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Abstract

We present simple graph-theoretic characterizations for the Cayley graphs of monoids, right-

cancellative monoids, left-cancellative monoids, and groups.

1 Introduction

Arthur Cayley was the first to define in 1854 [3] the notion of a group as well as the table of

its operation known as the Cayley table. To describe the structure of a group (G, ·), Cayley

also introduced in 1878 [4] the concept of graph for G according to a generating subset S,

namely the set of labeled oriented edges g
s
−→ g·s for every g of G and s of S. Such a

graph, called Cayley graph, is directed and labeled in S (or an encoding of S by symbols

called letters or colors). A characterization of unlabeled and undirected Cayley graphs was

given by Sabidussi in 1958 [7] : an unlabeled and undirected graph is a Cayley graph if

and only if we can find a group with a free and transitive action on the graph. Following

a question asked by Hamkins in 2010 [5]: ‘Which graphs are Cayley graphs?’, we present

simple graph-theoretic characterizations of Cayley graphs first for the monoids, then for the

right-cancellative or/and left-cancellative monoids, and finally for the groups.

Let us present the main structural characterizations starting with the Cayley graphs of

monoids. Among many properties of these graphs, we retain only basic ones. First and by

definition, any Cayley graph is deterministic: there are no two edges of the same source and

label. They are also source-complete: for any label of the graph and from any vertex, there

is at least one edge. These first two properties are well known in automata theory. As any

Cayley graph of a monoid is according to a generating subset, it is rooted: there is a path

from the identity element to any vertex. The identity is also an out-simple vertex: it is

not source of two edges with the same target. Finally, the identity is a propagating vertex

meaning that if it is source of two paths labeled by u and v with the same target then any

two paths labeled by u and v of the same source have the same target. These properties

satisfied by the Cayley graphs of monoids are sufficient to characterize them: they are the

deterministic and source-complete graphs with a propagating out-simple root (Theorem 9).

In fact for any graph Γ and root r satisfying these properties, the vertex set of Γ is a monoid

whose s · t is the target of the path from s labeled by u if u labels a path from r to t. It

follows that Γ is a Cayley graph of this monoid generated by the set of successors of r.

We then characterize the Cayley graphs of right-cancellative monoids as being the Cayley

graphs of monoids which are co-deterministic: there are no two edges of the same target

and label (Theorem 13). We also characterize the Cayley graphs of left-cancellative monoids

as being the Cayley graphs of monoids which are propagating: any vertex is propagating

(Theorem 16). By extending to chains the vertex propagation, we get the Cayley graphs of

groups: they are the deterministic and co-deterministic, chain-propagating connected simple

graphs (Theorem 20).

http://www.dagstuhl.de/lipics/
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2 Directed labeled graphs

We present some basic concepts on directed labeled graph, namely the determinism, the

source-completeness, and the simplicity, which are basic notions in automata theory.

Let A be an arbitrary (finite or infinite) set. We denote by A∗ the set of tuples (words)

over A which is for the concatenation the free monoid generated by A. We denote by ε

the 0-tuple i.e. the identity element called the empty word. A directed A-graph (V, G) is

defined by a set V of vertices and a subset G ⊆ V ×A×V of edges. Any edge (s, a, t) ∈ G is

from the source s to the target t with label a, and is also written by the transition s
a
−→G t

or directly s
a
−→ t if G is clear from the context. The sources and targets of edges form

the set VG of non-isolated vertices of G and we denote by AG the set of edge labels:

VG = { s | ∃ a, t (s
a
−→ t ∨ t

a
−→ s) } and AG = { a | ∃ s, t (s

a
−→ t) }.

The set V − VG is the set of isolated vertices. From now on, we assume that any graph

(V, G) is without isolated vertex (i.e. V = VG), hence the graph can be identified with its

edge set G. We also exclude the empty graph ∅ : every graph is a non-empty set of labeled

edges. Let −→G be the edge relation defined by s −→G t if s
a
−→G t for some a ∈ AG.

A path (s0, a1, s1, . . . , an, sn) of length n ≥ 0 in a graph G is a sequence s0
a1−→ s1 . . .

an−→ sn

of n consecutive edges, and we write s0
a1...an−→ sn for indicating the source s0 , the target sn

and the label word a1. . .an ∈ A∗
G of the path.

Let −→∗
G be the path relation defined by s −→∗

G t if s
u
−→G t for some u ∈ A∗

G. We denote

by −→G(r) = { s | r −→G s } the set of successors of a vertex r. A graph G is accessible

from P ⊆ VG if for any s ∈ VG there is r ∈ P such that r −→∗
G s. A vertex r is a root if

the graph is accessible from {r}. A graph G is strongly connected if every vertex is a root:

s −→∗
G t for all s, t ∈ VG .

A graph G is deterministic if there are no two edges of the same source and label i.e.

(r
a
−→G s ∧ r

a
−→G t) =⇒ s = t for any r, s, t ∈ VG and a ∈ AG

meaning that for any label a ∈ AG , the relation
a
−→ is one to one. This local condition is

equivalent to the injectivity of
u
−→ for any word u ∈ A∗

G .

A vertex s is a source-complete vertex if for any label a of the graph, there is at least one

edge from s label by a i.e. ∀ a ∈ AG ∃ t (s
a
−→G t). A graph is a source-complete graph

if all its vertices are source-complete. This condition is equivalent for any label word u to

the existence of a path labeled by u from any vertex: ∀ u ∈ A∗
G ∀ s ∈ VG ∃ t (s

u
−→G t).

Thus a graph G is deterministic and source-complete if and only if for any label a ∈ AG ,
a
−→G is a mapping from VG into VG or equivalently for any label word u ∈ A∗

G ,
u
−→G is

a mapping.

