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Abstract 

Two-dimensional   sigma   models   on   superspheres   Sr−1|2s =∼ OSp(r|2s)/ 
OSp(r − 1|2s) are known to flow to weak coupling gσ     0 in the IR when 

r − 2s < 2. Their long-distance properties are described by a free ‘Goldstone’ 
conformal field theory with r − 1 bosonic and 2s fermionic degrees of 
freedom, where the OSp(r 2s) symmetry is spontaneously broken. This 

behavior is made possible by the lack of unitarity. 

The purpose of this paper is to study logarithmic corrections to the free 

theory at small but non-zero coupling gσ. We do this in two ways. On the 

one hand, we perform perturbative calculations with the sigma model action, 

which are of special technical interest since the perturbed theory is logarithmic. 

On the other hand, we study an integrable lattice discretization of the sigma 

models provided by vertex models and spin chains with OSp(r 2s) symmetry. 

Detailed analysis of the Bethe equations then confirms and completes the field 

theoretic calculations. Finally, we apply our results to physical properties of 

dense loop soups with crossings. 

 
Keywords: super spin chains, Bethe Ansatz, loop models, sigma models 

(Some figures may appear in colour only in the online journal) 

 

  1 

mailto:etienne.granet@ipht.fr


J. Phys. A: Math. Theor. 52 (2019) 345001 E Granet et al 

2 

 

 

| 

⟨   V 

| 

| 

| 

m m 

 

Contents 

1. Introduction 3 

1.1. Definitions/reminders 5 

1.1.1. The orthosymplectic symmetry. 5 

1.1.2. The supersphere σ-model. 6 

1.1.3. The orthosymplectic spin chain. 7 

1.1.4. The critical exponents from the spin chain. 8 

2. OSp(1 2) 9 

2.1. The spectrum from field theory 9 

2.1.1. General strategy. 9 

2.1.2. The action. 9 

2.1.3. The Hamiltonian. 9 

2.1.4. Normal order. 12 

2.1.5. Building the states. 13 

2.1.6. Regularization. 14 

2.1.7. Correction to the energy levels. 15 

2.2. The spectrum from the spin chain 17 

2.2.1. Bethe equations. 17 

2.2.2. Bethe root structure. 17 

2.2.3. Numerical results. 18 

2.3. Relation with 3-point functions 18 

2.3.1. Quasi-primary fields. 18 

2.3.2. Fields with logarithms. 19 

2.3.3. An explicit calculation of the three-point function η2 η1 . 19 

2.3.4. Two-point functions. 21 

2.3.5. Dominant behaviour of the three-point functions ⟨φ2 Vφ1 ⟩. 22 

2.3.6. Conclusion. 24 

2.4. Symmetries 25 

3. OSp(2 2) 25 

3.1. The spectrum from field theory 25 

3.1.1. The action. 25 

3.1.2. The normally ordered Hamiltonian. 25 

3.1.3. Construction of the states. 27 

3.1.4. Regularization. 27 

3.1.5. Corrections to the energy levels. 27 

3.1.6. Density of critical exponents. 28 

3.2. The spectrum from the spin chain 29 

3.2.1. Bethe equations. 29 

3.2.2. Root structure. 29 

3.2.3. Numerical results. 30 

4. OSp(3 2) 30 

4.1. The spectrum from the spin chain 30 

4.1.1. The Bethe equations. 30 

4.1.2. Root structure. 31 

4.1.3. Numerical results. 32 

5. OSp(4 2) 32 

5.1. Motivations 32 

5.2. The R-matrix 33 



J. Phys. A: Math. Theor. 52 (2019) 345001 E Granet et al 

3 

 

 

q 

| 

| 
| 
| 

 

5.3. A brief description of sl (4|2)(2) 33 

5.4. The osp(4 2) equations 33 

6. Physical properties of dense loop soups with crossings 35 

6.1. A model for loops with crossings 35 

6.2. Inclusion of osp spectra 39 

6.3. Charges and loop configurations 42 

6.4. Transfer matrix eigenvalues and loop configurations 44 

6.4.1.   osp(2 2). 46 

6.4.2.   osp(3 2). 46 

6.4.3.   osp(1 2). 47 

6.5. Watermelon 2-point functions for loops with crossings 47 

6.5.1. Even number of legs. 49 

6.5.2. One leg. 50 

6.6. Away from integrability 50 

7. Conclusion 54 

Acknowledgments 56 

Appendix A. Change of grading 56 

Appendix B.  Degeneracies of the osp(4|2) model 58 

B.1. L = 2 59 

B.2. L = 4 59 

B.3. L = 6 59 
Appendix C. Logarithmic corrections from the Bethe ansatz 60 

C.1. Generalities 60 

C.2. Perturbation to the critical exponents 60 

C.2.1. Sketch of the derivation. 61 

C.3. Numerical results 62 

C.3.1. Periodic su(2). 62 

C.3.2. Open su(2). 62 

C.3.3. Periodic osp(1|2). 62 

C.3.4. Periodic osp(1|2) with strings. 63 

C.3.5. Open osp(1|2). 63 

C.4. Loop configurations for osp(1|2) with open boundary conditions 64 

Appendix D. Proof of lemma 1 64 

References 68 

 
1. Introduction 

 
The Mermin–Wagner theorem—which forbids spontaneous breaking of continuous symme- 

tries in dimensions D ≤ 2—relies in particular on the assumption of unitarity. It has long been 
known that when unitarity is broken—typically, in statistical mechanics systems where some 

‘Boltzmann-weights’ can be negative—stable massless Goldstone phases can indeed appear. 

A simple and beautiful example of this phenomenon is provided by 2D superspin models with 

orthosymplectic symmetry. These models involve ‘spins’ with bosonic and fermionic comp- 

onents (more detail below), and enjoy symmetry under a supergroup, generalizing the usual 

orthogonal symmetry group to superspins. With r bosonic and 2s fermionic degrees of freedom, 

the symmetry is described by the orthosymplectic group OSp(r|2s) which behaves, in many 
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ways, like the ordinary group O(N ≡ r − 2s). The spontaneously broken symmetry phase 

can be described by a sigma model with target space OSp(r 2s)/OSp(r     1 2s) =∼ Sr−1|2s—a 

supersphere—and a single coupling constant, gσ. The perturbative β function to leading order 

is β = dgσ      ∝ (r − 2s − 2)g2 . For the physically relevant sign of positive gσ and r − 2s > 2 

(which includes in particular the ordinary sphere sigma model), the flow is towards large cou- 
pling as usual: fluctuations grow at a large distance, and the symmetry is eventually restored. 

Meanwhile, if r − 2s < 2, the flow is towards weak coupling, and symmetry remains broken. 
In this case, the fixed point theory in the infrared is a very simple Goldstone theory made of 

free massless scalars with r − 1 bosonic and 2s fermionic components. It is a conformal field 

theory (CFT) with central charge c = r − 1 − 2s and r − 1 non-compact directions. 
Microscopic realizations of supersphere sigma models were proposed in [1] in terms of 

a loop soup where loops cover all the vertices of the square lattice, with every edge visited 

exactly once, every vertex visited exactly twice, and with the possibility of crossing. Each 

crossing is given a special Boltzmann weight w, which is the only parameter in the problem, 

apart from the loop weight, taken to be r 2s   N . Why this model provides a realization of the 

spontaneously broken OSp(r 2s) symmetry phase was discussed in detail in [1]. In that ref- 

erence, it was in particular checked numerically that the IR properties of the model are given 

by those of the Goldstone theory with central charge c = r − 1 − 2s indeed. 
The lattice model of dense loops is expected to provide a physical realization of the broken 

symmetry phase for all finite, non-zero values of the coupling w. Different values of w corre- 

spond to different bare values of the coupling constant gσ. Since the bare gσ is usually finite, 

there will be logarithmic corrections to scaling, appearing for instance in powers of log x cor- 

rections to the pure conformal behavior expected in the fixed point Goldstone theory. The main 

goal of this paper is to study these corrections. This is interesting for several reasons. From a 

practical perspective, these corrections directly affect the correlations measured in dense loop 

models, which have a variety of interesting applications. From a more fundamental perspec- 

tive, the dense loop model provides a regularization of the supersphere sigma model, which is 

rather easy to study both analytically (via the Bethe-ansatz, see below) and numerically, since 

it involves lattice models with a small number of discrete, compact degrees of freedom. A lot 

of weak-coupling properties can then be investigated, which are much harder to get in ordinary 

sigma models such as O(3) [2]. Finally, we recall that 2D sigma models on super-targets appear 

in a variety of contexts from string theory [3] to the study of phase transitions in non-interacting 

disordered 2D quantum electron gases [4–6] to the study of many statistical mechanics models 

[7, 8]. Our understanding of these models remains sketchy, largely because the loss of unitarity 

leads to unpleasant features, such as indecomposable action of the conformal symmetry [9]. 

The supersphere sigma models provide an interesting ground of where to gain experience 

in these matters—here, for instance, by investigating the perturbation of logarithmic confor- 

mal field theory. 

Remarkably, a series of integrable vertex models known to be in the universality class of 

the OSp(r 2s) supersphere sigma models for r − 2s < 2 exist [10, 11]. These models have 
edge degrees of freedom taking values in the OSp(r 2s) fundamental representations, and are 

closely associated with special points in the phase diagram of the dense loop model [1]. In the 
limit of the small spectral parameter, the transfer matrix of these vertex models gives rise to 

a spin chain Hamiltonian acting on the tensor product of r + 2s dimensional representations. 
Our strategy in this paper will be to study the weak-coupling physics of the supersphere 

sigma models mostly by analyzing their integrable lattice regularizations using the Bethe 

ansatz technique. We will also compare these results with those of (logarithmic) conformal 

perturbation theory. 
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It is important to stress that integrable spin chains are not usually associated with free 

Goldstone theories such as the ones we will encounter below5. The well-known SU(2) spin-1 

chain for instance can be considered as a lattice regularization of the O(3) sigma model but 

with topological angle θ = π, and bare coupling of order unity [12, 13]. It flows to strong 
coupling in the IR, with long-distance conformal properties described by a level-one Wess– 
Zumino theory (thus with left and right SU(2) current algebra symmetries). Here in con- 

trast, the spin chains provide regularizations of sigma models with no topological term, small 

bare coupling constants, flowing to weak coupling in the IR, with long-distance properties 

described by free Goldstone CFTs where the OSp symmetry is spontaneously broken. 

The plan of the paper is as follows. We focus in the first section on OSp(1 2), a case that has 

already been partly studied in [14]. We compute logarithmic corrections to the gaps directly 

from the σ-model Hamiltonian, and match them with the Bethe-ansatz results. Such a field 

theory calculation of the low-lying spectrum directly from the sigma model Hamiltonian, and 

its comparison to the spin chain discretization, has not been done before to our knowledge. 

The sigma model analysis involves perturbation of a logarithmic CFT, which we compare 

with a discussion by Cardy of logarithmic corrections in ordinary CFTs perturbed by marginal 

operators, and explain to which extent the results on perturbed CFTs apply to the logarithmic 

case. We then move on to study the OSp(r 2) chains with r = 2, 3, 4 in the following three sections 
with a similar approach. In the last section, we apply our results to the discussion of 

physical observables in dense loop soups and derive new predictions for the power-law and 

logarithmic decay of intersecting loops correlations. Some technical aspects are studied in 

the appendices. In particular, in appendix C, we give formulas for logarithmic corrections 

directly from the Bethe ansatz equations, and study how these are perturbed when there is an 

additional source term at one site in the Bethe equations (which occurs in case of modified 

boundary conditions, or inclusions of strings). 

We note that our work is not the first to address the topic of logarithmic corrections in 
orthosymplectic spin chains. In a previous paper [15] the logarithmic corrections for some 

states in the OSp(3 2) chain (technically, those with spins j = 1/2, q arbitrary, see below) were 
obtained numerically and interpreted as the value of the Casimir. A similar exercise was carried 

out in [16] for similar states and other OSp(r 2s) models. Our paper extends and in 

some cases significantly corrects the results of these two references. It also provides analytical 

results from the Bethe ansatz, as well as a detailed study of the relationship with the sigma 

models (including in particular a perturbative calculation of their properties) and the dense 

loop soups. 

Before entering the subject, we briefly give a few definitions related to orthosymplectic 

spin chains. 

 

1.1. Definitions/reminders 

1.1.1. The orthosymplectic symmetry. We give here a brief description of the orthosymplectic 

symmetry. 

We first remind that the superspace Rr|2s   is parametrized by r ‘bosonic’ variables 
φ1, ..., φr and 2s ‘fermionic’ variables η1, η2, ..., η1η2 that satisfy [φi, φ j]= 0, [φi, η k ]= 0 and 

1   1 s    s l 

{ηi, ηk} = 0. The scalar product between two vectors x, y ∈ Rr|2s is defined by 

 
5 Note in particular that for r > 1 the associated CFTs will have non-compact degrees of freedom, even though the 
spin chains have a finite number of states per site. 
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where 

⟨x, y⟩ = x  · Jr|2s · y, (1) 

Jr 2s = 

    
Ir Or×2s 

  

, J0 2 = 

   
0 1  

   

, (2) 

| O2s×r Is ⊗ J0|2 
| 

−1   0 

with Ir the identity matrix of size r r, and Oa×b the zero matrix of size a b. 

The group OSp(r 2s) is the set of linear transformations on Rr|2s that leave the norm 

invariant: 

OSp(r|2s) = {M ∈ Mr+2s,r+2s, ∀x ∈ Rr|2s, ⊂x, Mx≈ = ⊂x, x≈}. (3) 

The Lie superalgebra osp(r|2s) of such a group can be represented as [17] 

 
A X B     

 t 

 

osp(r|2s)=  −Y E X 

C Yt −At 

 ; A, B, C ∈ Ms,s; X ∈ Ms,r; Y ∈ Mr,s; E ∈ Mr,r; E = −E . 
 

(4) 

In this representation the generators for osp(r 2) will be denoted Jz, J+, J−, F1, ..., Fr, 

G1, ..., Gr , Qij, i, j = 1, ..., r, i > j and are such that 

 

 
j J + j J + j   J    + 

Σ
( f F  + g G ) + 

Σ 
q  Q 

jz/2  f1  ...  fn  j+ 

g1 0 ... qn1 f1 
= 

 ... ... ... ... ..  
. 

z  z + + —  −  k   k k    k 

k=1 

 
i>j 

ij   ij 

 gn −qn1    ... 0 fn     

 
 

The commutation relations of the generators can be read off directly from this matrix repre- 

sentation. For example, for osp(1 2) one has 5 generators Jz, J+, J−, F+, F− that satisfy the 

following relations 

[Jz, J± ]= ± J±, [J+, J−]= 2Jz 
1 1 

[Jz, F1] = 
2 

F1, [Jz, G1] = − 
2 

G1, [J+, G1] = −F1, [J−, F1] = −G1 

{F1, F1} = 2J+, {G1, G1} = −2J−, {F1, G1} = 2Jz. 

 
(6) 

As for the Casimir, we normalize it in such a way that it is the inverse of the Killing form 

of the generators (5) (i.e. the quadratic term in the eigenvalue j of Jz is 2j2). For example for 

osp(1|2) it reads 

2 1 

C = 2Jz + (J+J− + J−J+)+ 
2 

(G1F1 − F1G1). (7) 

The representation theory of the osp(r 2s) algebras is a bit complicated, and involves 

(except when r = 1) issues of typicality. Rather than give generalities at this stage, we will 
recall necessary features in our case-by-case analysis below. 

 

t 

j− −g1 ...   −gn   −jz/2 

(5) 
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1.1.2. The supersphere σ-model. A simple but non-trivial field theory with OSp(r|2s) symme- 

try is the theory of ‘free’ fields constrained to lie on the supersphere of dimensions (r − 1|2s), 

i.e. the subset Sr−1|2s      Rr|2s such that   x     Sr−1|2s,  x, x   = 1. This is the non-linear σ-model 

with target space: the supersphere Sr−1|2s. We will restrict in the following to the case s = 1, 
and thus symmetries OSp(r|2). The action is 
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∫

1 r 

 
Σ
 

Σ 
φ  + 2η η  = 1. (9) 

≡ − 

≈ → ∞ (10) 

| 

Σ 

⊗ ⊗ 
× 

⊗ ⊗ ⊗ 

log σ 

β1 ...βL c1 βL cLβL−1 c2 β1 
1 j=2 j j i=1 i 

 

S(φ , ..., φ , η1, η2)=
   κ 

 
4πgσ 

 
dxdt 

r 

 

i=1 

 
∂µφi∂µφi + 2∂µη2∂µη1 

 
, (8) 

with ∂µX∂µX (∂xX)2 + (∂tX)2, and κ a normalization factor to make matching with 

existing literature easier. 

The constraint then translates into 

r 
2 2 1 
i 

i=1 

The model for r < 4 is known to flow to a Goldstone free theory. From integration of the lead- 

ing order in the β function d
dgσ 

L ∝ (r − 2s − 2)g2 we find, after properly adjusting normal- 

izations, replacing the RG scale by the size of the system, and setting g gσ for simplicity 

[18, 19] 

g 
  κ 

, for L , 
(4 − r) log L/L0 

where L0 is, at the order we are working, an irrelevant length scale we shall take equal to unity 

in the following. 

 
1.1.3. The orthosymplectic spin chain. We will study spin chains built from an R-matrix 

that satisfies the Yang–Baxter equation and that belongs to the fundamental representation 

of the osp(r 2s) superalgebra. Periodic boundary conditions will be considered in this paper, 

although the open boundary case is briefly addressed in appendix C. 

Consider a spin chain on L sites with periodic boundary conditions, each site i being 

described by a Z2-graded vector space Vi of dimension D = r + 2s. The Grassman parity pα 
of the αth degree of freedom is defined as 

pα = 1   if α = 1, ..., s    or    α = r + s + 1, ..., r + 2s 

= 0  if α = s + 1, ..., r + s. 
(11) 

The Boltzmann weight of the chain is given by a matrix Rab that acts on the (graded) tensor 

product of two spaces Va Vb. It is thus a square matrix of size D2   D2. The transfer matrix t(λ) 

of the model at spectral parameter λ, that acts on the tensor product VL ... V1 of L spaces, is 

given by the supertrace of the monodromy matrix 

D 

t(λ)= (−1) pi Tii(λ) 
i=1 

with T(λ)= RaL(λ)RaL−1(λ)...Ra1(λ). (12) 

Tij(λ) denotes the (i, j) component of T in the auxiliary vector space Va. The notation Rai 

means that R acts on the whole tensor product Va     VL     ...    V1, but non-trivially only on the 

spaces Va and Vi. However the graded tensor product introduces signs everywhere, and for 

clarity we give the explicit expression of the components of the transfer matrix 
D 

t(λ)α1 ...αL   = 
Σ   

R(λ)αLcL R(λ)αL−1 cL−1 ...R(λ)α1 c1 (−1) pc   (−1)
ΣL

 

 

 

( pα +pβ ) 
Σ j−1 

pα . (13)
 

c1 ,...,cL =1 
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Let us now choose a particular matrix R. We impose the two following conditions 

(i) R satisfies the graded Yang–Baxter equation 

R12(λ)R13(λ + µ)R23(µ)= R23(µ)R13(λ + µ)R12(λ). (14) 

(ii) R has osp(r|2s) symmetry: that is, for each generator A of osp(r|2s) (in a certain repre- 

sentation, not necessarily (5)), t(λ) commutes with Atot = L Ai where Ai acts on the 

vector space Vi. 

We will write Rlj the component along ej ⊗ el of the action of R on ei ⊗ ek, where the ei’s 

denote the basis vector of V . 

The following R-matrix is known to satisfy these two properties [21] 

Rab(λ)= λIab + Pab +
 2λ 

Eab, (15) 
2 − r + 2s − 2λ 

where Iab is the D2 D2 identity matrix, Pab is the graded permutation operator 

(I)lj = δijδkl, (P)lj = (−1) pipj δilδjk, (16) 
ik ik 

and Eab the matrix given by 

(E)lj  = (−1)i>r+s(−1) j≤sδik' δjl' , (17) 

with i
′ = D + 1 i , and (−1)x>y is −1 if x > y, 1 if  x ≤ y . The Hamiltonian of the chain is 

then defined as 

=
 d 

log t(λ) 
dλ 

 
 
λ=0 

 
. (18) 

The Yang–Baxter equation ensures that the transfer matrices t(λ) and t(µ) at different spec- 

tral parameters commute, and it has been shown that the eigenvalues of t can be determined 

with the Bethe ansatz [22, 23] (completeness is not proven; moreover some eigenvalues may 

be a bit singular, like the ground state of the osp(3 2) spin chain for example that is obtained 

with coinciding Bethe roots that should be normally excluded) . 

 
1.1.4. The critical exponents from the spin chain. If a model is described by a conformal field 

theory (CFT) in the thermodynamic limit, then the content of the theory (central charge, con- 

formal dimensions, structure constants; and in case of LCFT, the logarithmic couplings) can 

be seen from the finite-size corrections to the low-lying excited energies for large system sizes 

[24–26]. More precisely, denoting E0 the energy of the ground state of a periodic chain, and 
e0 = E0/L its intensive form, one has 

L L 

πvF e0 = e − c + o(L−2), (19) 
L ∞ 6L2 

where e is the thermodynamic value of the energy, c is the central charge and vF the Fermi 

velocity. The finite-size corrections to the energy of the excited states eL contain the conformal 

dimensions h + ̄h of the theory 

eL − e0 = 
2πvF 

(h + ̄h) + o(L−2). (20) 

Some structure constants can be seen in the next-order finite-size corrections, see [26]. In case 

of logarithmic finite-size corrections 
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2πv L 
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∫ 

∫ 

L 
L2 L2 log L 

 

eL − e0 = 
2πvF 

(h + h̄) + 
  2πvF    

α + o(L−2(log L)−1), (21) 
 

the correlation functions of the field φ associated to eL are expected to satisfy at large x 

1 
⟨φ(x)φ(0)⟩ ∼  

x2(h+h̄)(log x)2α 
, (22) 

see [27] for a derivation. 

In the following we will often refer to the quantity L
2

 
F 
(eL — e0) as a ‘scaled gap’. We will 

also sometimes denote eL − e0 by ∆eL. 

 

2. OSp(1|2) 

2.1. The spectrum from field theory 

We start by deriving the expected low-lying spectrum of the non-linear σ-model with OSp(1 2) 

symmetry at first order in (log L)−1. 

 

2.1.1. General strategy. There is a common strategy for studying the different models. The first 

step is to derive the Hamiltonian in terms of the modes of the fields from the lagrangian. The 

expectation values of the Hamiltonian within modes are naively divergent: to regularize them, 

we express them in terms of their normal-ordered versions and isolate infinite sums. Every 

regularized value for these gives a Hamiltonian with the desired osp symmetry, and they have to 

be fixed by an additional condition. Once the expression of the states in term of the modes are 

derived, the eigenvalues of the Hamiltonian at order g can then be obtained. This gives access 

to the logarithmic corrections by using (10). 

