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Spin Foam Vertex Amplitudes on Quantum Computer
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Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Cracow, Poland

Vertex amplitudes are elementary contributions to the transition amplitudes in

the spin foam models of quantum gravity. The purpose of this article is make

the first step towards computing vertex amplitudes with the use of quantum al-

gorithms. In our studies we are focused on a vertex amplitude of 3+1 D gravity,

associated with a pentagram spin-network. Furthermore, all spin labels of the spin

network are assumed to be equal j = 1/2, which is crucial for the introduction

of the intertwiner qubits. A procedure of determining modulus squares of vertex

amplitudes on universal quantum computers is proposed. Utility of the approach

is tested with the use of: IBM’s ibmqx4 5-qubit quantum computer, simulator of

quantum computer provided by the same company and QX quantum computer

simulator. Finally, values of the vertex probability are determined employing both

the QX and the IBM simulators with 20-qubit quantum register and compared with

analytical predictions.
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I. INTRODUCTION

The basic objective of theories of quantum gravity is to calculate transition amplitudes

between configurations of the gravitational field. The most straightforward approach to

the problem is provided by the Feynman’s path integral

〈Ψf |Ψi〉 =

∫
D[g]D[φ]e

i
} (SG+Sφ), (1)

where SG and Sφ are the gravitational and matter actions respectively. While the formula

(1) is easy to write it is not very practical for the case of continuous gravitational field,

characterized by infinite number of degrees of freedom. One of the approaches to de-

termine (1) utilizes discretization of the gravitational field associated with some cut-off

scale. The expectation is that continuous limit of such discretized theory can be recovered

at the second order phase transition [1, 2]. The essential step in this challenge is to gener-

ate different discrete space-time configurations (triangulations) contributing to the path

integral (1). In Causal Dynamical Triangulations (CDT) [1] which is one of the approaches

to the problem, Markov chain of elementary moves is used to explore different triangu-

lations between initial and final state. In practice, the Markov chain is implemented after

performing Wick rotation in Eq. 1. In the last over twenty years, the procedure has been

extensively studied running computer simulations [3]. However, in 1+1 D case analytical

methods of generating allowed triangulations are also available. In particular, it has been

shown that Feynman graphs of auxiliary random matrix theories generate graphs dual to

the triangulations [4]. An advantage the method is that in the large N (color) limit of such

theories symmetry factors associated with given triangulations can be recovered [5].

Another path to the problem of determining (1) is provided by the Loop Quantum

Gravity (LQG) [6, 7] approach to the Planck scale physics. Here, discreteness of space is

not due to the applied by hand cut-off but is a consequence of the procedure of quantiza-

tion. Accordingly, the spatial configuration of the gravitational is encoded in the so-called

spin network states [8]. In consequence, the transition amplitude (1) is calculated between

two spin network states. The geometric structures (2-complexes) representing the path

integral are called Spin Foams [9, 10]. The elementary processes contributing to the spin
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foam amplitudes are associated with vertices of the spin foams and are called vertex am-

plitudes [11, 12]. The employed terminology of spin networks and spin foams in clarified

in Fig. 1 on example of 2+1 D gravity.

FIG. 1. Pictorial representation of a simple spin foam associated with 2+1 D gravity. The plot has

been inspired by Figure 4.2 in Ref. [7].

In Fig. 1 two boundary spin networks with 3-valent nodes are shown. Such nodes

are dual to two-dimensional triangles. In this article we will focus on the 3+1 D case in

which the spin network nodes (related with non-vanishing volumes) are 4-valent. The

nodes are dual to tetrahedra (3-simplex). In the example presented in Fig. 1 the four

edges of the 2-complex meet at the vertex. However, in the 3+1 D case the valence of the

vertex is higher and equal 5. For the purpose of this article it is crucial to note that such 5-

valent vertices can be enclosed by a boundary represented by a spin network containing

five nodes. Each of the node is placed on one of the five edges entering the vertex. The

boundary has topology of a three-sphere, S3. This is higher dimensional extension of the

2+1 D case, where a vertex can be enclosed by the two-sphere, S2.

In analogy to the random matrix theories in case of the 2D triangulations, the spin

foams (2-coplexes) can also be obtained as Feynman diagrams of some auxiliary field the-
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ory. Namely, the so-called Group Field Theories (GFTs) have been introduced to generate

structure of vertices and edges associated with spin foams [13–15]. In particular, the 3+1

D theory with 5-valent vertices requires GFT with five-order interaction terms, known as

Ooguri’s model [16]. There has recently been made a great progress in the field of GFTs

with many interesting results (see e.g. [17, 18]).

The aim of this article is to investigate a possibility of employing universal quantum

computers to compute vertex amplitudes of 3+1 D spin foams. The idea has been sug-

gested in Ref. [19], however, not investigated there. Here, we make the first attempt to

materialize this concept. In our studies, we consider a special case of spin networks with

spin labels corresponding to fundamental representations of the SU(2) group, for which

intertwiner qubits [19–21] can be introduced. The qubits will be implemented on IBM Q

5-qubit quantum computer (ibmqx4) as well as with the use of quantum computer simu-

lator provided by the same company [22]. In the case of real 5-qubit quantum computer

the qubits are physically realized as superconducting circuits [23] operating at millikelvin

temperatures. Furthermore, the QX quantum computer simulator [24], available on the

Quantum Inspire [25] platform, will be employed.

The studies contribute to our broader research program focused on exploring the pos-

sibility of simulating Planck scale physics with the use of quantum computers. The re-

search is in the spirit of the original Feynman’s idea [26] of performing the so-called exact

simulations of quantum systems with the use of quantum information processing devices.

In our previous articles [21, 27] we have preliminary explored possibility of utilizing Adi-

abatic Quantum Computers [28] to simulate quantum gravitational systems. Here, we

are making first steps towards the application of Universal Quantum Computers [29, 30].