A vertex s is an out-simple vertex if there are no two edges of source s with the same

target: (s
a
−→ t ∧ s

b
−→ t) =⇒ a = b for any t ∈ VG and a, b ∈ AG . We also say

that s is an in-simple vertex if there are no two edges of target s with the same source :

(t
a
−→ s ∧ t

b
−→ s) =⇒ a = b for any t ∈ VG and a, b ∈ AG . A simple vertex is a

vertex which is both in-simple and out-simple. A simple graph is a graph whose any vertex

is simple (or in-simple, or out-simple).

3 Generalized Cayley graphs

We present graph-theoretic characterizations for the generalized Cayley graphs of magmas

with a left identity, and with an identity.
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Recall that a magma is a set M equipped with a binary operation · : M×M −→ M

that sends any two elements p, q ∈ M to the element p · q. Given a subset Q ⊆ M and an

injective mapping [[ ]] : Q −→ A, we define the generalized Cayley graph :

C[[M, Q]] = { p
[[q]]
−→ p · q | p ∈ M ∧ q ∈ Q }

of vertex set M and of label set [[Q]] = { [[q]] | q ∈ Q }.

◮ Fact 1. Any generalized Cayley graph of a magma is deterministic and source-complete.

The deterministic source-complete graphs are the graphs such that for any label word u and

for any vertex s, there is a unique path from s labeled by u. Among the deterministic and

source-complete graphs, we want to determine those that are generalized Cayley graphs.

Given a vertex r of a graph G, a binary operation · on VG is an r-edge operation of G if

r
a
−→ t =⇒ s

a
−→ s·t for any s, t ∈ VG and a ∈ AG

Such an operation is illustrated below and will be refined later (see Figures 10,21,24).

s

a

s · t tr

a
for and a ∈ A

◮ Figure 2. An r-edge operation on the vertex set of a graph.

In particular if a graph G has an r-edge operation with r source-complete then G is

source-complete. For any deterministic and source-complete graph, the existence of an

edge-operation from an out-simple vertex allows to express it as a generalized Cayley graph.

◮ Lemma 3. Let r be an out-simple source-complete vertex of a deterministic graph G.

Let · be an r-edge operation of G. So G = C[[VG , −→G(r)]] with [[s]] = a for any r
a
−→ s.

Proof.

We denote by Sr = −→G(r) = { s | ∃ a ∈ AG (r
a
−→ s) } the set of successors of r.

As r is out-simple, [[ ]] is a mapping from Sr into AG . As G is deterministic, [[ ]] is

injective. As r is source-complete, [[ ]] is surjective hence [[ ]] is bijective.

Let us check that G = C[[VG, Sr]].

⊆ : Let s
a
−→G t. As r is source-complete, there exists q such that r

a
−→G q. So [[q]] = a.

As · is an r-edge operation, we have s
a
−→G s·q.

As G is deterministic, we get t = s·q hence s
a
−→C[[VG, Sr ]] s·q = t.

⊇ : Let s
a
−→C[[VG, Sr ]] t. There exists (a unique) q ∈ Sr such that [[q]] = a.

So t = s·q and r
a
−→G q. As · is an r-edge operation, we have s

a
−→G s·q = t. ◭

Recall that an element e of M is a left identity (resp. right identity) if e·p = p (resp.

p·e = p) for any p ∈ M . Note that any left identity of a magma is an out-simple vertex

of its generalized Cayley graphs. This property with those of Fact 1 suffices to characterize

the generalized Cayley graphs of magmas with a left identity.

◮ Proposition 4. A graph is a generalized Cayley graph of a magma with a left identity

if and only if it is deterministic, source-complete with an out-simple vertex.

Proof.

=⇒ : Let G = C[[M, Q]] for some magma M with a left identity e and some Q ⊆ M .

By Fact 1, it remains to check that e is out-simple.

Let e
a
−→G s and e

b
−→G s with a, b ∈ AG .

As AG = [[Q]], we have a = [[p]] and b = [[q]] for some p, q ∈ Q.

Thus s = e·p = p and s = e·q = q hence p = q i.e. a = b.
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⇐= : Let G be a deterministic and source-complete graph and let r be an out-simple

vertex. We consider the magma (VG, ·) with · defined for any s, t ∈ VG by

s · t =





t if s = r

x if r
a
−→ t and s

a
−→ x for some a ∈ AG

r otherwise.

As r is out-simple and G is deterministic, · is well-defined.

So r is a left identity and · is an r-edge operation.

As G is source-complete and by Lemma 3, G is a generalized Cayley graph of (VG, ·).

Note that we could also defined · for any s, t ∈ VG by

s · t =

{
x if r

a
−→ t and s

a
−→ x for some a ∈ AG

t otherwise. ◭

Let us introduce a graph notion. A vertex r of a graph G is a loop-propagating vertex if

r
a
−→ r =⇒ s

a
−→ s for any s ∈ VG and a ∈ AG

meaning that if r has a loop labeled by a then any vertex has a loop labeled by a. In

particular any vertex without loop is loop-propagating.

If a magma M has a left identity e and a right identity e′ then e = e · e′ = e′ is the

identity of M and we say that M is a unital magma. The identity e of a magma is a

loop-propagating vertex for its generalized Cayley graphs. We can strengthen Proposition 4

to magmas with an identity.

◮ Proposition 5. A graph is a generalized Cayley graph of a unital magma if and only if

it is deterministic, source-complete with an out-simple and loop-propagating vertex.

Proof.

=⇒ : Let G = C[[M, Q]] for some magma M with an identity e and some Q ⊆ M .

In the proof of Proposition 4, we have seen that e is out-simple. It remains to check that

e is loop-propogating. Let e
a
−→G e with a ∈ AG and let s ∈ VG = M .

So a = [[q]] for some q ∈ Q hence e = e·q = q. Thus s
a
−→G s·q = s·e = s.

⇐= : Let G be a deterministic and source-complete graph and let r be an out-simple and

loop-propagating vertex. We have just to refine the operation · of the previous proof as

follows: for any s, t ∈ VG

s · t =





t if s = r

s if t = r

x if r
a
−→ t and s

a
−→ x for some a ∈ AG

r otherwise.