 

2.1.2. The action.  In the osp(1|2) case the constraint (9) can be satisfied by imposing 

φ1 = 1 − η2η1. (23) 

The action becomes then 

S(η1, η2)=
  κ 

dxdt(∂ 
2πg µ 

η2∂µ η1 − η1η2∂µ η1∂µ η
2). (24) 

Upon the change of variable η1,2 → 
√

gη1,2 it reads 

S(η1, η2)=
 κ 

dxdt(∂ 
2π µ 

η2∂µ η1 − gη1η2∂µ η1∂µ 
 

η2). (25) 

Here g shall be treated at order 1. Recall that for large L we have from (10) 

g = 
κ

 
3 log L 

. (26) 

 

2.1.3. The Hamiltonian. The first task is to derive the Hamiltonian corresponding to the action 

(25). For calculation convenience we write (25) as 
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2π 
S = 

 κ  
∫  

dxdt(−∂xη2∂xη1 + η̇2η̇1 + gV(η1, η2)), (27) 
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V 

k 

∫ 

V

 

k 

k 

Σ 

k k 

k k k k 

k −k k −k 

 

with (η1, η2) a generic potential. We take the system to be defined on a cylinder of unit radius, 

so that x is integrated between 0 and 2π, and t between 0 and an arbitrary final time T. The 

derivatives with respect to fermions are always considered from the right (this means for 

example that (d/dη̇2)(η̇2η̇1) = −η̇1). In terms of modes 

η1,2(x, t)= 
Σ 

η1,2(t)eikx, 
(28)

 
k 

the action reads 

S = κ 

∫ 

dt 

  
Σ 

−k2η2η1 
 

+ η̇2η̇1 + gV

    

= 

∫ 

dtL, (29) 

 
k 

with the Lagrangian density, and 

k   −k k   −k 

V(t)=
 1 

dx (x, t). (30) 
2π 

The conjugate momenta to η1 and η2 are 
k k 

π1 = κη̇2 + κg 
 dV 

, π2 = −κη̇1  dV + κg . (31) 

k −k 
dη̇1 k −k dη̇2 

The quantization procedure imposes the following anticommutators at equal times at all 

orders in g: 
1,2 1,2 

{ηk  , πp } = iδk,p. (32) 

The corresponding Hamiltonian is then defined as 

H = 
Σ

(π1η̇1 − η̇2π2) − L. 
(33)

 

It gives, neglecting terms of order O(g2): 

H = 
Σ

(κk2η2η1 
 

 

+ κ−1π2π1 ) − κgV + O(g2). 
(34)

 

We now use the following expression of the time derivative for a quantity X 

Ẋ = i[H, X], (35) 

and the relation valid for all (commuting or anticommuting) quantities ai and b (n ≥ 2) 

n 

[an...a1, b] = (−1)i−1an...ai+1{ai, b}ai−1...a1, (36) 
i=1 

to compute  
η̇1 = −κ−1π2 

 

 dV + κg , 

 
 

η̇2 = κ−1π1 

 

 dV + κg 

k −k dπ1 k 
−k dπ2 

k 

k 
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k 

k 

π̇ 1 = −κk2η2 
 dV + κg , 

π̇ 2 = κk2η1  dV + κg . 

k −k 
dη1 k 

−k dη2 (37) 
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k k k k 

0 

1   1   2 

k 

k 
k 

z = k k 

2i 
k k 

ηk πk ηk πk 

2 dπ1 k k dη1 k dη2 dπ2 k 

k 
dπ1 

k k dη2 dπ2 
k k dη1 

k+l+m=0 
dη2 

l m k k −l −m 

dη1 
l m k k −l −m 

k l m n k l −m −n 

√ √ 

√ √ 

 

Now let us define the following charges 

J 
Σ η1π1 − η2π2 

, J
 

 

 

Σ 
i 1

 

 

 

 
2, J 

Σ 
i 2   1 

 

 

F1 = 
Σ

 π2 (δl,0δm,0 + gη1η2 ), G1 = 
Σ

 π1   (δl,0δm,0 − gη2η1 ). 

−k 

k+l+m=0 

l   m −k 

k+l+m=0 

l    m 

(38) 

Using (32) one can check that they satisfy the osp(1|2) relations (6)—remember that before 

(25) we made the replacement η1,2 → 
√

gη1,2. With the formulas (37) one has: 

∂t Jz = 
Σ κg 

 
  dV 

π1 + η1 dV 

   

2 dV 
— η 

 

—
 dV 

π2

 
 

 

∂tJ 
= 

Σ 
κg 

 
  dV 

π2 + η1
 dV 

   

, ∂tJ = 
Σ 

κg 

 
  dV 

π1 + η2 dV 
 

 

 

∂tF1 = 
Σ 

g  

  

κ
 dV 

δl,0δm,0 − κkmη1η2 η1 + κ−1η1π1 π2 

∂tG1 = 
Σ 

g  

  

κ
 dV 

δl,0δm,0 + κkmη2η2 η1 − κ−1η2π1 π2 

  

  

, (39) 

where the following relation has been used (it is an integration by part) Σ 
k2η1η1η2 = 

Σ
 k(k − k − l − m)η1η1η2 = 

Σ
 −kmη η η . 

k   l   m 

k+l+m=0 k+l+m=0 

k   l    m 

k+l+m=0 

k   l    m 

(40) 

With the equations (39) it can be checked that the following potential implies the conserva- 

tion of all these charges: 
1   2 2   1 2 1 2   1 2 1 

V(η , η )=  η η ∂xη ∂xη − η η ∂tη ∂tη , (41) 

or in terms of V 

V = 
Σ 

−mnη2η1η2 η1 + κ−2η2η1π1 
π2    

   

. 
(42) 

 

Define now the following modes for all k 

−ikη1κ1/2 − π2 
 

κ−1/2 −ikη2κ1/2 + π1 
 

κ−1/2 

ψ1 = −k 

2 
, ψ2 = −k 

2 

¯ −ikη1 κ1/2 − π2κ−1/2 

¯
 −ikη2 κ1/2  + π1κ−1/2 

 

 
They satisfy 

ψ1 = 
−k k 

2 
, ψ2 = 

−k k . 

2 
(43) 

k k k 

k k k k k 

k 

k+l+m=0 0 

k k 

k 

+ = − − = − 

+ − 

k+l+m+n=0 
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/ / 

k p k p 

−k k −k 

{ψ1, ψ2} = kδk+p,0, {ψ̄1, ψ̄2} = kδk+p,0 (44) 

for k, p =0, the other anticommutators being zero. The original modes for k =0 read in terms 
of the ψ’s: 

 
1,2 

i 1,2 
 

 

¯1,2 

ηk  = 
k

√
2κ 

(ψk    − ψ−k ) 

π1,2 = ±
√

κ/2(ψ2,1 + ψ̄2,1 ). (45) 
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0 

1 

m 

0 

= 

− κη2 + k −k κη1 + l −l (ψ2 ψ1 + ψ2 ψ1) 

m m 

1 k −k −1 

1 k −k −k k 0 0 −1 

k k 

k k 

m>0 
m

 

η1 
η2 + √     π2 η1 −m 

0 

−k 

η1 + √ 
2κ 

[π2 
−k 

m<0 

 

The potential then reads 

V 
Σ 1   

 
 i

√
2 ψ2 − ψ̄2

 
 

 

i
√

2 ψ1 − ψ̄1
 

 
 

 
¯ ¯ . 

k+l+m+n=0 
2κ2 0 k 

0 l m   −n −m   n 

(46) 

2.1.4. Normal order.  Up to now, no normal order has been put on the fields. The elementary 

annihilation operators are set to be the ψ1,2, ψ̄1,2  with m ≥ 0, and the elementary creation 

operators the same modes but for m < 0, as well as η1,2. The normally ordered version of 
an operator X is denoted :X: and is defined, for every product of elementary operators that 

appear in the expression of X, by putting all the annihilation operators to the right of their 

creation operators, multiplied by the corresponding fermionic sign. Equivalently (this is much 

more convenient for practical purposes), it amounts to forbidding contractions between modes 

that compose the Hamiltonian. Indeed, the only difference between the Hamiltonian and its 

normally ordered version is the contractions that appear whenever an annhilation operator is 

moved to the right of a creation operator. For example if one computes the expectation value 

⟨0|ψ2 

  
Σ 

:ψ2ψ1 
 

 

:

   

ψ1 |0⟩ = ⟨0|ψ2  

  
Σ 

ψ2ψ1 
 

— 
Σ 

ψ1 
 

 

ψ2 + ψ2ψ1

  

ψ1 |0⟩ 

= ⟨0|ψ2
 

−ψ1 ψ2
 

ψ1 |0⟩ 

1 

= −1, 

−1   1 −1 

(47) 

one actually contracts the ψ2 inside the Hamiltonian with the ψ1 1 outside the Hamiltonian, 

without touching the ψ1 1 inside the Hamiltonian (but counting the − sign that comes when 
going through it). 

The normal ordering is known to remove ‘infinite quantities’ from the expression of the 

fields. These are actually sums of anticommutators {η1, π1} = i. While no expectation value 

is taken, one may equally consider that {η1, π1} = i · 1|k  where 1k = 1−k is a bosonic variable 

that commutes with everything, and that could be treated on the same footing as the fermionic 

variables η’s. This way these ‘infinite quantities’ are of the form k>0 1k, which are regular 

elements of the algebra we are using. The only point is then to define a vacuum expectation 
value for this element of the algebra. Let us define thus 

ξ0 = 
Σ 

1m, ξ−1 = 
Σ 1m 

. (48) 

The bosonic charges are not altered by the normal order: 

Jz =:Jz:, J+ =:J+:, J− =:J−: . (49) 

However the fermionic charges change. With an implicit sum over k + l + m = 0 (that is 
explicitly written for m in case of constraints), we have 

F1 = π2 + gπ2 η1η2 

0 −k  l   m 
 

 
 

 

  ig   
 

 

  
ψ2

 

 
 

 

ψ̄2 
 

 

ig 
ig   

  
Σ 

, 
ψ2 Σ 

, 
ψ̄2 

k k<0 k>0 

= π2 + gπ2 −k 2κ 
−k l m m 

− 

− 0 

=:F1: − 

m>0 
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− m ] 
m 

[π2 
−k 

m>0 

−m ] 
m 

=:F : −igη0 − √
2κ

 
m

√
2κ

π0  +
 

κ/2η0 1 

0 0 0 

  
 

1 2ig 
1 

Σ 
i 2 

√ 
1 

m
 

 

 

=:F1: −igη1 − igη1ξ0 + gκ−1π2ξ−1. (50) 

m>0 

η η 
1 
l 

1 
l 
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l 

1   2 

| 

⟩ 

— − 

0 0 0 

k l m −n −m 

n 

m<0 
n≤0 

k l m −n 

m≥0 
n>0 

k l −n m 

m<0 

n>0 

k l m −n m k l −n 

k l n −m k l −m n k l n −m n k l −m 

=:V: − 
κ

√
2κ

 (ηk ψk  − η−kψk  − ηk ψk  + η−kψk )1m 
m>0 

k k k k 

k −k k −k k −k k −k 0 0 − 
12 

−
 

k k k k 

 

To go from the second line to the third line, we noticed that π2 kη1 only involves ψ1, ψ̄1 that 

anticommute, so that the only ‘ill-ordered’ case that can occur is when a creation operator 
ψ2 , ψ̄2  with m < 0 is at the right. Similarly: 

m m 

G1 =:G1: +igη2 + igη2ξ0 + gκ−1π1ξ−1. (51) 

As for the potential, it reads with an implicit summation over k + l + m + n = 0 

V = −κ−1η2η1(ψ2 ψ̄1     + ψ̄2
 ψ1) 

=:V: −κ−1 
Σ

[η2η1, ψ2 ]ψ̄1     + κ−1 
Σ

[η2η1, 

ψ̄1
 

]ψ2  − κ−1 
Σ  

[η2η1, ψ2 ]ψ̄1     + ψ2 [η2η1, ψ̄1    ]
 
 

+ κ−1 
Σ

[η2η1, ψ1]ψ̄2      − κ−1 
Σ

[η2η1, 

ψ̄2
 

  

]ψ1 + κ−1 
Σ  

[η2η1, ψ1]ψ̄2      + ψ1[η2η1, ψ̄2     ]
 
 

 

 

    i     Σ Σ 
 

 

 

 

2 ¯1 1 2 1 ¯2 2 1 

=:V: +iκ−2 
Σ

(η2π2 + η1π1)ξ0. (52) 

Here, to get to the second line we had to separately treat the six different cases where at least 
one of the fields in (ψ2 ψ̄1     + ψ̄2     ψ1) is a creation operator. The η2η1 part is then already 

m   −n −m   n k  l 

normally ordered, since the only possible ill-ordered case is when k = −l, but then the order- 
ing of the ψ part inside η2η1 for k > 0 cancels out with the ordering of the ψ̄ part for k < 0. 

k l 

The whole Hamiltonian is 

H = 
Σ

(ψ2ψ1   − ψ  ψ + ψ̄2ψ̄1     − ψ̄1ψ̄2   ) + 2ψ2ψ1 
 c  

κg :V : 

— iκ−1g 
Σ

(η2π2 + η1π1)ξ0, (53) 

with the central charge c = −2 obtained with a usual zeta regularization, namely assigning the 
value ζ( 1)=  1/12 to the formal sum ‘   k>0 k ’ by analytically continuing the zeta func- tion 
ζ(x)=  n>0 n

−x to the negative axis. The normally ordered Hamiltonian corresponds to the 

first line. Although the total Hamiltonian commutes with the osp(1 2) charges, this 

is not the case anymore when normal order is imposed. One thus has to work with the total 

Hamiltonian, taking into account the ξ’s for which a prescription of expectation value has to 

be given. Note that any (complex) value of the ξ’s preserves the commutation relations. 

2.1.5. Building the states. Let us define the states on which we will compute expectation 

values. We define the conformal variables  z = e−ix+τ  and z̄ = eix+τ with τ = it. A state  φ 
for a field φ(x, t) is defined by 

|φ⟩ = φ(z = 0)|0⟩. (54) 

For example one has 
1 1 

|η ⟩ = η0|0⟩. (55) 

n<0 
m≤0 

n≥0 
m>0 

n<0 
m>0 

k 

k 

k 

k<0 
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⟩ 

k 0 
k 2κ 

The derivatives with respect to z such as ∂zη1 deserve some comments. Because of the defini- 

tion of the modes ψ, we still have at all times 
1 ¯1 

η1(x, t) = 
Σ 

η1(t)eikx = η1 + i 
Σ ψk (t) 

√
− ψ−k (t) 

eikx. (56) 

k k/=0 
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−1 

k 

k 1 

z 

| 

2κ 
k 2 dπ1 

0 0 0 0 0 0 0 0 

 

Without interaction we simply have ψ1(τ ) = ψ1(0)e−kτ. But with the interaction the time 
k k 

evolution of the ψ’s is not trivial anymore, and involves a term of order g with a product of 

three ψ’s. The expression of η in terms of z, ̄z, and even more for ∂zη, is not valid anymore. In 
particular one cannot build the states as usual: 

∂zη1⟩ /= −iψ1  |0⟩, (57) 

contrary to the case g = 0. The left-hand side now involves a term of order g. Precisely, using: 

∂z = −
 1 

eix−τ ∂x + 
1 

eix−τ ∂ , (58) 

 
we get 

2i 2 τ 

∂zη1(x, τ ) = √
−i   Σ  

ψ1(τ ) + gκ

  
κ  dV 

(τ )

  

eix(k+1)e−τ . (59) 

Taking z = 0 selects k = −1 because of the factor eix(k+1), hence 

|∂zη1⟩ = √
−i  

ψ1 
 

 

κg  dV   |0⟩ − i |0⟩, (60) 

 
that is 

2κ  
−1 

 
1 g 2   1 

 
 

2 dπ1 
−1 

 
1 

|∂zη ⟩ = −i(1 + 
2 

η0 η0 )ψ−1|0⟩. (61) 

Remark moreover that one has indeed F1(1 + g η2η1)ψ1 
 

|0⟩ = 0 and J+(1 + g η2η1)ψ1 
 

|0⟩ = 0 

and this state is indeed the highest weight. 
2  0  0 −1 2  0  0 −1 

However, if we look at terms involving a η times a derivative, since we have 

η1
 dV   

= 0, (62) 
dπ 

− 

we do have 

η1∂zη1⟩ = −iη1ψ1 
 
|0⟩, (63) 

0  −1 

without any corrections in g. 

For terms such as η1∂zη1...∂mη1 the corresponding calculations happen to be not as easily 
tractable, but the state η1ψ1 ...ψ1 is indeed annihilated by F1 (and J+ ). Similarly, ∂zη1...∂mη1⟩ 

0 1 −m z g   2   1 1 1 
 

 is not as easily computed, but (1 + m 2 η0 η0 )ψ−1...ψ−m is annihilated by F1 and J+ . 

2.1.6. Regularization. Any complex values for the ξ’s give a Hamiltonian that commutes with 

the charges (that also depend on ξ), and thus that has the osp(1 2) symmetry and the classical 

non-linear sigma model as classical limit. However, since some of them appear in expectation 

values, one has to fix their value with an exterior argument. This is the only addi- tional 

information that we need to quantize the model. Here we choose to fix the zero mode of the 

Hamiltonian. It reads 

H0 = −κ−1(1 − gη1η2)π1π2 − κ−1ig(η2π2 + η1π1)ξ0. (64) 

k 

k 
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0 0 0 0 0 0 0 0 

This zero mode should give the Laplace–Casimir operator of the algebra, see [28], thus being 

proportional to (1 − gη1η2)π1π2 − ig(η2π2 + η1π1). Hence we impose the value 

⟨0|ξ0|0⟩ = −1. (65) 
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⟨ | | 

⟨    |   |    ⟩ 

⟩ ⟩ 
⟩ 

0 

0 

— − 

0 | 

0 0 

0 0 0 

0 0 0 0 

0 − − 

∆ L 1 

 

As for the value of 0 ξ−1 0 , it does not enter the Hamiltonian nor the construction of the 

states, and thus has no influence on any expectation values. 

Equivalently we could impose that the fermionic charges (and the bosonic ones) are not 

modified by the normal order. This constrains ξ0 to take the value −1 and ξ−1 the value 0. 

2.1.7. Correction to the energy levels. To evaluate the corrections at order g to the energy levels, 

one has to compute the matrix elements φ1 H φ2 where φ1 and φ2 are eigenstates of the 

unperturbed H with the same energy. In the following we will compute the action of H 

on some state  φ⟩. Consider one term in the Hamiltonian (53) and denote n and n̄ the sum of 

the indices of the ψ’s and ψ̄′s that compose this term. In general we have n n̄ = 0, but not 

necessarily n = n̄ = 0 separately. Thus a state  φ1  with a certain value of n     n̄ is mapped by 

H onto another state with the same value of n     n̄. Since  φ1   and  φ2   have the same energy, 

they must have the same value of n + n̄, hence the same value of n and n̄ separately to have a 
non-zero matrix elements by H. This way one can consider only the ‘conservative’ part of H, 

i.e. its terms with n = n̄ = 0. It corresponds to summing the indices of the ψ’s to zero, and to 
summing the indices of the ψ̄’s to zero separately as well. Note that in the term η2π2 + η1π1, 

the only ‘conservative’ term is the zero mode η2π2 + η1π1. k   k k   k 

• 0⟩. We have 

0   0 0   0 

H|0⟩ = 0, (66) 

that will be the reference state (in all finite sizes L) for our computations. 

• η1⟩ ∝ η1|0⟩. We have 

:V: η1|0⟩ = 0, (67) 

thus 

Hη1|0⟩ = −κ−1gη1|0⟩, (68) 

and a correction κ−1g = 1/3 log L. Note that it is below the ground state of the zero 

magnetization sector. 

The other states in the multiplet are (1 − gη2η1)|0 and η2|0 , i.e. the states obtained 

from η1 0 by applying the lowering operators J− and F−. They indeed have the same 
correction: 

H(1 − gη2η1)|0⟩ = 0 − gHη2η1|0⟩ 

= −κ−1g|0⟩ + O(g2) 
= −κ−1g(1 − gη2η1)|0⟩ + O(g2), (69) 

0 0 

and 

Hη2|0⟩ = −κ−1gη2|0⟩, (70) 
 

hence 

0 

 

 

L2 e 

2πvF  

= −κ− 

0 

 

 

 

g. (71) 

• η1∂η1....∂m∂̄η1....∂̄m̄ η1⟩ ∝ η1ψ1 1...ψ1 mψ̄1 
1...ψ̄1 

m̄ |0⟩. We have 
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Σ 
m 

Σ 

Σ Σ 
m 

m 

⟩ 

0 − − − − 

: n (−iη1)ψ2ψ̄1
 : n −k ψ2ψ̄1 η1ψ1 ...ψ1 ψ̄1 ...ψ̄1

 

: n (−iη1)ψ̄2ψ1 

: n −k ψ̄2ψ1 η1ψ1 ...ψ1 ψ̄1 
...ψ̄1

 

= 
2

 − 
n  

− 
k 

− 

n  
− 

η1ψ1 1...ψ1 mψ̄1 
1...ψ̄1 

m̄ |0⟩ 

0 0 1 −m 1 −m 

Σ 

Σ 

n Σ 
m̄ 

∆ L 1 

 

:V : η1ψ1 1...ψ1 mψ̄1 
1...ψ̄1 

m̄ |0⟩ 

  1   
 
Σm̄ 

−ψ̄2
 

    

m̄ 
−ψ̄2  ψ1 

 
    

 
 

 
   

 

  1   
 
Σm 

ψ2 

    

m̄ 
ψ2  −ψ̄1 

 

  
   

      
 

  1   
  

m̄   
− −n k 

 

 
   

Σ −n Σ 
 

 

m̄   
−n k 

 
 

       

= 
  1   

(m̄ (m + 1) + m(m̄ + 1))η1ψ1 ...ψ1   ψ̄1    ...ψ̄1
 |0⟩. 

2κ2 
0   −1 −m   −1 −m (72) 

Indeed in :V , every ψ2 with k > m or ψ̄2  with k > m̄ anticommutes with all the fields in 
k k 

the state and annihilates 0 , hence the restriction over the summations. 

Thus 

Hη1ψ1 1...ψ1 mψ̄1 
1...ψ̄1 

m̄ |0⟩ = (m(m + 1) − (2mm̄ + m + m̄ + 2)g)η1ψ1 1...ψ1 mψ̄1 
1...ψ̄1 

m̄ |0⟩, 
0   − − − − 

hence 

0   − − − 
— (73) 

L2∆eL 1 1 
 

 

m + m̄ −1 
 

 

2πvF    

= 
2 

m(m + 1) + 
2 

m̄ (m̄ + 1) − (mm̄ + 
2 

+ 1)κ g. (74) 

Note that the correction is not the sum of left and right contributions, but involves also a 

cross-term mm̄ . 
For symmetric states m = m̄ we find 

 

, (75) 

 

while when m̄ = 0, the logarithmic correction becomes linear 

L2∆eL 1 
 

 

m −1 
 

 

2πvF    

= 
2 

m(m + 1) − ( 
2 

+ 1)κ g. (76) 

In general, the correction is thus not simply the sum of left and right contributions. 

• ∂η1...∂mη1∂̄η1...∂̄mη1⟩  ∝ (1 + mgη2η1)ψ1   ...ψ1   ψ̄1    ...ψ̄1     . 

