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We present simple graph-theoretic characterizations of Cayley gfapteft-cancellative monoids, groups, left-
quasigroups and quasigroups.
We show that these characterizations are effective for the end-regajehs of finite degree.
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1 Introduction

To describe the structure of a group, Cayley introduced #818] the concept of graph for any group
(G, ) according to any generating subsgt This is simply the set of labeled oriented edges® g-s
for every ¢ of G and s of S. Such a graph, called Cayley graph, is directed and labele®l (or
an encoding ofS by symbols called letters or colors). The study of groupshajrtCayley graphs is
a main topic of algebraic graph theory [3, 8, 2]. A charaetgion of unlabeled and undirected Cayley
graphs was given by Sabidussi in 1958 [15]: an unlabeled awlitected graph is a Cayley graph if
and only if we can find a group with a free and transitive actiorthe graph. However, this algebraic
characterization is not well suited for deciding whetheroagibly infinite graph is a Cayley graph. It
is pertinent to look for characterizations by graph-th&oreonditions. This approach was clearly stated
by Hamkins in 2010: Which graphs are Cayley graphs? [10]. iw ghper, we present simple graph-
theoretic characterizations of Cayley graphs for firstfg-éancellative and cancellative monoids, and
then for groups. These characterizations are then extdodaty subsetS of left-cancellative magmas,
left-quasigroups, quasigroups, and groups. Finally, wawsthat these characterizations are effective
for the end-regular graphs of finite degree [13] which aregiaphs finitely decomposable by distance
from a(ny) vertex or equivalently are isomorphic to the suffansition graphs of labeled word rewriting
systems.

Let us present the main structural characterizationsrsgantith the Cayley graphs of left-cancellative
monoids. Among many properties of these graphs, we retdyrtloree basic ones. First and by definition,
any Cayley graph is deterministic: there are no two arcs @tme source and label. Furthermore, the
left-cancellative condition implies that any Cayley grdaptsimple: there are no two arcs of the same
source and goal. Finally, any Cayley graph is rooted: therme path from the identity element to any
vertex. To these three necessary basic conditions is addeddural property, called forward vertex-
transitive: all the vertices are accessible-isomorphéc the induced subgraphs by vertex accessibility
are isomorphic. These four properties characterize thée@ayaphs of left-cancellative monoids. To

ISSN subm. to DMTCS (© 2019 by the author(s) Distributed under a Creative Commorréétion 4.0 International License



2 Didier Caucal

describe exactly the Cayley graphs of cancellative monoigsjust have to add the co-determinism:
there are no two arcs of the same target and label. This deaation is strengthened for the Cayley
graphs of groups using the same properties but expressedhralr directions: these are the graphs that
are connected, deterministic, co-deterministic, andexettansitive: all the vertices are isomorphic.

We also consider the Cayley graph of a mag@aaccording to any subsef and that we called
generalized. The characterizations obtained requiregbenaption of the axiom of choice. First, a graph
is a generalized Cayley graph of a left-cancellative madraad only if it is deterministic, simple, source-
complete: for any label of the graph and from any vertex glieat least one edge. This equivalence does
not require the axiom of choice for finitely labeled graphsd @ this case, these graphs are also the
generalized Cayley graphs of left-quasigroups. Moreavénitely labeled graph is a generalized Cayley
graph of a quasigroup if and only if it is also co-determiiisind target-complete: for any label of the
graph and to any vertex, there is at least one edge. We alsactbaze all the generalized Cayley graphs
of left-quasigroups, and of quasigroups. Finally, a graph generalized Cayley graph of a group if anf
only if it is simple, vertex-transitive, deterministic and-deterministic.

2 Directed labeled graphs

We consider directed labeled graphs without isolated xe¥é recall some basic concepts such as deter-
minism, completeness and vertex-transitivity. We intrmglthe notions of accessible-isomorphic vertices
and forward vertex-transitive graph.

Let A be an arbitrary (finite or infinite) set. A directed-graph (V,G) is defined by a sel’ of
verticesand a subset; C VxAxV of edgesAny edge(s,a,t) € G is from thesources to thetarget
t with label a, and is also written by theansition s s ¢ or directly s - ¢ if G is clear from the
context. The sources and targets of edges form th&sebf non-isolated vertice®f G and we denote
by Aq the set of edge labels:

Vo = {s]3a,t (s-5tvt-Ss)} and Ag = {a|Ts,t (s-5t) ).

Thus V — Vj; is the set ofsolated verticesFrom now on, we assume that any grafh G) is without
isolated vertexi(e. V = V), hence the graph can be identified with its edgeetWe also exclude the
empty graph() : every graph is a non-empty set of labeled edges. For instine= {s = s+n|s¢c
R A n €Z} isagraph of vertex seR and of label sefZ. As any graphG is a set, there are no two
edges with the same source, target and label. We say thapl igiimple if there are no two edges with

the same source and targés s ¢ A s LN t) = a = b. We say thatG is finitely labeledif Aq

is finite. We denote byG—! = { (t,a,s) | (s,a,t) € G } theinverseof G. A graph isdeterministic
if there are no two edges with the same source and lapek™s s A » %5 t) = s = t. Agraph
is co-deterministicif its inverse is deterministic: there are no two edges whth $ame target and label:
(s % r At-%r) = s =t Forinstance, the grapif is simple, not finitely labeled, deterministic
and co-deterministic. A grapli’ is completeif there is an edge between any couple of vertices;t €
Vg Ja € Ag (s g t). Agraph G is source-completéf for all vertex s and labela, there is an
a-edge froms: Vs € Vg Ya € Ag 3t (s %S¢ t). A graph istarget-completsf its inverse is source-
complete:Vt € Vg Va € Ag Is (s ¢ t). Forinstance,Y is source-complete, target-complete but
not complete. Another example is given by the grapten = {(p,a,q), (p,b,p), (¢,a,p), (¢,b,9)}
represented as follows:



It is simple, deterministic, co-deterministic, completeurce-complete and target-complete.
Thevertex-restrictionG|p of G to a setP is the induced subgraph @& by PN Vg:

Gp = {(s,a,t) e G|s,tcP}.
Thelabel-restriction G!¥ of G to a setP is the subset of all its edges labeled it

GIP = {(s,a,t) €GlacP}.
Let — ¢ be the unlabeled edge relatiore. s — ¢ t if s —»¢ ¢t for somea € A. We denote by
—a(s) = {t]s—qt} the set ofsuccessordf s € V. We write s —/+¢ ¢ if there is no edge

in G from s to ¢t i.e. G N {s}xAx{t} = (. Theaccessibilityrelation —¢, = |J,,~, —¢ is the
reflexive and transitive closure under composition-ef . A graph GG is accessiblefrom P C Vj if
for any s € Vg, there isr € P such thatr —¢ s. We denote byG | p the induced subgraph af
to the vertices accessible frof@ which is the greatest subgraph 6f accessible fromP. For instance
Tiop = {m-"m+n|m,neZ} isacomplete subgraph of. A root r is a vertex from whichG
is accessiblé.e. G, also denoted by |, is equal toG. A graph G is strongly connectedf every
vertex is aroot:s —¢, ¢t forall s,t € V. Agraph G is co-accessibldrom P C Vi if G1 is
accessible fromP. We denote byl (s,t) = min{ n|s—¢ ;-1 t } thedistancebetweens,t € Vg
with min(@) = w. A graph G is connectedif G U G~! is strongly connectede. dg(s,t) € N for
any s,t € V. Recall that a&connected componemtf a graphG is a maximal connected subset 6f;
we denote byComp(G) the set of connected components@f A representative sedf CompG) is
a vertex subsef” C Vi; having exactly one vertex in each connected compongdtn V| = 1 for
any C € Comp(G); itinduces thecanonical mappingrp : Vi — P associating with each vertex
the vertex of P in the same connected componest—:¢, .. 7p(s) forany s € V. For instance,
[0, 1[ is a representative set @omp(Y) and its canonical mapping is defined by, ;(z) = = — 2]
forany x € R.

A path (s, a1, s1,...,a,,s,) oflengthn > 0 in a graphG is a sequence; —% s; ... —% 5, of n
consecutive edges, and we writg “~=$" s,, for indicating the source , the targets,, and the label
word a;...a, € A} of the path wheredy, is the set of words oveA (the free monoid generated by
Ag) and e is the empty word (the identity element).

Recall that amorphismfrom a graphG into a graphH is a mappingh from V¢ into Vy such that
s Lot = h(s) g h(t). If, in addition k is bijective andh~! is a morphism/ is called an
isomorphismfrom G to H; we write G =, H ordirectly G = H if we do not specify an isomor-
phism, and we say that and H areisomorphic An automorphismof G is an isomorphism from
G to G. Two verticess, ¢ of a graphG areisomorphicand we writes ~¢ ¢ if ¢ = h(s) for some
automorphismi of G.

A graph G is vertex-transitiveif all its vertices are isomorphics ~q t for every s,t € V. For
instance, the previous grapf% and Even are vertex-transitive.

Two verticess, t of a graphG areaccessible-isomorphiand we writes | ¢ if t = h(s) for some iso-
morphism#h from G5 to G;. Agraph G is forward vertex-transitivef all its vertices are accessible-
isomorphic: s |5 t foreverys,t € V.
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Fact 2.1 Any vertex-transitive graph is forward vertex-transitivhich is source-complete.

For instanceT},{\ll} ={n Lin+1 | n € N} is forward vertex-transitive but not vertex-transitiven O
the other handr},{(l} ={n “hn-1 | n € N } is not forward vertex-transitive: two distinct vertices

are not accessible-isomorphic.

3 Cayley graphs of left-cancellative and cancellative monoids

We present graph-theoretic characterizations for the &yagtaphs of left-cancellative monoids (Theo-
rem 3.6), of cancellative monoids (Theorem 3.7), of caatielk semigroups (Theorem 3.9).