As r is out-simple, loop-propagating and as G is deterministic, · is well-defined. ◭

For instance consider the magma (Z, ·) where m · n = −m + n for any m, n ∈ Z.

There is no right identity and 0 is the unique left identity. The generalized Cayley graph

G = C[[Z, {1, 2}]] with [[1]] = a and [[2]] = b is the following simple graph:

1

0

b

a ab

2

-1

ab

3

-2
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Any vertex other than 1 is loop-propagating. By Proposition 5, G is a generalized Cayley

graph of a unital magma. Precisely by applying the construction given in its proof for

r = 0, we get G = C[[Z, {1, 2}]] with [[1]] = a and [[2]] = b for the magma (Z, ·) of identity

0 defined for any n by 0 · n = n and for any m 6= 0 by

m · n =





m if n = 0

−m + n if n = 1, 2

0 otherwise.

4 Cayley graphs of monoids

We present a graph theoretic characterization for the Cayley graphs of monoids. Such a

characterization is based on a structural property describing a partial symmetry of these

graphs: every vertex is the image of the unit element by an endomorphism. We express this

general property by an elementary notion of propagation.

We write s
u,v
−→G t if s

u
−→G t and s

v
−→G t. We denote by s

u,v
−→G if s

u,v
−→G t for

some t. A vertex r of a graph G is a propagating vertex if

r
u,v
−→ =⇒ s

u,v
−→ for any s ∈ VG and u, v ∈ A∗

G

meaning that if there are two paths from r of the same target labeled by u and v then

from any vertex, there are two paths of the same target labeled by u and v.

In particular for u = v ∈ A, a graph is source-complete if it has a source-complete propa-

gating vertex. Furthermore for u = ε and v ∈ A, a propagating vertex is loop-propagating.

For the following deterministic and source-complete graph:

ts

r

a b

ba

b

a

the vertex r is propagating but the vertices s, t are not propagating: we have s
ε,a
−→ (resp.

t
ε,b
−→) which is not the case for the other vertices.

Let us express differently a propagating vertex for a deterministic graph. Given a vertex r

of a graph G, we denote by G↓r the restriction of G to the vertices accessible from r :

G↓r = { (s, a, t) ∈ G | r −→∗
G s }.

A morphism from a graph G into a graph H is a mapping h from VG into VH such that

s
a
−→G t =⇒ h(s)

a
−→H h(t).

A propagating vertex r of a deterministic graph G is a vertex from which there is for any

vertex s a morphism from G↓r into G linking r to s.

◮ Lemma 6. For any deterministic graph G and vertices r, s, we have

r
u,v
−→G =⇒ s

u,v
−→G for any u, v ∈ A∗

G

if and only if there is a morphism h from G↓r to G↓s such that h(r) = s.

Proof.

⇐= : Immediate for any graph.

=⇒ : As G is deterministic, it allows to define the mapping h : VG↓r
−→ VG↓s

by

h(p) = q if r
u
−→G p and s

u
−→G q for some u ∈ A∗.

Thus h(r) = s. It remains to check that h is a morphism.
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Let p
a
−→G↓r

q. There exists u ∈ A∗
G such that r

u
−→G p.

As r
ua
−→G , we have s

ua
−→G i.e. s

u
−→G p′ a

−→G q′ for some vertices p′, q′.

As G is deterministic, h(p) = p′ and h(q) = q′ hence h(p)
a
−→G↓s

h(q). ◭

Recall that a magma (M, ·) is a semigroup if · is associative: (p · q) · r = p · (q · r) for

any p, q, r ∈ M . A monoid M is a semigroup with an identity 1. In that case, 1 is a

propagating vertex of its generalized Cayley graphs.

◮ Fact 7. For any generalized Cayley graph of a monoid, 1 is a propagating vertex.

Proof.

Let 1
u,v
−→G s with u, v ∈ A∗

G . We have u = [[p1]] . . . [[pm]] and v = [[q1]] . . . [[qn]] for

some m, n ≥ 0 and p1, . . . , pm, q1, . . . , qn ∈ Q.

Thus (. . .(1·p1). . .)·pm = s = (. . .(1·q1). . .)·qn . As · is associative, p1·. . .·pm = q1·. . .·qn .

Let t be any vertex of G. So t
u
−→G (. . .(t·p1). . .)·pm = t·(p1·. . .·pm) and

t
v
−→G t·(q1·. . .·qn) = t·(p1·. . .·pm). Hence t

u,v
−→G . ◭

For instance the following oriented and labeled Petersen graph:

a b a

b

a

b

a

b

a

b

a

is not a generalized Cayley graph of a monoid since it has no propagating vertex: for s

an inner vertex and t an outer vertex, we have s
ε,ababa
−→ and t

ε,baaba
−→ while t /

ababa
−→ t and

s /
baaba
−→ s.

Recall that the submonoid generated by a subset Q of a monoid M is the least submonoid

Q∗ = { q1· . . . ·qn | n ≥ 0 ∧ q1, . . . , qn ∈ Q } containing Q. A Cayley graph of a monoid

M is a generalized Cayley graph C[[M, Q]] for M generated by Q i.e. M = Q∗.

◮ Fact 8. For any Cayley graph of a monoid, 1 is a root.

Proof.

Let G = C[[M, Q]] for some monoid M generated by Q.

For any m ∈ M , we have m = q1·. . .·qn for some n ≥ 0 and q1, . . . , qn ∈ Q, thus 1
v
−→G m

for the label word v = [[q1]] . . . [[qn]]. ◭

Thus a generalized Cayley graph of a monoid is a Cayley graph if and only if it is rooted by 1.

We can give a simple graph-theoretic characterization for the Cayley graphs of monoids.

◮ Theorem 9. A graph is a Cayley graph of a monoid if and only if

it is deterministic, source-complete with a propagating out-simple root.