Here the computation for the part involving the ψ’s is similar to the previous case. As for 

the η2η1 part, only the unperturbed Hamiltonian acts on it. Combining the two parts, one 
0 0 

finds  
 

L2 e 

2πvF   

= m(m + 1) − m(m − 1)κ− 

 

 
g. (77) 

2κ2 
n=1 

−n 
0 0 −n 

n=1 k=1 
−n −k 

k −n 0 −1 −m −1 −m̄ 

2κ2 
n=1 

n 
0 0 −n 

n=1 k=1 
n k 

k −n 0 −1 −m −1 −m̄ 

κ 2 

n=1 n=1 k=1 
n 

n=1 
n k 0 − − − − 

 

2 v  
 

m 

m 
Σ 

= : + : |0⟩ 

+ 

: + : |0⟩ 

n=1 k=1 
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0 0 

2 0 0 −1 

Note that the other states in the multiplet for m = 1 are (η1ψ2 1 + ψ1 1η
2)|0⟩ and 

(1 + g η2η1)ψ2 |0⟩ and give the same correction as expected, hence the importance of 
the factor mgη2η1 that comes from the discussion in section 2.1.5. 

0 0 
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| 

| | 

M 

i 

| 

= 
λi − λj − i 

· 
λi − λj + i/2 

. (78)
 

L λ2 + 1/4 

 

2.2. The spectrum from the spin chain 

In the remainder of this section we provide two alternative means of deriving (75), or at least 

special cases thereof. The first of these relies on the Bethe-ansatz diagonalisation of the spin 

chain Hamiltonian, and the other on the computation of three-point functions—either directly, 

or using a trick reminiscent of Wick’s theorem. While both of these methods are of indepen- 

dent relevance, the reader interested mainly in results for other models may chose to skip 

directly to section 3. 

 

2.2.1. Bethe equations. We now move on to the corresponding osp(1 2) spin chain. Like the 

sigma model, which involves as a basic degree of freedom a field in the vector representation 

of the algebra, the spin chain involves a tensor product of fundamental representations of osp(1 

2). In contrast with the other superalgebras we will encounter in this paper, osp(1 2) has a simple 

representation theory. Its action on the spin chain is fully reducible, and the Hilbert 

space decomposes onto a direct sum of ‘spin j’ representations, with dimension 4j + 1. Here 

j is the eigenvalue of the Jz generator on the highest weight state, and j = 1/2 corresponds to 
the fundamental. 

The spectrum of the Hamiltonian is described by one family of roots λi satisfying the Bethe 

equations [22, 29] 

  
λi + i/2 

  L 
λi − λj + i  λi − λj − i/2 

  
An eigenvalue of the Hamiltonian for one set of solutions λ1, ..., λM to these equations is then 

eL = − 
1 Σ 1 

. (79) 

The spin j (ie, the eigenvalue of Jz) corresponding to a solution with M roots is linked to M 

through 

M = L − 2j. (80) 

Moreover the osp(1 2) Bethe states are the highest-weight states. 

This kind of relation, which links the number of Bethe roots to the value of the charges of 

a state, can be simply deduced from a direct diagonalisation of the Hamiltonian in small sizes. 

But in some cases it can be obtained analytically from the commutation relation between the 

total charges and the monodromy matrix components. 

 
2.2.2. Bethe root structure.   The first task when studying a spin chain with the Bethe ansatz 

is to find the structure of the roots that correspond to the energies (at least the low-lying ones). 

There is no generic way of determining this structure from the Bethe equations, implying that 

a numerical study is an inevitable step. The two options are either to use the McCoy method 

[30, 31], or to proceed by a trial-and-error approach. 

We observe that on the lattice in size L, the field η1∂η1...∂mη1∂̄η1...∂̄m̄ η1 is obtained with 

L 1 m m̄  real Bethe roots, with m positive vacancies and m̄ negative vacancies. The 

field ∂η1...∂mη1∂̄η1...∂̄mη1 is obtained with L − 2m Bethe roots, among which L − 2m − 2 
are real and symmetrically distributed, and 2 form an exact 2-string at ±i/2, i.e. a pair of com- 

plex conjugate Bethe roots whose values are exactly ±i/2. The field ∂η1...∂mη1∂̄η1...∂̄m̄ η1 

when m /=m̄ is obtained with L m m̄ Bethe roots, among which L m m̄ 2 are real 

with m positive vacancies and m̄  negative vacancies, and 2 form an approximate 2-string at 

λi − i/2 
j/=i 

i=1 
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± 

2 

0 1 n−1 
,
 

L (e − e ) 

= 4 4 

1 
−1g, if j is integer, 

(81)
 

L 2πvF 
L L L 

 g 
∫ 2π 

 

i/2 with a large real part, on the side where there are the most vacancies. See figure 1 for a 

plot of some root structures. 

The results for the gaps ∆eL of the ground state of the sectors of magnetization j reads then 

L2∆eL j2 − 1 − 
  

j2 + 3
  

κ−1g, if j is half-integer, π  F ( + 1) − ( − )κ 

in agreement with (75) after identifying j ≡ m + 1 for half-integer spins, and with (77) where 

j ≡ m for integer spins, while the value of the Casimir on these states is 

C = j(2j + 1). (82) 

See below for a discussion of the symmetries at finite and vanishing g. 

Note that all these corrections previously derived from field theory can be computed ana- 

lytically within the Bethe ansatz; see equation (C.6) in appendix C. 

 
2.2.3. Numerical results. We present here the numerical verification of the logarithmic cor- 
rections, carried out with the Bethe ansatz. Because of the logarithms, large sizes are needed 
to get a good precision. The general idea is to use a Newton method to solve the Bethe equa- 

tions, using the solution at size L to build an initial guess at size L + 2 close enough to the 
solution to make the Newton method converge. Then a fit as a quotient of two polynomials in 

(log L)−1 is performed. Precisely, we used the function 

 
fn(L)=  

a  + a (log L)−1 + ... + a (log L)−n+1 

1 + b1(log L)−1 + ... + bn(log L)−n (83)
 

and fitted the parameters a0, ..., an−1, b1, ..., bn for a value of n depending on the state. 

From the Bethe ansatz, one computes  Zm,m̄ = (  L
2     

(e   − e0) − (h + ̄h)) log L, where e0 

is the energy of the ground state and eL the energy of the state of study (here, the one with m 

positive vacancies and m̄  negative vacancies; a 1/2 vacancy on both sides counts for an odd 
number of total vacancies), and looks for its limit value, see figure 2. 

 

2.3. Relation with 3-point functions 

We discuss in this section how the logarithmic corrections can be related to the 3-point func- 

tions in the plane. Our calculation parallels the work by Cardy for quasi-primary fields [32], 

but applies here to the logarithmic case. 

 
2.3.1. Quasi-primary fields. It is known that for quasi-primary fields the logarithmic correc- 

tions to the energy levels are linked to the structure constant between the fields of the level and 

the marginal operator that perturbs the Hamiltonian [32]. Here we briefly remind the reader of 

this relation. Assume that a Hamiltonian H0 is perturbed by a potential gV : 
 

 
 

Define δê by 

H = H0 − κ 
2π

 V(x, t)dx. (84) 

2  (g) (0) 

κ−1gδê =   L L  , (85) 
2πvF 

0 

2 v j j j j 
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z,w→0 

⟩ 

m 

m 

— V 

m 

| | | | 
⟨   V 

 

where e(g) is the energy level of a given state with the perturbation g, and e(0) the energy level 
L L 

of the same state without the perturbation. The corrections to the energy δê of a state  φ⟩ is 

2 1 
∫ 2π 

And we have for a field φ of conformal weights h = h̄ 

⟨φ|V(x, t)|φ⟩ =  lim ⟨0|z−2hz̄−2hφ(1/z)V(x, t)φ(w)|0⟩. (87) 

If φ and V are quasi-primary then their three-point function is constrained to be exactly 

C 
⟨0|φ(z)V(y)φ(w)|0⟩ = 

|z − y|4|y − w|4|z − w|4h−4 
, (88) 

where C is the structure constant. This gives 

δê = κ2C. (89) 

 
2.3.2. Fields with logarithms. The previous argument does not apply to the logarithmic cases 

discussed above. Indeed, η1 and η2 are not quasi-primary: their correlation involves log, which 

is not a scale covariant function. It thus needs a more detailed study. The purpose of the sub- 

sequent sections is to study the link between the correction to the energy levels for the states 

η1∂η1...∂mη1 and the three-point function between them and the perturbative potential. 
Denote φ1 (z) the field η1(z)∂η1(z)...∂mη1(z) and φ2 (z) the field ∂mη2(z)...∂η2(z)η2(z). 

m m 

They have scaling dimensions m(m + 1)/2. The corresponding state φ1 ⟩ is given by the con- 
stant coefficient in φ1 (z), and is ∝ η1ψ1 ...ψ1   . The state ⟨φ2 is defined as the conjugate 

m 1 2 2 1 0 1 −m m m m   1 2 

of  φm⟩, thus ∝ ψm...ψ1 π0. It is given by the coefficient log |z|2z−  ( + ) in φm(z), denoted 

coefflog |z|2 z−m(m+1) (⟨0|φ2 (z)) (one could give an integral formula for this, but it is unneces- 

sary). Note that in absence of log, this matches the usual definitions. One can express these as 
1 1 2 2 

|φm⟩ = φm(0, 0)|0⟩, ⟨φm| = coefflog |z|2 z−m(m+1) (⟨0|φm(z)). (90) 

The Hamiltonian is perturbed by    κg/(2π) (x, t = 0)dx . Since the perturbation κ−1gδê to 
the energy level of state φm is given by 

κ2 2    1  
∫ 2π 

1
 

 

   

δê = −
⟨φ2 |φ1 ⟩

⟨φm| 
2π 

V(x, t = 0)dx|φm⟩, (91) 

one sees that it can be expressed in terms of the three-point function Gφ1 (z2, z, z1) where 

GX(z2, z, z1)= ⟨0|X†(z2)V(z)X(z1)|0⟩, (92) 

for a field X(z). Precisely: 

κ2 
δê = − 2 1   coefflog |z2 |2 z

−m(m+1)×z0 (G(z2, z, 0)). (93) 
⟨φm|φm⟩ 2 

 
2.3.3. An explicit calculation of the three-point function η2 η1 . The fields are assumed to 

be radially ordered z1 < z < z2 . 

Let us first compute explicitly the three-point function Gη(z2, z, z1): 

Gη(z2, z, z1)= ⟨0|η2(z2)V(z)η1(z1)|0⟩, (94) 

m m 0 

δê = −κ ⟨φ|V(x, t)|φ⟩dx. (86) 
2π 0 
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V 

−n2 

 2̄  

0 
κ 

2   1 

−m1  1̄  

0 
κ 

1   1    2 

m 

k k−p 

k k−p 

k k−p k k−p 

η2 − i 

2
0 log |z2|2 + i 

n 2 

n
√ 

−n 2 

2k k −k+p k 

k−p −k 

−k+p −k k−p 

k 

k k−p −k −k+p −k k−p 

η1 + i 
2

0 log |z1|2 + i 
m 1 

m
√ 

−m 

2κ 

log |z2|2⟨0|π1η1ψ2η1|0⟩ −  i log |z2|2
 ⟨0|π η ψ 

−p 
|0⟩z−pz 

p
 

⟨0|π0 η0 ψ − 
p 

|0⟩̄z z̄ 1 

⟨0| n −n ψ2 m |0⟩z−nzn+mz−m − ⟨0| n ψ1 
−m m |0⟩z−nzn+mz−m 

n/=0,m 

⟨ | n −n ψ2 −m |  ⟩ −n  n¯−m¯m + ⟨ | n ψ1 m −m |  ⟩ −n  n¯−m¯m 

n/=0,m 

2 

⟨ | 

−n n ψ2 

m |  ⟩ ̄ 2
n   m¯−n   −m  − ⟨ | 

−n ψ1 −m m |  ⟩ ̄ 2
n   m¯−n   −m 

n/=0,m −n −n −m m 

⟨ | n ψ2 m −m |  ⟩ ̄ 2
n¯−n−m¯m 

 

 

at points z = e−ix+τ . The potential V(x, t) is 

V(x, t) =:V(x, t): +iκ−2ξ0 
Σ

(η2(t)π2 
 

 

 

(t) + η1(t)π1 

 
(t))eipx. 

(95)
 

Within the correlator (94) the part with the normally ordered potential : (x, t): is zero since 

there are four fields to contract with only two fields at our disposal. Thus we have 

Gη(z2, z, z1) = −⟨0|η2(z2) iκ−2ξ0 
Σ

(η2(t)π2    (t) + η1(t)π1    (t))eipx  η1(z1)|0⟩. (96) 

We can now use (37) to express each of the η1,2(t) and π1,2(t) in terms of z = e−ix+τ = e−ix+it . 

We find 

 

π1

 

k k 

 

 

Σ ψ z − ψ 
 

 

z̄n  

Σ i 
(ψ1ψ2 

z−p  + ψ1ψ̄2 z−kz̄−k+p  − ψ̄1    ψ2 z̄kzk−p  − ψ̄1 ψ̄2 z̄ p 

— ψ ψ z−p  − ψ2ψ̄1 z−kz̄−k+p  + ψ̄2    ψ1 zk−pz̄k  + ψ̄2 ψ̄1 z̄ p) 

 π2 Σ ψ  z − ψ 
 

 
 

 

z̄1
m  

 
(97) 

where  we  use  the  shortcuts  iψ1,2/(0
√

2κ) = η1,2 ± i(2κ)−1π2,1 log |z|2   and  iψ̄1,2/0 = 0  to 
0 

simplify the notations. One has 

κ−3 
 

 

0 0 0 

 

κ−3 Σ ψ 
 

 
 

 
κ−3 

 

 

2 

2 
Σ 

1 
 

 

 
1 ¯2 

0 0 
 

ψ̄1 

 
 

0   0 4 

 
p    −p 

p>0 

0  0 −p 1
 

κ−3 Σ 
 

 

ψ2 ψ1 ψ1 

 
 

 
 

κ−3   Σ ψ2 

  
  

ψ2   ψ1 

 
 

 
 

κ−3 Σ 
 

 0  
ψ2  ψ1      

¯  ψ̄
1 

0 z    z z z κ−3  Σ 
0 

ψ2 

 

 

ψ̄2   ψ̄1 
0 z    z z z 

κ−3 Σ 
 

 0  
ψ̄2 ψ̄1 ψ1   

0 z   z z   z 
κ−3 Σ 

 

 0  
ψ̄2 ¯ ψ

2 

 
ψ1   

0 z   z z    z 

¯2 
κ−3  

Σ 0 ψ 

p,k 

n/=0 

m/=0 

p 

4 
p<0 

p 
p 

4 n −n −m m 2 1 4 
n/=0,m 

n −n −m 
m 2 1 

4 
n/=0,m 

4 4 
n 

   

Gη(z2, z, z1) = − κ−2i⟨0| 
2κ 

k,p 

−k+p 

|0⟩, 

Gη(z2, z, z1)= − 

− i log |z2| 

− 

− 
n −n −m 1 4 n −n −m −m 

+ 

+ −n 

1 

p,k 
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n/=0,m 
−n m 

−m |  ⟩ ̄ 2
n¯−n−m¯m  + ⟨ | 

−n ψ1 

ψ̄1   
¯  ψ̄

1 

 

 
0 z z 

¯2 

z
 κ−3  

Σ 

0 
ψ 

 

¯  ψ̄2   ψ̄1 

 

 
0 z   
z
 
z . 

4 
n/=0,m 

−n −n −m 1 4 n 
n/=0,m 

−m −m 
1 

(98) Evaluating each scalar product gives 

m 

− 

n 

1 

1 −m 1 
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Σ 
Σ 

V 

V 

⟨ | V | 

n n 

2 
log |z2| 

4 
log |z2| z z1 + 

4 
log |z2| z̄ z̄ 1 

2 1 2 1 2 1 

2 1 

2 
2 

n 
+ 

2 
2 

n 

η1(z)= η1 + i 0 log |z|2 + i n √   , η2(z)= η2 − i 0 log |z|2 + i n √   

∂ η (z)= −√
2κ

 ψnz 
n/=0 

— ψnz̄ , ∂ η (z)= −√
2κ

 ψnz 
n/=0 

— ψnz̄ 

0 2 n n 0 2 n n 

 

Gη(z2, z, z1) 

κ−3 
2

 

 

 
κ−3 

 
 

2 
Σ 

−p  p 
 

 

 
κ−3 

 
 

2 
Σ 

p    −p 
 

κ−3 

—  
4 

log |z| 

 
2 
 

p>0 

z−2  
p
z p − 

κ−3 

4 
log |z| 

 
2 
 

p<0 

z̄ 2 
pz̄−p 

κ−3 

— 
4

 
n>

Σ

0,m<0 

z−2  
nzn+mz−1  

m 

n 
+ 

z−2  
nzn+mz1

−m 

m 
− 

κ−3 
 

 

4 n>

Σ

0,m>0 

z−2  
nznz̄−mz̄1

m
 

n 
− 

z−2  
nznz̄−mz̄1

m
 

 

m 

κ−3 
 

 

Σ   z̄nzmz̄−nz−m 
 

  

z̄nzmz̄−nz−m 
 

 

κ−3 
 

 

Σ   z̄nz̄−n−mz̄m 
 

  

z̄nz̄−n−mz̄m 
 

 

κ−3  Σ z−nzn κ−3  Σ ̄znz̄−n 

, (99)
 

or in a simpler form 

 G z , z, z κ−3 
 
     z  

 
 

    ̄z     
 

  z z  2 κ−3 
 
     z  

 
 

    ̄z     
 

  z z 2. 

η ( 2 
1) =  

4
 

+ 
z − z2 z̄ − ̄z2 log | − 1| + 

4
 

+ 
z − z1 z̄ − ̄z1 

log |   −   2| 

Formula (93) gives here, with ⟨φ1|φ2⟩ = (2κ)−1 (100) 

 
δê 

 
= −κ 

0 

 

× 2κ × 

0 

κ−3 

4  
× 2 

 
= −1 (101) 

which is indeed the correction computed in (76). 

 
2.3.4. Two-point functions. If we were to compute the three-point function 0 ∂η2η2 η1∂η1 0 with 

the same method as in the previous example, one would have to take into account the term : : 

and the computations would become quite cumbersome. Actually, such a computa- tion can 

always be recast into a product of two-point functions, like a Wick’s theorem. Indeed, since the 

anticommutator of two modes is a complex number, to evaluate the three-point func- tion (92) 

one has to contract every mode of the middle field     with modes of the right and left fields, 

and then contract the remaining modes between them. The two-point functions that appear in 

the result involve the following fields and their derivatives: 

π2 Σ ψ1z−n  + ψ̄1 z̄−n π1 Σ ψ2z−n  + ψ̄2 z̄−n 

0 2κ 

x  
1 1   Σ 

 
 

 
1 −n 

n/=0 
n  2κ 

¯1 −n 
x 

2 

0 

   1   Σ 
 

 

 

2κ 
 

2 −n 

 
¯2 −n 

n/=0 
n  2κ 

π1(z) = π1 + 

  
κ Σ 

ψ2z−n + ψ̄2 z̄−n, π2(z) = π2 − 

  
κ Σ 

ψ1z−n + ψ̄1 z̄−n. (102) 

p>0 

4 
n<0,m<0 

n m 4 
n<0,m>0 

n m 

= + 

+ 

− + + 

− 

n/=0 n/=0 

2 

p<0 

n>0 n<0 
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Σ Σ 

κ⟨ |η ( )η ( 

)| ⟩ = − log | | ⟨ |π0η0| ⟩ −  
n>0,m<0 

nm  
⟨ |ψnψm|  ⟩ −  

n>0,m<0 
nm  

⟨  |ψnψm|  ⟩ 

The two-point function between these fields are known or computed without problems [33]. 

For example 

 
2   0   2 z 

 
1 w 0 

 
i z 2 0 1   1 0 

Σ z−nw−m  

0
 

2    1 0 
Σ   z̄−nw̄−m   

0  ¯2 ¯1   0
 

 

= log |z|2 − 
z−nwn 

n 
− 

n>0 

z̄−nw̄n 
 

n>0 
n
 

= log |z|2  + log(1 − w/z) + log(1 − w̄/z̄) (103) 
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m 

m 

⟨   ⟩ ⟨ | | ⟩ 

|  −    |2
 1 

| | 

∼  
 1  

log |z2 − z1|2   
Σ 

(−1)σ   
   

⟨0|∂kη2(z2)∂σ(k)η1(z1)|0⟩ 

m m k,p=1 

 

hence  
2 1 1 2 

 
 

 
Similarly 

⟨0|η (z)η (w)|0⟩ = 
2κ 

log |z − w| . (104) 

 
⟨0|η2(z)∂xη1(w)|0⟩ = −⟨0|η1(z)∂xη2(w)|0⟩ = 

 1  
 

   iw    
+ 

 −iw̄ 
 

 
2κ z − w z̄ − w̄ 

⟨0|η1(z)π1(w)|0⟩ = ⟨0|η2(z)π2(w)|0⟩ =  
i  
 

   w    
+ 

   w̄   
  

. (105) 

2 z − w z̄ − w̄ 

For instance, these formulas enable us to re-express the previous three-point function as 

Gη(z2, z, z1)= −κ−2i(−⟨η2(z2)π2(z)⟩⟨η2(z)η1(z1)⟩ + ⟨η2(z2)η1(z)⟩⟨π1(z)η1(z1)⟩), (106) 

where we use the simplified notation X for 0 X 0 . 

Because of the fields η that involve log, there is no scale invariance and the two-point func- 
tion of the fields φ1 is not as simply constrained as usual. In particular there are sub-leading 

corrections to the dominant terms. In the following, we will denote by ∼ an equality up to 
sub-leading terms. The computation of the dominant behaviour of the two-point functions of 
the fields φ1 is classical. We have 

2 1 m   2 2 2 1 1 m 1 

⟨0|φm(z2)φm(z1)|0⟩ = ⟨0|∂ η (z2)...∂η (z2)η (z2)η (z1)∂η (z1)...∂ η (z1)|0⟩ 
1 2 m 2 

 
 

2 1 m   1 

∼ 
2κ 

log |z2 − z1| ⟨0|∂ η (z2)...∂η (z2)∂η (z1)...∂ 

m 

η (z1)|0⟩ 

2κ 

 1  
∼ 

2κ 
log |z2 − z1| 

σ∈Sm 

σ

Σ

∈Sm 

 

(−1)σ 

 

k=1 
 

 

 

k

 

=1 

 
(−1)k−1(k + σ(k) − 1)! 

 

(z2 − z1)k+σ(k)2κ 

log z z 2 
∼ 

(z2 − z1)m(m+1)(2κ)m+1 
det((−1) 

k−1 (k + p − 1)!)k,p, (107) 

where in the second line the dominant term is given by contracting η1 with η2 (otherwise the 

power-law is the same but without log, thus sub-dominant). This gives the norm 
m−1 

⟨φ2 |φ1 ⟩ = (2κ)−m−1 det 
 
(−1)k−1(k + p − 1)!

}m 
= (2κ)−m−1(−1)[m/2♩m! 