A magma(or groupoid) is a sef\/ equipped with a binary operation: M xM — M that sends any
two elementsp, ¢ € M to the elemenp - q.
Given a subset) C M and an injective mapping [} Q@ — A, we define the graph

M, Ql = {p B p.glperngeq)
which is called ageneralized Cayley graplof M. It is of vertex setd and of label set Q]

{[q] | ¢ € Q}. We denoteC[ M, Q] by C(M,Q) when [] is the identity. For instanc& = C(R,
for the magma(R,+). We also write C[M] instead of C[M, M] and C(M) = C(M,M)

{p-Sp-qlpgeM}.

[EN

Fact 3.1 Any generalized Cayley graph is deterministic and soua@fete.

For instance taking the magm&, —) and [-1] = a, C[Z,{-1}] = {n % n+1|n € Z}. By
adding [I] =b, C[Z,{1,-1}] = {n-Sn+1|neZ}u{n-n—-1|neZ}.

We say that a magmél/, ) is left-cancellativeif r-p=1r-q = p=g¢ foranyp,q,r € M.
Similarly (M, -) isright-cancellativeif p-r=¢q-r = p=¢q forany p,q,r € M.

A magma iscancellativeif it is both left-cancellative and right-cancellative.

Fact 3.2 Any generalized Cayley graph of a left-cancellative magsr&mple.
Any generalized Cayley graph of a right-cancellative magsnao-deterministic.

Recall also that(}/, -) is asemigroupif - is associative:(p-q)-r = p-(¢-r) forany p,q,r € M.
A monoid (M, -) is a semigroup with afdentity elementl: 1.p = p-1 = p forall p € M. The
submonoid generatedy @ C M is the least submonoi®* = {¢;-...-¢g. [P >0Aq1,...,q0n €Q }
containing Q.

When a monoid is left-cancellative, its generalized Cayl@pgs are forward vertex-transitive.

Proposition 3.3 Any generalized Cayley graph of a left-cancellative moimmidrward vertex-transitive.

Proof.

Let G = C[ M, Q] for some left-cancellative monoid}/, -) and someQ C M.
Let » € M. We have to check that | r.

By induction onn > 0 and for anyqy, ...,q, € @ ands € M, we have

PR s = s = (@) )



As - is associative, we gél;,, = {s|r—g s} = Q. InparticularVg , = Q*.
We consider the mapping,. : M — M defined by f,.(p) = r-p forany p € M.

As - is left-cancellative,f, is injective.

Furthermoref, is an isomorphism on its image: for amyq,p’ € M,

pLap = f.(p) B ().
The associativity of gives the necessary condition.
The associativity and the left-cancellative property afives the sufficient condition.
Thus f, restricted toQ* is an isomorphism fronGG|; to G|, hencel |q r. O

We can not generalize Proposition 3.3 to the left-candedlagemigroups. For instance the semigroup
M = {a,b} with z-y =y forany z,y € M is left-cancellative but the grapfi(M) represented below
is not forward vertex-transitive.

a b
Qe O
a b b

A monoid Cayley graplis a generalized Cayley gragH M, Q] of a monoid M generated by which
means that the identity elemeitis a root of C[ M, Q].

Fact 3.4 A monoid M is generated by) <= 1 isarootofC[M,Q].

Under additional simple conditions, let us establish tha/eose of Proposition 3.3.
For any graphG and any vertexr, we introduce thgath-relation Path(r) as the ternary relation on
Ve defined by

(s,t,x) € Pathg(r) if there existsu € Af, such thatr ¢ t and s ¢ z.

If for any s,t € Vg there exists a unique: such that(s,¢,2) € Pathg(r), we denote byx,. :
Ve xVa — Vg the binarypath-operationon Vi defined by(s, ¢, sx,.t) € Pathg(r) forany s,t € Vi .
This is illustrated as follows:
u

° /\u/\*c ° W.

r t S Skt
and we also writegx,. when we need to specifgr. Let us give conditions so that this path-operation
exists and is associative and left-cancellative.

Proposition 3.5 Let » be a root of a deterministic and forward vertex-transitivagh G.
Then (V, %,-) is a left-cancellative monoid of identity and generated by— ¢ (r).
If G is co-deterministic therx, is cancellative.
If G is simple thenG = C[Vg, —¢(r)] with [s] = a foranyr %5 s.

Proof.

i) Let s,¢ € V. Letus check that there is a uniquesuch that(s, ¢, z) € Pathg(r).

As r is a root, there exists such thatr - t.

As G is source-complete, there existssuch thats —¢ z. Hence (s, t,z) € Pathg(r).
Let (s,t,y) € Pathg(r). There existsy € Ay, such thatr ¢ ¢t and s ¢ y.

As G is forward vertex-transitive, we have /g s.
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As @ is deterministic, we get 4 = hencex = y. Thusx, exists and is denoted byin the rest of
this proof. Let us show thdl/;;, ) is a left-cancellative monoid.

ii) Let us show that is associative. Letr, y, z € Viz . We have to check thatz-y)-z = z-(y-2).

As 7 is aroot, there exists, w € A%, such thatr - y andr % 2.

By (i), + — 2y — (xy)-z and y — y-z. Sor 2% y-z hence z *% z-(y-2).

As G is deterministic, we getx-y)-z = x-(y-2).

iii) Let us check that is an identity element. Let € V. As r — r, we gets — s-r i.e. s = s.
For r = s, we haver — r-s. As G is deterministic, we get-s = s.

iv) Let us check that is left-cancellative. Lets, t, ' € V; such thats-t = s-t'.
There existsu,v € Ag, such thatr — ¢t andr -2 t'.

S0 s = st and s — s-t’. As st = s-t’ andr |g s, we getr — t.

As G is deterministic, we have = t'.

v) Let us check that) = —(r) is a generating subset 8f; . Let s € V.

There exists: > 0, a1, . ..,a, € Ag andsg, ..., s, suchthat = sy - s1...5p_1 — 5, = &.
By Fact 2.1, there exists, , ..., 7, suchthatr % ry, ... ,r 2%, .
Foreveryl <i<mn,s; = s;_1-7; hences = rry-....r, =1r1-...-1, € Q*.

vi) Assume thatG is co-deterministic. Let us check thatis right-cancellative.

Let s,s',t € Vg suchthatst = s'-t.

There existsu € Af, such thatr — ¢. So s — st and s’ — s'-t = s-t.

As @ is co-deterministic, we get = s'.

vii) Assume thatG is simple. LetQ = {s|r —qag s }.

As G is simple and deterministic, we define the following injeati[ ] from @ into Ag by
[s] = a for r g s.

Let K = C[Vg, Q]. Letus show thatG = K.

C: Let s g t. As 7 | s, there exists”’ such thatr -2 7. S0 s ¢ s-17.

As G is deterministics-r’ = t. Furthermorer’ € Q and ['] = a. S0 s % s’ = t.

D: Let s “5x t. Soa =[] forsomer’ € Q. Thust = s/ andr —g r'. SO s —5g s’ = t.

O

For instance let us consider a grapghof the following representation:
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It is a skeletonof the graph ofw? where a is the successor anél goes to the next limit ordinal:
(Va, —¢) is isomorphic to(w?, <). By Proposition 3.5, it is a Cayley graph of a left-cancétat
monoid. Precisely to each word € b*a*, we associate the unique vertexu> € Vi accessible from
the root by the path labeled hy. Thus

G = { <bma"> -2 <bma™ > [ myn >0} U { <bmam> -5 <bm s [mun >0 ).
By Proposition 3.5(V¢, ... ) is a left-cancellative monoid where for amy, n, p, g > 0,
<bma"ti> if p=0
<bmFPai> if p#£0
and we haveld = C[ Vg, {<a>, <b>}] with [ <a>] =« and [<b>] = 0.
Propositions 3.3 and 3.5 give a graph-theoretic charaetiton of the Cayley graphs of left-cancellative
monoids.

<bma> x_.. <bPal> = {

Theorem 3.6 A graph is a Cayley graph of a left-cancellative monoid if amdy if
it is rooted, simple, deterministic and forward vertexriséive.

Proof.
We obtain the necessary condition by Proposition 3.3 wittt$=a.1, 3.2, 3.4.
The sulfficient condition is given by Proposition 3.5. O

We can restrict Theorem 3.6 to cancellative monoids.

Theorem 3.7 A graph is a Cayley graph of a cancellative monoid if and ofily i
it is rooted, simple, deterministic, co-deterministiaward vertex-transitive.

Proof.
—: By Theorem 3.6 and Fact 3.2.
<= By Proposition 3.5. |

The previous graph is not co-deterministic hence, by Thaad8e7 or Fact 3.2, is not a Cayley graph
of a cancellative monoid. On the other hand and accordingapdsition 3.5, ajuater-grid G of the
following representation:

R a a o
b b b
a a
b b b
a a

| \
| \
| AN
is a Cayley graph of a cancellative monoid. Precisely andoashie previous graph, we associate to

each wordu € b*a* the unique vertex<u> accessible from the root by the path labeledy By
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Proposition 3.5(V, ... ) is a cancellative monoid where
<bmam> *_.. <bPal> = <b™tPgnti> forany m,n,p,q >0
and we haveld = C[ Vg, {<a>, <b>}] with [ <a>] =« and [<b>] = 0.

Recall that a Cayley graph of a semigrodp is a generalized Cayley gragf{ M, Q)] such thatM =
Q1 whose Q" = {q1--..oqu | n >0 A q,...,q, € Q } is thesubsemigroup generateby
Q. Theorem 3.7 can be easily extended into a characterizafithe Cayley graphs of cancellative
semigroups. Indeed, a semigroup without an identity isedrimto a monoid by just adding an identity.
Precisely anonoid-completionV/ of a semigroupM is defined byM = M if M has an identity
element, otherwiseMl = M U {1} whose1 is an identity element ofM/: p-1 = 1-p = p for
any p € M. This natural completion does not preserve the left-cained property but it preserves the
cancellative property.

Lemma 3.8 Any monoid-completion of a cancellative semigroup is a ellative monoid.

Proof.
Let M = M U {1} be amonoid-completion of a cancellative semigradpwithout an identity element.

i) Suppose there arer, e € M such thatm-e = m.

In this case, let us check thatis an identity element.

We havem-(e-e) = (m-e)-e = m-e. As - is left-cancellative, we get-e = e.