Proof.

=⇒ : Let G = C[[M, Q]] for some monoid M and some Q ⊆ M such that Q∗ = M .

By Fact 1, G is deterministic and source-complete. By Proposition 4, 1 is out-simple.

By Facts 7 and 8, the vertex 1 is a propagating root.
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⇐= : Let G be a deterministic and source-complete graph and r be a propagating out-

simple root. Let · be an r-path operation i.e. a binary operation on VG such that

r
u
−→ t =⇒ s

u
−→ s · t for any s, t ∈ VG and u ∈ A∗

G

which is illustrated below. Any r-path operation is an r-edge operation.

u u
for

s s · t r t

and u ∈ A∗

◮ Figure 10. An r-path operation on the vertex set of a graph.

i) Let s, t ∈ VG . Let us check that s · t is well-defined.

As r is a root, there exists u ∈ A∗
G such that r

u
−→G t.

As G is source-complete, there exists x such that s
u
−→G x.

Let r
v
−→G t for some v ∈ A∗

G. So r
u,v
−→G . As r is propagating, we have s

u,v
−→G .

As G is deterministic, we get s
v
−→G x. Thus s · t = x is well-defined.

The path operation · is an r-edge operation.

By Lemma 3, G = C[[VG , −→G(r)]] where [[s]] = a for any r
a
−→ s.

It remains to check that (VG, ·) is a monoid generated by −→G(r).

ii) Let us check that r is a left identity.

Let s ∈ VG . As r is a root, there exists u ∈ A∗
G such that r

u
−→G s.

By definition of · , we have r
u
−→G r · s. As G is deterministic, we get r · s = s.

iii) Let us check that r is also a right identity.

Let s ∈ VG . As r
ε
−→G r and by definition of · , we have s

ε
−→G s · r i.e. s · r = s.

iv) Let us check that · is associative. Let x, y, z ∈ VG .

As r is a root, there exists v, w ∈ A∗
G such that r

v
−→ y and r

w
−→ z.

Thus x
v
−→ x · y

w
−→ (x · y) · z and y

w
−→ y · z. So r

vw
−→ y · z hence x

vw
−→ x · (y · z).

As G is deterministic, we get (x · y) · z = x · (y · z).

v) Let us check that −→G(r) generates VG . Let s ∈ VG .

There exists a path r = s0
a1−→ s1. . .sn−1

an−→ sn = s.

As r is source-complete, there exists r1, . . . , rn such that r
a1−→ r1, . . . , r

an−→ rn .

By induction on 1 ≤ i ≤ n, we have si = si−1 · ri .

Therfore s = (. . . (r · r1) · . . .)· rn = r1 · . . . · rn ∈ (−→G(r))∗. ◭

By Theorem 9, the graph of the first figure of this section is a Cayley graph of a monoid:

it is C[[{r, s, t} , {s, t}]] with [[s]] = a , [[t]] = b for the monoid ({r, s, t}, ·) where · is the

r-path operation defined by the following Cayley table:

· r s t

r r s t

s s s t

t t s t

Another example is given by the following infinite graph:

G = { n
a
−→ n + 2 | n ∈ N } ∪ { 2n

b
−→ 2n + 1 | n ∈ N } ∪ { 2n + 1

a,b
−→ 2n + 3 | n ∈ N }

represented as follows:
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0

1

b

2

3

a

b

a, b

a

b

a, b

4

5

Such a graph is deterministic, source-complete, and the root 0 is out-simple and propagat-

ing. By Theorem 9, G is a Cayley graph of a monoid. Precisely G = C[[N, {1, 2}]] where

[[1]] = b and [[2]] = a for the 0-path operation · defined for any p, q ∈ N by

p · q =

{
p + q if p or q is even,

p + q + 1 if p and q are odd

which is indeed associative.

5 Cayley graphs of semigroups

We apply the previous characterization for the Cayley graphs of monoids to the Cayley

graphs of semigroups.

Recall that a Cayley graph of a semigroup M is a generalized Cayley graph C[[M, Q]]

such that M = Q+ whose Q+ = { q1· . . . ·qn | n > 0 ∧ q1, . . . , qn ∈ Q } is the subsemigroup

generated by Q. Let us extend Theorem 9 into a characterization of these graphs.

◮ Theorem 11. A graph G is a Cayley graph of a semigroup if and only if

it is deterministic and there is an injection i from AG into VG such that

G is accessible from i(AG) and

i(a)
u
−→

v
←− i(b) =⇒ s

au,bv
−→ for any s ∈ VG , a, b ∈ AG and u, v ∈ A∗

G .

Proof.

=⇒ : Let G = C[[M, Q]] for some semigroup (M, ·) generated by Q.

By Fact 1, G is deterministic.

If M is not a monoid i.e. it has no identity, we turn M into a monoid M ′ = M ∪ {1}

by just adding an identity 1 i.e. p·1 = 1·p = p for any p ∈ M ′.

Let M ′ = M when M is a monoid.

In both cases, M ′ is a monoid of identity 1. Let G′ = C[[M ′, Q]] = G ∪ { 1
[[q]]
−→ q | q ∈ Q }.

Let i : AG −→ Q defined by i([[q]]) = q for any q ∈ Q.

As M is generated by Q, the graph G is accessible from Q = i(AG).

Let i([[p]])
u
−→G G

v
←− i([[q]]) for some p, q ∈ Q and u, v ∈ A∗

G .

So p
u
−→G G

v
←− q hence 1

[[p]]u , [[q]]v
−→ G′ . By Fact 7, 1 is a propagating vertex of G′.

Let s ∈ VG . Therefore s
[[p]]u , [[q]]v
−→ G′ hence s

[[p]]u , [[q]]v
−→ G .

⇐= : Let G be a deterministic graph.