 
(k!)2.    (108) 

2.3.5. Dominant behaviour of the three-point functions ⟨φ2 Vφ1 ⟩.   Using the two-point func- 
m m 

tions one can compute all the ⟨φ2 Vφ1 ⟩. For example one has 
m m 

2 2 1 1 

⟨∂η (z2)η (z2)V(z)η (z1)∂η (z1)⟩ 

κ−4 
 

 

2 |z|2
 κ−4 

 
 

2 z  

 

=  
8  

log |z2 − z|  
(z2 − z)2|z1 − z|2  

+  
8   

log |z2 − z1|  
(z2 − z)2(z1 − z) 

κ−4 2 

 
  z    z̄    z  

 
 

— 
8 

log |z2 − z| (z1 − z)(z2 − z1)2  
+ 

(̄z1 − ̄z)(z2 − z1)2  
+ 

(z2 − z1)(z1 − z)2 

κ−4 

+ 
4

 
z 2 

(z2 − z)2|z1 − z|2 
+

 

κ−4 

8 

z̄ 
+ 

(z̄2 − ̄z)(z1 − z)(z2 − z1) 

κ−4 

8 

z 

(z2 − z)(z1 − z)(z2 − z1) 

m 

2 

k=1 
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+ (z1 → z2, z2 → z1). (109) 
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− log | − |2 

V 

m 

| −  | | −  | 

2 m   2 2 2   2 1 m  1 

 

The dominant behaviour is given by 

 G z , z, z κ−4 
z z 2 |z|2

 
 

 

κ−4 
z z 2 |z|2

 
 

 

 . (110) 

η∂η ( 2 1) ∼ 
8 

log | 2 − | 
(z2 − z)2|z1 − z|2 

+
 8 

log | 1 − | 
(z1 − z)2|z2 − z|2 

Formula (93) gives for the full correlation function 

 
δê = −κ × (2κ)2 × 

κ−4 

8  
× 3 = −3/2. (111) 

However formula (93) does not capture only the dominant term in (109), but also the sub- 

dominant term z z 2 z 
(z1 −z)(z2 −z1 ) 

2   + z̄ 
(̄z1 −z̄)(z2 −z1 ) 2    . The dominant term comes from 

the normally ordered part of the potential : : whereas the second term comes from the regular- 

ized part ξ0(η2π2 + η1π1). Both contribute to the displacement of energies, but only the first 

one is visible at leading order in the three-point function. Note that this sub-dominant term is 

not even the next-to-leading order term. 

Let us evaluate the dominant term in the three-point function Gφm (z2, z, z1). Let us first 

remark that in V the regularized term will always contribute one power less than the normally 

ordered term, so that the dominant term is given by :V:. We have thus 

Gφ   (z2, z, z1) ∼ ⟨0|∂mη2(z2)...η2(z2) :(η2η1∂xη2∂xη1 + κ−2η2η1π1π2)(z): η1(z1)...∂mη1(z1)|0⟩. 
(112) 

A priori, the dominant term will be given by contracting the four η together, yielding a 

log z1    z 2 log z2     z 2. However we have the relations, using the abbreviated notations ∂η for 

∂zη: 
1 k   1 2 k 1 

⟨0|π (z)∂ η (w)|0⟩ = −κ⟨0|∂xη (z)∂ η (w)|0⟩ 

0|π2(z)∂kη2(w)|0⟩ = κ⟨0|∂xη1(z)∂kη2(w)|0⟩, 

valid for all k ≥ 1. Thus 

(113) 

⟨0|∂mη2(z2)...∂η2(z2) :(∂xη2∂xη1 + κ−2π1π2)(z): ∂η1(z1)...∂mη1(z1)|0⟩ = 0, (114) 

and the log2 term vanishes. Similarly, if one contracts only η2(z2) with η1(z), then one has to 

contract ∂xη2(z) with η1(z1) and π1(z) with η1(z1) since the relations (113) are verified for all 

k but k = 0 (otherwise the terms in ∂xη2 and π1 will cancel out). Then: 

G    (z , z, z ) ∼(2κ)−3 log |z   4īz   — z| ⟨0|∂ η (z )...∂η (z ) :η π (z): ∂η (z )...∂ η (z )|0⟩ 
  

φm      2 1 z̄ − ̄z1 

+ (2κ)−3 log |z1 − z|2   4īz   
⟨0|∂mη2(z2)...∂η2(z2) :η1π1(z): ∂η1(z1)...∂mη1(z1)|0⟩. 

z̄ − ̄z2 

Contracting the remaining fields in the normal order, one gets 

(115) 

m   2 2 2   2 1 m 1 

⟨0|∂ η (z2)...∂η (z2) :η π (z): ∂η (z1)...∂ 
m 

η (z1)|0⟩ 
 

  

=   
Σ 

(−1)k+p+1⟨0|∂kη2(z2)π2(z)|0⟩⟨0|η2(z)∂ pη1(z1)|0⟩⟨0| 
∂aη2(z2) ∂bη1(z1)|0⟩ 

2 2 1 1 

m m 

2 

2 
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m 

(z2 − z) + (z1 − z) (z2 − z1) ( + )− − 

k,p=1 

Σ iz 
 

   

k!( p − 1)!(2κ)−m 
 

     

a=1,/=k 

 
 

 

b=1,/=q 

 

k,p 1 
2 

k 1 p m m 1 
k = − 

p  
det((−1)a−1(a + b − 1)!)a/=,bk/=.q 

= 

(116) 
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m 

− 

|  − | ⟨ ⟩ − 

Σ1
−   −  m  k,p p,km 

2 

2 
k,p=1 

Gφ (z2, z, z1) ∼ 
(2κ)−m−3 

2 
2 det Hm 

k 1 p 1 m m 1 k 

= (−1)k−1k!( p − 1)!(H−1)p,kz1−pz−m(m+1)+p−1 
Σ (k + q)! 

(z/z2)q. (119) 

 

Denote Hm the m m matrix whose (a, b) coefficient is (−1)a−1(a + b − 1)!. Using the rela- 
tion between the adjugate matrix adj Hm and its inverse, adj Hm = (Hm

−1)t det Hm, we have 

|z|2 log |z2 − z|2 Σ (−1)k+pk!( p − 1)!(Hm
−1)p,k 

+ (z1 → z2, z2 → z1). (117) 

This is the full dominant terms in the three-point function. As already said, formula (93) also 

counts a sub-dominant term in the three-point function that is obtained by taking the regular- 

ized part of the potential. This term is 
m   2 2 1   1 1 m 1 

⟨0|∂ η (z1)...η (z2) :η π : (z)η (z1)...∂ η (z1)|0⟩ (118) 
2 m   2 2 1 1 m 1 

∼ log |z2 − z| ⟨0|∂ η (z1)...η (z2)π (z)η (z1)...∂ η (z1)|0⟩. 

If one contracts π1(z) with a ∂kη1(z1), the resulting power of z2 will be m(m + 1)+ k when the 

power of z is zero and z1 = 0, and will contribute to formula (93) only if k = 0. Thus the only 
term that counts is (2κ)−m−3 log z z2 2 π1(z)η1(z1) det Hm(z2 z1)

−m(m+1). It con- tributes to 

−1 to δê. 
To apply now formula (93) to the three-point function (117), let us expand 

(−1)k+pk!( p − 1)!(Hm
−1)p,k 

 

(z2 − z)k+1(0 − z) p−1(z2 − 0)m(m+1)−k−p 

 

m 2 

Only q = p − 1 contributes to δê. This gives 
m 

q≥0 
k!q! 

 

 

 

 

 
 

hence 

δê = −1 −  
1  Σ 

(−1)k−1(k + p − 1)!(Hm
−1)p,k 

m 

= 1 (H )  (H−1) 
2 

k,p=1 

= −1 −  
1 

trHmHm
−1, (120) 

m 
δê = −1 −  

2 
, (121) 

recovering the previously derived correction (76). 

 
2.3.6. Conclusion. We conclude that in case of non-quasi-primary fields the relation between 

the logarithmic corrections to the energy levels and the three-point function is more involved 

than in [32]. In particular the three-point function exhibits m2 many equally dominant terms 

(i.e. with the same total divergence power, see (117)), that all contribute to the scaled gap. It 

moreover involves sub-dominant terms that contribute to the energy (although in a way inde- 

pendent from the magnetization). 

z m | z − 1

| 
k,p=1 

(z2 − z) + (z1 − z) − (z2 − z1) ( + )− − p 



J. Phys. A: Math. Theor. 52 (2019) 345001 E Granet et al 

38 

 

 

| 

2 

| 
| 

Σ 

 

2.4. Symmetries 

The action of the OSp(1 2) symmetry in the supersphere sigma model was already discussed 

in [14]. Interestingly, while the symmetry is spontaneously broken right at the conformal fixed 

point (here the sympletic fermion theory), the fact that this symmetry is present for all finite 

values of the system size (and thus finite values of the coupling constant g) gives rise to an 

enhancement of degeneracies at the fixed point. A very simple example of this is the ground 

state with h = h̄ = 0. This state is degenerate four times at the fixed point, as the result of a 
degeneracy between the ground state (corresponding to an OSp(1|2) singlet) and the order 
parameter multiplet (the OSp(1|2) vector). Accordingly, the leading term in (81) vanishes 

when j = 1. The correction term does break the degeneracy, in agreement with the fact that 

the only remaining symmetry at finite coupling is OSp(1 2). 
Similarly, we get eight fields with (h, h̄) = (1, 0): five come from the OSp(1 2) currents (in 

the five dimensional adjoint), and three come from derivatives of the order parameter fields 

with vanishing conformal weight. 

 
3. OSp(2|2) 

3.1. The spectrum from field theory 

3.1.1. The action.  For the osp(2|2) case, the constraint (9) can be satisfied by setting 

φ1 = (1 − η2η1) cos φ, φ2 = (1 − η2η1) sin φ, (122) 

so that the action reads 

S =
 κ 

∫ 

dxdt 

   
1 

∂ 
 
φ∂ φ + ∂ 

 
η2∂ η1 − η1η2∂ 

 
η1∂ η2 − ∂ φ∂ φη2η1

   

. 

2πg 2  
µ µ µ µ µ µ µ µ  

(123) 

Rescaling all the fields φ → 
√

gφ, η1,2 → 
√

gη1,2 yields 

S =
 κ 

∫ 

dxdt 

   
1 

∂ φ∂ φ + ∂ η2∂ η1 − gη1η2∂ η1∂  η2 − g∂  φ∂  φη2η1

   

, 

 
 

with here 

2π 2  
µ µ µ µ µ µ µ µ  

(124) 

g = 
κ

 
2 log L 

. (125) 

Note that the boson φ with original radius 2π becomes a boson with radius 2π/
√

g. 

3.1.2. The normally ordered Hamiltonian. To find the Hamiltonian, we write the action as 

S = 
 κ  

∫  

dxdt 

 

−∂xη2∂xη1 + η̇2η̇1 −  
1 

x 
2
 1 ˙2 gV(η1, η2, φ)

  

. 

2π 
 

With the modes 

2 
(∂ φ) + 

2 
φ +  

(126) 

φ(x, t)= φk(t)eikx, 
(127)
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k 

k 

p 

| 

| 

l m −n k −m 

1 2 m k −l −m k 
dη2 

√ 

 

it reads 

S = κ 

∫  

dt 

 

−k2η2η1 k  + η̇2η̇1 k  −  
1 

k2φkφ−k 
1 ˙

k  ̇ −k  + gV

  

. (128) 

k − 

The conjugate momentum to φk is 

k   − 2 + 
2 

φ φ 

πφ = κφ̇−k 

 dV 
+ κg 

dφ̇  
. (129) 

The quantization procedure imposes at equal times 

[φk, π φ ]= iδk,p. (130) 

The Hamiltonian is then 

 
H 2   2   1 −1   2   1 κ  2 

 
 

κ−1    
φ   φ

 
 

 

 (131) 

= κk ηk η−k + κ 

The osp(2|2) charges are 

πk π−k  + 
2 

k  φkφ−k + 
2  

πk π−k − κgV. 

J 
η1π1 − η2π2 

, J
 

 
 

 i  1  2, J  i 2 1 

z =  k   k 

2i  
k   k + = − ηk πk − = − ηk πk 

F1 = cos(
√

gφ)k(1 − gη2η1 )π2  − 
√

gη1 sin(
√

gφ)lπφ 

 

√ 
l   m −n 

√ 
k 

√ 
−m F2 = sin(   gφ)k(1 − gη2η1 )π2   + gη1 cos(  gφ)lπφ 

 

√ 
l   m −n 

√   
k 

√ 
−m G1 = cos(   gφ)k(1 − gη2η1 )π1   + gη2 sin(  gφ)lπφ 

 

√ 
l   m −n 

√ 
k 

√ 
−m 

G2 = sin(   gφ)k(1 − gη2η1 )π1   − gη2 cos(  gφ)lπφ 

Q = 
1 

πφ. (132) 

2 0 

The temporal derivatives can be computed as in the osp(1 2) case. For example at order g one 

has 

∂tF1 = ∂tF
osp(1|2) + g  

  

− 
κ

φkφlη1 m2 − κ−1η1πφ πφ   + κη1φlφmm2 + κ 
dVφ  

    

, (133) 
 

if one decomposes the potential V as V = Vosp(1|2) + Vφ. 

We now impose the following perturbation 
1   2 2   2   1 2   2   1 2   1 2 1 2   1 2 1 

 
 

that gives 

V(η , η , φ) = (∂xφ) η η — (∂tφ) η η + η η ∂xη ∂xη η η ∂tη ∂tη , 
(134) 

V = −klφkφlη2 η1 − κ−2πφ  πφ η2 η1 − mnη2η1η2 η1 + κ−2η2η1π1 π2 . 

 m   n k l m n k   l    m n k  l    −m n (135) 
This ensures the conservation of the osp(2 2) charges. 

Define now the modes 
−ikφkκ1/2 + π

φ 
κ−1/2

 
 

 

0 

− 

− 
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−ikφ−kκ1/2  + π

φ
κ−1/2

 

 
that satisfy 

ak = 
−k , āk = 

2 

k , (136) 
2 

[ak, a−k] = k, [āk, ̄a−k] = k. (137) 

√ 
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1 

| 
| 

| 
| 

−i 2κη2 + 
k −k 2κη1 + l −l (ψ2 ψ1 + ψ2 ψ1 + amā−n + 

ā−man). 

2 − − 0 k −k −k k k −k −k k 0 0 − 
12 

−
 

k k k k 

0 −1 

−m −1 −m 

0 0 0 0 0 0 

 

The former modes read 

    i  φ √ 
 φk = 

k
√

2κ 
(ak − ā−k), πk   = 

and the potential can be rewritten 

κ/2(ak + ̄a−k), (138) 

  1  
   

√   ψ2 − ψ̄2
 √     ψ1 − ψ̄1 

¯ ¯ 
 

2κ2 0 k 
0 l m   −n −m   n  

(139) 

The bosonic part is already normally ordered, and the fermionic part is the same as in the 

osp(1|2) case. Hence 

V =:V: +iκ−2(η2π2 + η1π1)ξ0. (140) 
k   k k k 

The total Hamiltonian reads then 

H = 
1 Σ

(aka  k + ̄akā  k) + a2 + 
Σ

(ψ2ψ1   − ψ    ψ2 + ψ̄2ψ̄1     − ψ̄1   ψ̄2) + 2ψ2ψ1 
 c  

κg :V : 

— igκ−1(η2π2 + η1π1)ξ0. 
(141)

 

3.1.3. Construction of the states.   Once again derivatives ∂zη1 involve terms (1 + g/2η2η1), 
0 0 

that vanish when a η1 is already present in a state. The highest-weight state of the Jz-charge 

m + 1/2 and Qz-charge n is 

| cos(2n
√

gφ)η1∂η1...∂mη1∂̄η1...∂̄mη1⟩ = cos(2n
√

gφ0)η1ψ1 ...ψ1 ψ̄1 ...ψ̄1
 |0⟩. (142) 

 

3.1.4. Regularization. As in the osp(1 2) case, we need a regularization, i.e. fixing the value of 

ξ0. In this case we did not write the osp(2 2) charges in terms of their normally ordered version. 

They also would depend on the ξ’s, and any value for the ξ’s would give a Hamilto- nian with 

the osp(2 2) symmetry and with the classical non-linear sigma model as classical limit. In the 

osp(1 2) case, the regularization that we chose corresponded to imposing that the charges 

are not modified by the normal order. Here we can impose a similar constraint by 

constraining η1|0 , η2|0 , cos(
√

gφ0)(1 − gη2η1)|0⟩ and sin(
√

gφ0)(1 − gη2η1)|0⟩ to belong 

to the same representation, and thus to have the same energy at order g. We have 

Hη1|0⟩ = gκ−1ξ0η1|0⟩, Hη2|0⟩ = gκ−1ξ0η2|0⟩, (143) 
0 

and 

0 0 0 

H cos(
√

gφ0)(1 − gη2η1)|0⟩ =
 1 

(g − 2g) cos(
√

gφ0)(1 − gη2η1)|0⟩ 
0   0 2κ 0  0 

κ−1g √ 2 1 
 

 

 
Thus we impose 

1 

= −    
2 

cos( gφ0)(1 − gη0 η0 )|0⟩. 
(144)

 

⟨0|ξ0|0⟩ = − 
2 

. (145) 

3.1.5. Corrections to the energy levels.   As soon as the states involve bosons only through 

   

V = 
−i 

k<0 k<0 
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cos(2n
√

gφ0) the bosonic part of the potential (139) does not play any role at order g, and 
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| 

0 

2 

L 

2h 

L ( ) = #   
log L 

L 2 h 

 

the fermionic part is the osp(1 2) case. Only the unperturbed part of the Hamiltonian plays a 

role for the bosons at order g. Thus the bosonic and the fermionic part are actually decoupled 

at order g and the calculations for the fermionic part are identical to the osp(1|2) case. With 

a2 cos(2n
√

gφ0)|0⟩ = 2κ−1n2g cos(2n
√

gφ0)|0⟩, (146) 

we get 

H| cos(2n
√

gφ)η1∂η1...∂mη1∂̄η1...∂̄mη1⟩ 

= (m(m + 1) − (m(m + 1) + 
1 

− 2n2)κ−1g)| cos(2n
√

gφ)η1∂η1...∂mη1∂̄η1...∂̄mη1⟩, 

 

 

 

 
(147) 

hence 

 

 

Similarly for non-symmetric states  cos(2n
√

gφ)η1∂η1...∂mη1∂̄η1...∂̄m̄ η1⟩ one has 

(148) 

L2∆eL 
 

 

m(m + 1) m̄ (m̄ + 1) m + m̄ 1 
 

  

 
2 −1 

2πvF 
=

 2 
+ 

2 
− (mm̄ + 

2 
+ 

2 
− 2n )κ g.   (149) 

 

3.1.6. Density of critical exponents. The previous formula gives an infinite number of fields 

with the same conformal weight h = m(m + 1) when L          , thanks to the bosonic degree 

of freedom n. In finite size, the degenerescence is lifted with a 2κ−1gn2 = n2/ log L and one 

actually sees a continuum of conformal weights starting from m(m + 1). The question is to 

find the number of states that are there between h and h + dh in finite size L. Denote Cm(h) 
the number of such states for magnetization m. This number is for large L 

 
Cm h 

 

n ≥ 0, h ≤ 
n2 

≤ h dh

   

, 

 

if we assume that the higher-order correction terms to the conformal dimensions behave as 

nk(log L)−p with k < 2p (this is true in the XXX case for example, see [34]). #S denotes the 
number of elements in the set S. At first order in dh/h these n must satisfy 

√
h log L ≤ n ≤ 

√
h log L(1 + 

dh 
). (151) 

Hence: 
 

Cm(h)= 
1  

   
log L

dh + O(dh2). (152) 

Introduce now the variable s by h = s2. This gives the density of states ρm(s) for the variable 

s for magnetization m 

ρm(s)= 1, (153) 

in the sense that there are ρm(s)
√

log Lds states with magnetization m whose s is between s 

and s + ds in size L. This is the dominant behaviour of the density as L . The corrections 
in finite size may contain a more complicated behaviour such as the black hole CFT [35]. 

 

2πvF 
 

  

+ (150) 
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| 

| 

± 

2 

− 

| 

⊕ ⊕ 

× 

      
(155) 

i i 

| 

— − − 

L λ2 + 1/4 L µ2 + 1/4 

 

3.2. The spectrum from the spin chain 

3.2.1. Bethe equations. In the osp(2 2) case, typical irreducible representations are charac- 

terized by a pair of numbers q, j (and denoted [q, j] in what follows) which are the eigenvalues 

of the generators Qz and Jz on the highest-weight state. Here q can be any complex number, 

while j = 0, 1/2, These representations have dimension 8j [36], and Casimir 

C = 2j2 − 2q2. (154) 

Note that in contrast with osp(1 2), the tensor products of the [0, 1/2] representations at 

each site of the chain involve not completely reducible representations. The simplest example 

of this is the tensor product of [0, 1/2] with itself, which is a direct sum of the eight-dimen- 

sional adjoint [0, 1] and of an indecomposable mixing the atypical representations [ 1/2, 1/2] 

(both of dimension three) and two copies of the identity [0, 0]. For example, the ground state 

in even sizes is 8 times degenerated, has a Bethe state with charges Qz = 1/2, Jz = 1/2, 
and decomposes into [1/2, 1/2], [−1/2, 1/2] and two copies of the identity [0, 0]. The Bethe 

state with charges Qz = 3/2, Jz = 1/2 belongs to a 8 1 = 4-dimensional irreducible 

representation  [3/2, 1/2] = (3/2, 1/2)    (1, 0)    (2, 0).  Another  Bethe  state  with  charges 

Qz = 3/2, Jz = 1/2 belongs to a similar 4-dimensional irreducible representation, making this 
energy level 8 times degenerated. 

The osp(2 2) spin chain is described by two families of roots λi and µi satisfying the Bethe 
equations [22, 37] 

  
λi + i/2 

  L 
λi − µj + i 

= 
λi − i/2 

j    
λi − µj − i 

µi + i/2  L 
= 

µi − i/2 

µi − λj + i 
. 

j    
µi − λj − i 

An eigenvalue of the Hamiltonian for one set of solutions λ1, ..., λM1 , µ1, ..., µM2 to these equa- 

tions is then 
M1 M2 

eL = − 
1 Σ 1 

− 
1 Σ 1 

. (156)
 

  

The spins j and q (ie, the eigenvalue of Jz and Qz respectively) corresponding to a solution with 

M1,2 roots λi, µi are given by 

M1 = L/2 − ( j + q), M2 = L/2 − ( j − q). (157) 

Note that if another grading is chosen, i.e. another choice for the fermionic sign in (11), the 

Bethe equations would be different. As far as the eigenvalues are concerned, the two gradings 

are equivalent, see appendix A. 

In the osp(2 2) we observe that the Bethe states have same charges Jz and Qz as the highest- 

weight state of the multiplet they belong to. 

3.2.2. Rootstructure.   OnthelatticeinevensizeL,thefieldcos(2n
√

gφ0)η1∂η1...∂mη1∂̄η1...∂mη1 

is obtained with L/2    (n + m + 1/2) roots λ and L/2     (m     n + 1/2) roots µ. They are real 

and symmetrically distributed. See figure 3 for a plot of some root structures. 

The gap computed previously for the ground state of the sector Qz = q, Jz = j reads, when 
2j and q are integers with the same parity: 

i=1 i=1 
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(160) 

  

M1 

2πvF 
= j

 
— 

4 
− j + 

4
 κ 

L L 2πvF 

L 

j=1 
µi − λj − i/2 

j/
 µi − µj − i/2 µi − µj + i 

= 

= 

 

L2∆eL 
 

2 1 2 2 1 
    

−1 

 

Like for osp(1|2), we see that the vector representation is degenerate with the ground state 

in the limit g → 0 since j2 − 1 = 0 for j = 1/2. We also see that the order g corrections van- 

ishes when j = 1/2, q = ±1/2: this is compatible with the fact that the corresponding repre- 
sentations are ‘mixed’ with the identity in a bigger osp(2|2) indecomposable representation. 