II. INTERTWINER QUBIT

The basic question a skeptic can ask is why it is worth considering quantum com-

puters to study Planck scale physics at all? Can’t we just do it employing classical su-

percomputers as in the case of CDT approach to quantum gravity? Let me answer to
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this questions by giving two arguments. The first concerns the huge dimensionality of

a Hilbert space for many-body quantum system. For a single spin-1/2 (qubit) Hilbert

spaceH1/2 = span{|0〉, |1〉} the dimension is equal 2. However, considering N such spins

(qubits) the resulting Hilbert space is a tensor product of N copies of the qubit Hilbert

space. The dimension of such space grows exponentially with N:

dim(H1/2 ⊗H1/2 ⊗ · · · ⊗ H1/2︸ ︷︷ ︸
N

) = 2N . (2)

This exponential behavior is the main obstacle behind simulating quantum systems on

classical computers. With the present most powerful classical supercomputers we can

simulate quantum systems with N = 64 at most [31]. The difficulty is due to the fact that

quantum operators acting on 2N dimensional Hilbert space are represented by 2N × 2N

matrices. Operating with such matrices for N > 50 is challenging to the currently avail-

able supercomputers. On the other hand, such companies as IBM or Rigetti Computing

are developing quantum chips withN > 100 and certain topologies of couplings between

the qubits. Possibility of simulating quantum systems which are unattainable to classi-

cal supercomputers may, therefore, emerge in the coming decade leading to the so-called

quantum supremacy [32]. See Appendix A for more detailed discussion of the state of the

art of the quantum computing technologies and prospects for the near future. The second

argument concerns quantum speed-up leading to reduction of computational complexity

of some classical problems. Such possibility is provided by certain quantum algorithms

(e.g. Deutsch, Grover, Shor,...) thanks to the so-called quantum parallelism. For more infor-

mation on quantum algorithms please see Appendix B, where elementary introduction to

quantum computing can be found.

Taking the above arguments into account we are convinced that it is justified to ex-

plore the possibility of simulating quantum gravitational physics on quantum comput-

ers. The fundamental question is, however, whether gravitational degrees of freedom

can be expressed with qubits, which are used in the current implementations of quantum

computers1? Fortunately, it has recently been shown that at least in Loop Quantum Grav-

1 In general, quantum variables associated with higher dimensional Hilbert spaces may be considered.
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ity approach to quantum gravity notion of qubit degrees of freedom can be introduced

and is associated with the intertwiner space of a certain class of spin networks (see Refs.

[19–21, 27]).

Let us briefly explain it. Namely, nodes of the spin networks are where Hilbert spaces

associated with the links meet. The gauge invariance (enforced by the Gauss constraint)

implies that the total spin at the node has to be equal zero. The 4-valent nodes are of

special interest since they are associated with the non-vanishing eigenvalues of the vol-

ume operator (see e.g. Ref. [7]). As already mentioned in Introduction, in the picture of

discrete geometry, the 4-valent nodes are dual to tetrahedra. The class of spin networks

that we are focused on here are those with links of the spin networks labelled by funda-

mental representations of the SU(2) group (i.e. the spin labels are equal j = 1/2) and the

nodes are 4-valent. For such spin networks the Hilbert spaces at the nodes are given by

the following tensor products:

H1/2 ⊗H1/2 ⊗H1/2 ⊗H1/2 = 2H0 ⊕ 3H1 ⊕H2. (3)

There Gauss constraint implies that only singlet configurations (H0) are allowed. Because

there are two copies of the spin-zero configurations in the tensor product (3), the so-called

intertwiner Hilbert space is two-dimensional:

dim Inv(H1/2 ⊗H1/2 ⊗H1/2 ⊗H1/2) = 2. (4)

We associate the two-dimensional invariant subspace with the intertwiner qubit |I〉 ∈

H0 ⊕ H0. The 4-valent node (at which the intertwiner qubit is defined) together with

the entering links is dual to the tetrahedron in a way shown in Fig. 2.

The two basis states of the intertwiner qubit |I〉 are basically the two singlets we can

obtain for a system of four spins 1/2. The basis states can be expressed composing familiar
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FIG. 2. A single 4-valent node together with the entering links with spin labels j = 1/2. The inter-

twiner qubit |I〉 is a degree of freedom defined at the node. The node is dual to the tetrahedron

(3-symplex) as represented in the picture.

singlets and triplet states for two spin-1/2 particles:

|S〉 =
1√
2

(|01〉 − |10〉) , (5)

|T+〉 = |00〉, (6)

|T0〉 =
1√
2

(|01〉+ |10〉) , (7)

|T−〉 = |11〉. (8)

Namely, in the s-channel (which is one of the possible superpositions) the intertwiner

qubit basis states can be expressed as follows:

|0s〉 = |S〉 ⊗ |S〉, (9)

|1s〉 =
1√
3

(|T+〉 ⊗ |T−〉+ |T−〉 ⊗ |T+〉 − |T0〉 ⊗ |T0〉) . (10)

The |0s〉 state is simply a tensor product of two singlets for two spin-1/2 particles, while

the state |1s〉 does not have such simple product structure. The states |0s〉 and |1s〉 form

an orthonormal basis of the intertwiner qubit. Worth stressing is that other bases being

linear compositions of |0s〉 and |0s〉 might be considered. In particular, the eigenbasis of

the volume operator turns out to be useful (see Ref. [27]). Here we stick to the s-channel

basis {|0s〉, |1s〉} in which a general intertwiner state (neglecting the total phase) can be
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expressed as

|I〉 = cos(θ/2)|0s〉+ eiφ sin(θ/2)|1s〉, (11)

where θ ∈ [0, π] and φ ∈ [0, 2π) are angles parametrizing the Bloch sphere.

In the context of quantum computations it is crucial to define a quantum algorithm (a

unitary operation ÛI acting on the input state) which will allows us to create the inter-

twiner state (11) from the input state |0000〉, i.e.

|I〉 = ÛI |0000〉. (12)

The general construction of the operator ÛI can be performed applying the procedure

introduced in Ref. [33], and will be discussed in a sequel to this article [34]. Here, for

the purpose of illustration of the method of computing vertex amplitude we will focus

on the special case of the intertwiner states being the first basis state: |I〉 = |0s〉 = |S〉 ⊗

|S〉. The contributing two-particle singlet states can easily be generated as a sequence of

elementary gates used to construct quantum circuits (see also Appendix B):

|S〉 = ĈNOT(Ĥ ⊗ Î)(X̂ ⊗ X̂)|00〉. (13)

Here, the X̂ is the so-called bit-flip (NOT) operator (Pauli σx matrix) which transforms

|0〉 into |1〉 and |1〉 into |0〉 (i.e. X̂|0〉 = |1〉 and X̂|1〉 = |0〉). The Ĥ is the Hadamard

operator defined as Ĥ|0〉 = 1√
2

(|0〉+ |1〉) and Ĥ|1〉 = 1√
2

(|0〉 − |1〉). Finally, the ĈNOT

is the Controlled NOT 2-qubit gate defined as ĈNOT(|a〉 ⊗ |b〉) = |a〉 ⊗ |a ⊕ b〉, where

a, b ∈ {0, 1} and⊕ is the XOR (exclusive or) logical operation, such that 0⊕0 = 0, 0⊕1 = 1,