Let an injection i : AG −→ VG such that G is accessible from Q = i(AG) and such that

s
au,bv
−→ G when i(a)

u
−→G G

v
←− i(b) for any s ∈ VG , a, b ∈ AG and u, v ∈ A∗

G . (1)

Note that by (1), we get s
a
−→G for any s ∈ VG and a ∈ AG , hence G is source-complete.

We take a new vertex r and we define the graph

Ĝ = G ∪ { r
a
−→ i(a) | a ∈ AG }.

So Ĝ remains deterministic and source-complete, and r is out-simple.

As G is accessible from Q, r is a root of Ĝ. By (1), r is a propagating vertex of Ĝ.

By the proof of Theorem 9, V
Ĝ

= VG ∪ {r} is a monoid generated by Q for the r-path
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operation · of identity r with Ĝ = C[[V
Ĝ

, Q]] = C[[VG, Q]] ∪ { r
[[q]]
−→ q | q ∈ Q } where

i([[q]]) = q for every q ∈ Q.

As r is not the target of an edge of Ĝ and by definition, · remains an internal operation

on VG i.e. p · q 6= r for any p, q ∈ VG . Thus · remains associative on VG .

Finally G = C[[VG , Q]] and (VG , ·) is a semigroup. ◭

For instance, the two semilines Ga = { n
a
−→ n+1 | n ∈ N−{0} } ∪ { n

a
−→ n−1 | n ∈ Z−N }

is not a Cayley graph of a semigroup since it is not connected and has a unique label.

On the other hand, Ga ∪ Gb is a Cayley graph of a semigroup. Precisely Ga ∪ Gb =

C[[Z − {0}, {1, −1}]] where [[1]] = a and [[−1]] = b for the associative operation · defined by

m · n = m + sign(m) |n| for any m, n ∈ Z − {0}

where sign(m) = 1 for any m > 0 and sign(m) = −1 for any m < 0.

Another example is given by the following graph G :

b b

a, b

a

b

a, ba

a

b a

b

a

b

b

a

ab

bb

aa

bbb

aab

aaa

aaab

bbbb

whose its vertex set V is the regular set a∗a ∪ a∗b ∪ b∗bb.

By Theorem 11, G is the Cayley graph C(V, {a, b}) for the associative binary operation ·

on V defined for any m, n > 0, i, j ≥ 0, p, q > 1 by the following Cayley table:

· an ajb bq

am am+n aj+mb am+q−1b

aib ai+nb ai+j+1b ai+qb

bp an+p−1b aj+pb bp+q

6 Cayley graphs of right-cancellative and left-cancellative monoids

We strengthen the characterization for the Cayley graphs of monoids (Theorem 9) to the

Cayley graphs of right-cancellative monoids and of left-cancellative monoids.

Recall that a magma (M, ·) is right-cancellative if p · r = q · r =⇒ p = q for any

p, q, r ∈ M . Let us give a basic property of their generalized Cayley graphs.

A graph G is co-deterministic if there are no two edges of the same target and label i.e.

(s
a
−→G r ∧ t

a
−→G r) =⇒ s = t for any r, s, t ∈ VG and a ∈ AG .

◮ Fact 12. Any generalized Cayley graph of a right-cancellative magma is co-deterministic.

By adding the condition of co-determinism in Theorem 9, we get a characterization for the

Cayley graphs of right-cancellative monoids.

◮ Theorem 13. A graph is a Cayley graph of a right-cancellative monoid if and only if

it is deterministic, co-deterministic, source-complete with a propagating out-simple root.
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Proof.

=⇒ : By Theorem 9 and Fact 12.

⇐= : Let G be a deterministic and co-deterministic source-complete graph with a propa-

gating out-simple root r. It remains to check that the r-path operation · defined in the

proof of Theorem 9 is right-cancellative. Let s, s′, t ∈ VG such that s·t = s′·t.

There exists u ∈ A∗
G such that r

u
−→ t. So s

u
−→ s·t and s′ u

−→ s′·t = s·t.

As G is co-deterministic, we get s = s′. ◭

For instance, let us consider the following source-complete, deterministic and co-deterministic

graph G :

aba, b a, b a, b a, b

3-1-2-3 0 1 2

The vertex 0 is the unique out-simple vertex, the unique root and the unique propagating

vertex. By Theorem 13, G is a Cayley graph of a right-cancellative monoid. Precisely

G = C[[Z, {1, −1}]] where [[1]] = a and [[−1]] = b for the right-cancellative monoid (Z, ·)

defined for any m, n ∈ Z by

m · n =





n if m = 0,

m + |n| if m > 0,

m− |n| if m < 0.

We will now consider the Cayley graphs of left-cancellative monoids. Recall that a magma

(M, ·) is left-cancellative if r · p = r · q =⇒ p = q for any p, q, r ∈ M .

◮ Fact 14. Any generalized Cayley graph of a left-cancellative magma is simple.

Let us strengthen Theorem 9 in order to characterize the Cayley graphs of left-cancellative

monoids. We say that a graph is a propagating graph when all its vertices are propagating.

The previous graph is not propagating since only its root is a propagating vertex. Here is a

propagating graph:

a, b a, b

Let us express differently the propagating graphs when they are deterministic.

If a morphism h from a graph G into a graph H is bijective and h−1 is a morphism, h

is called an isomorphism from G to H. We say vertices s, t of a graph G are accessible-

isomorphic if t = h(s) for some isomorphism h from G↓s to G↓t . By Lemma 6,

a deterministic graph is propagating if and only if all its vertices are accessible-isomorphic.

When a monoid is left-cancellative, its generalized Cayley graphs are propagating.

◮ Fact 15. Any generalized Cayley graph of a left-cancellative monoid is propagating.

Proof.

Let r
u,v
−→G s with u, v ∈ A∗

G . We have u = [[p1]] . . . [[pm]] and v = [[q1]] . . . [[qn]] for

some m, n ≥ 0 and p1, . . . , pm, q1, . . . , qn ∈ Q.

Thus (. . .(r·p1). . .)·pm = s = (. . .(r·q1). . .)·qn .