3.2.3. Numerical results.   We give numerical evidence in figure 4 for the formula given in 

(147), with Zq,j denoting the measured Zq,j =(  L
2    

(e — e0) − (h + h̄)) log L in finite size L 

for the state [q, j]. Here e0 denotes the state [−1/2, 1/2]. 

 

4. OSp(3|2) 

4.1. The spectrum from the spin chain 

4.1.1. The Bethe equations.   Irreducible representations of osp(3 2) are characterized by 

a pair of numbers q, j corresponding to the spin of the underlying o(3) and sp(2) bosonic sub-

algebras. Here q = 0, 1, . . . is the integer, and j = 0, 1/2, . . . is the half-integer. The five-
dimensional fundamental representation is [0, 1/2] and the twelve-dimensional adjoint 
representation is [0, 1]. The (quadratic) Casimir eigenvalues are 

1 
C = j(2j − 1) − 

2 
q(q + 1). (159) 

The osp(3 2) spin chain is described by two families of roots νi and µi satisfying the Bethe 
equations [15, 22] 

  
νi + i/2 

  L M2
 νi − µj + i/2 

νi − i/2 
j=1 

νi − µj − i/2 

M1
' 

1 = 
µi − νj + / µi − µj − / 

.
 

j=1  
µi − νj − i/2  

j/=i  
µi − µj + i/2 

As already explained, the Bethe equations depend on the choice of the grading, see appendix 

A. It turns out that they are more convenient in another grading. We write λi and µi the roots 
of the Bethe equations in this second grading. They read 

  
λi + i/2 

  L M2   
λi − µj + i/2 

λi − i/2 
j=1 

λi − µj − i/2 

1 = 
    µi − λj + i/2      µi − µj + i/2 

· 
µi − µj − i 

. (161)
 

=i 

For each solution (νi, µi) of the equations in the first grading there is a solution (λi, µi) of the 

equations in the second grading, and vice versa. The µi stays the same (as anticipated by the 

notation), and the roots λi and νi are related by the fact that together, they form all the roots of 

the following polynomial 

— 2q g. (158) 

L 
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| 
| 

→ 

L 

| → 
→ / 

/ 

L λ2 + 1/4 

 
M2 M2 

P(X) = (X + i/2)L  
  

(X − µj − i/2) − (X − i/2)L  
   

(X − µj + i/2).  (162) 

j=1 

In the second grading, an eigenvalue of the Hamiltonian is given by 
M1 

j=1 

eL = 
1 Σ 1 

. (163) 

The spins j and q (ie, the eigenvalue of Jz and Qz respectively) for a solution with M1 roots λi 

and M2 roots µi are related to M1 and M2 through 

M1 = L − q, M2 = L − 2j − q. (164) 

However an important remark has to be made. It is known that for the XXX spin chain, the 
Bethe vectors are highest-weight vectors with respect to Jz, meaning that they are annihi- lated 

by the total J+ . It turns out that it is not the case for osp(3 2): some Bethe vectors are 
indeed annihilated by the raising operators of the sp(2) and o(3) subalgebras, but not by 

the raising operators of the full osp(3 2) algebra. To see this, one can go to the q-deformed 
version where most of the osp(3 2) degeneracies are lifted. In this case there are states 

with similar root structure as in the q = 1 undeformed case, but with additional roots with 
imaginary part iπ/2. When q      1, the energy of theses states converge to the same multi- plet 
with the same energy in finite size, since the extra roots at iπ/2 have no effect in this limit. 

For example there is one state at q     =1 that has one extra root λ1 = iπ/2 compared 

to the q = 1 case, that falls into the multiplet when q      1. In its multiplet at q     =1 there 
is the state that becomes annihilated by all the raising operators of osp(3 2) when q      1, 

which is the highest-weight state. The important point is that the charges of this state with 
an extra root has a Qz decreased by 1 and a Jz increased by 1/2 compared to the state that 

can be built with the Bethe ansatz at q = 1. Therefore the charge of the multiplet of the 
Bethe vector has actually a Qz decreased by 1 and a Jz increased by 1/2. This is important 
for the bosonic part of logarithmic corrections to match the value of the Casimir, but it will 

also be important in section 6.4. 

This created some confusion in [15]. To make contact with their6 notations ( pFM, qFM) for 

labelling the Bethe states (but not the multiplets), we have pFM = 2j and qFM = q/2. As for the 

notations ( pVdJ, qVdJ) in [38], we have pVdJ = q and qVdJ = j. 
For example, the first excited state belongs to a 12-dimensional multiplet and the Bethe 

state has charges (Qz, Jz)= (2, 0). In [15] it was interpreted as the irreducible representation 

qVdJ = 1, pVdJ = 0 of dimension 12 in [38], whereas it is actually the irreducible representation 

qVdJ = 1/2, pVdJ = 1 of dimension 12 as well. It is a reducible representation for o(3) ⊗ sp(2) 
that reads (1, 1/2) ⊕ (0, 0) ⊕ (2, 0) in terms of Qz, Jz. Only the state with (Qz, J z)= (1, 1/2) 
is annihilated by the raising operators of the whole osp(3|2) algebra. 

4.1.2. Root structure. A particular feature of this model is that the energy of the ground state e0 

is independent of L. In terms of Bethe roots it is given by L coinciding roots µ at zero, see 

[15]. Note that in the O(1) model a similar phenomenon inspired the Razumov–Stroganov 

conjecture concerning the entries of the eigenvector associated to this particular eigenvalue 

[39, 40]. 

The first state whose Bethe state has charges j integer and q even is given on the lattice in 

the second grading by L/2 − (q/2 + j) strings composed of 2 roots λi whose imaginary part is 

 
6 The subscripts are the author’s initials [15, 38]. 

i=1 
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L 2πvF 
L L 

 

approximately 3/4 and 2 roots µi whose imaginary part is approximately 1/4, plus 2j real roots 

λi taking a large value, lying outside the strings. This is illustrated in figure 5. 

The presence of strings is a complication, both numerically and analytically. The typical 

deviation of their imaginary part from    i/4 or    3i/4 is observed to behave as log L/L with the 

size of the system. 

 
4.1.3. Numerical results. We observe numerically the following behaviour at large L, in terms 

of the charges j and q in (164) of the Bethe states 

L2∆eL 

2πvF  

= j( j + 1) − j( j + 1) − 
1 

q(q − 1) 
 

κ−1g. 

 

 
(165) 

In terms of the charges j and q of the multiplet it belongs to, it reads 

 

 
 

(166) 

The bosonic part corresponds to the Casimir (159), but not the fermionic part. 

Here we see the importance of considering the charges of the multiplet and not those of the 

Bethe state. To our knowledge it has not been noticed before for this model. It is observed only 

for osp(3 2) and not osp(1 2) nor osp(2 2), and in some other spin chains with Lie superalge- 

bra symmetry their highest-weight property has been proven [20], suggesting that it is peculi- 

arity of this model rather than a common feature. However one can ask if this also happens in 

the higher-rank superalgebras studied numerically in [16]. From our experience it seems that 

studying the q-deformed version of the spin chain helps in understanding these aspects: most 

of the osp(3 2) degeneracies are then lifted and more Bethe states can be built that fall into a 

same multiplet as q   1; but with different charges, and in particular with higher Jz charge than 

that of the only Bethe state that can be built at q = 1. 

In figure 6 are shown the numerical verifications of formula (165), where Z j,q denotes the 

measured  Z j,q = (  L
2     

(e   − e0) − (h + ̄h)) log L  in finite size L for the state whose Bethe 

state has Jz = j, Qz = q, where e0 is the reference state j, q = 0, 0. 
 

5. OSp(4|2) 

5.1. Motivations 

The OSp(4 2) sigma model is special from the field theoretic point of view. In this case indeed, 

it is known that the beta function vanishes to all orders, and it is expected that the sigma model 

is exactly conformal, with a line of fixed points that is closely related with the Kosterlitz– 

Thouless phase in the underlying O(2) XY-model. It is also expected that the sigma model is 

dual in a certain sense to a Gross–Neveu model—just like the O(2) free compact boson model 

is dual to the massless Thirring model. A lot of progress on this special case has been obtained 

in string theory literature [41–43]. On the side of lattice regularizations, the dense loop soup 

with varying intersection weight w has been studied with algebraic and direct diagonalisa- tion 

techniques [44, 45]. To this day however, no integrable version of this model is known to exist 

for arbitrary w. This is related with singular properties of the osp(r 2s) R matrix for 

r − 2s = 2, as we now discuss. 

 

2πvF 
 

  
 

 1 1 
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→ 
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→ → − 
→ 

− 

q 

q 

M2 

M2 M3 

=i 

sinh(µi −λj −iγ/2) sinh(µi −µj +iγ) 

= 
j=1 

sinh(2νi −2µj +iγ) 
j/ 

sinh(2νi −2νj −2iγ) 

/ 

(2) 

 

5.2. The R-matrix 

The osp(4 2) spin chain constructed from section 1.1.3 has an ill-defined Hamiltonian that can 

be somehow regularized [16] by replacing λ by λ(2   r + 2s)/2 and then setting r   2s    2. One 

gets the R-matrix 

Rab(λ)= Pab + 
λ    

Eab, (167) 
1 λ 

where Eab is a generator of the Temperley–Lieb algebra with parameter N = 2, well-known 
from the su(2) case, but represented here as a 36 36 matrix. This R-matrix has indeed the 
osp(4 2) symmetry and the theory obtained is relativistic. However, the aforementioned limit 

makes no sense in terms of the Bethe equations: these do not depend smoothly on the variables 

r, s that are anyway discrete. 

To get around this problem, we can have a look at the spin chains with sl(4|2)(2) symmetry, 

which contains the osp(4 2) symmetry. It is well known that the spin chains with sl(n m) sym- 
metry are non-relativistic [46], and the same is in fact true for the spin chains with sl(r|2)(2) 

symmetry for r = 1, 2, 3, 4 (this was previously noticed for sl(2|2)(2) [47]). However, we can 

now consider the q-deformed version of sl(4|2)(2), denoted sl(4|2)(2) [22]. This model contains 

as a sub-spectrum the levels of the su(2)q'  (with q′ =   q2) spin chain, among which is the 

ground state for the antiferromagnetic regime. While the limit q   1 is non-relativistic (just like 

the ferromagnetic su(2) spin 1/2 chain), the limit q   i, after a rescaling λ   λ(q   i) happens to 

be relativistic, with a spectrum that contains the levels of the antiferromagnetic su(2) spin 1/2 
chain. It turns out that the transfer matrix obtained this way has exactly the same 

eigenvalues with the same degeneracies as the osp(4 2) rescaled R-matrix discussed above, 

and the limit q i makes perfect sense in terms of the Bethe ansatz equations. We shall thus 

study this model in the following. 

 

5.3. A brief description of sl (4|2)(2) 

Let us first discuss briefly the Bethe equations of sl(4|2) . These are, in the second grading 

[22] with q = eiγ 
 

sinh(λi + iγ/2) 
  L

   sinh(λ −µ +iγ/2) 

 
 

 

 

 

sinh(λi − iγ/2) 

 
1

 

j=1  
sinh(λi −µj −iγ/2) 

  sinh(µi −λj +iγ/2)        sinh(µi −µj −iγ)        sinh(2µi −2νj +iγ) 

j=1 j   =i 

 

j=1 

= i j 

= sinh(2µi −2νj −iγ) 

 

M1 M M32 
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± ± − 

→ − 

 1 
sinh(2νi−2µj−iγ)               sinh(2νi−2νj+2iγ) 

. (168)
 

The ground state and first excitations are essentially given by configurations with three degrees 

of freedom (n, m, p). These numbers correspond to L/2 − m strings composed of 2 roots λ 

approximately at    iπ/4 and 2 roots µ approximately at    i(π/4 γ/2), n − 1 large real roots 

λ, and an antistring at iπ/2 composed of p roots, λ and p − 1 roots µ. 
5.4. The osp(4|2) equations 

To get the limit q i, let us set γ = π/2 τ, and denote ϵξi the (real) center of the L/2 − m 

strings. Note that the antistrings disappear in this limit, so that all the states (n, m, p) are the 
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=i 

  
(170) 

≡i 

j 

− 

| 

sinh(ϵξi − ϵξj + iϵ) sinh(ϵξi − ϵξj + i(−π/2 + ϵ)) sinh(ϵξi − ϵξj − iπ/2) 

 
sinh(θi + iπ/4) 

  L
 

λ − ξj + i/2 λ − ξj + i/2 
j 

± 

 

same for different p’s. The product of the first Bethe equations for λi  and its conjugate λ∗
i 

gives 

 
sinh(ϵξi + i(π/2 − ϵ/2)) sinh(ϵξi + i(−ϵ/2)) 

L
 

sinh(ϵξi + iϵ/2) sinh(ϵξi + i(−π/2 + ϵ/2)) 

=  
     sinh(ϵξi − ϵξj + iπ/2)  sinh(ϵξi − ϵξj + i(π/2 − ϵ))   sinh(ϵξi − ϵξj + −iϵ) 

, (169)
 

 

which is, in the limit ϵ 0, exactly the square of the Bethe equations for su(2). Thus we have 

ξi + i/2   L 

ξi − i/2 
=  

ξi − ξj + i 
, 

j/ 
ξi − ξj − i 

where we note the . These equations are always true for the strings, whether there are real 

roots λ or not. In case of isolated λi roots, that we denote θi in the limit ϵ 0, they have to satisfy 

the equation 
 

 

 
hence 

sinh(θi − iπ/4) 
= 1, (171) 

Θ 
sinh(θi + iπ/4) 

= e2ikπ/L, (172)
 

sinh(θi − iπ/4) 

for an integer k. Moreover, if there are strings, the second Bethe equation give another 

constraint 
  

Θ2 = 1. 
(173) 

j 

The eigenvalue of the transfer matrix becomes for L/2 − m = M strings 

Λ(λ)= (−1)L(−1)M (λ + i)L 
  λ − ξj − i/2   

Θj  + λL 
  λ − ξj + 3i/2   

Θ−1

 

.
 

   
 

We see that the eigenvalues obtained are either su(2) eigenvalues, or ( 1) times su(2) eigen- 

values, except for the pseudo-vacuum, which can modified (almost multiplied, up to an expo- 

nentially small term in L) by any root of unity. See appendix B for the numerical verification 

of these observations by direct diagonalisation of the transfer matrix in small sizes. 

In conclusion, it seems unfortunately that the only integrable OSp(4 2) model accessible 
to us corresponds to a very special point on the sigma model critical line, where the underly- 

ing O(2) theory is in fact at the SU(2) invariant point. This corresponds to the special value 

w = 0 in the dense loop soup, where loops are in fact not allowed to cross. The exponents are 
exactly the same as those of the level-one SU(2) WZW theory, only degeneracies are differ- 
ent. This could of course have been expected a priori, since the R matrix has the same abstract 

Temperley–Lieb form as the R matrix for the six-vertex model at ∆= 1. The only difference 
is that we have here a 36    36 representation of the generator Ei, as opposed to a 4     4 one for 
the six-vertex model. 

j 

j j j 

(174) 
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6. Physical properties of dense loop soups with crossings 
 

This section is devoted to the application of the previous energy calculations to ‘watermelon’ 

exponents in loop soups with crossings. 

We begin with some results on the osp(r 2s) spin chains by showing that they describe 

intersecting loop soups with loop weight N = r − 2s [11]. We then show for the first time that the 
spectrum of the osp(r 2s) model is exactly included—in finite-size—in the spectrum of all the 
osp(r + p 2s + p) models, as observed but not understood nor proved in [16]. We finally 

establish a correspondence between sectors of fixed charges and specific properties of loop 

configurations. This enables us to compute some watermelon two-point functions that exhibit 

logarithmic behaviour, which is the main new result of this section. 

 

6.1. A model for loops with crossings 

Let us first explain why the osp(r 2s) vertex model can be reformulated as a model for inter- secting 

loops with weight N = r − 2s. The mere observation that the R-matrix (15) is built from 
elements of the Brauer algebra [10, 11] is a bit unsatisfactory, since it does not explain how 
to treat the boundary conditions and the special weight that comes with them, and also because 
in this context the role of the graded tensor product is not clear. 

In this section we prove the equivalence of the osp(r 2s) model with a model of intersect- 

ing loops, starting directly from the expression of the transfer matrix (13), where from (15) 

R(λ)lj = λδijδkl + (−1) 

 
pipj 

2λ 
δilδjk + 

2 − r + 2s − 2λ 
(−1)

 

 
i>r+s (−1) j≤s 

 

δik' δjl' . 

(175) 

We  recall  the  definition  of  the  conjugate  index,  i
′ = D + 1     i ,  for  any  i = 1, . . . , D  with 

D = r + 2s. We will work at constant spectral parameter λ and will omit the dependence on λ 
in order to simplify the notations. Define the partition function Z of this model on an L M 

lattice as 

Z = tr(t(λ)M), (176) 

where t(λ) is the transfer matrix given by (12)–(13). It is thus 
D M 

m+1  m 
m+1  m m+1  m 

L  ( p m +p ) −1 p   m 

Σ α
L
 cL      

α L−1 cL−1 α1       c1 pcm 

Σ
j=2      αj m+1 

j 

j i=1     αi 

Z = Rcmαm Rcmαm ...Rcmαm (−1) 1  (−1) , 
c· , · 1     L 1 m 1 L     L−1 2      1 

α =   = 
(177) 

with the identification M + 1 1 due to periodic boundary conditions. As usual, each Rlj can 
be represented as the intersection of four lines, with the upper line carrying the index αm+1, 
the bottom line αm, the right line cm and the left line cm : 

i i 

m+1 
i 

i+1 

 

m m 
i+1 i 

 

m 
i 

The R-matrix (15) is a sum of three terms that impose (αm, cm 

 

)=  (cm, αm+1), or 

α 

α 

c 

α 
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i i+1 i i 
(αm, cm) = ((cm   )′, (αm+1)′), or (αm, cm) = (αm+1, cm ). These terms are generators in the 

i i i+1 i i i i i+1 
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Figure 1. Bethe roots in the complex plane for the lowest state of magnetization 1 (left) 

and 0 (right), for L = 26. 

 

 
Figure  2.  In  reading  direction:  plots  of  Z1/2,1/2,  Z1/2+1,1/2+1,  Z1/2+2,1/2+2,  Z1,1, 

Z1/2+1,1/2    Z1/2+2,1/2 L L L L 1 

L ,   L as a function of / log L, together with their extrapolated curves 

f6, f7, f6, f5, f8, f8. The theoretical results are, respectively, −1/3, −1, −7/3, 0, −1/2, 

−2/3. 



J. Phys. A: Math. Theor. 52 (2019) 345001 E Granet et al 

55 

 

 

− 

 
 

 
 

Figure 3. Bethe roots in the complex plane for the ground state (first family λi in blue, 

second family µi in orange), for L = 36. 

Brauer algebra [10, 11] and can be represented diagrammatically as in figure 7. The first two 

diagrams consist of a pair of ‘corners’ that we shall henceforth refer to as North–East (NE), 

South–West (SW), South–East (SE) and North–West (NW), as indicated in the figure. The 

third diagram realizes loop crossings and corresponds algebraically to the (graded) permuta- 

tion operator. 

The graphical representation of figure 8 naturally induces a representation of the partition 

function as a sum over dense intersecting loops, each vertical (resp. horizontal) edge carrying 

an index α (resp. c). In this representation L is the horizontal length, and M the vertical height 

of the L M lattice. 

There are three issues to be resolved in order to define a proper model of intersecting loops: 

1. There are all the fermionic signs that seem to weigh each configuration with an arbitrary 

sign. 

2. The loops are not all equivalent since they carry an index i = 1, . .. , D that must eventu- 
ally be summed over. Moreover this index changes to its conjugate value along a loop at 

the SE and NW corners. 

3. The weight of each fixed-index loop is one, but the proper weight after summation over 

the index will have to be worked out by taking carefully into account the boundary condi- 

tions. 

All these issues are of course related, and analysing them properly will lead to the resolution 

of the problem. The crux resides in a proper understanding of the fermionic signs. This relies 

on the following lemma, the proof of which is relegated to appendix D. 

Lemma 1. If the index a of a loop in a configuration is changed so that pa changes, all other 

things being equal, then the weight of the configuration is multiplied by ( 1)bv +1 where bv is 

the number of times the loop crosses the top and bottom boundaries (i.e. those corresponding 

to the direction of length M). 

 
Proof.   See appendix D. ■ 

One sees that the number of times a boundary is crossed in the vertical or horizontal direc- 

tions plays a different role. We will say that a loop is non-contractible in the vertical direction 

(or simply non-contractible loop) if it crosses the whole lattice in the vertical direction, i.e. 
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Figure 4.  In the reading direction: plots of  ZL
−3/2,3/2

,  ZL
−5/2,5/2

,  ZL
−1/2,5/2

,  ZL
−3/2,7/2

, 

ZL
−5/2,1/2

, ZL
−9/2,1/2

, as a function of 1/ log L, together with their extrapolated curve with 

functions f12, f12, f10, f10, f12, f10. The theoretical results are, respectively, 1, 3, −3, −4, 
6, 20. 

if it is possible to follow the loop from top to bottom without crossing the vertical boundary 

conditions. We say that a loop is contractible if it is not non-contractible. We will denote by 

even/odd non-contractible a non-contractible loop that crosses the top and bottom boundaries 

an even/odd number of times (without saying anything about the right and left boundaries). In 

the subsequent subsections we will also represent by a diagram like    or  the sum of all con- 

figurations of loops that possess a certain number of non-contractible loops linked from top to 

bottom as indicated by the diagram. We refer the reader to figure 9 for illustrative examples on 

a 2 2 lattice with periodic boundary conditions. 

From this lemma comes the theorem: 

Theorem 1 (Intersecting loop soup model). Z = tr(tM) is the partition function for a 

model of intersecting loops with loop weight r − 2s for contractible loops and r  2s for odd/ 

even non-contractible loops. 
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Figure 5. Bethe roots in the complex plane for the states j = 0, q = 2 (left) and 

j = 1, q = 2 (right), for L = 54. 

Proof. If a configuration contains only loops with bosonic indices, all the ( 1) pa are +1 and 

the weight for a loop (with an index) is +1. But if a loop l is contractible, because of lemma 

1 its weight is 1 if it is bosonic and −1 if it is fermionic, thus after summation over the indices 

the weight is r − 2s. If the loop is non-contractible the fermionic weight is if it is odd/even, 
thus a weight r    2s after summation. ■ 

We note that if the transfer matrix were defined as the trace (and not the supertrace) of the 

monodromy matrix, i.e. if in (12) there were no ( 1) pi, then one would have a weight r + 2s 
for the odd non-contractible loops in the horizontal direction as well. In contrast, to give the 

same weight r − 2s to all the loops (contractible or not), one would need to modify the trace 
in (176) and define Z = tr(KtM) with K a matrix that will assign the desired weights according 

to the sector. 

Note finally that this discussion is reminiscent of the problem of the dimer covering the 

torus [48], and also of variants of Kirchhoff’s theorem for modified Laplacians, see [49]. 

 
6.2. Inclusion of osp spectra 

To prove the inclusion of the spectra for the osp chains, another lemma is needed: 

Lemma 2. If A and M are square matrices of size n and n + m such that 

∀ k ∈  N, ∀ i, j ∈  {1, ..., n}, (M )i,j = (A )i,j, (178) 

then the spectrum of A is included in the spectrum of M (with the degeneracies). 

