . Similarly, the terminal derivation of the word a 2 is as follows:

x 1 0 ⇒ a x 1 1 ⇒ a x 1 2 . . . . (2) 
where x 1 0 ∈ A 1 and the insertion rule a : (u, λ/k, v) is applicable to x 1 1 but not to x 1 2 . But, the x 0 0 in (1) and the x 1 0 in (2) cannot be same. Because, if (1) is true, then (2) cannot be true for x 0 0 = x 1 0 . Again, following is the terminal derivation for a 3 :

x 2 0 ⇒ a x 2 1 ⇒ a x 2 2 ⇒ a x 2 3 . . . . (3) 
So, from (3) we can infer that the x 2 0 ∈ A 1 must be different from the x 0 0 in (1) and x 1 0 in (2). Hence, to obtain {a n | n ≥ 1} as Szilard language, all x i 0 (i ∈ N ∪ {0}) ∈ A 1 must be distinct. Since any derivation starts from a x i 0 ∈ A 1 , the language {a n | n ≥ 1} cannot be obtained as Szilard language by the labelled insertion grammar Γ where A 1 contains only finite number of elements.

Although {a n | n ≥ 1} cannot be the Szilard language of any labelled insertion grammar, any regular language can be represented as a homomorphic image of the Szilard language of labelled insertion grammar of weight 1.

Theorem 4.3. Any non-empty regular language can be obtained as a homomorphic image of Szilard language of a labelled insertion grammar of weight 1.

Proof. Let L be a λ-free regular language and let G = (N, T, S, P ) be a right linear grammar such that

L = L(G). Suppose N = {D 1 , D 2 , . . . , D n } where D 1 = S is the start symbol. Now we construct a labelled insertion grammar Γ such that L = L(G) = h(SZIN S 1 (Γ))
where h is a homomorphism. The rules in P are of the form D i → aD i , D i → aD j (i = j), and D i → a, D i , D j ∈ N , and a ∈ T .

Let Γ = (V 1 , A 1 , R 1 ,
Lab) be a labelled insertion grammar where

• V 1 = {X, Y, D 1 , D 2 , . . . , D n } ∪ T ; • A 1 = {XD 1 Y }; • The rules in R 1 are of the form a i k : (D i , λ/aD k , Y ) for D i → aD k , D k ∈ N, a ∈ T a i : (D i , λ/a, Y ) for D i → a, a ∈ T ; • Lab = {a i k | D i → aD k , D k ∈ N, a ∈ T } ∪ {a i | D i → a, a ∈ T }.
The non-erasing homomorphism h : (Lab) * → T * is defined as h(a i k ) = a and h(a i ) = a where a i k , a i ∈ Lab.

Every non-terminal rule (D i → aD k ) in G is simulated by an insertion rule with the label a i k and every terminal rule (D i → a) of G is associated with label a i . If the labelled insertion rules simulating the rules of a terminal derivation in G are applied in the same order, then concatenation of the labels of the insertion rules will obtain a string w 1 ∈ (Lab) * such that h(w 1 ) = w. Hence, w ∈ h(SZIN S 1 (Γ)).

For the proof of the inclusion h(SZIN S 1 (Γ)) ⊆ L(G), first assume that w ∈ h(SZIN S 1 (Γ)). Hence, there exists a terminal derivation in Γ such that h(w 1 ) = w where w 1 ∈ SZIN S 1 (Γ). If the rules in G are applied in the same order as in the terminal derivation obtaining w 1 , the string w ∈ L(G) is generated.

Hence, h(SZIN S 1 (Γ)) ⊆ L(G). This will imply, L(G) = h(SZIN S 1 (Γ)).

It has been shown in [START_REF] Martín | Characterizations of Recursively Enumerable Languages by Means of Insertion Grammars[END_REF] that IN S 1 ⊂ CF. In fact, the linear language {a n ba n | n ≥ 1} cannot be generated by any insertion grammar [START_REF] Pȃun | DNA Computing -New Computing Paradigms[END_REF]. We show that there exists a context-sensitive language which is Szilard language of a labelled insertion grammar of weight one. Proof. We construct a labelled insertion grammar Γ which has a context-sensitive language as a Szilard language.

Let Γ = (V 1 , A 1 , R 1 , Lab) be a labelled insertion grammar where

• V 1 = {X, A, A , A , Y }; • A 1 = {XAY }; • R 1 = {a : (A, λ/A, Y ), b : (A, λ/A , A), c : (A, λ/A , A )}; • Lab = {a, b, c}.
Any computation in Γ starts from the string XAY . When the a-rule is applied, one "A" is added between A and Y . Application of the b-rule inserts A between the two A's of the string AA and hence AA A is obtained. Similarly, when the c-rule is applied, the string AA is transformed into AA A . Hence, if the labeled rules are applied in a particular order, we have

SZIN S 1 (Γ) ∩ a * b * c * = {a n b n c n | n ≥ 1}.
Since the intersection of SZIN S 1 (Γ) and the regular language a * b * c * is a context-sensitive language.