As · is associative and left-cancellative, we get p1·. . .·pm = q1·. . .·qn .

Let t be any vertex of G. So t
u,v
−→G t·(p1·. . .·pm) = t·(q1·. . .·qn). ◭

We get a graph-theoretic characterization for the Cayley graphs of left-cancellative monoids:

they are the Cayley graphs of monoids which are propagating.



D. Caucal XX:11

◮ Theorem 16. A graph is a Cayley graph of a left-cancellative monoid if and only if

it is rooted, simple, deterministic and propagating.

Proof.

=⇒ : By Facts 1, 8, 14, 15.

⇐= : Let G be a simple, deterministic and propagating graph with a root r.

It remains to check that the r-path operation · defined in the proof of Theorem 9 is left-

cancellative. Assume that s · t = s · t′.

As r is a root, there exists u, v ∈ A∗
G such that r

u
−→G t and r

v
−→G t′.

By definition of · we get s
u
−→G s · t and s

v
−→G s · t′ = s · t. Thus s

u,v
−→G .

As G is propagating, r
u,v
−→G . As G is deterministic, it follows that t = t′. ◭

For instance, let us consider the following graph:

G = { bman a
−→ bman+1 | m, n ≥ 0 } ∪ { bman b

−→ bm+1 | m, n ≥ 0 }

represented below.

b b

a

b

a

b b

a

b

a

It is a skeleton of the graph of ω2 where a is the successor and b goes to the next

limit ordinal: (VG,−→∗
G) is isomorphic to (ω2, ≤). This graph is not co-deterministic

hence by Fact 12 is not a generalized Cayley graph of a right-cancellative monoid. By

Theorem 16, G = C(VG, {a, b}) where (VG, ·) is the left-cancellative monoid defined for

any m, n, p, q ≥ 0 by

bman · bpaq =

{
bman+q if p = 0

bm+paq if p 6= 0.

As the converse of Theorems 13 and 16 define the same monoid, it follows a characteriza-

tion for the Cayley graphs of monoids which are cancellative i.e. both left-cancellative and

right-cancellative.

◮ Corollary 17. A graph is a Cayley graph of a cancellative monoid if and only if

it is rooted, simple, deterministic, co-deterministic, propagating.

Let us summarize the previous characterizations.

deterministic + source-complete + out-simple vertex r (4)

+ co-deterministic (13)

+ r loop-propagating (5)

+ r propagating root (9)

+ propagating (16) (17)

Generalized Cayley graphs

of magmas with a left identity

Cayley graphs

of monoids

of right-cancellative monoids
monoids

of left-cancellative

of magmas with an identity

It remains to extend the path propagation to chains in Corollary 17 to get a characterization

for the Cayley graphs of groups.
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7 Cayley graphs of groups

We present two graph-theoretic characterizations for the Cayley graphs of groups, one in

a strong form [1] and the other in a weak form [2]. It follows a characterization for the

generalized Cayley graphs of groups.

We start by introducing some basic graph notions. We need to circulate in a graph G

in the direct and inverse direction of the arrows. Let — : AG −→ A − AG be an injective

mapping whose its image AG = { a | a ∈ AG } is a disjoint copy of AG . This allows to

define the inverse of G as the graph G = { t
a
−→ s | s

a
−→G t }. So V

G
= VG and

A
G

= AG .

A path of G ∪ G i.e. s
u
−→

G ∪ G
t with u ∈ (AG ∪ AG)∗ is a chain of G also denoted by

s
u
−→G t where s

a
−→G t means that t

a
−→G s for any a ∈ AG . So the chain r

a
−→ s

b
−→ t

corresponds to r
a
−→ s

b
←− t. We write ←→G for the adjacency relation −→

G ∪ G
i.e.

s ←→G t for s −→G t or t −→G s. We denote by ←→∗
G for the chain relation −→∗

G ∪ G
.

Recall that a graph G is connected if G ∪ G is strongly connected i.e. s ←→∗
G t for

all s, t ∈ VG . So G is co-deterministic if G is deterministic. We say that G is target-

complete if G is source-complete i.e. for any label a and any vertex s, there is at least

one edge labeled by a of target s.

A chain-propagating vertex r of a graph G is a propagating vertex of G ∪ G i.e.

r
u,v
−→G =⇒ s

u,v
−→G for any s ∈ VG and u, v ∈ (AG ∪ AG)∗

meaning that if there are two chains from r of the same target labeled by u and v then

from any vertex, there are two chains of the same target labeled by u and v.

We say that a graph is a chain-propagating graph when all its vertices are chain-propagating.

Let us recall the vertex-transitivity of a graph. An automorphism of G is an isomorphism

from G to G. Two vertices s, t of a graph G are isomorphic and we write s ≃G t if

t = h(s) for some automorphism h of G. A graph G is vertex-transitive if its automorphism

group acts transitively upon its vertices i.e. if all its vertices are isomorphic: s ≃G t for

every s, t ∈ VG . This implies that the graph is chain-propagating. The converse is true

when the graph is both deterministic and co-deterministic.

◮ Lemma 18. A deterministic and co-deterministic graph is vertex-transitive if and only if

it is chain-propagating.

Proof.

=⇒ : Let G be a vertex-transitive graph and s
u,v
−→G for some u, v ∈ (AG ∪ A

G
)∗.

For any t ∈ VG , we have s ≃G t hence t
u,v
−→G thus s is chain-propagating.

⇐= : Let G be a deterministic and co-deterministic graph which is chain-propagating.

In particular G is source and target-complete. Let s, t ∈ VG . Let us check that s ≃G t.

As s, t are chain-propagating, we have s
u,v
−→G ⇐⇒ t

u,v
−→G for any u, v ∈ (AG ∪ A

G
)∗.