Let n € M. So (n-e)-e = n-(e-e) = n-e. As - is right-cancellative, we get-e = n.

Finally e-(e-n) = (e-e)-n = e-n. As - is left-cancellative, we get-n = n.

ii) By hypothesisiM has no identity element. By (i), there are na e € M such thatm-e = m.
Let us show thatM is left-cancellative. Letn-p = m-q for somem, p,q € M.

Let us check thap = q.

As M is left-cancellative, we only have to consider the case whee {m, p, ¢}.

If m=1thenp = 1.p = 1.¢ = ¢q. Otherwisem € M and 1 € {p,q}. By (i), we getp = ¢ = 1.
iii) Similarly there are nan,e € M such thate-m = m henceM remains also right-cancellative J

Let us translate the monoid-completion of cancellative igemaps into their Cayley graphs. #ot-
completionof a graphG is a graphG defined byG = G if G is rooted, otherwiseG ¢ G C
G U {r}xAgxVe andr is the root of G'; we say that(y isrootableinto G. For instance the following
non connected graph:

is forward vertex-transitive but is not rootable into andard vertex-transitive graph. On the other hand,
a graph consisting of two (isomorphic) deterministic andrse-complete trees ovela, b} is rootable
into a deterministic source-complete tree oyerb}. Finally the following graph:



a a a

° ° ° °
b b b

° ° ° °
a a a

is also rootable into a simple, deterministic, co-detersticy forward vertex-transitive graph. We can
apply Theorem 3.7.

Theorem 3.9 A graph is a Cayley graph of a cancellative semigroup if anty @n
it is rootable into a simple, deterministic, co-determiitsforward vertex-transitive graph.

Proof.
= Let G = C[M, Q] for some cancellative semigroup/ and some generating subgeof M i.e.
QT = M. We have the following two complementary cases.
Case I M has an identity element. By Theorem 3@,is rooted, simple, forward vertex-transitive,
deterministic and co-deterministic. AS has a root, it is rootable into itself.
Case 2 M is notamonoid. LetM = M U {1} be a monoid-completion of/.
By Lemma 3.8,/ remains cancellative. Furthermo€g* = M. Let

G =CMQ =Gu{1q|qecq}.
By Theorem 3.7,G is rooted, simple, forward vertex-transitive, deterntigiand co-deterministic.
Moreover G is rootable intoG.
<= Let a graphG rootable into a simple, deterministic, co-determinisfarward vertex-transitive
graph G. We have the following two complementary cases.
Case I G isrooted. By Theorem 3.7 (or Proposition 3.5),is a Cayley graph of a cancellative monoid.
Case 2 (G has no root. Letr be the root ofG and @ = —(r). S0 Q C Vi and Vi = Viz — {r}.
By Proposition 3.5,G = C[V, Q] for the associative and cancellative path-operatignon V4 of
identity elementr with V= generated byQ.
As r is not the target of an edge @ and by definitionx, remains an internal operation dr; i.e.
p*.q#r foranyp,q € V. Finally G = C[Vg, Q] and (Vi , *,.) is a cancellative semigroup. O

For instance by Theorem 3.9, the previous graph is a Caylayhgof a cancellative semigroup. It is
isomorphic to

G = {(nSn+1in>0} U {n-%n-1|n<0}
U {ni> -n—1|n>0} U {ni> —n+1|n<0}.
We haveG = C[Z — {0}, {—1,1}] with [1] = a and [-1] = b for the following associative and
cancellative path-operation defined by
mxn = sign(mxn) (Jm|+ |n|) forany m,n € Z — {0}.
We can now restrict Theorem 3.7 to the Cayley graphs of groups
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4 Cayley graphs of groups

We present a graph-theoretic characterization for theeyayflaphs of groups: they are the deterministic,
co-deterministic, vertex-transitive, simple and conadagraphs (Theorem 4.7). By removing the con-
nectivity condition and under the assumption of the axionctadice, we get a characterization for the
generalized Cayley graphs of groups (Theorem 4.10).

Recall that agroup (M, -) is a monoid whose each elemenmtc M has an inverse~!: pp~! =
1 = p~L-p. SoC(M) is strongly connected hence by Proposition 3.3 is vertamsitive.

Fact 4.1 Any generalized Cayley graph of a group is vertex-transitiv
Proof.
Let (M, ) be agroup and []: M — A be an injective mapping. By Proposition 3.8[ M] is
forward vertex-transitive. A€[ M] is strongly connected;[ M] is vertex-transitive.
ForanyQ C M, C[M,Q] = C[M]'™ remains vertex-transitive. O

We start by considering the monoid Cayley graphs of a grdfipvhich are the generalized Cayley graph
CIM, Q] with Q* = M.

Fact 4.2 Any monoid Cayley graph of a group is strongly connected.
Proof.
Let G = C[M, Q] for some groupM and someR C M with Q* = M.
Let p € M. We have to check that —¢, p — 1.
There existsn > 0 and ¢y, ...,q, € @ suchthatp = ¢;-...-q,. SO it P
Foranyl <i <n,we haveqi‘1 = ¢i1 ... Qim, forsomem; >0 andg;i,...,qim; € Q.
Thusp ¢ 1 for u = [gual-- Lanm,] - [a11]. - Lq1.m,]- O

Let us complete Proposition 3.5 in the case where the grapérisx-transitive. In this case, the path-
operation is also invertible.

Proposition 4.3 For any rootr of a deterministic and vertex-transitive gragh (Vs *,.) is a group.

Proof.

It suffices to complete the proof of Proposition 3.5 wh&nis in addition vertex-transitive.

Let s € Vs . Let us show thats has an inverse. There exisise A}, such thatr — s.

As r ~¢ s, s is also a root. There exists such thats — r. Let 5 be the vertex such that—- 5. So
5355 and s — s'5.

As G is deterministic, we ges-s = 7. As r ~¢g s and s —» s, we getr — 7.

As G is deterministic, we ges — r hences-s = r. O

We describe the monoid Cayley graphs of groups from the cteaation of the Cayley graphs of
left-cancellative monoids (Theorem 3.6) just by replading forward vertex-transitivity by the vertex-
transitivity.
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Theorem 4.4 A graph is a monoid Cayley graph of a group if and only if
it is rooted, simple, deterministic and vertex-transitive

Proof.
= By Theorem 3.6 and Fact 4.1.
<= By Propositions 3.5 and 4.3. O

For instance by Theorem 4.4, a graph of the following repregion:

°

°

°
°

°
°

°

°

is a monoid Cayley graph of a group: it is isomorphic@$Z, {2, —1}] for the group (Z,+) with
[2] =a and [-1] = 0.

From Fact 4.2, we can replace in Theorem 4.4 the rooted dondiy the fact to be strongly connected.
By Fact 3.2, we can also add the co-determinism condition.

Corollary 4.5 Any rooted, simple, deterministic and vertex-transitivapd
is strongly connected and co-deterministic.

We can now consider group Cayley graphas a generalized Cayley gragif M, ] such thatM is a
group equal to theubgroup generatetly @ which is the least subgroup U Q~1)* containing Q
whereQ~! = { ¢! |q € Q} isthe set of inverses of the elements(n

For instance, thei-line { n “s n + 1| n € Z } is the Cayley graptC[Z, {1}] of the group (Z, +)
with [1] = a. This unrooted graph is not a monoid Cayley graph.

Let us generalize Theorem 4.4 to these well-known CayleglggaWe need to be able to circulate in a
graph in the direct and inverse direction of the arrows. Gebe a graph and leT : A¢ — A — Ag

be an injective mapping of imagds = {@|a € Ag }. A chain s %4 t is a path labeled by
u € (Ag U Ag)* where for anya € Ag, we haves %5 t for t %55 s. Given a vertexr, the
path-relationPathq(r) is extended to thehain-relation Chaing(r) as the ternary relation ol

(s,t,z) € Chaing(r) if there existsu € (Ag U Ag)* suchthatr ¢ ¢ and s ¢ .

Thus Path(r) € Chaing(r) = Pathg(r) for G = G U {t 5 s|s—5gt}.

If for any s,t € Vi there exists a unique such that(s,¢,2) € Chaing(r), we denote byx, :
VexVe — Vi the binarychain-operationon Vi defined by (s, ¢, s *.¢) € Chaing(r) for any
s,t € Vg ; we also writeg*,. when we need to specifi.

Let us adapt Propositions 3.5 and 4.3 to this chain-operatio

Proposition 4.6 Let G' be a connected, vertex-transitive, deterministic and et@ghinistic graph.
Let » be a vertex ofG.
Then (Vg, *,.) is a group of identityr generated by—: (7).
If G issimple thenG = C[Vg, —¢(r)] with [s] = a foranyr %5 s.

Proof.
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i) The graphG remains vertex-transitive. A& is deterministic and co-deterministiG, is deterministic.
As G is connected(~ is strongly connected. By applying Propositions 3.5 andtd.8;, we get that
(V& , %) is a group of identityr and Vg = Vg = (—g(r)" with —&(r) = —g(r) U
—rG-1 (T)

ii) Let us check that—¢-1(r) = (—¢a(r)) "L

C:letse —g(r)ie r—gs Sos - r forsomea € A.

As G is source-complete, there existssuch thatr 54 t. Thus s —¢ s *,. t.

As G is deterministics .t = r hences = t=1 € (—¢g(r))" L.

D:letsc (—q(r) tier—s5s! forsomea € A. S0s 55 s%,.5" 1 = rie sc —g(r).
iii) Suppose that in additiod is simple. Note thatG' can be not simple. So we define the graph

G=GU{tSs|s Dgttsas)

1

Thus G remains simple, vertex-transitive, deterministic, anstisngly connected.

Letus check thatz+, = ¢*..

As G C G, we get 5%, C &*. = g*,. Letus show the inverse inclusion.

We consider the mapping : A U Aqg — Ag defined for anya € Az by 7(a) = a, and for any

a € Ag — Ag, m(a) is the unique letter ind; such thatt ”(—EQG s forany s g t.
This makes sense becausSeis deterministic, co-deterministic and vertex-trangtifhus

s Sat = S’T(_(‘Qat foranya € Ag U Ag.
By extendingw by morphism on(A¢ U Ag)*, we get

s ot = s”(—"?@t forany u € (Ag U Ag)*.