1⊕ 0 = 1 and 1⊕ 1 = 0. In consequence, the |0s〉 basis state can be expressed as follows:

|0s〉 = (ĈNOT⊗ ĈNOT)(Ĥ ⊗ Î⊗ Ĥ ⊗ Î)(X̂ ⊗ X̂ ⊗ X̂ ⊗ X̂)|0000〉

=
1

2
(|0101〉+ |1010〉 − |0110〉 − |1001〉) . (14)

In Fig. 3 a quantum circuit generating (and measuring) the intertwiner state |0s〉 has

been presented. The final state can be written as a superposition of 16 basis states in the

product space of four qubit Hilbert spaces:

|Ψ〉 =
∑

ijkl∈{0,1}

aijkl|ijkl〉, (15)
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FIG. 3. Quantum circuit used to generate |0s〉 state from the initial state |0000〉. The (green) boxes

with letter X represent the bit-flip gates, the (blue) boxes with letter H represents the Hadamard

gates, while the next operations from the left are the CNOT 2-qubit gates. Finally, the (pink) boxes

on the right represent measurements performed at every of the four involved qubits.

where the normalization condition implies that
∑

ijkl∈{0,1} |aijkl|2 = 1.

We have executed the quantum algorithm (14) with the use of both the IBM simulator

of quantum computer and the real IBM Q 5-qubit quantum chip ibmqx4. In both cases the

algorithm has been executed 1024 times. Moreover, the algorithm (14) has also been exe-

cuted (1024 times) on the QX quantum computer simulator. Results of the measurements

of probabilities P (i) = |ai|2 are summarized in Table I.

Clearly, the results obtained from the simulator matches well with the values predicted

in Eq. 14. Increasing the number of shots an accuracy of the results can be improved. In

fact, because the number of shots in a single round was limited (either to 8192 in case

of the IBM simulator or to 1024 in case of the QX simulator) the computational rounds

had to be repeated in order to achieve better convergence to theoretical predictions. Fur-

thermore, the results were also verified with use of two other publicly available quantum

simulators of quantum circuits, i.e. Quirk [35] and Q-Kit [36].

On the other hand, the errors of the ibmqx4 quantum processor are more significant,

leading even to 10% contribution from the undesired states, such as |1101〉 and |1110〉.
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No. Probability Theory IBM simulator IBM Q ibmqx4 QX simulator

1 |a0000|2 0 0 0.014 0

2 |a0001|2 0 0 0.058 0

3 |a0010|2 0 0 0.050 0

4 |a0011|2 0 0 0.004 0

5 |a0100|2 0 0 0.023 0

6 |a0101|2 0.25 0.264 0.109 0.252

7 |a0110|2 0.25 0.232 0.091 0.241

8 |a0111|2 0 0 0.009 0

9 |a1000|2 0 0 0.034 0

10 |a1001|2 0.25 0.248 0.159 0.230

11 |a1010|2 0.25 0.256 0.158 0.276

12 |a1011|2 0 0 0.012 0

13 |a1100|2 0 0 0.034 0

14 |a1101|2 0 0 0.132 0

15 |a1110|2 0 0 0.110 0

16 |a1111|2 0 0 0.003 0

TABLE I. Results of measurements of P (i) = |ai|2 for the quantum circuit presented in Fig. 3.

The errors have two main sources. The first are instrumental errors associated with both

uncertainty of gates and the uncertainty of readouts. For the IBM Q ibmqx4 quantum

processor the single-qubit gate errors are at the level of 0.001 and the errors of readouts

are reaching even 0.086 for some of the qubits. The two-qubit gates are less accurate than

the single quibit gates, with the errors approximately equal to 0.035. The concrete values

for every qubit and pairs of qubits are provided via the IBM website [22]. The second

source of error is due to statistical nature of quantum mechanics and the limited number

of measurements. For a single qubit, the problem of estimating corresponding error is

equivalent to the 1D random walk, which leads to uncertainty of the estimation of proba-
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bility equal s
n

=
√

p(1−p)
n

, where n is the number of measurements and p is a probability of

one of the two basis states. As an example, for n = 1024 and p = 1/2 we obtain s
n
≈ 0.016.

In the considered case of 16 basis states the uncertainty is expected to be lower roughly

by the factor 0.5 2, leading to an approximate error equal 0.008 (the value is smaller be-

cause the average number of counts per basis states decreased). Summing up both the

instrumental error and the uncertainty of measurement, we may estimate the cumulative

uncertainty to be at the level of∼ 15%, which is in agreement with the experimental data.

With the current setup, the errors can be slightly reduced by increasing the number of

measurements and by optimization of the quantum circuit, e.g. by placing (less noisy)

single-qubit gates after (more noisy) two-qubit gates. In the further studies, the circuits

should be also equipped with quantum error correction algorithms. This will, however,

require additional qubits to be involved. Moreover, reduction of the instrumental error

will be a crucial challenge for the future utility of the quantum processors.

Let us end this section with quantitative comparison of the results from the Table I with

the use of classical Fidelity (Bhattacharyya distance) F (q, p) :=
∑

i

√
piqi, where {pi} and

{qi} are two sets of probabilities. Comparison of the theoretical values with the results

obtained from the IBM Simulator gives us F ≈ 99, 9%. Furthermore, comparing the theo-

retical values with the results of IBM Q ibmqx4 quantum computer we find F ≈ 71, 4%.

However, worth keeping in mind is that the employed Fidelity function concerns classical

probabilities and further analysis of the quantum state obtained from the quantum com-

puter should include also analysis of the quantum Fidelity F (ρ̂1, ρ̂2) := tr
√√

ρ̂1ρ̂2

√
ρ̂1,

where ρ̂1 and ρ̂2 are density matrices of the compared states [37]. For this purpose (i.e.

reconstruction of the density matrix) full tomography of the obtained quantum state has

to be performed.

2 In order to prove it let us consider an asymmetric 1D random walk with probabilities p = 1
16 (one of the

basis states) and q = 1− p = 15
16 (rest of the 15 basis sates), for which s

n =
√

1
16

15
16

1
n ≈

1
4
√
n

.
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III. VERTEX AMPLITUDE

Gravity is a theory of constraints. Specifically, in LQG three types of constraints are

involved. The first is the mentioned Gauss constraint, which has already been imposed

at the stage of constructing spin networks states. The second is the spatial diffeomor-

phism constraint which is satisfied by introducing equivalence relation between all spin-

networks characterized by the same topology. The third is the so-called scalar or Hamil-

tonian constraint, which encodes temporal dynamics and is the most difficult to satisfy. In

quantum theory, this constraint takes a form of an operator. Let us denote this operator as

Ĉ. Following the Dirac procedure for constrained quantum systems, the physical states

are those belonging to the kernel of the constraints, i.e. Ĉ|Ψ〉 = 0. Due to the complicated

form of the gravitational scalar constraint (see e.g. [6]), finding the physical states is in

general a difficult task. However, for certain simplified scalar constraints, such as for the

symmetry reduced cosmological models, the physical states are possible to extract. Fur-

thermore, it has recently been proposed in Ref. [21] that the problem of solving simple

constraints can be implemented on Adiabatic Quantum Computers.