So we can define the mapping fs,t : VG −→ VG for any r ∈ VG by

fs,t(r) =





r′ if s
u
−→ r and t

u
−→ r′ for some u ∈ (AG ∪A

G
)∗

r′ otherwise and if s
u
−→ r′ and t

u
−→ r for some u ∈ (AG ∪A

G
)∗

r otherwise.

Therefore fs,t is a bijective morphism of inverse ft,s with fs,t(s) = t, hence s ≃G t. ◭

A group (M, ·) is a monoid whose each element p has an inverse p−1 : p·p−1 = p−1 ·p = 1.
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◮ Fact 19. Any generalized Cayley graph of a group is co-deterministic, simple and vertex-

transitive.

Proof.

Let G be a generalized Cayley graph of a group.

The graph G is co-deterministic: for r
[[q]]
−→ t and s

[[q]]
−→ t, r · q = t = s · q thus r = s.

The graph G is simple: for s
[[p]]
−→ t and s

[[q]]
−→ t, s · p = t = s · q thus p = q.

It remains to check that G is vertex-transitive.

Let r
u,v
−→ s for u, v ∈ (AG ∪ A

G
)∗. Let t ∈ VG .

By Lemma 18, it remains to check that t
u,v
−→ . As

x
[[q]]
−→ y ⇐⇒ y

[[q]]
−→ x ⇐⇒ x = y · q ⇐⇒ y = x · q−1

we extend [[ ]] on Q−1 − Q by [[q−1]] = [[q]] for any q ∈ Q such that q−1 6∈ Q.

Thus u = [[p1]] . . . [[pm]] and v = [[q1]] . . . [[qn]] for some m, n ≥ 0 and p1, . . . , pm, q1, . . . , qn

in Q ∪ Q−1. So r ·p1 · . . . · pm = s = r ·q1 · . . . · qn i.e. p1 · . . . · pm = q1 · . . . · qn .

Hence t
u,v
−→ t ·p1 · . . . · pm = t ·q1 · . . . · qn . ◭

Recall that a Cayley graph of a group M is a generalized Cayley graph C[[M, Q]] such that

M is generated by Q i.e. M is equal to the least subgroup (Q ∪ Q−1)∗ containing Q

where Q−1 = { q−1 | q ∈ Q } is the set of inverses of the elements in Q.

We can give a simple characterization for the Cayley graphs of groups.

◮ Theorem 20. For any graph G, the following properties are equivalent:

a) G is a Cayley graph of a group,

b) G is connected, deterministic, co-deterministic, simple, vertex-transitive,

c) G is connected, deterministic, co-deterministic, with a chain-propagating simple vertex

which is source and target-complete.

Proof.

(a) =⇒ (b) : Let G = C[[M, Q]] for some group (M, ·) generated by Q.

By Facts 1 and 19, it remains to check that G is connected. Let s ∈ VG = M .

So s = qǫ1
1 ·. . .·qǫn

n for some n ≥ 0, q1, . . . , qn ∈ Q and ǫ1, . . . , ǫn ∈ {−1, 1}.

Thus 1
a1...an−→ s where for any 1 ≤ i ≤ n, ai = [[qi]] if ǫi = 1 and ai = [[qi]] if ǫi = −1.

(b) =⇒ (c) : any vertex-transitive graph is source and target-complete, and by Lemma 18.

(c) =⇒ (a) : Let r be a chain-propagating vertex of G which is also simple, source and

target-complete. So G is source-complete and target-complete.

We consider the magma (VG, ·) where · is an r-chain operation :

r
u
−→ t =⇒ s

u
−→ s · t for any s, t ∈ VG and u ∈ (AG ∪ AG)∗

which is illustrated below. Any r-chain operation is an r-path operation.

s · t rs t

u u
for and u ∈ A∗

◮ Figure 21. An r-chain operation on the vertex set of a graph.

i) Let s, t ∈ VG . Let us check that s · t is well-defined.

As G is connected, there exists u ∈ (AG ∪ A
G

)∗ such that r
u
−→G t.

As r is chain-propagating, there exists x such that s
u
−→G x.

Let r
v
−→G t for some v ∈ (AG ∪ A

G
)∗. So r

u,v
−→G .

As r is chain-propagating, we have s
u,v
−→G .

As G is deterministic and co-deterministic, we get s
v
−→G x. Thus s · t = x is well-defined.
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The chain operation · is an r-edge operation.

By Lemma 3, G = C[[VG , −→G(r)]] where [[s]] = a for any r
a
−→ s.

It remains to check that (VG, ·) is a group.

In that case and having C[[VG , −→G(r)]] connected, it is generated by −→G(r).

ii) Let us check that r is an identity. Let s ∈ VG .

As r
ε
−→G r and by definition of · , we have s

ε
−→G s · r i.e. s · r = s.

Furthermore and as G is connected, there exists u ∈ (AG ∪ A
G

)∗ such that r
u
−→G s.

By definition of · , we have r
u
−→G r · s. As G is deterministic and co-deterministic, r · s = s.

iii) Let us check that · is associative. Let x, y, z ∈ VG .

As G is connected, there exists v, w ∈ (AG ∪ A
G

)∗ such that r
v
−→ y and r

w
−→ z.

Thus x
v
−→ x · y

w
−→ (x · y) · z and y

w
−→ y · z. So r

vw
−→ y · z hence x

vw
−→ x · (y · z).

As G is deterministic and co-deterministic, we get (x · y) · z = x · (y · z).

iv) Let s ∈ VG . Let us check that s has an inverse.

As G is connected, there exists u ∈ (AG ∪ A
G

)∗ such that r
u
−→ s.

As G is source and target-complete, there exists s ∈ VG such that s
u
−→ r.

We have s
u
−→ s · s. As G is deterministic and co-deterministic, s · s = r.

For u = a1. . .an with n ≥ 0 and a1, . . . , an ∈ AG ∪ A
G

, let u′ = an. . .a1 with a = a for

any a ∈ AG . Thus s
u′

−→ r and r
u′

−→ s. So s
u′

−→ s · s.