This implies thatg*, C &%, .
By Proposition 3.5G = ClVe, —g(r)] with [s] = a forany r -5 s.

Precisely for anys € — (), we have

a if rSos
[S] - a if SL>G T#—)G S.
Finally G = Gl4¢ = C[Vg, —a(r)] O

For instance by Proposition 4.6, a graph of the followingespntation:

a a a
° ° °

.

.
.
.
.

a a a
is a Cayley graph of a group: it is isomorphic €]Zx{0,1},{(1,0),(0,1)}] with [(1,0)] = a,
[(0,1)] = b and for the chain-operatiotim, i) %) (n,7) = (m + n,i + j(mod2)). Itis also
isomorphic to the Cayley graph of the group of finite presimta<a, b | ab = ba,b? = 1>.
Let us adapt Theorem 4.4 to simply describe the Cayley grapgsoups.
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Theorem 4.7 A graph is a Cayley graph of a group if and only if
it is connected, simple, deterministic, co-determiniatid vertex-transitive.

Proof.

= Let G = C[M, Q] for some groupM and Q € M with (Q U Q~1)* = M.
By Facts 3.1, 3.2, 4.1¢7 is simple, vertex-transitive, deterministic and co-defieistic.
By Fact 4.2, the monoid Cayley gragH M, Q U Q'] is strongly connected.

Thus G = C[M, QU Q"1™ is connected.
<= By Proposition 4.6. O

Theorems 4.4 and 4.7 give respectively a characterizafitibeanonoid Cayley graphs of groups, and the
group Cayley graphs. We can now deduce a characterizatithe gfeneralized Cayley graphs of groups.
First, let us apply Corollary 4.5 and Theorem 4.7.

Coroallary 4.8 The connected (resp. strongly connected) components efaeed Cayley graphs of
groups are the (resp. monoid) Cayley graphs of groups.

Let us extend Proposition 4.6 for non connected graphs. hetgma(P, -) for P arepresentative set of
CompG). We define theextended chain-relatiol€haing (P) as the ternary relation ol defined by

(s,t,z) € Chaing(P) if there existsu,v € (Ag U Ag)* such that

7p(s) =g s and 7p(t) =gt and wp(s) - mp(t) “5g .

For any connected and deterministic graghand any vertex:, Chaing({r}) = Chaing(r).
If for any s,t € Vg there exists a unique: such that(s,¢,2) € Chaing(P), we denote byxp :
Ve xVe — Vi the binaryextended chain-operatioon Vi defined for anys, ¢ € Vg by (s,t,s%pt) €
Chaing (P) ; we also write*p when we need to specifgr. We can extend Proposition 4.6.

Proposition 4.9 Let G be a vertex-transitive, deterministic and co-determiaigtaph.
Let a group on a representative s€t of Comp(G) generated byP, and of identityr.
Then (Vg,*p) is a group of identityr generated byPy U — ¢ (7).

If G issimple thenG = C[Vg, —¢(r)] with [s] = a foranyr %5 s.

Proof.
i) Let C' € Comp(G) with r € V.
By Proposition 4.6,(V¢, %,.) is a group of identityr and is generated by— (7).
We take the group productPxVe,-) with (p,z) - (¢,y) = (p-q,x *,y) for any p,¢ € P and
x,y € Vo . This group is of identity(r, ») and is generated by x{r} U {r}x—g(r).
As G is vertex-transitive, deterministic and co-determimistve can define the mapping

f:PxVo — Vg suchthatr 552 = p—5¢ f(p,z) for (any) u € (Ag U Ag)*.
Thus f is a bijection hencéV, -) is agroup wheref (p, x)- f(q,y) = f(p-q,z*,.y) foranyp,q € P
andz,y € V. This group(Vg, -) is of identity f(r,r) = r and is generated by

f(Pox{r}) U f{r}x—c(r)) = Py U —¢a(r).

ii) Let us show that the operationon V¢ is equal to*p .
Let p,q € P andz,y € V. We have to check thaf(p, =) *p f(q,y) = f(p,2) - f(q,y).
Let u,v € (Ag U Ag)* suchthatr 5z andr —5¢ .



14 Didier Caucal

By definition of ¥p , we havex —¢ x *,.y hencer ~5g x *,. 1.
By definition of f, we getp - ¢ ¢ f(p- ¢, 2%, 9), p —=c f(p,z) and g ¢ f(q,y).
By definition of ¥p , we havep - ¢ ¢ f(p, ) *p f(q, ).
As G is deterministic, we gef (p, ) *p f(¢,y) = f(p- ¢,z *y) = f(p,x) - f(q,y).
iii) Suppose that in additiot is simple. Let ] = a forany r -4 y. Thus
ClVe,—c(r)] = {sSs-y|lseVarr-Sy}
= {sSsxpylseVonrnr-SHy} =aG.

In ZF set theory, the axiom of choice is equivalent to the prgpthat any non-empty set has a group
structure [9]. Under the assumption of the axiom of choice,can characterize the generalized Cayley
graphs of groups.

Theorem 4.10 In ZFC set theory, a graph is a generalized Cayley graph ofaupgrif and only if
it is simple, deterministic, co-deterministic, verteartsitive.

Proof.

By Facts 3.1, 3.2, 4.1, any generalized Cayley graph of apgi®gimple, vertex-transitive, deterministic
and co-deterministic.

Conversely letG be a simple, deterministic, co-deterministic, vertexsigve graph.

Using ZFC set theory, there exists a representativé’sef Comp(G) and a binary operation such that
(P,-) is a group. By Proposition 4.9,Vg,%p) is a group andG = C[Vg, —¢(r)] with [s] = a
forany r % s. O

For instance let us consider the following graph:
G = {(mi,p) = (m+1ip)|[mpeZNnic{0,1}}
U {(m,i,p) = (m,1—4,p) [mp €Z Ai € {0,1} }
of representation the countable repetition of the preapdire.
By Theorem 4.10&G = C[Zx{0,1}xZ,{(1,0,0),(0,1,0)}] with [(1,0,0)] =a, [(0,1,0)] =b and
for the group operatiorim, i, p) - (n,4,q) = (m + n,i+ j (mod2),p + q).
Let us summarize the characterizations obtained for thée@ayaphs.

rooted + simple + deterministic + forward vertex-transiti@es| Left-cancellative monoids
| + co-deterministic (3.7) Cancellative monoids
I o -
I + vertex-transitive (4.4) Groups
| 1

By relaxing the condition of being rooted by that of connédtfj we have obtained a graph-theoretic
characterization for the Cayley graphs of groups (Theorét 4
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5 Generalized Cayley graphs of left-cancellative magmas

Under ZFC set theory, we will give a fully graph-theoreti@cdicterization for generalized Cayley graphs
of left-cancellative magmas (Theorem 5.5), and then whe fiave an identity (Theorem 5.7).

Recall that an element of a magma(M, -) is aleft identity (resp. right identity) if e-p = p (resp.
pe = p)forany p € M. If M has a left identitye and a right identitye’ then e = ¢’ which is an
identity (or neutral element) of\/.

In order to characterize the Cayley graphs of left-canttelanagmas with or without an identity, we need
to restrict the path-relation. For any grapghand any vertex:, we define thedge-relationEdge(r) as
the ternary relation oiVy; defined by

(s,t,2) € Edgeg(r) ifthere existsa € Ag such thatr %54t and s % .
So Edges(r) C Pathg(r). Ifforany s,t € Vg there exists a unique such that(s, ¢, z) € Edge(r),
we denote byx, : VgxVe — Vi the binaryedge-operationon Vi defined by (s, ¢, s x,t) €
Edge(r) forany s, t € Vi ; we also writeg x,, when we need to specifg.
Let us give conditions for the existence of this edge-op@natWe need to introduce two basic graph
notions. We say that a vertex of a graphG is an 1-root if r — ¢ s for any vertexs of G. Thus a
graph is complete if and only if all its vertices dreoots.

Fact 5.1 Any left identity of a magma/ is an 1-root ofC(M).

Moreover we say that a graphl@op-completeif one vertex has am-loop then all the vertices have an
a-loop:
JreVo(r-SHar) = VseVg(sSqs).

Fact 5.2 Any gen. Cayley graph of a left-cancellative magma with atrigentity is loop-complete.

Proof.

Let M be a left-cancellative magma with a right-identity

Let G = C[M, Q] be a generalized Cayley graph af.

Let p M, p forsomep € M andq € Q. Sop-q = p = pee.

As M is left-cancellativeq = e. Thusr 25 r.q = r-e = r forany r € M. O

Let us adapt Propositions 3.5 to the edge-operation.

Proposition 5.3 Let » be anl-root of a deterministic source-complete simple gragh
Then (Vg, x,.) is a left-cancellative magma of left-identityand
G = C[Vg] with [s] = a forany r %4 s.
If G isloop-complete them is an identity.

Proof.

i) Let s,t € V. Letus check that there is a uniquesuch that(s, ¢, z) € Edgeq ().

As r is an 1-root and G is simple, there exists a uniquec A such thatr %5 ¢.

As G is source-complete and deterministic, there exists a enigatex 2 such thats —=¢ x. Thus x,.
exists and is denoted byin the rest of this proof.
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ii) Let us check thatV4, -) is left-cancellative. Assume thatt = s-t'.

As r is an 1-root, there exists:, ' € A¢ such thatr -2 ¢ and r LI>G t.

By definition of - we gets ¢ s-t and s le st = s-t.

As G is simple, we haver = a/. As G is deterministic, it follows that = ¢'.

iii) Let us check that is a left identity of (V, -).

Let s € Viz. As r is an 1-root, there exists € A such thatr —% s.

By definition of - we haver - r-s. As G is deterministic, we get-s = s.

iv) As r is an 1-root andG is simple, we can define the mapping [ Vo — Ag by
[s] = a forr %54 s.

As G is deterministic, [] is an injection. Ag~ is source-complete, [] is a bijection.

Let us show thatG = C[Vs].

C: Let s %54 t. As G is source-complete, there exists such thatr %54 7.