Another approach to the problem of constraints is to consider a projection operator

P̂ := lim
T→∞

1

2T

∫ T

−T
dτeiτĈ , (16)

which projects kinematical states onto physical subspace. In particular, the formula (16) is

valid for Ĉ characterized by discrete spectrum of eigenvalues. Specifically, the projection

operator (16) can be used to evaluate transition amplitude between any two kinematical

states |x〉 and |x′〉:

W (x, x′) = 〈x′|P̂ |x〉. (17)

The state |x〉 might correspond to the initial and |x′〉 to the final boundary spin network

states (confront with Fig. 1). While the notion of the boundary initial and final hypersur-

faces is well defined in the case with preferred time foliation, the general relativistic case

deserves generalization of the transition amplitude to the form being independent of the

background time variable. This leads to the concept of boundary formulation [38] of tran-

sition amplitudes in which the transition amplitude is a function of boundary state only.
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Taking the particular boundary physical spin network state |Ψ〉 the transition amplitude

can be, therefore, written as

W (Ψ) = 〈W |Ψ〉, (18)

where the state |Ψ〉 corresponds to representation in which the amplitude is evaluated.

The object of our interest in this article, namely the vertex amplitude is the amplitude

(18) of boundary enclosing a single vertex. As we have already explained in Introduction,

the spin network enclosing the single vertex has pentagram structure and can be written

as:

〈W |Ψ〉 = A(I1, I2, I3, I4, I5). (19)

The associated spin network is shown in Fig. 4.

FIG. 4. Pentagram spin network corresponding to boundary of a single vertex of spin foam. The

boundary geometry has topology of three-sphere.

The pentagram spin network state is a tensor product of the five intertwiner qubits:

|Ψ〉 =
5⊗

n=1

|In〉. (20)

Since in the vertex amplitude (18) physical states have to be considered the intertwiner

qubits |In〉 have to be selected such that the state is annihilated by the scalar constraint:
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Ĉ|Ψ〉 = 0. Due to the difficulty of the issue for general form of the scalar constraint oper-

ator, we de not address the problem of selecting |Ψ〉 states here. As we have mentioned,

for either symmetry reduced or simplified scalar constraints the physical states can be

identified with the use of existing methods.

Another issue is the choice of the state |W 〉. Usually the representation of holonomies

associated with the links of the spin networks are considered. Here, following Ref. [19]

we will evaluate the boundary spin network state in the state:

|W 〉 =
10⊗
l=1

|El〉, (21)

where

|El〉 =
1√
2

(|01〉 − |10〉) (22)

are Bell states associated with the links. Such choice is interesting since the Bell states

introduce entanglement between faces of the adjacent tetrahedra. Such a way of “glu-

ing” tetrahedra by quantum entanglement has been recently studied in Ref. [39], where

it has been shown that the |W 〉 state is a superposition of spin network sates (with {15j}

symbols as Clebsch-Gordan coefficients). Since the spin network state |Ψ〉 is disentan-

gled one can also interpret 〈W |Ψ〉 as an amplitude of transition between disentangled

and strongly entangled piece of quantum geometry. Going further, possibly the quan-

tum entanglement is the key ingredient which merge the chunks of space associated the

nodes of spin networks into a geometric structure. This reasoning is consistent with the

recent advances in the domain of entanglement/gravity duality, example of which is pro-

vided by the AdS/CFT correspondence [40], ER=EPR conjecture [41] and considerations

of holographic entanglement entropy [42–44]. Interestingly, it has been recently argued

that indeed the spin networks may represent structure of quantum entanglement [45],

indicating for relation between spin networks and tensor networks [46]. This is actually

not such surprising since the the holonomies associated with links of the spin-networks

can be perceived as “mediators” of entanglement.

The holonomies are parallel transport maps between two vector (Hilbert) spaces at the

ends of a curve e(λ), where the affine parameter λ ∈ [0, 1]. Let us denote the initial point
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as a = e(0) and the final one as b = e(1). Then, holonomy he is a map between two Hilbert

spacesH(a) andH(b) associated with two (in general) different spatial locations:

he : H(a) → H(b). (23)

In the case considered in this article, the Hilbert spaces are related with the elementary

qubitsH1/2 “living” at the ends of the links of the spin-networks (keep in mind that these

are not the intertwiner qubits but the elementary qubits our of which the intertwiner

qubits are built). As an example of the holonomy of the Ashtekar connection A consid-

ered in LQG (i.e. he := P exp
∫
e
A, see e.g. Ref. [6]) let us consider

hx(α) := eiσxα = I cos(α) + iσx sin(α), (24)

where α is an angle variable and σx is the Pauli matrix. The holonomies as the one given

by Eq. 24 are associated with homogeneous models and are consider in Loop Quantum

Cosmology [47] and Spinfoam Cosmology [48, 49]. The special case is when α = π/2 for

which hx(π/2) = iσx, which written as an operator

ĥx(π/2) = iX̂, (25)

where X̂ is the bit-flip operator introduced earlier. Therefore, having e.g. the elementary

qubit |0〉 ∈ H(a)
1/2 at point a, the operator (25) maps this state into ĥx(π/2)|0〉 = iX̂|0〉 =

i|1〉 ∈ H(b)
1/2 at the point b 3. This naturally introduces relation between the quantum states

at distant points a and b, which possibly can be associated with entanglement. In order

to illustrate the “entanglement” let us consider a superposition |Ψa〉 = 1√
2
(|0〉 + |1〉) ∈

H(a)
1/2 which is mapped into |Ψb〉 = i√

2
(|0〉 + |1〉) ∈ H(b)

1/2. If the two states at a and b

would be disentangled then performing measurement on the quantum state at a would

not influence the quantum state at b. However, once the measurement is performed at

the state |Ψa〉 reducing the state to for instance |0〉, the state at b has to be consequently

reduced to i|1〉. The same works in the reverse direction. Worth mentioning is that the

exemplary correlation via holonomies is consistent with the entanglement resulting from

3 Performing an inverse mapping ĥ†x(π/2) we can map the state i|1〉 back to ĥ†x(π/2)i|1〉 = −iX̂i|1〉 = |0〉.
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the Bell state |El〉 (22), which we associated with the links. This gives further support

to to the choice of the representation state |W 〉 given by Eq. 21. However, the issue of

relation between holonomies and entanglement requires further more detailed studies,

also in the spirit of the recent proposal of Entanglement holonomies [50]. In particular, it

has to be confirmed that the correlation introduced via holonomies is the true quantum

entanglement violating Bell inequalities.