 
Proof. Writing M in block form 

M 
A B 

C D 

  

, (179) 

 

the condition (178) implies 

∀k ∈ N, BDkC = 0. (180) 
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Figure 6. In the reading direction: plots of Z0,2, Z0,4, Z0,6, Z1,2, Z1,4 − Z0,2, Z2,2 − Z0,2, 

as a function of 1/ log L, together with their extrapolated curve with functions f8, f8, f8, 

f5, f5, f8. The theoretical results are, respectively, 1, 6, 15, −1, 3, −6. 

Let now λ C not in the spectrum of D. Since D λIm is invertible one can use Schur’s 

complement to write 

det(M − λIn+m) = det(A − λIn − B(D − λIm)−1C) det(D − λIm). (181) 

From Cayley–Hamilton theorem, (D − λIm)−1 is a polynomial in (D − λIm), thus in D, so that 

with (180) we have B(D − λIm)−1C = 0. It follows that 

det(M − λIn+m) = det(A − λIn) det(D − λIm). (182) 

Since the function λ    det(M     λIn+m) is continuous in λ and since the spectrum of D is finite, 

the previous equation is true for all λ C. Thus whenever λ is an eigenvalue of A, det(M 

λIn+m)= 0 and it is also an eigenvalue of M. Moreover since det(D λIm) is a polynomial in λ 
there cannot be poles and the eigenvalues of A in the spectrum of M have at least the 
degeneracies they have in the spectrum of A. (However in general the eigenvectors of 
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Figure 7. A sample configuration of a dense loop soup where crossings are forbidden 
(left) or allowed (right). For clarity, each loop has been given a different color: these 
colors do not form part of the definition of the model. 

 

I E X 
 

Figure 8. Graphical representation of the three possible ways to match the four indices, 
corresponding to the three generators of (15) (where the first term is X, the second one 
I and the last one E). The first two diagrams define four types of corners denoted NE, 
SW, SE and NW. 

M corresponding to the eigenvalues of A cannot be expressed simply: in particular they may 

have non-zero ith components for i > n.) ■ 

One can now prove the theorem: 

Theorem 2 (Inclusion of spectra). The spectrum of the osp(r|2s) spin chain is included in 

finite size in the spectrum of the osp(r + p|2s + p) spin chain for all even p > 0. 

Proof. Denote t the transfer matrix of the osp(r|2s) spin chain, and T the one of the 

osp(r + p|2s + p) spin chain. Let J be a subset of 2p indices among which p are bosonic and p 

are fermionic, and I = {1, ..., r + 2s + 2p}\ J . The indices of t are identified with I. 
TM α

M+1 ...αM+1 

is the partition function of the model on a L M lattice with fixed bound- 
  ( )

α1...α1 
1 L 

ary conditions at the top and bottom boundaries. Inside the configuration, every loop whose 

index is in J has to be contractible, since at the up and down boundaries the indices must be in 

I. As J contains as many bosonic as fermionic indices, lemma 1 implies that these configura- 

tions add up to zero. Therefore all the loops can be considered having their indices in I, which 
is exactly 

tM  α
M+1 ...αM+1 

■
 

  (   )
α1...α1 . Then lemma 2 applies and proves the theorem. 

1 L 

1 L 

1 L 

 

 

 

 



J. Phys. A: Math. Theor. 52 (2019) 345001 E Granet et al 

60 

 

 

bosonic charge’ Qz. In the grading given by (11), they are represented by 

 
 

 
 

Figure 9. First figure: two contractible loops. Indeed, you cannot follow any of the two 
loops from top to bottom without crossing the vertical periodic boundary. Second figure: 
two odd non-contractible loops, and one contractible loop. Indeed, the horizontal line at 
the bottom is a contractible loop, and the two other loops are non-contractible and cross 
the vertical periodic boundary exactly once. Third figure: one even non-contractible 
loop. Indeed, there is only one loop that crosses the vertical periodic boundary twice. If 
we now denote with a diagram like the connections between the four beginnings of 
strands at the top and the bottom of the lattice, then the strands in the first figure are 

connected like   , in the second figure like   , and in the last figure like . 

Note that taking the supertrace of the monodromy matrix is crucial to have this property. 

Otherwise the non-contractible loops in the horizontal direction would not cancel out. Notice 

also that integrability does not play any role here, so it is true for arbitrary weights in the R-

matrix. Recall that such an inclusion is observed for gl(r|s) models as well [50]. 

 
6.3. Charges and loop configurations 

While most of our discussion about critical exponents has been based on studies of the inte- 

grable Hamiltonian, it is usually the case that the same universal properties would be obtained 

by focussing instead on the transfer matrix. Indeed, taking the Hamiltonian limit amounts to 

taking the continuum limit in the (imaginary) time direction, something that is not supposed 

to modify the continuum description of the lattice model. The transfer matrix language is, 

on the other hand, more natural to describe loops, especially when the spectral parameter 

λ = 1, corresponding to an isotropic loop soup on the square lattice. We have checked that the 
log of the largest eigenvalues of the transfer matrix have the same behaviour as those of the 

Hamiltonian (21), simply with the Fermi velocity vF replaced by a sound velocity sin(λvF), 

that is 1 at the isotropic point. 

This means that the finite-size corrections to the first excited states of the Hamiltonian, 

among which are the lowest eigenvalues in a sector imposing specific values of charges, cor- 

respond in the transfer matrix point of view to finite-size corrections to the largest eigenvalues 

of the transfer matrix t in a sub vector space with specific values of charges. We recall that the 

partition function in (176) is given by the trace of the Mth power of t = t(λ) the transfer matrix, 

that is dominated when M       by the largest eigenvalue of t. Similarly, the trace of the Mth 

power of t over a sub vector space where the charges take specific values, is dominated by the 

largest eigenvalue of t in this sub vector space. 

The question is now to understand the kind of constraint that is imposed on the intersect- 

ing loop soup when this trace over a sub vector space where the charges take specific values 

is performed. 

‘ 

Let us treat the case of osp(2|2), the simplest example with a ‘fermionic charge’ Jz and a 
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Σ 

 

 

1   0   0 0   
 

0   0 0 0  
0   0   0 0 

2Jz = 
0   1 0 0 , 2Qz = . (183) 

0   0   0 0 

0  0   0   −1 

0   0   −1   0 

0   0 0 0 

When one traces over the vector space where Qz is equal to q, one considers only the con- 

figurations where at the bottom (and at the top) of the lattice, there are 2q more strands with 

index 2 than strands with index 3. As already said, along a loop an index i is replaced by its 

conjugate i′ (i.e.         4, 2      3 ) every time a NW or SE corner is encountered. It implies that a 

strand carrying a 2 at the bottom cannot directly (without crossing the vertical boundary) join 

another strand carrying a 2 at the bottom. Then the 2q extra 2’s at the bottom and at the top of 

the lattice have to be connected between themselves by going through the whole lattice in the 

vertical direction. Since the loops with bosonic index (whether contractible or not) are always 

given the same weight equal to 1, it comes, after summing over the indices, that the boundary 

condition imposes to have (at least) 2q loops that propagate through the lattice in the vertical 

direction that are given weight 1. Note that an extra strand with index 2 at the bottom can be 

connected to any extra strand with index 2 at the top, with the same weight 1. For 2q = 2 these 
configurations are . 

If one traces over the vector space where Jz is equal to j, the same reasoning shows that the 
configurations are constrained to have 2j more strands with index 1 than index 4 at the bottom, 
and that those at the top and the bottom of the lattice have to be connected between themselves. 

However since the index is fermionic, the weight of such a loop is 1 (resp. −1) if it crosses 
the top and bottom boundary an odd (resp. even) number of times, from lemma 

1. The total weight given to these loops is then exactly the signature of the permutation that 

maps the bottom 2j extra 1’s to the top 2j extra 1’s they are connected to. For 2j = 2 these 
configurations are . 

If one traces over the vector space where both Jz and Qz are fixed as j and q respectively, then 

the configurations are constrained to possess 2j strands with index 1 and 2q strands with index 

2 to propagate through the lattice from bottom to top. The total weight given to these loops is 

then the signature ϵ(σj) of the permutation σj that maps the bottom 2j extra 1’s to the top 2j extra 

1’s they are connected to, without considering the 2q bosonic strands. Let us now denote ZL,M(σ) 

the sum of all the configurations on a L    M lattice with 2j + 2q non-contractible 
strands, where the 2j ‘fermionic’ strands are at the left of the lattice at row 1, and where the 

2j + 2q strands are permuted by σ at row M. Since a fermionic strand has to be connected to 
another fermionic strand through the periodic vertical boundary, this permutation has to be 

decomposable into σ = σjσq where σj acts trivially on the bosonic strands and σq trivially on 

the fermionic strands. Then, denoting by trj,q the trace over the sector Jz = j, Qz = q, one can 
express the trace of the Mth power of the transfer matrix t as 

trj,q(tM)= ϵ(σj)ZL,M(σjσq), 
(184)

 
σj ,σq 

where the sum runs over the permutations σj and σq of 2j + 2q elements, that leave invariant 
the last 2q elements (respectively the first 2j elements). We recall that ϵ(σj) is the signature of 

the permutation σj. Here are some examples: 

tr1,0(tM)= ZLM((1 2)) − ZLM((2 1)) 

tr0,1(tM)= ZLM((1 2)) + ZLM((2 1)) 
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tr1,1(tM)= ZLM((12 3 4)) − ZLM((21 3 4)) + ZLM((12 4 3)) − ZLM((21 4 3)) (185) 
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where we write (i1... in) the permutation that maps 1 onto i1, etc, n onto in. The configuration 

of strands connections to which of these three traces correspond are respectively , 

 and . 

Equation (184) is reminiscent of the Young symmetrizer for the Young tableau 

. .  . 
 

 

. .  . 
(186) 

 

 

which here takes the form of a ‘supertableau’ applying independently a symmetrizer to the 

2q bosonic strands and an antisymmetrizer to the 2j fermionic strands. Compared to the usual 

Young supertableux, e.g. in [51], there is an empty box at the top left merely because we 

shifted the first row, to make explicit the fact that each box must be counted either in the col- 

umn or in the row. 

An unpleasant aspect of formula (184) is that it depends on the position of the ‘fermionic’ 

strands, whereas we would like to have a geometrical meaning for strands without specify- 

ing their ‘bosonic’ or ‘fermionic’ nature. This important issue will be addressed in the next 

subsection. 

These considerations can be generalized without difficulties to osp(r 2s) for arbitrary r and 

s. There is only an additional important remark to make on the case r odd. Indeed in this case 

there is an index i, which is not associated to any charge, for example for osp(1 2) the index 

2 does not affect the charge Jz. Then the number of extra strands associated to the charges can 

be odd (whereas in the case r even it is necessarily even): in this case for even L there will be 

one extra strand with this index i that acts as a bosonic strand with a weight 1. For odd L the 

same observation holds for an even number of strands associated to the charges. 

 

6.4. Transfer matrix eigenvalues and loop configurations 

On an L  M lattice with M   the trace of the Mth power of the transfer matrix in size L over 

the vector space with given charges behaves as λM where λ1 is the maximal eigenvalue of the 

transfer matrix in this sector. Denoting by λ0 the maximal eigenvalue of the transfer matrix, 

the quantity (log λ1 log λ0)
−1 gives the correlation length on an infinite cylinder of 

circumference L for the property of the configurations induced by the sector of λ1. 

In the limit M        some remarks have to be made on (184). On an infinite cylinder there 

is no periodic boundary conditions to impose that a bosonic (resp. fermionic) strand falls back 

on a bosonic (resp. fermionic) strand, i.e. that bosonic and fermionic strands are permuted 

among themselves after a certain number of applications of the transfer matrix. In (184) for 

M large, imposing the decomposition σ = σjσq instead of taking a generic permutation σ 
only changes a multiplicative factor that is independent of M, and thus does not affect the free 

energy that is in both cases log λ1. Any permutation σ should be possible in (184) in this M        

limit, not only those that can be decomposed into σjσq. Thus on an infinite cylinder we have 

e−MFM ( j,q) = 

σ∈S2j+2q 

ϵ2j(σ)Z̃L,M (σ), 
(187)

 

with FM( j, q) log λ1 when M , and where Z̃L,M (σ) is the sum of all the configura- 

tions where 2j + 2q strands (with the 2j fermionic ones at the left at row 1) are permuted by 

 

2q 
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2j 
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→ −  
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σ after M rows, on a L M lattice without periodic boundary condition in the M direction. 

ϵ2j(σ) is the ‘partial signature’ of the first 2j elements of σ, i.e. attributes a factor −1 to each 

(i1, i2) with i1 < i2 ≤ 2j such that σ(i1) > σ(i2). The sum now runs over all the permutations σ 

of 2j + 2q elements. 

For example, for j = 1, q = 1/2 there are three strands, with 2 ‘fermionic’ strands at the 
left. It gives the configurations                       . The advantage 

of (187) is that although the summands still depend on the initial position of the fermionic 

strands, it can be easily transformed into a version that does not distinguish between bosonic 

and fermionic strands, by summing over all 2j+2q ways of attributing 2j fermionic and 2q 

bosonic labels to the 2j + 2q strands. The fermionic signs are then attributed as before. Thus 
one gets 

e−MF̃M ( j,q) = 

σ∈S2j+2q 

  
2j + 2q

  

− 2ι2j(σ)

  

Z̃L,M (σ), (188) 

with  F̃M ( j, q)        log λ1 when  M         , and where  ι2j(σ) is the number of subsets of 2j 

strands among the 2j + 2q strands permuted by σ, that intersect between themselves an odd 
number of times. A formal mathematical definition of ι2j(σ) is 

ι2 j(σ)=# I ⊂  {1, ..., 2j + 2q} such that #I = 2j, and #{(i, j) ∈  I2, i < j, σ(i) > σ( j)} is odd . 

 

Note that with this definition (188) no longer refers to bosonic/fermionic strands, but simply 

to a total number of 2j + 2q unspecified strands. Clearly, ι0(σ)= ι1(σ)= 0. Moreover, ι2(σ) 
is exactly the total number of intersections between the strands (in a graphical representation 
where two strands intersect 0 or 1 time and do not wind around the horizontal periodic bound- 

ary). And ι3(σ) is the total number of intersections between the strands, where each intersec- 

tion between strands i < j is weighted by 2j + 2q i j σ(i) σ( j) . 
For instance, one has the following correspondences on the infinite cylinder between the 

Young tableaux and the loop configurations: 

−→ (j = 0 ,q = 3/2) 

−→ (j = 3/2 ,q = 0) 

 
−→ 3 3 (j = 1 ,q = 1/2)    (190) 

These combinations now refers to three generic strands, without the need to specify which 

ones are fermionic, in contrast to (187) where the different strands are either fermionic or 

bosonic. 

Note that due to the horizontal periodic boundary, there can be a permutation between two 

strands without crossings. The fermionic signs also count these situations. 

When the circumference of the cylinder itself becomes large, a conformal transformation 

onto the plane gives access to the critical exponents of the corresponding watermelon expo- 

nents on the plane. To use the Bethe ansatz to compute these corrections in large sizes L, one 

needs to find which eigenvalue is maximal for each sector. A possible source of difficulty is 

that the sector associated to other conserved quantities in which this λ1 lies may change with 

the size of the system. For example for osp(1 2) the state with integer magnetization j > 0 
with minimal energy in the thermodynamic limit does not have symmetric Bethe roots, but 

(189) 

1 2 3 

 
1 

2 

3 

  1 

1  
2 
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in small sizes nothing prevents the state with equal magnetization but with symmetric Bethe 
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Table 1. Correspondence between some transfer matrix eigenvalues, Bethe roots, 

charges, and loop configurations for the osp(2 2) case in size L = 6 at the isotropic 
integrable point. 

 
Eigenvalue Bethe roots {λ}, {µ} Jz, Qz 

Constraint on the 
loops 

 
 

167.295 {0.028 97, − 0.028 97, 0}, {0.0180, − 0.0180} 1/2, 1/2 no constraint, or 

95.732 {0.5992, − 0.5992, 0.1471, − 0.1471}, {0} 1/2, 3/2  

       

63.761 {0.3281, − 0.0286}, {0.3281, − 0.0286} 1, 0 1 

2 

   

44.140 {− 0.5774, − 0.1355, 0.1584}, {− 0.1182} 1, 1 

 
29.63 {− 0.147, 0.147}, {0} 3/2, 1/2 

 

22.750 {0.8660, − 0.8660, 0.2887, − 0.2887, 0}, {} 1/2, 5/2 

3.482 {− 0.1340}, {− 0.1340} 2, 0 

 

 
 

 
roots from having lower energy. The determination of the finite-size corrections to these states 

close to the thermodynamic limit nevertheless permits us to determine which one is the lowest. 

In the following, we explicitly check the correspondence between the constraint encoded 

 

by a tableau and the eigenvalue of the transfer matrix, with a numerical code for 
 

loops with crossings. That is, we start from an eigenvalue of the osp transfer matrix, find its 

Bethe roots, deduce the corresponding charges from them, and then compare it to a numerical 

transfer matrix that implements (187) on an intersecting loop soup with fermionic/bosonic 

strands, and (188) on a generic intersecting loop soup, and verify that it gives exactly the same 

eigenvalue. 

 
6.4.1. osp(2 2).   In table 1 we give the explicit correspondence between some eigenvalues of 

the transfer matrix of the osp(2 2) model in size L = 6, and the Bethe roots and the kind of 
constraints that it imposes on the loop configurations. 

Note that the Bethe roots for integral charges are associated to non-symmetric states, given 

in (149) with m̄ = m       . Note also that the equivalence between the absence of constraints 

and on the infinite cylinder is very specific to osp(2|2) in even size where the weight of 

a loop is zero, since in both cases it amounts to forbidding the contraction between the two 

strands. 

 

6.4.2. osp(3 2). The same work can be done for osp(3 2) where the weight for a (contract- 

ible) loop is 1. Here we notice the importance of the remark of section 4.1.1, that gives the 

 1 

2 

1 
1 

1 

1 
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1  

 

 1 

1  
2 

3 

  1 2 3 4 5 

1  

 1 

2 

3 
4 

 



J. Phys. A: Math. Theor. 52 (2019) 345001 E Granet et al 

67 

 

 

| 

| | 

 

Table 2. Correspondence between some transfer matrix eigenvalues, Bethe roots, 

charges, and loop configurations for the osp(3 2) case in size L = 8 at the isotropic 
integrable point. 

 
Eigenvalue Bethe roots {λ}, {µ} Jz, Qz 

Constraint on the 
loops 

 
 

656.84 degenerate roots 0, 0 no constraint 

584.97 {− 0.14 ±  0.75i, − 0.14 ±  0.75i, ± 0.75i}, 

{− 0.14 ±  0.25i, − 0.14 ±  0.25i, ± 0.25i} 

323.40 {0.0645 ±  0.7501i, − 0.0645 ±  0.7501i}, 

{0.0645 ±  0.249i, − 0.0645 ±  0.249i} 

175.96 {− 0.555, − 0.057 ±  0.749i, 0.057 ±  0.749i, 0.555}, 

{− 0.057 ±  0.249i, 0.057 ±  0.249i} 

 
100.40 {± 0.7500i}, 

{± 0.2499i} 

67.27 {− 0.883, ± 0.7500i, 0.883}, 

{± 0.2499i} 

 
19.39 {− 0.883, − 0.308, ± 0.7500i, 0.308, 0.883}, 

{± 0.2499i} 

1/2, 1 

 
1/2, 3 

 
3/2, 1 

 

 

1/2, 5 

 
3/2, 3 

 

 

5/2, 1 

 

 

 
 

 

 

true charges of the multiplet a Bethe vector belongs to, and that has direct consequences on 

the configurations of loops associated to it. The Jz and Qz indicated in table 2 are those of the 

highest weight of the multiplet the Bethe vector belongs to (note that with the conventions of 

osp(3|2), Qz = q imposes q bosonic strands and not 2q). 

6.4.3. osp(1 2). The same exercise for osp(1 2) is a bit formal since it gives a weight −1 to 
each contractible loop, that cannot be interpreted as a probability. However the correspon- 
dence between eigenvalues of the transfer matrix and specific configurations of loops still 

holds, see table 3. 

Tableaux with odd number of boxes would appear for odd sizes only. The fact that there 

is one ‘bosonic’ strand for half-integer spin (denoted by a grey box) is explained in the last 

paragraph of section 6.3. 

Imposing a constraint can increase the ‘partition function’ only because some Boltzmann 

weights are negative in the osp(1|2) case. Remark also that since there is only one fermionic 

charge in osp(1|2), one cannot get configurations like and we are almost restricted 

to purely determinant-like combinations of probabilities. This is reminiscent of the correlation 

functions for the spanning trees and forests model that also exhibits an osp(1|2) symmetry 

[52, 53]. However these combinations should appear in the osp(3|4) model. 

6.5. Watermelon 2-point functions for loops with crossings 

1 
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We here collect our results for the logarithmic scaling of two-point functions in models of 

intersecting loops. 
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Table 3. Correspondence between some transfer matrix eigenvalues, Bethe roots, 

charges, and loop configurations for the osp(1 2) case in size L = 6 at the isotropic 
integrable point. 

Eigenvalue Bethe roots {λ} Jz Constraint on the loops 

254.23 {− 0.558, − 0.227, 0, 0.227, 0.558} 1/2 

225.95 {− 0.449, − 0.126, 0.5i, − 0.5i, 0.126, 0.449} 0 no constraint 

95.23 {− 0.616, − 0.262, − 0.028, 0.200} 1 

44.54 {− 0.233, 0, 0.233} 3/2 

 

7.59 {− 0.265, − 0.018} 2 

 

 
 

 

Figure 10. Example of a 4-legs watermelon 2 point function. 

In the geometry of the plane in the scaling limit, for a permutation σ Sn+m of n + m 

elements, we denote by Pn+m(x) the probability that n + m strands emanate from some small 
neighborhood and come close together again in another small neighborhood, separated from 

the first one by a distance x, with their ordering having been permuted by σ in-between the 

two neighborhoods, see figure 10. 

We recall that the fully-packed O(n) loop model on the square lattice [54–57], i.e. the 

model consisting in filling a square lattice with the two tiles P and E in (8) and with a weight 

N   2 cos γ for a loop is critical. We remind the reader that to make a connection between the 

loop configurations on the cylinder and Pn+m(x), we use conformal invariance to map the 

plane onto the cylinder, sending points 0 and x to       . Then the configurations of loops on the 

plane that come from a neighbourhood of 0 and meet again in a neighbourhood of x exactly 

correspond on the cylinder to strands propagating all along the cylinder without form- ing loops, 

see figure 11. For example, this permits to show that the two-point function P2 (x) 
with σ the identity decays as 

P2 (x) ∼
 1 

. 
σ 

x
(1−γ/π)− (γ/π)

2
 

(191) 

In this section we use all our previous results to determine the generalization of these 

power-law decays to the intersecting loop models. The same reasoning can be used to translate 

an intersecting loops configuration on the plane such as figure 10 to configurations of loops on 

the cylinder, where a certain number of strands propagate without forming loops, and under- 

going a given permutation. 
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σ    
n+m 

σ — | 

σ 

 
 

 
 

Figure 11. Two strands joining a neighbourhood of 0 and a neighbourhood of x (in 
black), together with contour lines (in blue) of a conformal transformation that maps the 
plane onto the cylinder, with points 0 and x mapped to      . Each blue line corresponds to 
a line encircling the cylinder at a constant height after the mapping. 