The language SZIN S 1 (Γ) must be non context-free.

Pȃun showed in [START_REF] Pȃun | On some families of Szilard languages[END_REF] that there exist context-free languages which cannot be given as a homomorphic image of Szilard language of any context-free language. Also, Theorem 4.5. [START_REF] Pȃun | On some families of Szilard languages[END_REF] The families of context-free languages and homomorphic image of the Szilard languages of the context-free languages are incomparable.

But any context-free language can be obtained as a homomorphic image of Szilard language of insertion grammar of weight 2. We show it in the following theorem.

Theorem 4.6. Any context-free language can be given as a homomorphic image of Szilard language of a labelled insertion grammar of weight 2.

Proof. Let L be a non-empty context-free language and let G = (N, T, S, P ) be a Chomsky normal form grammar such that L = L(G). The rules in P are of the form, A → BC and A → a, where A, B, C ∈ N, a ∈ T and each rule in G is assigned with a unique label r i . Also each element of L can be obtained by initial application of the non terminal rules and then by application of the terminal rules in the leftmost manner.

We construct a labelled insertion grammar Γ

= (V 1 , A 1 , R 1 , Lab) such that L = h(SZIN S m (Γ)) where h is a morphism from Lab * to T * . The grammar Γ = (V 1 , A 1 , R 1 , Lab) is the labelled insertion grammar where • V 1 = {X, Y, E}∪N ∪T ∪∆ 1 ∪∆ 2 ∪{#, $} where ∆ 1 = {[r i ] | r i : A → BC}, ∆ 2 = {[r i ] | r i : A → a}; • A 1 = {XSEY };
• R 1 contains the following rules: For r i : A → BC:

r i : (A, λ/[r i ]BC, α 1 α 2 ) where α 1 ∈ N ∪ {E}, α 2 ∈ N ∪ {Y, E} ∪ ∆ 1 , α 1 α 2 / ∈ N {Y } ∪ {EE} ∪ {E}N ∪ {E}∆ 1 , For r i : A → a: r i a : ($A, λ/[r a ], α 1 ), α 1 ∈ N ∪ {E} and r 3 : (X, λ/#, α 2 ), α 2 ∈ N, r 4 : (α 1 α 2 , λ/$, α 3 ), α 1 ∈ {#, $}, α 2 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 3 ∈ ∆ 1 ∪ ∆ 2 ∪ N, α 1 α 2 / ∈ {#}∆ 1 ∪ {#}∆ 2 . • Lab = {r i | [r i ] ∈ ∆ 1 } ∪ {r i a | [r i ] ∈ ∆ 2 } ∪ {r 3 , r 4 }.
Finally, we define the morphism h : Lab * → T * by h(r i ) = h(r 3 ) = h(r 4 ) = λ, h(r i a ) = a where r i , r i a , r 3 , r 4 ∈ Lab and a ∈ T.

We first prove that L(G) = L ⊆ h(SZIN S 2 (Γ)). The rule r i : A → BC can be simulated by application of the r i -rule in the following manner:

Xw 1 Aw 2 Y → r i Xw 1 A[r i ]BCw 2 Y where the α 1 α 2 is
a subword of w 2 Y and the r i -rule is applicable only when α 1 α 2 satisfy the predefined conditions. The r 3 -rule transforms the word XβwEY into X#βwEY where β ∈ N, w ∈ V * 1 . The r 4 -rule inserts $ into the word X#wEY, w ∈ V + 1 to identify the leftmost non-terminal where r i a -rule can be applied. The r i : A → a rule can be simulated in the following manner:

X#w 1 $Aβ 1 w 2 Y → r i a X#w 1 $A[r a ]β 1 w 2 Y
where

β 1 ∈ N ∪ {E}, w 1 , w 2 ∈ V * 1 .
Moreover, after application of the r i a -rule, no rule will be applicable to the subword $A.