IV. A QUANTUM ALGORITHM

Having the vertex amplitude (19) defined we may proceed to the task of determining

|〈W |Ψ〉|2 with the use of quantum computers. Here, we will show how to obtain modulus

the amplitude modulus square (the probability) while extraction of the phase factor will

be a subject of our further investigations.

Let us begin with preparation of a suitable quantum register. Because each of the

intertwiner qubits is a superposition of four elementary qubits, evaluation of the spin

network with N nodes requires 4N qubits in the quantum register4. The corresponding

Hilbert space is spanned by 24N basis states |i〉, where i ∈
{

0, . . . , 24N − 1
}

. The initial

state for the quantum algorithm is:

|0〉 = |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
4N

. (26)

Now, we have to find unitary operators ÛΨ and ÛW defined such that

|Ψ〉 = ÛΨ|0〉, (27)

|W 〉 = ÛW |0〉, (28)

where |0〉 is given by Eq. 26. Utilizing the operators ÛΨ and ÛW we introduce an oper-

ator Û := Û †W ÛΨ. Action of this operator on the initial state (26) can be expressed as a

superposition of the basis states with some amplitudes ai ∈ C:

Û |0〉 =
24N−1∑
i=0

ai|i〉. (29)

4 This statement is made under assumption that no ancilla qubits are required.
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It is now easy to show that the a0 coefficient in this superposition is the transition ampli-

tude we are looking for. Namely:

a0 = 〈0|Û |0〉 = 〈0|Û †W ÛΨ|0〉 = 〈W |Ψ〉. (30)

By performing measurements on the final state we find the probabilities P (i) = |ai|2. The

first of these probabilities is the modulus square of the vertex amplitude.

Before we will proceed to the discussion of the pentagram spin network associated

with the vertex amplitude let us first demonstrate the algorithm on two simpler examples

of spin networks with one and two nodes.

A. Example 1 - single tetrahedron

As a first example let us consider the case of a single-node spin network presented in

Fig. 5. Here, the intertwiner qubit is in the |Ψ〉 = |0s〉 state composed out of the four

FIG. 5. A single-node spin network associated with identification of the pairs of face of a tetrahe-

dron.

elementary qubits according to Eq. 14. The representation state |W 〉 is a tensor product

of two Bell states (22). There are basically two different choices of pairing faces of the

tetrahedron. The first choice is according to the pairing of qubits entering to the two-

qubit singlets |S〉 out of which the |0s〉 state is built. The second choice is by linking

qubits contributing to the two different singlets. The first choice is trivial since in that

case ÛW = ÛΨ and in consequence the amplitude 〈W |Ψ〉 = 〈0|Û †W ÛΨ|0〉 = 〈0|0〉 = 1.
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Therefore, we will consider the second case for which the quantum circuit associated

with the Û = Û †W ÛΨ operator is presented in Fig. II.

FIG. 6. Quantum circuit used to evaluate |〈W |Ψ〉|2 the boundary transition amplitude of the spin

network presented in Fig. 5.

The simulations were performed on both the IBM simulator and the QX simulator,

with 1024 shots in each computational round. The rounds have been repeated 10 times.

The results obtained are collected in Table II.

Averaging over the ten rounds the following values of modulus square of the ampli-

tudes are obtained:

|〈W |Ψ〉|2 = |a0|2 =

 0.252 ± 0.009 for QX simulator

0.256 ± 0.014 for IBM simulator
. (31)

The results are consistent with the theoretically expected value |a0|2 = 0.25. Finally, worth

mentioning is that the algorithm cannot directly be executed using the IBM Q 5-qubit

quantum chip due to the topological constraints of the structure of coupling between

qubits. Additional ancilla qubits would have to be involved for this purpose.
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No. P0 (QX) Hits of |0〉 (QX) P0 (IBM) Hits of |0〉 (IBM)

1 0.255859375 262 0.263671875 270

2 0.248046875 254 0.2529296875 259

3 0.267578125 274 0.2578125 264

4 0.2568359375 263 0.27734375 284

5 0.2568359375 263 0.232421875 238

6 0.25 256 0.263671875 270

7 0.2578125 264 0.25 256

8 0.23828125 244 0.244140625 250

9 0.240234375 246 0.2607421875 267

10 0.25 256 0.2763671875 283

TABLE II. Results of measurements ofP (0) = |a0|2 for the quantum circuit presented in Fig. , using

both the IBM simulator and the QX simulator. Each measurement corresponds to the number of

shots equal 1024.

B. Example 2 - two tetrahedra

The second example concerns a bit more complex situation with two-node spin net-

work presented in Fig. 7. Here, the representation state |W 〉 similarly to the previous ex-

ample is associated with the Bell sates (22) entangling faces of the two tetrahedra one into

anther. The corresponding choice of the quantum circuit used the evaluate the boundary

amplitude is presented in Fig. III.

The simulations were performed on both the IBM simulator and the QX simulator,

with 1024 shots in each round. As in the previous example, the computational rounds

have been repeated 10 times. The results obtained are collected in Table III.

Performing averaging over the computational rounds the following values of |〈W |Ψ〉|2

are obtained:

|〈W |Ψ〉|2 = |a0|2 =

 0.063 ± 0.009 for QX simulator

0.060 ± 0.005 for IBM simulator
. (32)
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FIG. 7. A two-node spin network associated with two tetrahedra.

FIG. 8. Quantum circuit used to evaluate |〈W |Ψ〉|2 the boundary transition amplitude of the spin

network presented in Fig. 7. The qubits {0, 1, 2, 3} belong to the one node while the qubits

{4, 5, 6, 7} belong to the another. The links are between the pairs of qubits: {0, 4}, {1, 5}, {2, 6}

and {3, 7}.