We saw that on the cylinder, the largest eigenvalue of the transfer matrix in a given sector 

is related to loop configurations through (188). Following this relation, we define the weight 

Wn,m = 1 − 
2ιm(σ) 

, (192)
 

m 

which is merely the same weight as in (188) after a normalization. We recall that ιm(σ) 

is the number of subsets of m strands among the n + m strands that intersect between 
themselves an odd number of times (in a graphical representation where there is no 
winding around the two end points), defined in (189). We gave an example with the per- 

mutation σ = (41 3 2) in figure 10. We have in this figure  ι0 = ι1 = 0,  ι2 = 4,  ι3 = 2, 
ι4 = 0, so that W4,0 = 1, W3,1 = 1, W2,2 = −1/3, W1,3 = 0, W0,4 = 1. Note that we always 

σ σ σ σ σ 
have Wn,0 = Wn−1,1 = 1. 

σ σ 
 

6.5.1. Even number of legs.   Equation (188) then directly translates into relations between the 

Pn+m(x). The cases of loop weights N = 1, 0, 1 are related to the osp(r 2) models with r = 
3, 2, 1 respectively. The results can be read off from eqs. (166), (158) and (75), by taking into 
account (21)–(22) that link the two terms in the expression to respectively the power law and 

logarithmic exponents. In the following, ∼ gives the asymptotic behaviour in x up to a 
constant multiplicative factor. 

 

Loop weight 1. 

 

(193) 
 

The case m = 1 where Wn,1 = 1 is consistent with Monte Carlo simulations in [58]. 
 

Loop weight 0. 

 
 

(194) 

 
Wn,mPn+m   x 

    2  

 (log )  
 

  (n +1) , for n and m odd. 

 

 
Wn,mPn+m 

 

 

   

 , 
 

 

 

 
 

for m ≥ 2 even and n even, 

     
 

 
(log x) 4 

− 
2 

+ 
4 ,    for n and m odd. 
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Loop weight −1. One has access with osp(1 2) to much less information. Keeping in mind that 

P is not a probability in this case but only a ratio of two partition functions, one can still write 

 

 

 

 
(195) 

 

 
6.5.2. One leg. The information on the watermelon exponents for an odd number of legs is 
contained in the spin chains of odd size L. In particular the one-leg case corresponds to the 

order parameter. For a loop weight 0, it corresponds to the case m = 0, n = 0 in (148), and 
from (125) this gives a gap 

L2∆eL 1 

2πvF   
= − 

4 log L 
, (196)

 

corresponding to the following behaviour of the order parameter 

⟨φ(x)φ(0)⟩ ∼ (log x) 2 . (197) 

For a loop weight 1, the Bethe roots associated to the ground state of the osp(3 2) model in 

odd size L are composed of (L   1)/2 strings, that happen to give exactly the same energy eL in 

all odd sizes, as in the even size case. Thus the energy gap is exactly 0 and one gets 

φ(x)φ(0)⟩ ∼ 1. (198) 

For a loop weight −1, the ground state in odd size corresponds to m = 0 in (75), that gives a 
gap 

L2∆eL 1 

hence 

2πvF   
= − 

3 log L 
, (199)

 

⟨φ(x)φ(0)⟩ ∼ (log x) 3 . (200) 

For these three cases we observe the behavior 

φ(x)φ(0)⟩ ∼ (log x) N−2 , (201) 

(recall N r 2s) which will be discussed further in the conclusion. 

 
6.6. Away from integrability 

The integrable spin chains previously studied correspond to a crossing weight w equal to 

(2 N)/4. For these values—and by using the Bethe-ansatz—we showed that the leading 

logarithmic corrections are indeed described by the supersphere sigma model. If there is uni- 

versality, this correspondence has no particular reason to hold only at the integrable point: the 

supersphere sigma model should be relevant to describe the long distance physics of the 

dense loop soups for all finite crossing weights w > 0. Of course, away from the integrable 
point, this might be much more difficult to check, since then only direct numerical simula- 

tions are available. In figure 12 we show as an example the measured logarithmic corrections 

 
 0,m   m 

 
 

 
 ,   for m even, 

 
 

 
 

 1,m   1   
  

 
 

 ,  for m odd. 
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∝ ∝ 

 
 

 
 

Figure 12. Left: measure of L
2 log L ∆e 

F 
for the 4-legs watermelon two-point function 

with loop weight 0, as a function of w for different sizes. The limit value predicted by 

the supersphere sigma model is indicated in purple. The integrable point is w = 0.5. 
Right: the same data as a function of w/ log L. 

corresponding to the four-leg watermelon two-point function, for different values of crossing 

weight w, for vanishing loop weight N = 0. The leading correction studied in this paper cor- 
responds to the purple line. While the Bethe-ansatz results show it does indeed give the correct 
results in the L limit, it is clear that for the sizes studied using direct transfer matrix 
diagonalisation, next order corrections play an important role. It seems however that these 

corrections can be captured quite easily. The full solution to the RG equations for the sigma 

model coupling constant is 

1 1 2 − N 
= + log(L/L0). (202) 

g g0 κ 

Setting L0 = 1 (i.e. measuring lengths in units of the lattice spacing) gives 

g = 
   κ 1 

. (203) 
(2−N)g0 

Meanwhile, we find that for N = 0 the numerical results can be collapsed approximately 

on (203) with  κ ≈ πw. In other words, we have, to a very good approximation, g0 ≈ 2
κ  . 

2g0 πw 

Hence, we see that w plays the role of the inverse bare coupling constant 

This observation suggests that at large w the corrections to the gap can be obtained with 

the same formulas we have derived earlier in this paper, but by using, instead of the running 

coupling constant g 1/ log L, the bare constant g0 1/w. Conversely, we can also imagine solving 

the problem at large w by elementary means, hence ‘re-deriving’ the formulas for the 

corrections. 

To this end, we fix the weight for a loop to N ≥ 0 and denote T the transfer matrix on a 
cylinder of size L M . This transfer matrix acts on L strands that are either connected to 

another strand, or are free, see figure 13. The states are described by a vector space, which can 

be decomposed into a direct sum ⊕kEk, where Ek is the vector space generated by the states 

with k free strands among L strands, thus of dimension L (L k)!!. 
An important observation is that the transfer matrix, after building a row with L tiles chosen 

from the three possible tiles in figure 8, cannot create new free strands, i.e. TEk ⊂ ⊕k'≤k Ek'. 

L 
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Figure 13. Examples of two states in size L = 6 with two free strands. 
 

 
Figure 14. The only dominant term in Tk at order wL: there are only tiles with crossings. 

 

 
Figure 15. Two examples of terms at order wL−1 in Tk: there is only one tile without 
crossing. 

 

 
Figure 16. Four examples of terms at order wL−2 in Tk: there are two tiles without 
crossing among the L tiles. 

Hence, the transfer matrix T is block-triangular and to find its eigenvalues one can work in a 

specific sector with a fixed number of free strands k. We will denote by Tk the restriction of the 

transfer matrix to Ek the sector with k free strands. 

Let us now study the limit of large crossing weight w        . In this limit the transfer matrix Tk 

is dominated by choosing a crossing at each site, see figure 14. It creates a loop in the hori- 

zontal direction and acts as the identity on the strands. Thus at leading order 

Tk = NwL + O(wL−1). (204) 

The next order is obtained by choosing a left or right corner among the L sites, see 

figure 15. It does not create any loops and acts as the identity on the other strands. Then 

Tk = NwL + 2LwL−1 + O(wL−2). (205) 

Denote now wL−2Rk the transfer matrix that corresponds to the next order, i.e. that creates 

only two corners among the L sites, see figure 16. Since it commutes with the dominant order, 

one simply has to compute its dominant eigenvalue. Whatever is the connection between the 

strands, there are 4 ·   L    
possibilities of placing the corners, but 2 ·   k    

of them (when the 

two corners are in opposite direction as in the two cases at the bottom in figure 16) will con- 

nect 2 of the k free strands, which must not be counted; and among the other possibilities, 

2 ·  L−2 
k  will create a loop. Thus the sum of the entries of each column of Rk is always equal to 

4 ·   L    − 2 ·   2 + (N − 1)(L − k). Since the entries of Rk are nonnegative ( N ≥ 0 case), one 

can conclude that the dominant eigenvalue of Rk is exactly 4 · 

It follows that the dominant eigenvalue of Tk at order wL−2 is 

2 − 2 · k    + (N − 1)(L − k). 
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Figure 17. Left: measure of L
2 log L ∆e 

F 
for the 6-legs watermelon two-point function 

with loop weight 0, as a function of w/ log L for different sizes. Right: measure of 
L2 log L 

 

2πvF L   with  ∆′eL the difference between the (q, j) = (1, 1) sector and the 

(q, j) = (0, 1) sector, with loop weight 0, as a function of w/ log L for different sizes. 
The limit values predicted by the supersphere sigma model are indicated in purple. 

 

λk = NwL + 2LwL−1 + wL−2 

  

4 ·  

  
L

    

− 2 ·  

  
k
    

+ (N − 1)(L − k)

   

+ O(wL−3). (206) 
 

This expansion has been checked numerically. It can also be continued at order wL−3. At 

order wL−4 complications appear since at each transfer matrix step the number of possibilities 

depends on the state; and from order wL−5 on, the interaction between different orders counts 
and probably cannot be simply taken into account. 

Assume now N = 0. We have 

— log(λk/λ0)= 
k(k − 2) 1   

+ O(w−2), (207) 

2 wL 

corresponding to a gap 

L2∆ek k(k − 2) 1  
 

L = 
2πvF 

2 2πw 
. (208) 

This matches the result equation (158) with j = 1/2, q = (k 1)/2 (that corresponds to 

1 fermionic box and k − 1 bosonic boxes in the Young tableau, equivalent to k free bos- 

onic strands on the infinite cylinder), and the coupling constant must be put to κ−1g = 2 
1   , 

in agreement with our earlier discussion. We conclude that, remarkably, the weak-coupling 

sigma model provides a very accurate description of the loop soup at large w with the very 

simple correspondence g 1/w. See figure 17 for further numerical evidence with other sec- 

tors. For reasons we do not quite understand, this simple correspondence seems to be true only 

for N = 0. 

Let us nevertheless give some comments on the N      =0 case. One can compute the large w 
regime of the eigenvalues as well: 

′∆ e 

L 
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— log(λk/λ0)= 
k(k + N − 2) 1   

+ O(w−3), (209) 



J. Phys. A: Math. Theor. 52 (2019) 345001 E Granet et al 

76 

 

 

2 2 

/ ∝ × 

| 

| 

| 
| −  | 

− 

Σ 
i 

 

which corresponds to a gap 

L2∆ek k(k + N − 2) L  
 

L = 
2πvF N 

+ O(w−3). (210) 
πw 

However the presence of the factor L and the behavior in w−2 suggest that the coupling con- 

stant g at  N      =0  could behave as      (log L + ... + C      w2/L)−1 where the dots indicate a 
term subdominant in w, and C a constant. When w the w2/L part dominates and one 

observes the behaviour (210). However it turns out that the finite-size corrections are not as 

easily captured as in the N = 0 case. Note finally that the expansion (210) for the energy gaps 

is valid for the singular case N = 2 as well. 

 
7. Conclusion 

 

In a previous paper [15] the amplitude of logarithmic corrections for the states of the osp(3 2) 

spin chain with spins j = 1/2, q (thus for only one degree of freedom) was interpreted as the 
value of the Casimir. This observation was generalized in [16] for similar states and other 

osp(n 2m) models. It must be emphasized that the amplitude of the corrections in general is 
not given by the Casimir. 

The emergence of the Casimir in this context can be traced back to the mini-superspace 

approach to the problem, discussed in detail in [44]. In this approach, one neglects fluctuations 

of the sigma model fields along the space direction (i.e. along the spin chain, in the discretized 

version), and focusses only on fluctuations in the (imaginary) time direction. This corresponds 

to the ‘particle limit’ of string theory, that is, quantum mechanics on the target—here a super- 

sphere. In this limit, the Hamiltonian becomes proportional (with proportionality constant g) 

to the Laplacian on the target, an object that can easily be diagonalized using group theory. 

Using this approach, one finds easily that the scaled gaps in this approximation should be of 

the form 

L2   l(l + r − 4)  

2πvF 
∆eL = 

2(4 − r) log(L/L0) 
, L → ∞, (211)

 
for the supersphere OSp(r 2)/OSp(r 1 2). Of course, identical results are expected for the more 

general model based on OSp(r 2s) provided r − 2s < 2 so the model flows to weak cou- pling in 

the IR. The combination r − 4 in (211) must then be replaced by r − 2s − 2: 

L2   l(l + r − 2s − 2)  

2πvF 
∆eL = 

2(2 + 2s − r) log(L/L0) 
, L → ∞. (212)

 

For s = 0, r = 3, that is the O(3) sigma model, (212) has been checked in great detail in [59]. 

We recall that for N > 2 the O(N) models have different renormalization properties, as seen 
from the beta function above (10), and that in this case it corresponds to the UV regime. 

Associated with (212) in the case of ordinary spheres—that is, sigma models on O(N)/O(N 

1)—are homogeneous symmetric polynomials [60, 61] in the order parameter components φi, 

i = 1, . . .  , N . They can be associated with fully symmetric representations on 
l boxes, with l = 1 corresponding to the fundamental representation, i.e. the order parameter 
itself. Of course, from the general formula for the Casimir of O(N) representations 

[ N ] 
 

2 

C = 

i=1 

λ2 + (N − 2i)λi, (213) 
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for the Young tableau (λ1, . . .  , λ[ N ]), we see that the numerator of (212) is just the Casimir of 
the corresponding representations. 

This picture remains true in the case of superspheres with N = r − 2s, although some care 
has to be taken because of the complexity of osp(r 2s) representation theory. 

The point is that the minisuperspace approach is only able to give corrections to dimensions 

of the fields without derivatives—that is, in practice, corrections to scaled gaps which vanish 

in the limit L     . Whenever a scaled gap has a finite part, corresponding to a finite value of the 

critical exponent in the IR fixed point theory, the associated field must involve derivatives of 

the sigma model field, and the minisuperspace formula per se cannot be applied. There is no 

reason in this case to expect the residue of the correction to still be given by the Casimir. 

This can be immediately checked on the three examples osp(1 2), osp(2 2) and osp(3 2), 
where the logarithmic corrections given in (81), (158) and (166) do not match the expression 

of the Casimir in (82), (154) and (159). More precisely, we observe that only the bosonic part 

is given by the Casimir, the fermionic part for a spin j half-integer being always given by j2. 

Precisely one has the scaled gaps 

L2 
j,q 

 
 

¯   1 2 1 1 − 2N 1  

2πvF 

∆eL    = (h + h)+ 
(2 − N)

 j  − 
2 

q(q + N)+ 
4
 

. 
log L/L0 

(214) 

In terms of the Young tableau describing the representation corresponding to the state, 2j 

is the number of ‘fermionic’ boxes (those aligned horizontally) and q the number of ‘bosonic’ 

boxes (those aligned vertically). 

It is intriguing to ask whether the amplitude of logarithmic corrections in the scaled gaps 

for more general states (with possibly different chiral and antichiral content) 

L2 
... 

 
 

¯ A(. . .) 

2πvF 
∆eL = (h + h)+ 

log L 
, (215) 

can be expressed simply in terms of the quantum numbers of the corresponding osp represen- 

tation, together with some other quantum numbers such as the orders of derivatives etc [18]. 

There does exist a related calculation of such an amplitude—deduced from the leading power 

law behavior of the two-point function of the corresponding operators—in the conformal case 

[42, 43]. However, since our sigma models are not conformal, there is no reason for these 

results to apply here (except for OSp(4|2)). The fully symmetric case is an exception, unified 

by the mini-superspace approach, for which    = 2(2+2s   r) . 
We also note that the order parameter always appears with negative logarithmic corrections 

when compared with the group invariant singlet ground state. This is presumably related with 

the fact that the symmetry is spontaneously broken. Note that negative logarithmic correc- 

tions on the cylinder means correlation functions in the plane that grow logarithmically with 

distance. This is in agreement with the general perturbative result for the two-point function 

of the order parameter at weak coupling for ordinary O(N) models [62]: 

⟨φa(x)φa(0)⟩ = 1 − C gσ (N − 2) log x 

 
N   1 

N−2 (216) 

with C a constant. When N < 2, the sign of the correction switches, showing that fluctuations 
do not destroy the spontaneous order—in agreement with the result that the symmetry is in 
fact broken. Taking this expression seriously gives long-distance correlations at weak coupling 

proportional to (log x) N−2 . This is in agreement with the result in (211) using equation (22). 

We also believe that in [15] the charge associated to the continuum degree of freedom was 
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it should be associated to the bosonic charge. We think the misunderstanding is linked to a 

question of highest-weight vector with respect to the osp(3 2) algebra that is explained in 

section 4.1.1, although the logarithmic corrections therein are numerically correct. Indeed in 

[15] states are studied that are said to belong to the (0, q) sectors with q ≥ 1/2, which seems 
to imply that the continuum is associated to the fermionic charge, see [38] in which the only 
irreducible representation with a null fermionic charge is the trivial representation. In fact they 

belong to the (1/2, q 1/2) sectors, and q is indeed associated to the bosonic charge. It is crucial 

to consider the charges of the highest-weight state (and not the Bethe state) to make the 

correspondence between the bosonic part of the logarithmic corrections and the Casimir; but 

also when discussing the loop configurations associated to the sector, see section 6.4. 

A word on the spin chains with sl(r|2s)(2) symmetry: these chains also have the osp(r 2s) 
symmetry and are critical, but they happen to be non-relativistic with a quadratic dispersion 

relation. The energy difference between the first excited states behaves as L−3. Although at 

order L−2 this gives rise, formally, to a continuum, the result cannot be related to any critical 
exponents because of the absence of conformal invariance. 

An important aspect that is missing in our results is the calculation of the finite part of the 

density of states for the continuum component of the spectrum in the cases of OSp(2 2) and 

OSp(3 2). While it seems possible to determine this density for some values of the conformal 

weight using brute force and the Bethe ansatz, we do not know for now how to obtain formulas 

in full generality, such as the ones checked (but not proved either) in [35, 63]. 

It is finally relevant to question the role of the periodic boundary conditions in our calcul- 

ations. Different boundary conditions, e.g. open boundary conditions modify the scaled gaps 

and thus the critical exponents of the physical observables, and one can ask how this is trans- 

lated in the field theory setup. Formula (C.6) in appendix C for the modifications to the finite- 

size corrections from the Bethe equations is a first step in this direction. 
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Appendix A. Change of grading 

 
In the algebraic Bethe ansatz with fermionic degrees of freedom, a choice has to be made on 

the grading used, i.e. to choose which index of the R-matrix is bosonic or fermionic. Different 

gradings lead to different Bethe equations and different expressions for the eigenvalues and 

eigenvectors. But it turns out that in all the models considered one can pass from a grading 

to another by applying a transformation on the Bethe equations and Bethe eigenvalues. It 

shows that for the eigenvalues, all the gradings are equivalent, in the sense that if there is a set 

of Bethe roots in one grading that gives a precise eigenvalue, then there has to exist Bethe roots 

in all the other gradings (possibly degenerate) that give exactly the same eigenvalue. 

Nevertheless, nothing guarantees that the corresponding eigenvector in another grading will 

be non-zero. In other words, there may be some eigenvectors that we can build with the Bethe 

ansatz only in particular gradings. All the gradings are equivalent for the eigenvalues, but not 

for the eigenvectors. 

We present in the following the transformation in a rather general way. It is a generalization 

of what is presented in [20]. We assume that we have r distinct families of Mn Bethe roots λn, 

n being the index of the family and i the index of the root inside the family, and a set of reals 
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r Mm   un,m n m n 
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m,s 

n,s 

n,s 

n 

    

m  
nα 

    

n,s 

m 

i 0,s 
= 

i j m,s 

i 0,s i j m,s 

i i 

= log 
sinh(λm − λn − iγαm ) 

= −
 

nαn,s log + 
log 

tmq−2αm
 

— tn 

i 
n,s 

  

  

 

n 
m,s , n and m indexing the families, and s being an additionnal index varying from 1 to un,m 

(that is needed for the Bethe equations to keep the same shape in another grading). We assume 

that the Bethe equations read for all n = 1, ..., r and i = 1,...,Mn: 
 
 un,0   sinh(λn + iγαn ) 

  L 
sinh(λ  − λ  + iγα  ) 

for γ > 0 a parameter. Note that the case of non-q deformed Bethe equations can be recovered 

by taking γ → 0 and rescale λn by γλn. We impose without making it explicit that if n = m 
in the product then the condition i j has to be taken. Two important assumptions have to be 

made in order to do be able to do the transformation: 

• symmetry of the Bethe equations: αn m 
n,s and un,m = um,n. 

• existence of a non-self-coupling family: there exists n such that αn = 0. 

These assumptions are stable under the transformation, as it will be shown. They are satisfied 

for the models studied in this paper. 

Let n be such that αn = 0. The first step is to rewrite the equation for the nth family as 

being the root of the polynomial P(X) that reads: 

un,0 
P(X)=  

 
(Xqα

n

 

L 
— q−α ) 

 
 

 

Mm un,m  (Xq−
α 

 
— t q ) 

 
s=1 

0,s 0,s 

 

m=1,/=jn=1 s=1 

m,s 
j 

m,s 

 
 un,0 

L 
n n 

  Mm   un,m n n 
 

− 
s=1 

(Xq−α0,s   − qα0,s ) m=1,/=jn=1 s=1 (Xqαm,s  − tmq−αm,s ), 
(A.2)

 

where we set tm = exp 2λm and q = eiγ. The Bethe equation for the nth family is thus 
j j 

P(tn)= 0. But P is a polynomial of degree Lun,0 + r un,mMm which is not necessarily 
i m=1,/=n 

r ′
 

equal to Mn the number of Bethe roots in family n. Set Lun,0 + m=1,/=unn,mMm  = Mn  + Mn 

and define sn = exp 2µn as the Mn
′  other roots of P. These will be the Bethe roots of family n 

i i 

in the other grading. They satisfy exactly the same Bethe equation as the former roots, but the 
equations for the other family are changed. All the λn must be changed for the µn. Consider 

first an αm 
j j 

=/0 that leads to a factor A of the type: 

Mn m n m Mn m   2αm n 

A 
sinh(λi − λj + iγαn,s) 

2M   m q 
Σ ti q  n,s  − tj   

.
 

j=1 i j 

 

Define then the function f (z) as: 

n,s j=1 i 
n,s 

j 

(A.3) 

tmq2αm 
n,s − z 

f (z)= log i . (A.4) 
 

tmq−2αm 

− z 

In the complex plane, (log P)′(z) has  Mn + Mn
′  poles at tn and sn, and  f (z) has a branch cut 

j j 
where the argument of the log is real negative, which is a segment from tmq2α

m 

to tmq−2α . 