So s ¢ sr’. As G is deterministics-’ = t. We have F'] = a hences —qy; s1’ = t.

D: Let s ~“qyy t. There exists (a uniquey € Vi such that ['] = a.

Thust = s+’ andr ¢ 1. S0 s~ s’ = t.

v) Assume thatG is loop-complete. Let us check thatis also a right identity.

As r is an 1-root, there is (a unique) € A such thatr s 7.

Let s € V. As G is loop-complete, we get —» s. By definition of - we haves —%5 s-r.
As G is deterministic,s = s-r. Thusr is a right identity. O

We get a fully graph-theoretic characterization of the @gayyraphsC[M] for any left-cancellative
magmal with a left identity.

Proposition 5.4 A graph is equal taC[ M] for some left-cancellative magmi@l with a left identity
if and only if it is simple, deterministic, source-complatel 1-rooted.

Proof.

= let G = C[M] for some left-cancellative magm@\/, -) with a left identity », and some injective
mapping []. By Facts 3.1 and 3.27 is deterministic, source-complete and simple. By Fact/5i%,an
1-root of G.

<= By Proposition 5.3. O

Under the assumption of the axiom of choice, we can chaiiaettdre generalized Cayley graphs of left-
cancellative magmas.

Theorem 5.5 In ZFC set theory, the following graphs define the same family
a) the generalized Cayley graphs of left-cancellative magmas

b) the generalized Cayley graphs of left-cancellative magwitdsa left identity,
c¢) the simple, deterministic, source-complete graphs.

Proof.
b) = a): immediate.
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a) = ¢): by Facts 3.1 and 3.2.
c) = b): let G be a simple, deterministic and source-complete graph.
Assume the axiom of choice. Let be a vertex ofG with
Vo — —a(r) = {se€ Vg |r—+q s} of minimal cardinality.
For each vertexs, we take an injectionf; from Vg — —¢(r) to Vo — —¢(s) and whosef, is the
identity. We define the graph

<G> ={sLt|Tals Bat Ar-Sgp) }U{s-5 fi(t)|se Vg A teDom(fs)}.
Thus <G> remains simple, deterministic, source-complete With.. = Vg = A_s- .
Furthermorer —»_.. s forany s € Vg hencer is anl-root of <G>.
By Proposition 5.3<G> = C(Vg) for (Vg, x,.) left-cancellative, of left identityr with
s i><c> sx,t forany s,t € V.
Finally G = C[Vg, —¢(r)] with [s] = a forany r %55 s. 0

Forinstance, leG = {m -50|m >0} U {m —sm+1|m >0} represented by
0 0

'Y _—_ —

1 1

Itis simple, deterministic, source-complete but withbubot. By Theorem 5.5, this graph is a generalized
Cayley graph of a left-cancellative magma with a left idgntPrecisely we completé&r into the graph

<G> ={m-50m>0}u{m-"Sm+n|m>0An>0}
having 0 as 1-root, and which remains simple, deterministic, sourceyiete.
By Proposition 5.3, the magm@, x,) with the edge-operatior, of <G> i.e.

mxg0 =0 andmxon = m+n foranym >0 andn >0
is left-cancellative and) is a left identity. Furthermores = C(N, {0, 1}).

We can now characterize the generalized Cayley graphs d¢éftheancellative magmas with an identity.
We just have to add the loop-complete property to restriop&sition 5.4 to left-cancellative magmas
with an identity element.

Proposition 5.6 A graph is equal toC[ M] for some left-cancellative magm@ with an identity if
and only if it is simple, deterministic, source-complet@d-complete and -rooted.

Proof.
= By Proposition 5.4 and Fact 5.2.
<= By Proposition 5.3. O

We restrict Theorem 5.5 to left-cancellative magmas hasinght identity.

Theorem 5.7 In ZFC set theory, the following graphs define the same family
a) the generalized Cayley graphs of left-cancellative magwittsa right identity,
b) the generalized Cayley graphs of left-cancellative magwitisan identity,

c) the simple, deterministic, source-complete and loop-detagraphs.
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Proof.

b) = a): immediate.

a) = ¢): By Facts 3.1, 3.2,5.2.

¢) = b): Let G be a graph which is simple, deterministic, source and lcopsgete.

Let us apply the construction given in the proof of Theoref Bs G is loop-complete and if —/~¢ 7,

we can add the condition thgt (r) = s for any s € V. Thus <G> remains loop-complete and by
Proposition 5.37 is an identity for x.. . O

For instance, we denote By, = N — {0} and we consider the graph
G={0"L0" | n>0}U{uwi-Suluc0* N AieN,}.
of vertex setlV; = 0*N* and represented as follows:

708 20 0 T 2 T T TAN T TaN T
AR VAR VAR VAR VAR VA

It is simple, deterministic, source-complete and loop-ptate (and forward vertex-transitive). By The-
orem 5.7, this graph is a generalized Cayley graph of a leftellative magma having an identity. For
instance, we completé&’ into the graph

<G> = G U {0mu L8 0™ u0 [m,n >0 A uve N A0 #£0}
which remains simple, deterministic, source-completepioomplete, with thel-root e.
By Proposition 5.3G = C(Vg,{0}) for the left-cancellative magméVe, x.) of identity ¢ with the
edge-operationk. of <G> defined for anym,n > 0, u,v € N* andi € N, by

0™ui x. 0 = 0™y otherwise 0™y x. 0"v = 0™ yw.
We will see that we can defineG> so that in addition, any vertex is drroot i.e. <G> is complete
(see Theorem 6.6).

6 Generalized Cayley graphs of left-quasigroups

We can now refine the previous characterization of genedlzayley graphs from left-cancellative mag-
mas to left-quasigroups (Theorem 6.5). These algebraictsiies define the same family of finitely
labeled generalized Cayley graphs (Theorem 6.6).

A magma(M,-) is aleft-quasigroupif for each p, ¢ € M, there is a unique € M such thatp-r = ¢
denoted byr = p\q theleft quotientof ¢ by p.
This property ensures that each elemenfiéfoccurs exactly once in each row of the Cayley table-for
For instance{a, b, ¢} is a left-quasigroup for defined by the following Cayley table:
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o

allal|lbdb|c
bl blalc
cllelbla

Note that- is not associative since- (b-¢) = a and (c-b) - ¢ = ¢, and is not right-cancellative since
a-b = ¢b. The first figure in Section 3 is a representatiorCéf\/) for the semigroupM = {a, b} with
xy =y forany xz,y € M. This semigroup is also a left-quasigroup which is not reguicellative.

Any left-quasigroupM is left-cancellative. The converse is true fof finite but is false in general:
(N, +) is cancellative but is not a left-quasigroup. Indeed,

M is aleft-quasigroup<= M is left-cancellative an¢g-M = M forany p € M.
Let us refine Proposition 5.3 in the case where the graphascaisiplete.

Proposition 6.1 Let G be a simple, deterministic, complete and source-complefghg
For any vertexr, (Vg, x,.) is a left-quasigroup.

Pr oof.

Let » be a vertex ofGG. As G is complete,r is anl-root.

By Proposition 5.3,(V4, x,.) is a left-cancellative magma.

Let s € V. Itremains to checkthaty; C sx,. Vg . Lett € V.

As G is complete, there exists € Az such thats 2 t.

As G is source-complete, there existse Vi such thatr %5 t/.

By definition of x,. we haves %5 s x,.t'. As G is deterministic, we get = s x,. t'. |

Let us give a simple characterization of the generalizedeyagraphs for the left-quasigroups. For the
previous left-quasigrou@/, its graphC (M) is the following:

b c c
O 10,
We begin by characterizing these graphs.

Proposition 6.2 We have the following equivalences
a) a graph is equal taC[ M] for some left-quasigroug/ (resp. with a right identity),
b) a graph is equal taC[ M] for some left-quasigroud/ with a left identity (resp. identity),
¢) a graph is simple, deterministic, complete, source-coteglesp. and loop-complete).
Proof.
b) = a): immediate.
a) = ¢): let G = C[M] for some left-quasigroug M, -) and injective mapping [ 1.
By Facts 3.1 and 3.2;7 is deterministic, source-complete and simple.
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For anyp,q € M, we havep ™3, ¢ henceG is complete.
If in addition M has a right identity then, by Fact 5.2; is loop-complete.

¢) = b): by Propositions 5.3 and 6.1. O

For instance the magma/ = {0,1} with ¢-j = 1 — j foranyi,j € {0,1}, is a left-quasigroup
without left and right identity element. By Proposition8 &nd 6.1, the magma&’ = {0,1} with the
edge-operationc, of C(M) defined byi xqj = j forany ¢, 5 € {0,1} is a left-quasigroup wittd and

1 are left identities, and’ (M) = C[N] where [0] =1 and [1] = 0.

We now extend Proposition 6.2 to the generalized Cayleytrapleft-quasigroups. To do this, we must
recall and define basic graph notions.

Let G be a graph. For any vertex its out-degrees/;(s) = |G N {s}xAxVg| is the number of edges
of sources. Theout-degreeof G is the cardinalAf, = sup{ &2 (s) | s € Vi }. We say thatG is of
bounded out-degreahen A, is finite.

We haveA}, = |Ag| for G deterministic and source-complete.

Fact 6.3 For any vertexs of a graph GG, we have
6&(s) < |Ag| for G deterministic, and A¢| < 6% (s) for G source-complete.

In particular by Fact 3.1 and for any generalized Cayley lgrafp

G is of bounded out-degree—> G s finitely labeled.
By removing the labeling of a grap¥, we get the binary unlabeled edge relationian:

—a = {(s,t) | Fa € Ag (s,a,t) € G }.

Let R C VxV be abinary relation on a séf i.e. is an unlabeled graph.
Theimageof P CV by R isthesetR(P) = {t|3se P (s,t) € R}.
So the out-degree of € V is 0% (s) = |R(s)| and Af, = sup{ d%(s) |s € V } is the out-degree
of R. For any graphG and any vertexs, we haves®, _(s) < 6/;(s) henceAf, < A}, and we have
equalities forG simple.
A relation R is anout-regular relationif all the elements ofl’ have the same out-degre€R(s)| =
|R(t)| forany s,t € V.
Let us give simple conditions oR so that its complement’ <V — R is out-regular.