The results are in agreement with the theoretically expected value |〈W |Ψ〉|2 = |a0|2 =

0.625 (obtained using Quirk [35]).
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No. P0 (QX) Hits of |0〉 (QX) P0 (IBM) Hits of |0〉 (IBM)

1 0.0595703125 61 0.0556640625 57

2 0.0595703125 61 0.06640625 68

3 0.06640625 68 0.060546875 62

4 0.0615234375 63 0.064453125 66

5 0.080078125 82 0.0634765625 65

6 0.0498046875 51 0.0595703125 61

7 0.052734375 54 0.0615234375 63

8 0.072265625 74 0.0537109375 55

9 0.0673828125 69 0.052734375 54

10 0.0634765625 65 0.0654296875 67

TABLE III. Results of measurements of P (0) = |a0|2 for the quantum circuit presented in Fig. using

both the IBM simulator and the QX simulator. Each measurement corresponds to the number of

shots equal 1024.

V. EVALUATION OF VERTEX AMPLITUDE

We are now ready to address the task of determining the vertex amplitude (19) associ-

ated with the boundary spin network state:

|Ψ〉 = |0s〉 ⊗ |0s〉 ⊗ |0s〉 ⊗ |0s〉 ⊗ |0s〉. (33)

The other possible choices of the spin network state will discussed in our further work

[34].

The |W 〉 is given by Eq. 21, representing entanglement between faces of tetrahedra be-

ing connected by the links of the spin network. Due to anti-symmetricity of the Bell states

(22) for the 10 links under consideration we have in general 210 = 1024 ways to order the

states between the nodes of the spin network. Here, in order to not distinguish any of the

nodes, the configuration in which every node is entangled with two other nodes by the

state |El〉 = 1√
2

(|01〉 − |10〉) and another two nodes by the state eiπ|El〉 = 1√
2

(|10〉 − |01〉)
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is considered. The resulting quantum circuit corresponding to the operator Û = Û †W ÛΨ,

together with the measurements necessary to find |a0|2 = |〈W |Ψ〉|2 is shown in Fig. 9.

FIG. 9. Quantum circuit used to determine |A(0s, 0s, 0s, 0s, 0s)|2. Nodes of the spin network

correspond to the following sets of qubits: {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15},

{16, 17, 18, 19}. The links are between the pairs of qubits: {0, 19}, {1, 14}, {2, 9}, {3, 4}, {5, 18},

{6, 13}, {7, 8}, {10, 17}, {11, 12} and {15, 16}.

The quantum circuit employs 20-qubit quantum register with the initial state:

|0〉 =
19⊗
n=0

|0〉. (34)

The algorithm introduced in Sec. IV requires finding amplitude of the initial state (34)

in the final state. One has to keep in mind that the Hilbert space of the 20-qubit system is

spanned by over one million basis states: 220 = 1048576. Therefore, selecting amplitude

of one of the basis states (i.e. |0〉) is not an easy task.

The first attempt to determine the value of |〈W |Ψ〉|2 = |A(0s, 0s, 0s, 0s, 0s)|2 has been

made with us of the IBM simulator of quantum computer. Ten rounds of simulation,

each of 1024 shots, have been performed. However, no single event with the |0〉 state
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in the final state has been observed. Assuming that the probability is evenly distributed

between the basis states the probability 1/220 ≈ 10−6 per basis states can be expected.

With the 10240 measurements made, this gives roughly 1% chance to observe the state.

The second attempt to determine value of the vertex amplitude has been made with the

use of the QX quantum computer simulator. Similarly to the simulations performed on

the IBM simulator, ten computational rounds, each of 1024 shots, have been performed.

In this case, the events with |0〉 have been observed and are collected in Table IV.

No. P0 Hits of |0〉

1 0.0009765625 1

2 0.0029296875 3

3 0 0

4 0.0009765625 1

5 0.001953125 2

6 0.0009765625 1

7 0.001953125 2

8 0.0009765625 1

9 0.0029296875 3

10 0.0009765625 1

TABLE IV. Results of measurements of P (0) = |a0|2 for the quantum circuit presented in Fig. 9

using the QX simulator. Each measurement corresponds to the number of shots equal 1024.

By averaging the results from Table IV, the following value of the modulus square of

the vertex amplitude 〈W |Ψ〉 can be found:

|〈W |Ψ〉|2 = |A(0s, 0s, 0s, 0s, 0s)|2 = P0 = 0.00147± 0.00095. (35)

The results obtained from the IBM and QX simulators are contradictory. However, the

QX simulator result (35) is much closer to the theoretically expected value. Namely, the

spin foam amplitude considered in this section can be determined using recoupling the-

ory for SU(2) group. Following the discussion in Ref. [39] on can find that the amplitude
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(19) is given by the {15j} symbol. Employing definition of the symbol (see e.g. Eq. 17

in Ref. [51]) for all the spin labels jab = 1/2 and the intertwiners ia = 0 (which corre-

spond to the |0s〉 states), where a, b ∈ {1, 2, 3, 4, 5}, one can find that {15j} = 0.0625. In

conserquence |〈W |Ψ〉|2 = |{15j}|2 = 0.06252 = 0.00390625. The difference between this

prediction and the result of simulation (35) goes beyond the statistical error and, there-

fore, one can expect that systematic error was involved. Resolution of this issue requires

further investigation, especially analysis of the sampling methods used in the quantum

simulator. The same concerns the IBM quantum simulator where discrepancy between

the theoretically predicted value and the results of measurements is more serious.

Taking the above into account, a comment on utility of the applied methodology is

desirable. First of all, we already used the fact that the vertex amplitude discussed in this

section can easily be evaluated without the need of quantum circuits. The vertex ampli-

tude, associated with the pentagram spin network is given by the {15j} symbol. Recently,

significant progress has been made in the development of numerical methods of evalu-

ation of spin foam vertex amplitudes [52–54]. However, there are still some obstacles,

e.g. oscillating nature of the spin foam amplitudes, which motivate search for alternative

computational methods.

The aim of our study was to provide the proof of the concept of applicability of quan-

tum circuits to determine quantities being of relevance in Loop Quantum Gravity and

Spin Foam approaches. We have shown that indeed, despite of the current hardware

limitations (see Appendix A), interesting quantities can already be evaluated on quan-

tum computer simulators. As we demonstrated, 2 qubits per link of a spin network are

needed for this purpose. Therefore, in case of the 5-node pentargam spin network (with

10 links) studied here, 20 qubit register was used. Utilizing the available commercial

quantum simulators (e.g. 37 qubit QX multi-node simulator SurfSara [25]), amplitudes of

spin networks with up to 9 4-valent nodes can potentially be computed.