Since, any terminal string w ∈ L can be obtained by application of non-terminal rules and then by leftmost application of terminal rules, if the corresponding labelled insertion rules are applied in the same order, a terminal derivation can be obtained in Γ. In fact, a string over V 1 can be obtained where no rules further can be applied. If the labels of the applied insertion rules are concatenated in order of application, a string over Lab, say, w 1 is obtained. Application of the morphism h to w 1 , replaces each occurrence of r i , r 3 and r 4 by the empty string and r i a is replaced by a. Hence, if w ∈ L(G), then w = h(w 1 ) ∈ h(SZIN S 2 (Γ)) where w 1 ∈ SZIN S 2 (Γ).

Next we prove the inclusion h(SZIN S 2 (Γ)) ⊆ L(G) = L. Let w = h(w 1 ) where w 1 = a 1 a 2 . . . a n ∈ SZIN S 2 (Γ). If the rules in G are applied in the same order as the labelled rules in Γ, a terminal string is obtained. Moreover, after application of each r i a -rule where r i : A → a, the subword $A becomes inactive. Hence, no extra derivation is possible in Γ. Again, h(r i ) = h(r 3 ) = h(r 4 ) = λ and h(r i a ) = a, and hence, h(w 1 ) = w ∈ L(G). So, we can conclude h(SZIN S 2 (Γ)) ⊆ L(G). [START_REF] Sosík | On the weight of universal insertion grammars[END_REF] and Onodera [START_REF] Onodera | A note on homomorphic representation of recursively enumerable languages with insertion grammars[END_REF] proved that insertion grammars of weight 3 can characterize recursively enumerable languages when an inverse morphism and a weak coding is applied. Next, we show that any recursively enumerable language can be obtained as a homomorphic image of Szilard language of a labelled insertion grammar of weight 5. Moreover, we construct the insertion grammar in such a way that it simulates the derivations of G where the terminal symbols in any sentential form are generated from right to left order, i.e., in leftmost manner as in [START_REF] Sosík | On the weight of universal insertion grammars[END_REF][START_REF] Martín | Characterizations of Recursively Enumerable Languages by Means of Insertion Grammars[END_REF]. Theorem 4.7. Each recursively enumerable language can be obtained as a homomorphic image of the Szilard language of a labelled insertion grammar of weight 5.

Kari and Sosik

Proof. Let L ∈ RE and G = (N, T, S, P ) be a grammar in Kuroda normal form such that L(G) = L. The rules of the grammar G are of the form A → BC, AB → CD, A → a, A → λ. Moreover, as in the proof of Theorem 1 in [START_REF] Martín | Characterizations of Recursively Enumerable Languages by Means of Insertion Grammars[END_REF], we can assume that each element x ∈ L can be generated initially by application of the nonterminal rules and then by application of the terminal rules in leftmost manner. In this proof, we construct a labelled insertion grammar Γ

= (V 1 , A 1 , R 1 , Lab) such that L = h(SZIN S 5 (Γ)) where V 1 ∩ Lab = ∅.
Initially, the rules in G are labelled in one-to-one manner, i.e., each rule has a unique label r i . The set ∆ contains the labels of the rules in P . It is defined in the following manner

∆ = ∆ 1 ∪ ∆ 2 ∪ ∆ 3 ∪ ∆ 4 , where ∆ 1 = {[r i ] | r i : A → BC ∈ P }; ∆ 2 = {[r i ] | r i : AB → CD ∈ P }; ∆ 3 = {[r i ] | r i : A → a ∈ P }; ∆ 4 = {[r i ] | r i : A → λ ∈ P }; Let Γ = (V 1 , A 1 , R 1 ,
Lab) be a labelled insertion grammar, where

• V 1 = {X, Y } ∪ N ∪ {k i a |r i : A → a} ∪ {k i λ |r i : A → λ} ∪ {[r i ] | r i ∈ ∆} ∪ {[r m ]}; • A 1 = {XSY };
• R 1 contains the following rules (R 11 ) For r i : A → BC:

r 1 i : (A, λ/[r i ]BC, Y ),
r 2 i : (A, λ/[r i ]BC, α 1 Y ), α 1 ∈ N , r 3 i : (A, λ/[r i ]BC, α 1 α 2 Y ), α 1 , α 2 ∈ N , r 4 i : (A, λ/[r i ]BC, α 1 α 2 α 3 Y ), α 1 , α 2 , α 3 ∈ N , r 5 i : (A, λ/[r i ]BC, α 1 α 2 α 3 α 4 ),
where