Lemma6.4 Let RC VxV and S = VxV — R the complement oR w.r.t. VxV.
If R is out-regular andAjg < w then S is out-regular.
If R isinfinite andA}, < |V| then S is out-regular.

Proof.

i) When A7, is finite, we haveS(s) = |V|— |R(s)| foranys e V.

In addition for R out-regular and for any,t € V, |R(s)| = |R(t)| hence|S(s)| = |S(t)].

i) When R is infinite with A}, < |V, we have|S(s)| = |V| forany s € V.

HenceS is out-regular onV with AY = |V O

We say that a grapld- is out-regular if — is out-regulari.e. all the vertices have the same number
of targets. For instanc& = {s - ¢,t % s,t - s} is out-regular since—¢(s) = {t} and
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—q(t) = {s} while 65 (s) =1 and 5/ (¢) = 2.
We also say that7 is co-out-regularif its unlabeled complement is out-reguliae.
(VexVe — —¢) = —/»¢ is an out-regular relation oW .
Under the assumption of the axiom of choice, we can chaiaetéte generalized Cayley graphs of left-
quasigroups.

Theorem 6.5 In ZFC set theory, the following graphs define the same family

a) the generalized Cayley graphs of left-quasigroups (resih aright identity),

b) the generalized Cayley graphs of left-quasigroups withtadientity (resp. an identity),

c) the simple, deterministic, source-complete (resp. ang-lmamplete) co-out regular graphs.

Proof.

b) =— a): immediate.

a) — ¢): let G = C[M, Q] for some left-quasigroup and Q C M.

By Proposition 6.2G = C[M]™ remains simple, deterministic and source-complete.

Foranys € M, 6:;6,(5) = |M — Q] henceG is co-out-regular.

If in addition M has a right identity then, by Fact 5.2; is loop-complete.

c) = b): let G be a graph which is simple, deterministic, co-out-regidayrce-complete (resp. and
loop-complete). The co-out-regularity @ means thalVe — —¢(s)| = |Vag — —¢(t)| for any
s,t € V. Let r be a vertex ofGG. Assume the axiom of choice. Let us apply the constructiermgi
in the proof of Theorem 5.5. A&/ is co-out-regular, we can now take for each vertea bijection f
from Vg — —¢(r) to Vo — —¢(s) and whosef, is the identity. As for the proof of Theorem 5.7,
if G is loop-complete and /¢ r, we add the condition thaf,(r) = s for any s € V. The graph
obtained<G> remains simple, deterministic, source-complete (resgp-lmomplete) and is in addition a
complete graph. By Proposition 6 X/, x,-) is a left-quasigroup. By Proposition 5:3js a left-identity
(resp. is anidentity) an@ = C[Vg, —(r)] with [s] = a forany r %55 s. O

For instance, lelG = {m -5 0|m >0} U {m —>m+1|m >0} be the graph that we had
considered after Theorem 5.5 and represented by

By adding edges, we transfor@ into the following complete graph:
<G>=GU{mSn-1]2<n<m+1}U{m-Sn|m>0An>m+1}
which remains simple, deterministic and source-complete.
By Propositions 5.3 and 6.7 = C(N,{0,1}) for the left-quasigroupN, x() of left-identity 0 with
the edge-operatior of <G> defined for anym > 0 by
mxp0 = 0 i mxgn = n—1 V2<n<m+1
mxpl = m+1 ; mxgn = n Vn>m+1.

Another example is given by a grapgh of the following representation:
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5.6.6 & &
—_—

It is simple, deterministic, co-out-regular, source-céetgand loop-complete.
By Theorem 6.5, this graph is a generalized Cayley graph eftajuasigroup with an identity. Indeed,
by replacinga by 0 andb by 1, G is isomorphic to the following graph:

H={mSmm>0}u{1-50}u{m-51|m>0Am#1}.
We completeH into the graph:
<H> = {mLm|m>0}Uu{m50|m>0}
U {mS5nm>0An>0Am#n}.
So <H> remains simple, deterministic, source-complete and lompplete.
Furthermore< H> is completei.e. any vertex is anl-root.
By Proposition 5.3, the magm@, x() with the edge-operatior, of <H> i.e.
mxg0 =m ; mxogm =0 ; mxgn = n foranym,n >0 with m #n andn > 0
is a left-quasigroup of identity element
FurthermoreG is isomorphic toC[N, {0, 1}] with [0] =« and [1] = b.

The co-out-regularity in Theorem 6.5 can not be removed. ikgtance, consider the monoid, +)
which is is not a left-quasigroup. Its graghfN) = {m 5 m+n|m,n >0} is simple, deterministic
and source-complete. Furthermore we h@ve¢ ) n for any n > 0 while there is no edge fron to

0. By Proposition 6.2, this graph is not a generalized Caytaplg of a left-quasigroup.

By Lemma 6.4, the co-out-regularity in Theorem 6.5 can beoresd for the graphs of bounded out-
degree which coincides with the characterization of Theobes. In this case, we can also remove the
assumption of the axiom of choice.

Theorem 6.6 For any finitely labeled grapl, the following properties are equivalent

a) G is a generalized Cayley graph of a left-cancellative magraaq. with a right identity),
b) G is a gen. Cayley graph of a left-quasigroups with a left idgr{tesp. an identity),

c) G is simple, deterministic, source-complete (resp. and{oamplete).

Proof.
b) = a): immediate.
a) — ¢): by Facts 3.1, 3.2, 5.2.
¢) = b): let G be a simple, deterministic and source-complete graph aéfiabel set.
By Fact 6.3,G is of bounded out-degree. To each injective function A — A, we associate a
permutation/ on A extending/ i.e. {(a) = ¢(a) for every a € Dom(¥).
Let » be a vertex ofGG. For each vertex, we associate the injective function:
by = {(a,b) | Tt (r Sat As-at)}
We define the following graph:
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<G> = {sBt|FalrSaopAsSgt)}

U {s5t|Jac Az —Dom(l) (r gt A slﬂ)gp)}

U {s-5t|teVe—(—alr) U —a(s)}
For G of vertex setV = {p, ¢, s,t,2} with the following edges fronr and s:

the graph<G>> has the following edges fror:

P\(S)

. ki .
p

q
Thus <G>> remains simple, deterministic, source complete With., = Vg = A qs -
Furthermore<G>> is complete withr —+_.. s for any s € V. By Proposition 5.3, we have
<KG> = C(Vg) for the left-cancellative magm@/, x,-) of left identity r with
s 5 gs Sx,t forany s, t € Vg.

Finally G = C[Vg, —q(r)] with [s] = a forany r %4 s.
Now suppose thatz is loop-complete. We distinguish the two complementangsdselow.
Case 1 all the vertices ofG have a loop of the same label.

Then <G> remains loop-complete and by Proposition 5:3s an identity of x,. .
Case 2 G has no loop.

We take a new label € A — A; and we redefinexG>> as being<G’>> for
G' = GU{s-% s|secVg}. Weconclude by Case 1. O

For the previous example, we have H>> = <H>.
For the penultimate example, we have

<G> = {mSBm+1m>0} U {mHF1|m>0}
U {mSnmn>0An#lAn#m+1}
For the last example of the previous section (after Theorat) &e have
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<G>

{0m =50 |m>0}u{0om -2 0mt |m >0}

(0" e lm>0} U{0m 5 0m>1}U {0

{0m 2w | u e 0°NF — {e,0,0™,0m+1} }
{uii>ui|u€0*N’f/\ieN+}U{uii>u|u€0*N’f/\iEI\L}
{uie|lue0 N —{e} AieN,}U{uwi-50|uc0N* AieN,}
{i-50lieN,}U{ui-Sv|uve0* N AieN, Av¢{e0uui}}.

c C Cc cC cC

7 Generalized Cayley graphs of quasigroups

We can now refine the previous characterization of gene@lCayley graphs from left-quasigroups (The-
orem 6.5) to quasigroups (Theorem 7.8).

A magma (M, -) is aquasigroupif - obeys thd atin squareproperty: for eactp, ¢ € M,
there is a unique: € M such thatp-r = ¢ denoted byr = p\¢ theleft quotientof ¢ by p,
there is a uniques € M such thats-p = ¢ denoted bys = ¢/p theright quotientof ¢ by p.
This property ensures that each elemenibfoccurs exactly once in each row and exactly once in each

column of the Cayley table for. The previous finite left-quasigroup is not a quasigroup. tid@nother
hand, ({a,b,c},-) is a quasigroup with defined by the Cayley table:

allalc|b
bilcl|bla
c|lblalec

» € o
O« O,
Note that- is not associativew - (b-¢) = a and (a - b) - ¢ = c. Furthermore,

M is a quasigroup<=- M is cancellative angp- M = M = M -p foranyp € M.
Let us refine Proposition 6.1 in the case where the graphascalgleterministic and target-complete.

Proposition 7.1 Let G be a graph which is simple, deterministic and co-deterrimis
complete, source-complete and target-complete. For artgxe, (Vg, x,-) is a quasigroup.

Proof.
Let » be a vertex ofG and - be the edge-operatior,. .
By Proposition 6.1V, -) is a left-quasigroup.
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i) Let us check thatV4, -) is right-cancellative. Assume that- ¢t = s - ¢.

As G is complete, there exists such that — ¢.

By definition of - we haves 5 s-t ands’ g s’ -t = s-t.

As G is co-deterministic, we get = s’.

ii)Lett € Vi . Letuscheckthaly C Vi -t. Letse V.

As G is complete, there exists € A such thatr —%5¢ ¢.

As G is target-complete, there exists € Vi such thats’ - s.

By definition of - we haves’ ¢ s’ - t. As G is deterministic, we get = s’ - . O

Let us restrict Proposition 6.2 to the quasigroups.

Proposition 7.2 We have the following equivalences

a) a graph is equal toC[ M] for some quasigroupV! (resp. with a right identity),

b) a graph is equal taC[ M] for some quasigroupV/ with a left identity (resp. an identity),

¢) a graph is simple, deterministic, co-deterministic, costg) source-complete,
target-complete (resp. and loop-complete).