Our plant is to perform such simulations in our further studies. Furthermore, our goal

is to extend computational capabilities to 40 qubits using academic and commercial su-

percomputing resources. This will allow to simulate spin networks with 10 nodes. Worth



25

mention is that while scaling the system size is straightforward for the method based on

quantum circuits, the application of the standard methods based on recoupling theory

may turn out to be inefficient. This will become even more evident when advantageous

quantum computers will become available (as expected) in the second half on the coming

decade (see Appendix A), providing 100 and more fault tolerant qubits. Until that time

there is still a lot of potential for improving simulator-based computations and develop-

ment of methods which will ultimately be applied on real quantum processors.

Furthermore, the quantum simulations will not only allow to study amplitudes but

also other relevant quantities. In particular, analysis of quantum fluctuations and quan-

tum entanglement between subsystems will be possible to investigate. One of the open

problems which will become possible to study by extending the methodology introduced

here is the entanglement entropy between subsystems of spin networks and the issue of

area law for entropy of entanglement.

VI. SUMMARY

The purpose of this article was to explore the possibility of computing vertex ampli-

tudes in the spin foam models of quantum gravity with the use of quantum algorithms.

The notion of intertwiner qubit being crucial to implement the vertex amplitudes on quan-

tum computers has been pedagogically introduced. It has been shown how one of the

two basis states of the intertwiner qubit can be implemented with the use available IBM

5-qubit quantum computer. To the best of our knowledge it was the first time ever a

quantum gravitational quantity has been simulated on superconducting quantum chip.

Thereafter, a quantum algorithm allowing to determine modulus square of spin foam

vertex amplitude (|〈W |Ψ〉|2) has been introduced. Utility of the algorithm has been

demonstrated on examples of single-node and two-node spin networks. For the two

cases, probabilities of the associated boundary states have been determined with the use

of IBM and QX quantum computer simulators. Finally, the algorithm has been applied

to the case of pentagram spin network, representing boundary of the spin foam vertex.
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Value of the modulus square of the amplitude in a certain quantum state has been mea-

sured with the use of 20-qubit register of the IBM and QX quantum simulators. While

the QX results were close to the analytically predicted value, the outcomes of the IBM

simulator failed to reproduce theoretical predictions.

The presented results are the first step towards simulating spin foam models (asso-

ciated with Loop Quantum Gravity and Group Field Theories) with the use of univer-

sal quantum computers. In particular, the vertex amplitudes can be applied as elemen-

tary building blocks in construction of more complex transition amplitudes. The aim of

the developed direction is to achieve possibility of studying collective behavior of the

Planck scale systems composed of huge number of elementary constituents (“atoms of

space/spacetime”). Exploration of the many-body Planck scale quantum systems [55]

may allow to extract continuous and semi-classical limits from the dynamics of the “fun-

damental” degrees of freedom. This is crucial from the perspective of making contact

between Planck scale physics and empirical sciences.

Worth stressing is that the results presented in this article are rather preliminary and

only set up the stage for further more detailed studies. In particular, the following points

have to be addressed:

• Introduction of a quantum circuit for the general intertwiner qubit |I〉 (Eq. 11).

• Determination of the phase of vertex amplitude with the use of quantum algorithms

(e.g. Quantum Phase Estimation Algorithm [56]).

• Investigation of different types of the state |W 〉.

• Analysis of spin networks with up to 10 nodes on quantum computers simulators.

• A possibility of solving quantum constraints with the use of quantum circuits.

• Application to Spinfoam cosmology [48, 49].

• Investigation of the architectures of forthcoming quantum processors (with theN >

100 number of qubits) in terms of application to spin foam transition amplitudes.
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Some of the tasks will be subject of a sequel to this article [34].

ACKNOWLEDGEMENTS

JM is supported by the Sonata Bis Grant DEC-2017/26/E/ST2/00763 of the National
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APPENDIX A - QUANTUM COMPUTING TECHNOLOGIES

The domain of quantum computing is currently experiencing an unprecedented speedup.

The recent progress is mainly due to advances in development of the superconducting

qubits [23]. In particular, utilizing the superconducting circuits, the IBM company has

developed 5 and 20 qubit (noisy) quantum computers, which are accessible in cloud [22].

Furthermore, a prototype of 50 qubit quantum computer by this company has been built

and is currently in the phase of tests. The company has recently also unveiled its first

commercial 20-qubit quantum computer IBM Q System One. This is intended to be the

first ever commercial universal quantum computer, and the second commercially avail-

able quantum computer after the adiabatic quantum computer (quantum annealer [57])

provided by D-Wave Systems [58]. The latests D-Wave 2000Q annealer uses a quantum

chip with 2048 superconducting qubits, connected in the form of the so-called chimera

graph. Another important player in the quantum race is Intel, which recently developed

its 49-qubit superconducting quantum chip named Tangle Lake [59]. However, outside

of the superconducting qubits, the company in collaboration with QuTech [60] advanced

centre for Quantum Computing and Quantum Internet is also developing an approach

to quantum computing based on electron’s spin based qubits, stored in quantum dots.

Further advances in the area of superconducting quantum circuits come from Google

[61] and Rigetti Computing [62]. The first company has recently announced their 72-

qubit quantum chip, while the second one is currently developing its 128-qubit universal

quantum chip. On the other hand, the world’s leading software company - Microsoft
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has focused its approach to quantum computing on topological qubits through Majorana

fermions [63]. The alternative to superconducting qubits is also developed by IonQ Inc.

startup, which is developing a trapped ion quantum computer based on ytterbium atoms

[64]. The most recent quantum computer by this company allows to operate on 79 qubits,

which is the current world record. The above are only the most sound examples of the

advancement which has been made in the recent years in the area of hardware dedicated

to quantum computing. There are still many challenges to be addressed, including re-

duction of the gate errors and increase of fidelity of the quantum states. However, even

in pessimistic scenarios, the current momentum of the quantum computing technologies

will undoubtedly lead to emergence of reliable and advantageous quantum machines

(which cannot be emulated on classical supercomputers) in the coming decade. There

are no fundamental physical reasons identified, which could stop the progress. However,

the rate of the progress will depend on whether commercial applications of quantum

computing technologies will emerge in the coming 5 years, stimulating further funding

of research and development. See e.g. Ref. [65] for more detailed discussion of this issue.