α 1 ∈ N, α 2 ∈ N ∪ ∆ 1 , α 3 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 4 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 2 α 3 / ∈ (∆ 1 )(∆ 1 ∪ ∆ 2 ), α 3 α 4 / ∈ (∆ 1 ∪ ∆ 2 )(∆ 1 ∪ ∆ 2 ),
r 6 i : (A, λ/[r i ]BC, α 1 α 2 α 3 α 4 α 5 ), where α 1 ∈ N, α 2 ∈ ∆ 2 , α 3 ∈ N, α 4 ∈ ∆ 1 and α 2 = α 5 .
(R 12 ) For r i : AB → CD:

r 7 i : (AB, λ/[r i ]CD, α 1 α 2 ), α 1 ∈ N, α 2 ∈ N , r 8 i : (AB, λ/[r i ]CD, Y ),
r 9 i : (AB, λ/[r i ]CD, α 1 Y ), α 1 ∈ N .
The application of the rules r 10 i , r 11 i and r 12 i in order also can simulate the rule r i : AB → CD :

r 10 i : (A, λ/[r i ], α 1 α 2 ), α 1 ∈ N, α 2 ∈ ∆ 1 ,
r 11 i : ([r i ]α 1 β 1 , λ/[r i ], α 2 α 3 ), α 1 ∈ N, α 2 ∈ N, α 3 ∈ ∆ 1 ∪ N, [r i ] ∈ ∆ 2 , β 1 ∈ ∆ 1 , r 12 i : (β 1 [r i ]B, λ/[r i ]CD, α 1 α 2 ), α 1 ∈ N, α 2 ∈ N ∪ {Y } ∪ ∆ 1 , [r i ] ∈ ∆ 2 , β 1 ∈ ∆ 1 and r 13 i : (AB, λ/[r i ]CD, α 1 α 2 α 3 α 4 α 5 ),
where

α 1 ∈ N, α 2 ∈ ∆ 2 , α 3 ∈ N, α 4 ∈ ∆ 1 and α 2 = α 5 .
(R 13 ) For r i : A → a:

a 1 i : (XA, λ/k i a , Y ), a 2 i : ([r m ]A, λ/k i a , Y ), a 3 i : ([r m ]A, λ/k i a , α 1 Y ), α 1 ∈ N , a 4 i : ([r m ]A, λ/k i a , α 1 α 2 Y ), α 1 , α 2 ∈ N , a 5 i : ([r m ]A, λ/k i a , α 1 α 2 α 3 Y ), α 1 , α 2 , α 3 ∈ N , a 6 i : ([r m ]A, λ/k i a , α 1 α 2 α 3 α 4 ),
where

α 1 ∈ N, α 2 ∈ N ∪ ∆ 1 , α 3 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 4 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 2 α 3 / ∈ (∆ 1 )(∆ 1 ∪ ∆ 2 ), α 3 α 4 / ∈ (∆ 1 ∪ ∆ 2 )(∆ 1 ∪ ∆ 2 ),
a 7 i : ([r m ]A, λ/k i a , α 1 α 2 α 3 α 4 α 5 ),
where

α 1 ∈ N, α 2 ∈ ∆ 2 , α 3 ∈ N, α 4 ∈ ∆ 1 and α 2 = α 5 , r i m+1 : ([r m ]Ak i a , λ/[r m ], α 1 α 2 ), α 1 ∈ N, α 2 ∈ {Y } ∪ N ∪ ∆ 1 ∪ ∆ 2 .
(R 14 ) For r i : A → λ:

r 14 i : (XA, λ/k i λ , Y ),
r 15 i : ([r m ]A, λ/k i λ , Y ),
r 16 i : ([r m ]A, λ/k i λ , α 1 Y ), α 1 ∈ N , r 17 i : ([r m ]A, λ/k i λ , α 1 α 2 Y ), α 1 , α 2 ∈ N ,
r 18 i : ([r m ]A, λ/k i λ , α 1 α 2 α 3 Y ), α 1 , α 2 , α 3 ∈ N , r 19 i : ([r m ]A, λ/k i λ , α 1 α 2 α 3 α 4 ),
where

α 1 ∈ N, α 2 ∈ N ∪ ∆ 1 , α 3 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 4 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 2 α 3 / ∈ (∆ 1 )(∆ 1 ∪ ∆ 2 ), α 3 α 4 / ∈ (∆ 1 ∪ ∆ 2 )(∆ 1 ∪ ∆ 2 ),
r 20 i : ([r m ]A, λ/k i λ , α 1 α 2 α 3 α 4 α 5 ),
where