α 

= α 

 
 
 r 

n 

r 

, (A.1) 

s=1 
sinh(λn − iγαn ) 

m=1 j=1 s=1 
sinh(λn − λm − iγαn ) 

j 
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2iπ 
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Consider a contour C encircling the roots tn and not the roots sn, neither the branch cut. The 
j j 

residue theorem gives: 

A = −2Mnαm log q + 
  1   

   

f (z)(log P)′(z)dz. (A.5) 
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+ log 
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r u ' ) i 
0,s n,s 0,s n,s 

m'=1,/=n n,m 

m αn −αm ( i n,s ) 
0,s' n,s 

m n m n . 
tmq

−α s −α  ',s'  − tm' 
q

α  s +α  ',s' 

i 0,s i j m,s 

m m 

0 0 1 2 2 1 

 

We now would like to deform the contour so that it encircles (in the other direction) the other 

poles. But then the branch cut enters in the integral, which becomes 2πi times the integral of 

(log P)′ over the segment. It gives: 

Mn
'  m  αm n  −α  m 2αm 

A 2 M M′ m 
q 

Σ ti q n,s − sj q n,s P(ti q n,s ) 
.
 

j=1 i 
n,s 

j 
n,s 

i 
n,s 

(A.6) 

But using the symmetry αm n 
m,s , one of the two terms in P is zero when evaluated at these 

points, so that we get: 

(tmq2α
m 

) 
 

 

Σ un,0  
tmq−α  ' +α   − qαn ' −αm   

  L
 

 
  

 
r Mm' un,m'   m  αm +αn 

' ' m' −α  −α ' ' 

    ti q 
 

  

n,s m ,s 

 
 

— tj   q 
 

 

n,s 

 
 

m ,s 

 
 

(A.7) 

Avoiding the term i = j for m′ = m  for every s′ (which is present by symmetry of the α’s, 

since αm  /= 0), the − factor becomes (−1)un,m −1. Since there are un,m such multiplicative fac- 
tors, they contribute to 1. The equations can be transformed back into sinh form, so that we 

get the Bethe equations for all k = 1, ..., r and i = 1,...,Mk: 
 
 uk,0   sinh(λk + iγκk 

 

  

) 
 L 

 

 

      sinh(λ  − λ   + iγκ   ) 
 

     

= 

with for m, m′ /= n: 
m 

i 0,s 

 
m n 

=   =   = 
 

m 

i j m,s 

{κ0,s}s = {αn,s −  α0,s' }s',s ∪  {− α0,s' }s' 
m m 

{κn,s}s = {αn,s}s (A.9) 

m m m n 

 
and for all m: 

{κm',s}s = {− αm',s}s ∪  {− αn,s −  αm',s' }s,s' , 

 
κn 

,s = αn 
,s. (A.10) 

We recall that in these new Bethe equations, the new Mn is the former Mn
′ , and the new λn are 

the former µn. The two assumptions are still satisfied in this new grading, since the α’s are 

symmetric and since the family n is still non-self-coupling (it is the only whose Bethe roots 
changed, but whose Bethe equations did not). We stress the fact that in the formulas (A.9), 
according to our conventions, a κ equal to zero must not be counted, a κ cancels a κ, and 

importance must be given to the range of the s and s′ (in particular in   ...  s,s'  if one of them 

sums over the empty set then the whole set is empty). 

For example, for osp(2|2) one has α1 = α2 = 1/2, α1 = α2 = 0, α1 = α2 = 1. After the 
transformation it gives no source term for the second family, and κ2 = 1, κ2 = −2. 

1 2 

 

P tmq−2αm 
s'=1 

ti q 0,s' n,s  − q 
−αn +αm 

m'=1,/=jn=1 s'=1 i 
m 

j 
n, m 

s 1 
sinh(λk − iγκk ) 

m 1 j 1 s 1 
sinh(λk − λm − iγκk ) 

m 

= α 

n + 

P 
2αm (Lun,0 + = − q n,s 

× 
n, 

= , (A.8) 
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Appendix B. Degeneracies of the osp(4|2) model 
 

To give numerical support to the arguments in section 5.4, we present here the results of an 

exact diagonalisation in finite-size L = 2, 4, 6 and the root structure corresponding to each state. 
The degeneracy in parentheses corresponds to the degeneracies of the same eigenvalue 
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for su(2). We use the abbreviation ‘s’ for string, ‘t’ for theta root. su(2)′ means that it is a solu- 

tion of the XXX Bethe equations (170) with a multiplicative −1 factor. 

 
B.1. L = 2 

 
Eigenvalue Particularity Degeneracy Roots 

e1 su(2) 1 (1) Degenerate 

e2 −e3 18 Void 

e3 su(2) 17 (3) 1 t at 0 

B.2. L = 4 

   

Eigenvalue Particularity Degeneracy Roots 

e1 su(2) 1 (1) 2 s degenerate 

e2 −e3 18 1 s at 0 

e3 su(2) 17 (3) 1 s at 0, 1 t at 0 

e4 su(2) 1 (1) (s in su(2)) 

e5 su(2) 17 1 s at 0 + , 1 t at 0- 

e6 su(2) 17 1 s at 0-, 1 t at 0 + 

e7 −e5 18 (3) 1 s at 0 + 

e8 −e6 18 (3) 1 s at 0- 

e9 su(2) 307 (5) void 
e10 −e9 306 1 t at 0 

e11 

e12 

≈ ie9 

≈ −ie9 

288 

288 
1 t > 0 

1 t < 0 

B.3. L = 6 

   

 

Eigenvalue Particularity Degeneracy Roots 

e1 su(2) 1 (1) 3 s degenerate 

e2 −e3 18 2 s around 0 

e3 su(2) 17 (3) 2 s around 0, t at 0 

e4 su(2) 1 (1) (s in su(2)) 

e5 su(2) 17 (3) 2 s > 0 , t at 0 

e6 su(2) 17 (3) 2 s < 0 , t at 0 

e7 −e5 18 2 s > 0 

e8 −e6 18 2 s < 0 

e9 su(2) 17 (3) 1 s > 0 , t at 0 

e10 su(2) 17 (3) 1 s < 0 , t at 0 

e11 −e9 18 1 s > 0 

e12 −e10 18 1 s < 0 
e13 su(2) 307 (5) 1 s at 0 

e14 

e15 

e16 

... 

−e13 

su(2)’ 

su(2)’ 

... 

306 

 

 
... 

1 s at 0, 1 t at 0 

1 s > 0, 1 t at 0 

1 s < 0, 1 t at 0 
... 
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When the Hamiltonian limit is taken, a link with the degeneracies derived in [44] could be 

studied. 

 
Appendix C. Logarithmic corrections from the Bethe ansatz 

 
C.1. Generalities 

 
In this appendix, we relate the previously derived logarithmic corrections to the parameters of 

the Bethe equations, and give a formula for the perturbation of the exponents h + ̄h and α in 
(22) when the Bethe equations are perturbed by an additional source term at one site, that 

occurs for example when the boundary conditions are modified. 

To fix the ideas, we consider the su(2) or osp(1 2) spin chains that can both be recast into 

the logarithmic form 

zL(λ)= s(λ)+ 
t(λ) 

− 
1 Σ 

r(λ − λi), (C.1) 

where the Bethe roots λi satisfy zL(λ i)= Ii/L with Ii a Bethe number. The energy eL is then 

eL = − 
2π Σ 

s′(λi), (C.2) 

s and r are functions that read 

s(λ) = 
1 

arctan 2λ, for su(2) and osp(1 2) 
π 

r(λ) =  
1 

arctan λ, for su(2) 
π 

= 
1 

arctan λ − 
1 

arctan 2λ, for osp(1|2), (C.3) 

and t(λ) is an additional source term that is zero for periodic boundary conditions, but that can 

be non-zero in case of isolated roots (such as ‘strings’) or open boundary conditions. It is 

assumed to be odd and continuous, and to satisfy the expansion (C.4) hereafter. We define r∞, 

η, t∞, ηt by the expansion at large λ > 0 

r(λ)= r — 
η 

+ o(λ−1), t(λ)= t — 
ηt 

+ o(λ−1). (C.4) 

Moreover we have the Fermi velocities vF = π for su(2) and vF = 2π/3 for osp(1|2). 

 
C.2. Perturbation to the critical exponents 

Assume that there are n vacancies in the positive/negative roots, at the outmost positions, 

and define ϵL by 

eL = e f 2πvF + + φ , (C.5) 

∞ 
L L2 L 

with a certain surface energy term f. Our result is that for su(2) and osp(1|2), for symmetric 

stated n+ = n− n, it reads 

∞ ∞ 

i 

i 
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+ − 

 

−

  

−t

     

 

t

 

L 

∫ Σ
L

 Σ 

L 

L 

L(1 + 2r∞) 

1 + 
2r∞ 

 

 

 
 

 
For asymmetric states n+ /= n−, we conjecture the following formula 

(C.6) 

 1  
ϵL = − 

12 
+ 

1
 

t2 
∞ 

+ 2r∞ 

(n   + n )2 
+ 

4 
(1 + 2r∞)+  

(n+ − n−)
2 

4 

1 

1 + 2r∞ 
+ t∞(n+ + n−) 

  vF   

log L 
ηn+n− + η η

  t∞  

1 + 2r∞ 
(n+ + n−) − 3η 

     t∞ 2 

1 + 2r∞ 
+ 2η

  t∞  
. 

1 + 2r∞ 

(C.7) 

The physical meaning of (C.6) is the perturbation of the critical exponents (those of the 

algebraic decay, as well as those of the logarithmic decay) when a modification of the system 

can be recast into the perturbation of the Bethe equations by an odd function t(λ)/L . 

 

C.2.1. Sketch of the derivation. It is not the purpose of this paper to give a detailed proof to 

would add too many technicalities; however we give the main lines of the derivation, using 

the work done in [64]. The logarithmic corrections appear here because the function r(λ) 
decays algebraically at infinity and not exponentially like in the XXZ case. Denoting 

SL(φ)= 1 i φ(λi) the sum of a function over the Bethe roots, and wL = SL − S∞, one first 

establishes that wL(φ) can be written as 

w  (φ) = 
1 

t′drφ + 
L 

ω,1+r̂'(ω)=0 

 
Aωφ̂(ω) + Bn

±{φdr}±
n  , (C.8) 

n>0 

with (̂ f dr) = ̂f (1 + r̂′)−1 and { f }n
± the coefficient in x−n in the expansion of  f (x) at        . The 

terms in Bn
± are possible even if φ does not decay algebraically, because r does, contrary to the 

XXZ case. Assume for simplicity that n+ = n−      n, i.e. the Bethe roots are symmetric. The 
energy of the chain at order L−2(log L)−1 is given by eL = e∞ + f  − 2πŝ′(ivF)(Aiv  + A−iv ) 

 

with f some surface energy. Denote w̄L(φ) = wL(φ) −  1 

t(λ) − (t′dr φ r)(λ) 
 

 

L 

t′drφ. Decomposing 
F F 

 

 

 
(C.9) 

zL(λ) = z∞(λ) + 
L 

− w̄L(r(λ − ·)), 

one finds by computing SL(|zL|) by two ways, first using zL(λi)= Ii/L, second using 
dr 

SL = S∞ + w̄L + t
'   

, that 

(Aiv  + A )ŝ′(iv  ) = − 

 

− + (1 + 2r   )(n + ϕ)2

 

 
vF 1  

 
F F L2 

— 
vFB±

1 

12 
 

η(n + ϕ)+ 2 

 

ηt − η
  2t∞        

     

, (C.10) 

 

−iv F ∞ 

  
1  t2 

     
+ n2(1 + 2r   )+ 2t   n  

 
  vF  

 

 
ηn + 2   η − η  

 
 

   t  

 

 

 
 

 
   t  

 

 

  

  
   t  
  

 

2r  
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with  ϕ = limλ→∞t(λ) − (t′dr * r)(λ) = t∞/(1 + 2r∞).  To  determine  the  B±
1 ,  without  

the function t it would be proportional to n/ log L, as it can be seen by computing SL(1/ log(α − 

zL)) 

with α = limλ→∞z∞(λ). But the presence of t acts like an ‘odd’ twist ±ϕ for positive/nega- 

tive roots, and it amounts to changing n by n + ϕ. Finally 
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π 

    

=i 

  
(C.13) 

2π 

2µi − i µi − i 
=

 µ µ i 
(C.14) 

j/=i 

 

B±
1   = −vF(1 + 

2r∞ 

 n + ϕ 
) 

L log L 
, (C.11) 

hence formula (C.6) in the case n+ = n− = n. 

 
C.3. Numerical results 

In this subsection are given numerical checks of formula (C.6). The Bethe equations are solved 

numerically for sizes up to 1500, and the results are extrapolated to the thermody- namic limit 

using a ratio of two polynomials in log L . Many extrapolated results only slightly change with 

the degrees of the polynomials or with the sizes that are used in the extrapolation; however some 

cases with a wilder extrapolating curve such as the rightmost case in figure C4 do vary more, 

although the global shape of the curve is often stable. 

 
C.3.1. Periodic su(2).   The periodic su(2) case is obtained with r(λ) = 1 arctan λ and 

t(λ)= 0, hence vF = π, 1 + 2r(∞)= 2, t(∞)= 0, η = 1 and ηt 

π 

= 0. It yields 

1 2 n2 

ϵL = − 
12 

+ 2n  − 
log L 

. (C.12) 

Only this result was already known [65, 66]. 

 

C.3.2. Open su(2). The open su(2) case with trivial boundary matrix K has the following 

Bethe equations 

λi + i/2  L 
= 

λi − i/2 

λi − λj + i λi + λj + i 

j/ 
λi − λj − i λi + λj − i 

where the roots λi are strictly positive. One can rewrite it with a usual root configuration µi by 

considering only symmetric root structures, i.e. set of roots that contains µi if it contains µi, 
and adding the appropriate source term 

  
µi + i/2 

  L 
2µi + i µi + i µi − µj + i 

  
which  is  obtained  with  r(λ) =  1 arctan λ  and  t(λ) =  1 arctan 2λ + 1 arctan λ,  hence 
1 + 2r(∞)= 2, t(∞)= 1, η = 1 

π 

η = 3 . For L/4 − 
π 

λ 
π 

L/2 − 2n + 1 
 

roots µi, that yield 
π and   t 2π n roots i, there are 

ϵL = −
 1  

+ 2n2 − 
n(n + 1) 

. (C.15)
 

12 log L 

See figure C1 for a numerical verification of this result. 

 
C.3.3. Periodic osp(1|2). For periodic osp(1|2) with L − 1 − 2n real roots, one has vF = 2π , 

1 + 2r(∞)= 1, t(∞)= 0, η = 1 and ηt 

3 

= 0, that yield 

1 1 2 (n + 1 )2 
 

 

µi − i/2 —  −i
  j 
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See figure C2. 

ϵL = − 
12 

+ (n + 
2 
)  − 

2 

3 log L 
. (C.16) 



J. Phys. A: Math. Theor. 52 (2019) 345001 E Granet et al 

90 

 

 

| 

| 

4π 

 

Figure C1. Logarithmic correction to the open su(2) states for n = 0, 1, 2 (from left to 
right). The measured limit value and the theoretical values are indicated above the plots. 

 

 
Figure C2. Logarithmic correction to the periodic osp(1 2) states for n = 0, 1, 2 (from 
left to right). The measured limit value and the theoretical values are indicated above 
the plots. 

 

 
Figure C3. Logarithmic correction to the periodic osp(1 2) states with an exact string 

at 0 for n = 0, 1, 2 (from left to right). The measured limit value and the theoretical 
values are indicated above the plots. 

C.3.4. Periodic osp(1|2) with strings. In case of an exact 2-string at 0 for peri- 

odic osp(1|2) with L − 2 − 2n other real roots, one has 1 + 2r(∞)= 1, η = 1 , 

t(λ) = 1 arctan λ − 1 arctan 2λ − 1 arctan 2λ/3,hence t(∞)= − 1,and η 
2π 

= − 1 

π π π 1 (n + 1)(n − 2)+ 5 
 

2 t π,thatyield 

 
See figure C3. 

ϵL = 
6 

+ n(n + 1) − 3 log L 
4 . (C.17) 

 

C.3.5. Open osp(1|2). For open osp(1|2) with L/2 − n positive roots, hence L − 2n + 1 

normal roots, one has 1 + 2r(∞)= 1, η = 1 , t(λ) = 1 arctan λ − 1 arctan 4λ, hence 

t(∞)= 0, and ηt = 3 , that yield 

 1 1 2 

2π π π 

 

(n − 1 )(n + 5 ) 
  

 
 

 
See figure C4. 

ϵL = − 
12 

+ (n − 
2 
) − 

2 

3 log L 
2   . (C.18) 
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Figure C4. Logarithmic correction to the open osp(1 2) for n = 0, 1, 2 (from left to 
right). The measured limit value and the theoretical values are indicated above the plots. 

 

 

Figure C5. A configuration of a dense loop soup with crossings, with ‘open’ boundary 
conditions. 

C.4. Loop configurations for osp(1|2) with open boundary conditions 

In case of open boundary conditions with a trivial reflection matrix K = Id [23], the osp spin 
chains can be interpreted as loop soups with crossings with periodic boundary conditions in 
the vertical direction, and with particular boundary conditions in the horizontal direction. It 

is depicted in figure C5: if the strands cross the left or right boundaries, they are folded back 

onto the upper or lower adjacent row. 

An explicit correspondence between the eigenvalues of the transfer matrix, and the con- 

straint induced on the loops with these boundaries can be established like in the periodic case, 

see table C1. 

The previous results can be used then to determine the watermelon exponents of these 

configurations. We remark that the exponents in case of open boundaries display the same 

quadratic part, but a different linear part compared to the periodic boundary case. 

 
Appendix D. Proof of lemma 1 

 
We give in this appendix a proof of lemma 1. 

Proof. First note that the absolute value of the weight of the configuration is independent of 

the indices of the loops that compose it, so that only the sign can change. This will precisely 
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Table C1. Correspondence between transfer matrix eigenvalues, Bethe roots, charges, 

and loop configurations for the open osp(1 2) case in size L = 6 at the isotropic 
integrable point. 

Eigenvalue Bethe roots {λ} Jz Constraint 
 

35061 {0.123, 0.256, 0.414, 0.631, 1.00} 1/2 

29945 {0.126, 0.263, 0.430, 0.676, 1.17 + 0.47i, 1.17 −  0.47i} 0 no constraint 

17050 {0.122, 0.254, 0.410, 0.627} 1 

3656.1 {0.123, 0.256, 0.418} 3/2 

 

349.78 {0.126, 0.266} 2 

 

 
 

occur because of fermionic signs and the fact that ( 1) pb   = ( 1) pf if b is bosonic (pb = 0) 

and f fermionic (pf = 1). 
Let us choose a loop l in the configuration (see figure D1) and assume first that it does not 

cross the boundaries and does not intersect itself (but it can intersect other loops). After the 

change of index, all the ( 1) pa with a lying on the loop are multiplied by −1. 
Let us first consider the term ( 1) pipj in the I term in (175), that is present at each NW or 

SE corner. After the change of index, each NW and each SE corner thus contributes to a −1. In 
figure D2 we drew a red cross at an edge around each such corners to indicate this additional 
sign term. 

ΣM   ΣL ( pαm +p  m+1 ) 
Σ j−1 

pαm 

 

Let us study now the term (−1) 
m=1 j=2 j αj i=1 

i . This one ‘links’ αm and αn 

whenever m = n    1 and i ≷ j, or m = n and i    j. In the left panel of figure D3 the straight 
blue lines cross all the vertical edges that this sign term ‘link’ to the vertical edge indicated by 

a black cross. Notice that a straight line that begins inside the loop and that goes out intersects 

it an odd number of times; a straight line that begins outside the loop and that goes inside it 

and comes out intersects it an even number of times. 

Consider an αm (a vertical edge) that does not belong to the loop l. The parity of the number 

of α’s linked to it by this sign term depends thus on the position of the points (m + 1/2, 

i + 1/2) and (m    3/2, i     1/2) (the blue bullets in figure D3): if they both lie inside the loop 

or outside the loop, it is even; if one is inside and the other one outside it is odd. There is thus 

a ( 1) pa for each vertical edge with index a for which this number is odd, as shown in the 

middle panel of figure D3. Now the vertices that correspond to an intersection gives a 

possibility of simplification: every couple of (−1) pa that are on each side of an edge 

that belongs to the loop l simplifies (since their index is primed and pa = pa'). One recovers 
signs only around SE or NW corners, see the right panel of figure D3. All these signs then 
exactly compensate with the signs of the first sign term. 

Consider now an αm (vertical edges) that is on the loop l. To avoid counting twice a change 
of sign, only the left-going straight blue lines in the left panel of figure D3 must be taken into 

account. There is a change of sign if and only if αm is inside a NE corner. This gives a −1 for 
each NE corner. 

1 

2 

1 

1 

 1 

1  
2 
3 

 1 
2 

3 

4 

 

i j 
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Figure D1. The loop l. The other loops are not drawn. 

 

         

 +   +     

         

    +     

         

 +   +     

   +    +  

    +     

         

 
Figure D2. The red crosses indicate an edge around each corner for which a (−1) pa

 

appears after changing the index of the loop, taking into account the term (−1) pipj in (175). 
 

Figure D3. The blue line intersects the vertical edges that are linked to the black cross 
ΣM   ΣL ( pαm +p  m+1 ) 

Σ j−1 
pαm 

in (−1) m=1 j=2 j αj 
i=1 i 

. Then the blue crosses indicate the edges for 
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which a (−1) pa appears, and then after simplification. 
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m=1 
pcm 

m=1 
pcm 

− 

 
 

  
 

Figure D4. Examples of non-contractible loops in both directions. 

There is now the sign term that comes from the third term in (175). This one contributes 

to −1 or 1 for each SW and NE corner (according to whether the index of the loop is smaller 
or larger than N/2, by inspection of (175)—but the sign is the same for both types of corners) 

in the loop l. Together with the −1 for each NE corner, it comes that there is finally a −1 for 
each SW or NE corner. But the number of NE corners (or of SW corners) is always odd for a 

loop that can be contracted into a point, which is the case for a non-self intersecting loop that 
does not cross the boundaries. Therefore the total contribution after the change of index of the 

loop l is −1. 
If the loop l crosses only the left and right boundaries, then the previous arguments are still 

valid (because an horizontal line will always cross the loop an even number of times), but the 

number of SW or NE corners has now opposite parity as the number of times the left and right 
boundaries are crossed. Because of the sign term (−1)

Σ
M 

it cancels out and the total sign 
1 

factor is still −1. Note the importance of taking the supertrace of the monodromy matrix to 
have this extra sign term. 

If the loop l crosses the top and bottom boundaries, then the previous arguments are slightly 

modified (because an horizontal line will always cross the loop a number of times that has 

same parity as the number of times the up and down boundaries are crossed) but still hold. 
The only important difference is that there is no equivalent term to (−1)

Σ
M 

for the up and 
1 

down boundaries, so that the resulting sign factor is ( 1)bv +1 where bv is the number of times 

the loop crosses the up and down boundaries. 

Finally, the intersections of the loop l with itself can be equally considered as a NW-SE 
couple of corners (if the indices of the two strands that intersect are the same) or a NE-SW 
couple of corners (if the indices of the two strands that intersect are primed) multiplied by 

a −1 in both cases. Indeed the fermionic signs stay the same during this transformation after 
the change of index, by inspection of (175). This transforms a loop with n self-intersections 

into a collection of n + 1 independent non-self-intersecting loops, but whose indices have to 
be collectively changed at the same time when the index of the original loop l is changed. This 

gives an additional (−1)n that is compensated by the −1 that comes with each transformation 
of a self-intersection into a corner. ■ 
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