Major players in the field, with large financial resources, such as IBM or governments

may sustain the progress independently on short-term returns (which is not the case for

start-ups). This may allow for a stable long term progress. In particular, the IBM has

recently announced a possibility of doubling a measure called Quantum Volume [66] ev-

ery year [67]. The Quantum Volume VQ is basically a maximal size of a certain random

circuit, with equal width and depth, which can be successfully implemented on a given

quantum computer. The current (2019) IBM’s value of VQ is 16 and corresponds to the

IBM Q System One quantum computer mentioned above. This means that any quantum

algorithm employing 4 qubits and 4 layers (time steps) of quantum circuit can be success-

fully implemented on the computer. If the trend will follow the hypothesized geometric

trajectory (a sort of a new Moore’s law [68] for integrated circuits), then one could expect

the quantum volume VQ to be of the order of 103 in 2025 and 105 in 2030. This means that

in 2025 algorithms employing roughly log2 103 ≈ 10 qubits and the same number of time

steps will be possible to execute. This number will increase to rapproximately 16 qubits
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till the end of the coming decade. While this may not sound very optimistic, the predic-

tion is very conservative and does not rule out that much bigger (non-random) circuits

(especially well-fitted to the hardware) will be possible to execute at the same time.

APPENDIX B - BASICS OF QUANTUM COMPUTING

The aim of the appendix is to provide a basic introduction of the concepts in quantum

computing used in this article. This appendix will allow quantum gravity researchers

who are not familiar with quantum computing, to grasp the relevant concepts.

The quantum computing is basically processing of quantum information. While the

elementary portion of classical information is a bit {0, 1}, its quantum counterpart is what

we call a qubit. A single qubitis a state |Ψ〉 in two-dimensional Hilbert space, which we

denote as H = span{|0〉, |1〉}. The space is spanned by two orthonormal basis states |0〉

and|1〉, so that 〈1|0〉 = 0 and〈0|0〉 = 1 = 〈1|1〉.A general qubit is a superposition of the two

basis states:

|Ψ〉 = α|0〉+ β|1〉, (36)

where, α, β ∈ C (complex numbers), and the normalization condition 〈Ψ|Ψ〉 = 1 implies

that |α|2 + |β|2 = 1.

There are different unitary quantum operations which may be performed on the quan-

tum state |Ψ〉.The elementary quantum operations are called gates, in analogy to electric

circuits implementing Boolean logic. For instance, the so-called bit-flip operator X̂ which-

transforms |0〉 into|1〉 and|1〉 into |0〉 (X̂|0〉 = |1〉 andX̂|1〉 = |0〉) can be introduced. The

X̂ operator introduces the NOT operation on a single qubit, and has representation in the

form of the Pauli x matrix. Similarly, one can introduce Ŷ and Ẑ operators corresponding

to the other two Pauli matrices. The computational basis {|0〉, |1〉} is usually introduced

such that the basis states are eigenvectors of the Ẑ operator: Ẑ|0〉 = |0〉 and Ẑ|1〉 = −|1〉.

Another important operator (which does not have its classical counterpart) is the

Hadamard operator Ĥ which is defined by the following action on the qubit basis states:

Ĥ|0〉 =
1√
2

(|0〉+ |1〉) and Ĥ|1〉 =
1√
2

(|0〉 − |1〉) . (37)
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The above are examples of operators acting on a single qubit. However, quantum

information processing usually concerns a multiple qubit system called quantum register.

The quantum state of the register of N qubits belongs to atensor product of N copies

of single qubit Hilbert spaces:
⊗N

i=1Hi. The dimension of the product Hilbert space is

dim
(⊗N

i=1Hi

)
= 2N . This exponential dependence of the dimensionality on N is the

main obstacle behind simulating quantum systems on classical computers.

A quantum algorithm is a unitary operator Û acting on the initial state of the quantum

registes |0〉 := ⊗Ni=1|0〉 ∈
⊗N

i=1Hi, together with a sequence of measurements. The out-

come of the quantum algorithm is obtained by performing measurements on the final

sate: Û |0〉. Because of the probabilistic nature of quantum mechanics, the procedure has

to be performed repeatedly in order to reconstruct the final state. In general, full recon-

struction of the final state Û |0〉 requires the so-called quantum tomography to be applied.

In the procedure, states of the qubits are measured in different bases (not only in the com-

putational basis). The quantum state tomography, which reconstructs the density matrix

ρ̂ = Û |0〉〈0|Û †, is however not always required. In most of the considered quantum al-

gorithms, only probabilities (not complex amplitudes) of the basis states are necessary to

measure, which is much simpler and faster than the quantum state tomography.

As already mentioned, the unitary operatorÛ can be decomposed into elementary op-

erations called quantum gates. The already introducedX̂ andĤ operators are examples

of single-qubit gates. However, the gates may also act on two or more qubits. An exam-

ple of 2-qubit gate relevant for the purpose of this article is the so-called controlled-NOT

(CNOT) gate, which we denote as Ĉ. The operator is acting on 2-qubit state |ab〉 ≡ |a〉⊗|b〉,

where |a〉 and|b〉 are single quibit states. Action of theCNOT operator on the basis states

can be expressed as follows: Ĉ(|a〉 ⊗ |b〉) = |a〉 ⊗ |a ⊕ b〉, where a, b ∈ {0, 1}.The ⊕ is

the XOR (exclusive or) logical operation (equivalent to addition modulo 2), defined as

0⊕ b = b,and 1⊕ b = ¬b, where by ¬b we denote negation (NOT) of b. This explains why

the gate is called the controlled-NOT (CNOT). The first qubit (|a〉) is a control qubit, while

the second (|b〉) is a target qubit. The first qubits acts as a switch, which turns on negation

of the second quibit if a = 1 and remain the second qubit unchanged if a = 0.
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The diagrammatic representation of the of the unitary operator Û composed of elemen-

tary quantum gates is called a quantum circuit, examples of which can be found through

this article. Each computational qubit is associated with a horizontal line, which arranges

the order at which the operations are performed (direction of time). The operations are

executed from the left to the right. Then, the symbols representing gates can be place on

either a single-qubit line (e.g. X,Y,Z,H gates) or by joining two or more lines (e.g. CNOT,

Toffoli gates).

One of the advantages of quantum algorithms is the possibility of implementation the

so-called quantum parallelism, which allows to reduce computational complexity of cer-

tain problems. The most known example is the Shor algorithm [69] which allow to re-

duce classical NP complexity of the factorization problem into the BQP complexity class

(see e.g. Ref. [70] for definitions of complexity classes). Another seminal example is the

Grover algorithm [71] which, statistically, reduces the number of steps needed to find an

element in the random database containing N elements from classical N/2 to O(
√
N).

Even if we do not make use of quantum parallelism and the resulting reduction of com-

putational complexity in this paper, the methods may also find application in the context

of simulations of spin networks. This especially concerns the Quantum Phase Estimation

Algorithm [56] which may possibly be applied to effectively measure phases of the spin

foam amplitudes.
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