α 1 ∈ N, α 2 ∈ ∆ 2 , α 3 ∈ N, α 4 ∈ ∆ 1 and α 2 = α 5 . r i m+2 : ([r m ]Ak i λ , λ/[r m ], α 1 α 2 ), α 1 ∈ N, α 2 ∈ {Y } ∪ N ∪ ∆ 1 ∪ ∆ 2 . (R 15 ) r m : (Xα 1 β 1 , λ/[r m ], α 2 ), α 1 , α 2 ∈ N, β 1 ∈ ∆ 1 , r m+1 : ([r m ]α 1 α 2 β 1 , λ/[r m ], α 3 ), α 1 , α 2 , α 3 ∈ N, β 1 ∈ ∆ 2 , r m+2 : ([r m ]α 1 β 1 , λ/[r m ], α 2 β 2 β 1 ), α 1 , α 2 ∈ N, β 1 ∈ ∆ 2 , β 2 ∈ ∆ 1 , r m+3 : ([r m ]α 1 β 1 , λ/[r m ], α 2 α 3 ), α 1 ∈ N, α 2 ∈ N, α 3 ∈ N ∪ ∆ 1 ∪ ∆ 2 , β 1 ∈ ∆ 1 , r m+4 : ([r m ]α 1 β 1 β 2 , λ/[r m ], α 2 β 2 ), α 1 , α 2 ∈ N, β 2 ∈ ∆ 2 , β 1 ∈ ∆ 1 , r m+5 : ([r m ]α 1 β 1 β 2 , λ/[r m ], α 2 α 3 β 2 ), α 1 ∈ N, α 2 ∈ N, α 3 ∈ ∆ 1 ,β 1 ∈ ∆ 1 , β 2 ∈ ∆ 2 , r m+6 : ([r m ]α 1 β 1 , λ/[r m ], α 2 α 3 ), α 1 , α 2 ∈ N, α 3 ∈ N ∪ ∆ 1 ∪ ∆ 3 ∪ ∆ 4 , β 1 ∈ ∆ 2 . • Lab = {r 1 i , r 2 i , r 3 i , r 4 i , r 5 i , r 6 i | [r i ] ∈ ∆ 1 } ∪{r 7 i , r 8 i , r 9 i , r 10 i , r 11 i , r 12 i , r 13 i | [r i ] ∈ ∆ 2 } ∪{a 1 i , a 2 i , a 3 i , a 4 i , a 5 i , a 6 i , r i m+1 | [r i ] ∈ ∆ 3 } ∪{r 14 i , r 15 i , r 16 i , r 17 i , r 18 i , r 19 i , r 20 i , r i m+2 | [r i ] ∈ ∆ 4 }
∪{r m , r m+2 , r m+1 , r m+3 , r m+4 , r m+5 , r m+6 }.

The homomorphism h : (Lab) * → T * is defined by h(a

1 i ) = h(a 2 i ) = h(a 3 i ) = h(a 4 i ) = f (a 5 i ) = f (a 6 i ) = f (a 7
i ) = a and h(l) = λ for l ∈ Lab \ {a 1 i , a 2 i , a 3 i , a 4 i , a 5 i , a 6 i , a 7 i }. In this proof we construct an insertion grammar with labelled rules such that any recursively enumerable language can be obtained as a homomorphic image of the Szilard language of the labelled insertion grammar. Moreover, the labelled insertion grammar Γ is constructed in such a manner that each terminal derivation in G can be properly simulated by the rules in R 1 . We also show that no word except the words in L(G) can be obtained as the homomorphic image of the Szilard language of the labelled insertion grammar Γ. In this proof, the rules in (R 11 ) and (R 12 ) simulate the nonterminal rules and the rules in (R 13 ) and (R 14 ) simulate the terminal rules. The rules in (R 15 ) are constructed to simulate the leftmost derivations.

The working of the rules r i : A → BC, r i : AB → CD, r i : A → a and r i : A → λ has been discussed in the sections (I), (II), (III) and (IV) respectively.

(I) The simulation of the rule r i : A → BC in different contexts is as follows:

XwAY → r 1 i XA[r i ]BCY, w ∈ V * 1 XwAαY → r 2 i XwA[r i ]BCαY, α ∈ N, w ∈ V * 1 XwAα 1 α 2 Y → r 3 i XwA[r i ]BCα 1 α 2 Y, α 1 , α 2 ∈ N, w ∈ V * 1 XwAα 1 α 2 α 3 Y → r 4 i XwA[r i ]BCα 1 α 2 α 3 Y, α 1 , α 2 , α 3 ∈ N, w ∈ V * 1 Xw 1 Aα 1 α 2 α 3 α 4 w 2 Y → r 5 i XwA[r i ]BCα 1 α 2 α 3 α 4 Y, w 1 , w 2 ∈ V * 1 , where α 1 ∈ N, α 2 ∈ N ∪ ∆ 1 , α 3 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 4 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 2 α 3 / ∈ (∆ 1 )(∆ 1 ∪ ∆ 2 ), α 3 α 4 / ∈ (∆ 1 ∪ ∆ 2 )(∆ 1 ∪ ∆ 2 ).
Note that after application of the rules r 1 i , r 2 i , r 3 i , r 4 i and r 5 i , the subword A[r i ] becomes inactive (i.e., no rules can be applied to A[r i ]) and becomes active once again when a word Xw