Proof.

b) = a): immediate.

a) = ¢): let G = C[M] for some quasigroud M, -) and injective mapping [1].
By Proposition 6.2G is simple, deterministic, complete and source-complete.
By Fact 3.2G is co-deterministic.

For anyp,q € M, we havep/q 1, ~ p henceG is target-complete.

If in addition M has a right identity then, by Fact 5.2; is loop-complete.

¢) = b): By Propositions 5.3 and 7.1. O

For instance let us consider the divisien on Ry =]0,4occ[. So (R4, <) is a quasigroup of right
identity 1. Furthermorex; is the multiplication onR,.. Thus C(R.) for the quasigroupR, =) is
equal toC[R ] for the group (R, x1) with [2] = L forany = > 0.
We now adapt Theorem 6.5 to the quasigroups. This will recuimore extensive development than what
has been done with Theorem 6.5.
For any vertexs of a graphG, itsin-degreed (s) = |G N VgxAx{s}| = 6/,_.(s) is the number of
edges of targe, and 5 (s) = 6/, (s) + 95 (s) is thedegreeof s.
Thein-out-degreeof G is the cardinal

Ac = sup({6L(s) |seVa} U{da(s)|seVal).
We say that a grapld/ is of bounded degreavhen A is finite.
Let R C VxV be a binary relation on a sét. The in-degree ofs € V is 6z(s) = |R™!(s)| for
R™' ={(t,5)]| (s,t) € R} theinverseof R. Thein-out-degreeof R is

Ag = sup({64(s) |s€eV U {dz(s)|seV}).

Arelation R is aregular relationon V if |R(s)| = |[R7!(s)| = Ag foranys e V.
Let us apply Lemma 6.4 t&? and R—'.

Corollary 7.3 Let R C VxV and S = VxV — R the complement oR w.rt. VxV.
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If R isregularandAr < w then S is regular.
If R isinfiniteandAr < |V] then S is regular.

An edge-labelingof R is a mappinge : R — A defining the respective graph and color set
R = {(s,¢(s,t),t) | (s,t) € R} and ¢(R) = {c(s,t) | (s,t) E R} = Apge.
An edge-coloringof R is an edge-labeling of R such thatR° is a deterministic and co-deterministic
graph. In that case, we say th&t is |c¢(R)|-edge-colorableand we havelc(R)| > Ar. We will give
general conditions for a relatioR to be A -edge-colorable.
An undirected edge-coloringf R is an edge-labeling of R such that two adjacent couples &f have
distinct colors: for any(s,t), (s',t') € R,
if (s,t) # (s',t') and {s,t} N{s',t'} # 0 then c(s,t) # c(s', ).
Any undirected edge-coloring is an edge-coloring.
Let V! ={ s | s € V } be adisjoint copy ofl” i.e. ' is a bijection fromV  to a disjoint setV’. We
transform any relationl? C V xV into the relation
R = {(s,t')|(s,t) e R} C VxV'
and any edge-labeling of R into the edge-labeling’ of R’ defined by
d(s,t") = c(s,t) forany (s,t) € R.
So Ar = Ap/ and for any edge-labeling of R,
c is an edge-coloringof? <= (¢ is an edge-coloring of?’
< (¢ is an undirected edge-coloring @t'.
As R’ C VxV' with VNV’ =, R is abipartite relation hence fak’ finite, and by Konig’s theorem
[11], R’ has an undirected\ z--edge-coloring. This implies that we have an edge-colooihany finite
relation R using A colors.

Lemma 7.4 Any finite binary relationR is Ar-edge-colorable.

Proof.
Instead of applying Knig’s theorem toR’, we will adapt its standard proof directly 8.
Letn >0, R = {(s1,t1),...,(Sn,tn)} andk = Ag.
By induction on0 < ¢ < n, let us construct an edge-coloring of R; = {(s1,t1),...,(s:,t;)} In
k] = {1,...,k}.
For 7 = 0, the empty functiorc is an edge-coloring of?y = (0.
Let 0 < i < n andc¢; be an edge-coloring oR; in [k]. We denote bys = s, 11, t = t;41,
Os = {c(s,q) | (s,q) € Dom(¢;) } and I, = {¢;(p,t)]| (p,t) € Dom(c;) }.
We distinguish the two complementary cases below.
Casel O;UI; C {1,...,k}. We extende; to the edge-coloring; 1 of R, by defining
Cit1(s,t) = min{ j|j €O, UL }.
Case2 O, Ul = {1,...,k}.
As (s,t) ¢ Dom(c;), we have|O;| < k and |I;| < k. So =(O; C I) and —(I; C Oy).
Thus there exista € O, — I; andb € I; — O, . In particulara # b.
As R is deterministic and co-deterministic, there are unigleand ¢’ such thate;(s,t') = a and
¢i(s',t) = b. Thisis illustrated as follows:
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P L B
where the labeled relation™ forany x € {1,... k} is defined by
= = {(p,q) € Dom(c;) | ¢i(p,q) =z }.

Let us consider the chain ik“ of maximal length and of the form

a b a b
S—r— —><— ...

As b ¢ O, and R“ is deterministic and co-deterministic, this chain is finite

Asadl, s b, ¢ isnotan edge of this chain.
We define another edge-labelingof R; by exchanging the labels and b for the edges of the chain:
for any (p, q) € Dom(c;),

b if p —%s ¢ is an edge of the chain
cp,q) =1 a if p s ¢ is an edge of the chain
ci(p,q) otherwise.

Thus R remains deterministic and co-deterministie. ¢ is an edge-coloring of?; with ¢(s,t)
c(s’,t) = b. It remains to add:(s, t) = a to get an edge-coloring af; 1 in [k].

o

Under the assumption of the axiom of choice (actually untlerweaker assumption of the ultrafilter
axiom), let us generalize Lemma 7.4. For this we use a c@arinthe vertices instead on the edges. A
vertex-coloringof R C VxV isamappingc : V — A such thatc(s) # ¢(t) forany (s,t) € R, and

in that case, we say thak is |c¢(V)|-vertex-colorable Note that a relation with a reflexive pair has no
vertex-coloring. Thelual of R is the binary relationD(R) on R defined by

DR) = {((r,s), (rt)](rs), (nt)e RN s#t}
U {Us,r), (&7)] (s,m), (t,r) €ER N s#£ 1t}
For any edge-labeling of R,
c is an edge-coloring o <= ¢ is a vertex-coloring ofD(R).

Thus by Lemma 7.4 and for any finite relatid®, D(R) has aAg-vertex-coloring. We can apply the
compactness theorem [4] to extend Lemma 7.4 to any relafibounded degree.

Proposition 7.5 In ZFC set theory, any bounded degree relatiBnhas a A zp-edge-coloring.

Proof.

Let £ be a positive integer an® be a binary relation on a sét with Ap = k.

Itis equivalent to show thaD(R) is k-vertex-colorable, or thaD(R) is vertex-colorable using at most
k colors.

By de Bruijn-Erdds theorem [4], it is equivalent to check that any finite stibse)(R) is vertex-colorable
with at mostk colors. LetS C D(R) with S finite. Let

P ={seV|3t(s,t)eVs A (t,s) €Vs}
and Rjp = R N PxP the induced relation of? by P. So.S C D(R|p) which is finite.

By Lemma7.4,R p is edge-colorable usind\g ,, < Ar = k colors.
Finally D(Rp) henceS are vertex-colorable using at mostcolors. O

We now want to color a regular relation in a complete way. thirs present a general way to extend an
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injection into a bijection avoiding given sets.

Lemma 7.6 Let XY be equipotent well orderable infinite sets.
Let an injectionp : P — Y for some subseP of X with |P| < | X]|.
Let a sequencéP,).cx—p Of subsets o™ with |P,| < |Y| and such that
HxeX—-Plye P, }| <|X]| foreveryy € Y — p(P).
We can extengh into a bijection X — Y such thatp(x) ¢ P, foreveryxz € X — P.

Proof.
Let <x be aninitial well-orderingofX : Vz € X, {2/ € X |2/ <z }| < |X]|.
Let <y be an initial well-ordering ofY".
We definep on X — P by transfinite induction. Let: € X — P.
Let us definep(z) knowing p(x’) forany 2’ <x x.
As |P,|, |P| < |X| = |Y| with X infinite, the following subset ot
Q. = p(P)U P, U{pla)|2d<xz}
is of cardinal |Q.| < |Y|. So we can define
p(z) = mine,. (Y — Q).
Thus p is injective andp(z) ¢ P, foreveryz € X — P.
Let us check thap is surjective. Assume thdin(p) # Y. Let
B = mine, (Y — Im(p)).
As {ze X —P|peP,}| < |X| wecandefine
a=mn{zeX-P|B&P, NB<yp)}
Soa € X — P and§ <y p(a).
As ¢ Im(p) and 8 ¢ P, , we havef ¢ @), hencep(a) <y § which is a contradiction. O

A completeedge-coloring of a regular relatioR is an edge-coloring: of R such thatR¢ is source-
complete and target-complete. Under the assumption ofxilbenaof choice, we can color in a complete
way any regular relation.

Proposition 7.7 In ZFC set theory, any regular relatio®® has a complete\ g-edge-coloring.

Proof.
Let R be aregular relation on a sét. We distinguish the two complementary cases below.
Casel Ar < Ng.
By Proposition 7.5,R has aA z-edge-coloringc.
So R is a deterministic and co-deterministic graph withz.| = Ar = Age.
Thus R¢ is source-complete and target-compléte ¢ is a complete edge-coloring.
Case 2 Ar > Ng.
Under AC, it suffices to show the existence of a complatg-edge-coloring forR connected.
Under AC and havingR connected, we havg/z| = |Ag|.
Thanks to AC, let us consider an initial well-orderirg of Vg.
By transfinite induction, let us define a completg;-edge-coloringe of R. Let A € V.
Letusdefinecon { A\, p) e RIA<pu} U{(uAN)eR|A<pu}
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knowing c on { (p,v) | < AV v <A}
First, we definec(\, ) forany (A, ) € R with A < p.
This is illustrated below fop < A < p.

c(p; 1)
c(\, p) A ?

nw
As Risregular,R(A) = { | (A p) € R} has cardinality|R(\)| = Ag. Let
P={peR\N|p<A} and p : P — Ag with p(p) = c(A,p) forany p € P.
Foranyu € R(\) — P, we define
P, = {clp.p) | (psp) ERNp<AL.