As G is deterministic and co-deterministic, s · s = r. ◭

Let us consider the following graph:

2

3

b b

4

5

a

a0

1

b

a

a

b

a

a-2

-1

b

a

a-4

-3

This graph satisfies the properties of Theorem 20 (b) or (c) hence is the Cayley graph

C[[Z, {1, 2}]] with [[1]] = b and [[2]] = a, where · is the 0-chain operation defined for any

p, q ∈ Z by

p · q =

{
p + q if p or q is even,

p + q − 2 if p and q are odd

and makes that (Z, ·) is a group.

We can now obtain a characterization for the generalized Cayley graphs of groups. First, let

us start with a basic fact on their connected components which are their maximal connected

subsets.

◮ Fact 22. The connected components of the generalized Cayley graph of groups are the

Cayley graphs of groups.

Proof.

=⇒ : By Fact 19 and Theorem 20.

⇐= : Any Cayley graph of a group is a connected generalized Cayley graph. ◭

To characterize the generalized Cayley graphs of groups, we need the axiom of choice that is

equivalent in ZF set theory to the property that any non-empty set has a group structure [6].



D. Caucal XX:15

◮ Theorem 23. In ZFC set theory, a graph is a generalized Cayley graph of a group

if and only if it is simple, deterministic, co-deterministic, vertex-transitive.

Proof.

=⇒ : By Facts 1 and 19.

⇐= : Let G be a simple, deterministic, co-deterministic, vertex-transitive graph.

Let Comp(G) be the set of connected components of G. Let us recall that a representative

set (or a transversal) P of Comp(G) is a subset of VG that has exactly one vertex in

each connected component: |P ∩ VC | = 1 for any C ∈ Comp(G). Its canonical mapping

πP : VG −→ P is the mapping associating to each vertex s the vertex of P in the same

connected component: s ←→∗
G πP (s) for any s ∈ VG . So πP (p) = p for any p ∈ P .

Using ZFC set theory, there exists a representive set P and a binary operation ◦ such that

(P, ◦) is a group. Let r be its identity and C ∈ Comp(G) having r as vertex.

By (the proof of) Theorem 20, (VC , r·) is a group for the r-chain-operation r· and of

identity r. We take the group product (P ×VC , ·) with

(p, x) · (q, y) = (p ◦ q, x r· y) for any p, q ∈ P and x, y ∈ VC .

This group is of identity (r, r).

As G is vertex-transitive, deterministic and co-deterministic, we can define the mapping

f : P ×VC −→ VG such that r
u
−→G x =⇒ p

u
−→G f(p, x) for (any) u ∈ (AG ∪ AG)∗.

Thus f is a bijection hence (VG, ·) is a group where

f(p, x) · f(q, y) = f(p ◦ q, x r· y) for any p, q ∈ P and x, y ∈ VC .

This group (VG, ·) is of identity f(r, r) = r.

Let us show that this operation · is an r-chain operation hence by Lemma 3,

G = C[[VG , −→G(r)]] with [[s]] = a for any r
a
−→ s.

We say that a binary operation P · on VG is an P -chain operation if for any s, t ∈ VG ,

(πP (s)
u
−→G s ∧ πP (t)

v
−→G t) =⇒ πP (s) ◦ πP (t)

uv
−→G sP · t for any u, v ∈ (AG ∪ AG)∗

which is illustrated below. Any P -chain operation is an r-chain operation.

q t

v

uv

P

s P · t

p s

u

r

G :

p ◦ q

C

◮ Figure 24. An P -chain operation on the vertex set of a graph.

As G is vertex-transitive, deterministic and co-deterministic, P · exists and is unique.

Let us check that · and P · are equal.
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Let p, q ∈ P and x, y ∈ VC . We have to check that f(p, x) P · f(q, y) = f(p, x) · f(q, y).

Let u, v ∈ (AG ∪ AG)∗ such that r
u
−→G x and r

v
−→G y.

By definition of r· , we have x
v
−→G x r· y hence r

uv
−→G x r· y.

By definition of f , we get p ◦ q
uv
−→G f(p ◦ q, x r· y), p

u
−→G f(p, x) and q

v
−→G f(q, y).

By definition of P · , we have p ◦ q
uv
−→G f(p, x) P · f(q, y).

As G is deterministic, we get f(p, x) P · f(q, y) = f(p ◦ q, x r· y) = f(p, x) · f(q, y). ◭

For instance let us consider the following graph:

G = { (m, i, p)
a
−→ (m + 1, i, p) | m, p ∈ Z ∧ i ∈ {0, 1} }

∪ { (m, i, p)
b
−→ (m, 1− i, p) | m, p ∈ Z ∧ i ∈ {0, 1} }

of representation the countable repetition of the preceding one.

By Theorem 23, G = C[[Z×{0, 1}×Z, {(1, 0, 0), (0, 1, 0)}]] with [[(1, 0, 0)]] = a, [[(0, 1, 0)]] = b

and for the group operation (m, i, p) · (n, j, q) = (m + n, i + j (mod2), p + q).

Note that the graph G = { s
q
−→ s + q | s ∈ R ∧ q ∈ Q } is the generalized Cayley graph

C(R,Q) for the group (R, +). Its unlabeled edge relation −→G is the Vitali equivalence

(1905) for which we need the axiom of choice to select an element in each class (and the

selected elements form a set which is not Lebesgue measurable).

Similarly the graph { P
Q
−→ P ∆ Q | P, Q ⊆ N ∧ Q finite } is the generalized Cayley graph

C(2IN, 2IN
f ) for the group 2IN of the subsets of N with the symmetric difference operation

∆ , and for the set 2IN
f of finite subsets of N. Its unlabeled edge relation is the equivalence

E0 for which we also need the axiom of choice to have a selector.

8 Conclusion

We obtained simple graph-theoretic characterizations for the Cayley graphs of elementary

algebraic structures. This is a first step in a graph description of algebraic structures.
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