1 [r m ]A[r i ]w 2 Y, w 1 , w 2 ∈ V + 1 is obtained. The r m+3 -rule only can be applied to Xw 1 [r m ]A[r i ]w 2 Y . It has been discussed in Case 3.
(II) Simulation of the rules r i : AB → CD in different contexts:

XwABY → r 8 i XwAB[r i ]CDY, w ∈ V + 1 . . . . (1) XwABαY → r 9 i XwAB[r i ]CDαY, α ∈ N, w ∈ V + 1 . . . . (2) Xw 1 ABα 1 α 2 w 2 Y → r 7 i Xw 1 AB[r i ]CDα 1 α 2 w 2 Y, w 1 ∈ V + 1 , w 2 ∈ V * 1 , α 1 , α 2 ∈ N . . . . (3) 
Similarly as above, after application of r 8 i , r 9 i and r 7 i -rule, no other rule can be applied to the subword AB[r i ]. Moreover, this subword cannot be further used for simulation of any other rule

r j : A 1 A → B 1 C 1 .
In fact, the r 7 i , r 8 i and r 9 i -rule cannot be applied to the subword

A 1 AB[r i ]CD of If a word of the form Xw 1 A 1 B 1 A[r i ]α 1 [r 1 ][r i ]α 2 [r 2 ][r i ] . . . α n [r n ][r i ] B[r i ] w 2 Y, w 1 ∈ V * 1 , w 2 ∈ V +
1 is obtained during any stage of the computation and also there exist a rule r j : A 1 B 1 → C 1 D 1 , then the application of the rule can be simulated by r 13 j -rule.

Xw 1 A 1 B 1 A[r i ]α 1 [r 1 ][r i ]α 2 [r 2 ][r i ] . . . α n [r n ][r i ]B[r i ]w 2 Y → r 13 j Xw 1 A 1 B 1 [r j ]C 1 D 1 A[r i ]α 1 [r 1 ][r i ]α 2 [r 2 ][r i ] . . . α n [r n ][r i ]B[r i ]w 2 Y.
. . . [START_REF] Author | Contextfree insertion-deletion systems[END_REF] Also, since no rule from (R 11 ), (R 12 ), (R 13 ) and (R 14 ) is applicable to the subword A 1 B 1 [r j ], it becomes inactive after the simulation. It becomes active again when the word Xw

1 [r m ] A 1 B 1 [r j ] w 2 Y, w 1 , w 2 ∈ V + 1 is obtained.
(III) Now, we discuss the Simulation of the rule r i : A → a in different contexts:

XAY → a 1 i XAk i a Y, Xw[r m ]AY → a 2 i Xw[r m ]Ak i a Y, w ∈ V + 1 , Xw[r m ]Aα 1 Y → a 3 i Xw[r m ]Ak i a α 1 Y, w ∈ V + 1 , α 1 ∈ N, Xw[r m ]Aα 1 α 2 Y → a 4 i Xw[r m ]Ak i a α 1 α 2 Y, w ∈ V + 1 , α 1 , α 2 ∈ N, Xw[r m ]Aα 1 α 2 α 3 Y → a 5 i Xw[r m ]Ak i a α 1 α 2 α 3 Y, w ∈ V + 1 , α 1 , α 2 , α 3 ∈ N, Xw[r m ]Aα 1 α 2 α 3 α 4 Y → a 6 i Xw[r m ]Ak i a α 1 α 2 α 3 α 4 Y, w ∈ V + 1 , where α 1 ∈ N, α 2 ∈ N ∪ ∆ 1 , α 3 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 4 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 2 α 3 / ∈ (∆ 1 )(∆ 1 ∪ ∆ 2 ), α 3 α 4 / ∈ (∆ 1 ∪ ∆ 2 )(∆ 1 ∪ ∆ 2 ).
(IV) Again, the simulation of the rule r i : A → λ in different contexts is as follows:

XAY → r 

∈ V + 1 , where α 1 ∈ N, α 2 ∈ N ∪ ∆ 1 , α 3 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 4 ∈ N ∪ ∆ 1 ∪ ∆ 2 , α 2 α 3 / ∈ (∆ 1 )(∆ 1 ∪ ∆ 2 ), α 3 α 4 / ∈ (∆ 1 ∪ ∆ 2 )(∆ 1 ∪ ∆ 2 )
. Now, we discuss the simulations of the leftmost derivation process in Γ in the following cases in detail.

To simulate the leftmost derivations in G, the rules in (R 15 ) are constructed. They are constructed in such a way that the symbol [r m ] identifies the leftmost non-terminal in the word XwY, w ∈ V + 1 . The working of the rules in (R 15 ) has been discussed in detail in the Case 3 to Case 6.

At first, the simulation of the leftmost derivations start with the application of the r m -rule. . . . (9)

Case 4:

x 1 ∈ Lab * , all the symbols except the symbols a 1 i , a 2 i , a 3 i , a 4 i , a 5 i , a 6 i and a 7 i for each rule r i : A → a are mapped to λ by the morphisn h. Since no extra terminal derivation is possible in Γ, the string x is obtained when the rules of the grammar G are applied in the same order. So, x ∈ L. Hence, h(SZIN S 5 (Γ)) ⊆ L(G).

Conclusion

In this work we investigated Szilard languages obtained by the labelled insertion grammars and compared them with the family of languages in Chomsky hierarchy. We showed that there exist regular languages which cannot be obtained as a Szilard language by any labelled insertion grammar. But every regular, context-free and recursively enumerable language can be obtained as a homomorphic image of the Szilard language of labelled insertion grammars with some restricted bounds. The bounds obtained in this paper are not optimal. One of the future direction of research can be to obtain the optimal bounds of these results.

  [START_REF] Rozenberg | Handbook of Formal Languages[END_REF]: For every context-free grammar G, a grammar G = (N, T, S, P ) can be effectively constructed where the rules in P are of the form A → BC and A → a such that L(G) \ {λ} = L(G ) \ {λ}.Type-0-grammar : A type-0-grammar is a construct G = (N, T, S, P ) where N is the non-terminal alphabet and T is the terminal alphabet such that N ∩ T = ∅. The starting symbol S ∈ N and the rules in P are ordered pairs (u, v) where u ∈ (N ∪ T ) * N (N ∪ T ) * and v ∈ (N ∪ T ) * . Kuroda normal form: Every type-0 grammar G = (N, T, S, P ) is in Kuroda normal form if the rules of the grammar G has one of the following forms: A → BC, AB → CD, A → a, A → λ for A, B, C, D ∈ N and a ∈ T.

Theorem 4 . 4 .

 44 CS ∩ SZIN S 1 = ∅.
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 141516171819 XAk i λ Y, Xw[r m ]AY → r Xw[r m ]Ak i λ Y, w ∈ V + 1 , Xw[r m ]Aα 1 Y → r Xw[r m ]Ak i λ α 1 Y, w ∈ V + 1 , α 1 ∈ N , Xw[r m ]Aα 1 α 2 Y → r Xw[r m ]Ak i λ α 1 α 2 Y, w ∈ V + 1 , α 1 , α 2 ∈ N , Xw[r m ]Aα 1 α 2 α 3 Y → r Xw[r m ]Ak i λ α 1 α 2 α 3 Y, w ∈ V + 1 , α 1 , α 2 , α 3 ∈ N , Xw 1 [r m ]Aα 1 α 2 α 3 α 4 w 2 Y → r Xw[r m ]Ak i λ α 1 α 2 α 3 α 4 Y, w 1 , w 2

Xα[r j ]w 2 Y 8 ) 3 :

 283 → rm Xα[r j ][r m ]w 2 Y, where α ∈ N, w 2 ∈ V + 1 , [r j ] ∈ ∆ 1 . . . . (Case The subword A[r i ] in the word Xw 1 [r m ]A[r i ]w 2 Y, w 1 ∈ V + 1 , w 2 ∈ V +1 becomes active again when the subword [r m ]A[r i ] is obtained and is followed by the following step:Xw 1 [r m ]A[r i ]w 2 Y → rm+3 Xw 1 [r m ]A[r i ][r m ]w 2 Y.

  ) REG is incomparable with all families IN S n , n ≥ 1 and REG ⊂ IN S ∞ .

	(3) IN S 1 ⊂ CF but CF is incomparable with all IN S n , n ≥ 2 and IN S ∞ . Also IN S 2 contains
	non-semilinear languages.
	(4) LIN is incomparable with all IN S n , n ≥ 0 and IN S ∞ .

the word Xw

Hence, no rule in (R 12 ) is applicable to the subword AB[r i ]. So, the subword AB[r i ] becomes inactive. It becomes active once again when the word Xw 1 [r m ] AB[r i ]w 2 Y, w 1 ∈ V + 1 , w 2 ∈ V + 1 is obtained. This has been discussed futher in Case 4. In Case 1 and Case 2 we discuss the simulation of the rule r i : AB → CD in the contexts different than the contexts discussed above.

Case 1: Now, we discuss the simulation of the rule r i : AB → CD in the word

. . . (4)

Hence, the application of the r 10 -rule is followed by repeated application of the r 11 -rule and then one time application of r 12 -rule can simulate the application of the rule r i : AB → CD on the words in (4).

Moreover, the above derivations can be further extended for words Xw

l -rule is applicable to the above word

This forbids the insertion rules in (R 11 ) to be applied to the subword

Again, if there exist a rule r l : B → C D and the corresponding insertion rule in (R 11 ) is ap-

i -rule is not applicable to it. Hence, if the simulation of the rule r i : AB → CD has started, then no other rule can be applied to the subword

i , r 11 i and r 12 i -rule. Moreover, once the simulation is complete, the subword

comes inactive and will be active again when the subword [r

is obtained. We discuss about it in Case 5.

Case 2:

In this case we discuss the simulation of consecutive application of two rules in (R 12 ). The subword AB[r i ] in (II) will be activated once again after obtaining the subword

Moreover, in [START_REF] Martín | Language and Automata Theory and Applications[END_REF] after application of the r m+3 -rule only the r m+1 -rule is applicable to AB[r i ].

Case 5:

In this case we discuss how the insertion rules insert [r m ] such that the subword

1 and r i : AB → CD. At first we explain the derivation for the word Xw

Next we describe the above process for the word Xw

The above derivations can be further extended for Xw

where

In this case, the symbol [r m ] can be inserted in specified location by application of the rules with label r m+2 , r m+3 , r m+4 , r m+5 and r m+6 .

Moreover, after application of the r m+3 -rule to Xw

No insertion rule except the rules in the above derivation can be applied further to the subword

Hence, for further steps a subwords of the form

Case 6:

Now we discuss the application of the rules r 6 i , a 7 i and r 20 i where r i : AB → CD, r i : A → a, r i :

The rule r j : A 1 → a can be simulated in the following manner when the subword

Similarly, r 20 l -rule can simulate r l : A 1 → λ as in [START_REF] Cojocaru | On some derivation mechanisms and the complexity of their Szilard languages[END_REF]. Moreover, the subwords A 1 [r k ] becomes inactive. But there exist insertion rules which can be applied to [r m ]A 1 k j a and [r m ]A 1 k l λ . It has been discussed in Case 7.

Case 7:

The application of a 7 j -rule and r 20 l -rule is followed by the application of the insertion rules with label r j m+1 and r l m+2 to proceed further. Note that no other insertion rule is applicable to the subwords

Xw

In fact, the r j m+1 and r l m+2 -rule are applicable to words Xw 1 [r m ]A 1 k j a w 2 Y and Xw 1 [r m ]A 1 k l λ w 2 Y , respectively where w 1 , w 2 ∈ V + 1 . Also, no insertion rules are applicable to the subwords [r m ]A 1 k j a and [r m ]A 1 k l λ further. From the above discussions we can say that whenever the non-terminal rules are applied, corresponding labelled insertion rules in (R 11 ) and (R 12 ) can simulate it properly in the word XwY, w ∈ V + 1 . Also, the application of the rules in (R 11 ), (R 12 ), (R 13 ) and (R 14 ) , inactivates the subwords

and A[r i ] to be reactivated again by application of the rules in (R 15 ). Moreover, these subwords become active again only during the simulation of leftmost derivations by the rules in (R 13 ), (R 14 ) and (R 15 ). Hence, no extra derivation is possible in Γ. Now at first we prove the inclusion L(G) ⊆ h(SZIN S 5 (Γ)). Let w ∈ L(G). If the insertion rules in Γ are applied in the same order as in a derivation of G obtaining w, a string over V 1 is obtained where no insertion rule can be applied further. Also, if the labels of the applied rules are concatenated, a string over Lab is obtained. If the morphism h is applied to the string over Lab, then the terminal string w ∈ L(G) is obtained. Hence, L = L(G) ⊆ h(SZIN S 5 (Γ)). Now we prove the inclusion h(SZIN S 5 (Γ)) ⊆ L(G), i.e., no word except the elements of L(G) can be obtained as homomorphic image of the Szilard language of insertion grammar of weight 5.

Let x ∈ h(SZIN S 5 (Γ)). Then there exists a x 1 ∈ SZIN S 5 (Γ) such that x = h(x 1 ). The string x 1 is obtained when the labels of the rules in a terminal derivation of Γ are concatenated. In the string