By Lemma 7.6, we can exteryl into a bijection R(\) — Ap such thatp(u) ¢ P, for
any 4 € R(\) — P. Itremains to define

c(A\,pu) = p(p) forany (\, ) € R and X < p.

Similarly, we definec(u, A) forany (i, \) € R with A < p.
This is illustrated below fop < A\ < pu.
c(p: p)

?
p N ?

d

We say that a grapl¥ is regular if —s¢ is regular. Forinstancés % ¢, t -% s, t 2 s} is a regular
graph. We also say that is co-regular if its unlabeled complement is regula# is a regular relation

onVg.
Under the assumption of the axiom of choice, we can resttiebfem 6.5 to obtain a characterization of
the generalized Cayley graphs of quasigroups.

Theorem 7.8 In ZFC set theory, the following graphs define the same family

a) the generalized Cayley graphs of quasigroups (resp. witiglat identity),

b) the generalized Cayley graphs of quasigroups with a lefititie(resp. an identity),

c) the simple, deterministic, co-deterministic, co-regusaiurce-complete, target-complete
(resp. and loop-complete) graphs.

Proof.

b) = a): immediate.

a) =— ¢): let G = C[M, Q] for some quasigroupV/ and @ C M.

By Proposition 7.2,G = C[M] 4 remains simple, deterministic and co-deterministic, seuand
target-complete.

Foranys e M, 57L> (s) = 04 .(s) = [M — Q] henceg is co-regular.

If in addition M has a right |dent|ty then, by Fact 5.2; is loop-complete.

¢) = b): let G be a graph which is simple, deterministic and co-determimisource and target-
complete. SoG is regular withAg = |Ag|.
If G is without loop (hence> is loop-complete) then we take a new laleeE A — A and we define
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G'=GU{s%s|seVg} If G hasatleastone loop, we pat' = G.
Moreover, suppose also thét is co-regular. By definition, the complement relation(@f

S ={(s,t)|s,teVa A {s}xAcx{t} N G =0}
is a regular relation oV .
By Proposition 7.7,5S has a complete s-edge-coloringe i.e. S¢ is a deterministic, co-deterministic,
source and target-complete graph. By definitidfi, is also simple.
Furthermore we can assume thét N Age = (.
Let H = G’ U S*. Thus H is source and target-complete. It is also complete, sindgi®rministic and
co-deterministic. Furthermore fak loop-completeH is loop-complete.
Let » be a vertex ofG. By Proposition 7.1(V¢, x,.) is a quasigroup for the edge-operatian of H.
By Proposition 5.3y is a left-identity (resp. is an identity) anf = C[Vg, —u(r)] with [s] = a
for any r -5 s. By label restriction toAg, G = C[Ve, —¢(r)] is a generalized Cayley graph of
(VG7 XT)' O

The co-regularity in Theorem 7.8 can not be removed. Foaits, the following graph:

PlusMinus = {i+2mj L i+@m+1)j|m>0A0<i<j}u{i-Sili>0}

U {i+@m+1)j-Li+2mj|m>0A0<i<j}

is deterministic, co-deterministic, simple, source-ctatgpand target-complete. Furthermore it is not
complete: there is no edge betwdeand2 and more generally between- (2m+1)j andi+ (2m+2)j
forany m > 0 and 0 < i < j. Finally it is 0-complete: 0 L j for any j > 0. By Proposition 7.2,
PlusMinus is not a generalized Cayley graph of a quasigroup.
By Corollary 7.3, the co-regularity in Theorem 7.8 can be weed for the graphs of bounded degree

which corresponds by Fact 6.3 to the finitely labeled graphahen G and G~ are deterministic and
source-complete.

Corollary 7.9 In ZFC set theory, a finitely labeled graph is a generalizegl®gagraph of a quasi-
group iff it is deterministic, co-deterministic, simpleusce and target-complete.
For instance the following graph of all the cycles:
Cycles= { (m,n) % (m,n +1(modm))|m >n>0}
is by Corollary 7.9 a generalized Cayley graph of a quasigrou

Let us summarize the characterizations obtained in ZFQytfeothe finitely labeledyeneralized Cayley
graphs.

Left-cancellative magmas
simple + deterministic + source-complete (6.6)
Left-quasigroups

| +co-deterministic + target-complete (7.8) Quasigroups

I + vertex-transitive (4.10) Groups

For all the generalized Cayley graphs (not necessarilyefiniabeled), we need the co-out-regularity for
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the left-quasigroups, and the co-regularity for the quasigs.

8 Decidability results

We have given graph-theoretic characterizations of gémetaCayley graphs of various basic algebraic
structures. These characterizations are adapted to detiehner a graphy is a generalized Cayley
graph, and if so, we got

G = C[Vg, —(r)] with [s] =a foranyr %¢ s
for the operation on/; which is either the path-operatios. with r a root, or the chain-operatios,. ,
or the extended chain-operatiorp with P a representative set dfomp(G), or the edge-operation
<c> %, for some completioncG> of G and for any vertex-.
We will show the effectiveness of these characterizatiors their associated operations for a general
family of infinite graphs. We restrict to the family of endgrdar graphs of finite degree [13] which
admits an external characterization by finite decompaositip distance which allows to decide the iso-
morphism problem, and an internal characterization asxsgfiphs of word rewriting systems which
have a decidable monadic second-order theory.

8.1 End-regular graphs

A marked graphis a couple(G, P) of a graphG with a vertex subse” C V;. We extend the graph
isomorphism to the marked graph&%, P) = (G', P’) if G =, G’ for some isomorphisng such that
g(P) = P', and we also writg G, P) =, (G', P’).
Let G be a graph. Th&ontier Fri(H) of H C G is the set of vertices commontd and G — H :
Frg(H) =Vg N Va_pg

and we denote b¥ndg(H) the set ofendsobtained by removingd in G:

Endg(H) = { (C,Frg(C)) | C € Comp(G — H) }.
We say thatG is end-regularif there exists an increasing sequentlg C ... € H,, C ... of finite
subgraphsH,, of G such that

G =U,>oHn and {J,~,Endg(H,) is of finite index for =
and two isomorphic ends with nonempt37 frontiers have theesdetomposition:
forany m,n > 0 and any(C, P) € End¢(H,,) and (D, Q) € End¢(H,,) with P,Q # 0,

if (C,P)=, (D,Q) thenC N Hy4p =4 D N H,4, foreveryp >0
with ¢’ the restriction ofg to the vertices ofC' N H,,, . This is illustrated as follows:
G Hpm

Hm+p Hn Hner

——

—1

Note that any end-regular graph is finitely labeled and ofdior countable vertex set. Furthermore any
end-regular graph of finite degree is of bounded degree. dlereevery end-regular graph has only a
finite number of non-isomorphic connected components.
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Any end-regular graph can be finitely presented by a detéstiirgraph grammar [6].
Any finite graph is end-regular. Any regular tree (having @dimumber of non isomorphic subtrees)
is end-regular. Except for the quater-grid and the gr@gbles all other graphs in this article are end-
regular. The following infinite graph:
E = {uwi-Suxi|ue{a,b}* ANze{aby Nie{0,1}}

U {wi-Sul—i)|ue{aby* ANic{0,1}}
of vertex set{a, b}*.{0, 1} is represented below.

This graph is formed by two disjoint source-compléteb }-trees whose every node of a tree is connected
by ac-edge to the corresponding node of the other tree. The geaghend-regular since it is generated
by the graph grammar [6] reduced to this unique rule:

a 1

0 e O e ©

Note that= is rooted and of bounded degree, simple, deterministic ardbterministic, source-complete
but not target-complete, forward vertex-transitive butvestex-transitive. By Theorem 3.Z, is a Cayley
graph of a cancellative monoid. Precisely = C[Vz, {a0, b0, 1}] with [a0] = a, [00] = b, [1] = ¢
for the cancellative monoidVz, x¢) with the path-operatiornx, defined for anyu,v € {a,b}* and
i,j €{0,1} by
ui *g vj = wok with k = i+ j (mod 2).

By Theorem 6.6,= is also a generalized Cayley graph of a left-quasigroup waittidentity, namely
({a,b}*.{0,1},-) for - the edge-operatior, of a completion<=> that we can define for any €
{a,b}*, z € {a,b},i € {0,1} by

ui - 0 = uxi ; wi - uxi = x0 for ui # 20 ; 20 - xz20 = 0

wi -0 =wi; ui-1=wul—-14); u- -ul-1d)=1

ui - v = v otherwise.
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The end-regularity of a graph can also be expressed on tlieagrA graphG is vertex-end-regulaif
Ve = Unso Ve with

Vo _g ... CV, C... finite and |, Ende(G)y, ) is of finite index for=.
This notion of vertex-end-regularity corregponds to thagée)end-regularity.

Lemma8.1 A graph is end-regular if and only if it is vertex-end-regula

Proof.
<. G, = G|y, suits.
=V, = Vg, suitssinceG -Gy, = G- (G, U Uk ecomp(c—c.) Glrrg (i) )- O

We say that a graplz is end-regular by distancdrom a vertexr if it is vertex-end-regular for the
sequence defined by,, = { s|dg(r,s) <n} foranyn > 0. Inthat case(s is connected and of finite
degree. Furthermore the sequer{ég,),,>o defined by

H, = Gy, = {(s,a,t) € G|dg(r,s) <n Adg(r,t)<n}
is a finite decomposition ofs. The regularity by distance is a normal form for the conneeted-regular
graphs of finite degree [6].

Proposition 8.2 For any connected grapldi: of finite degree,
G isend-regular < G is end-regular by distance from some vertex
<= (G is end-regular by distance from any vertex.

This normalization of the regularity by distance implieattfor any end-regular grap&' of finite degree,
the isomorphism problem is decidable: from any finite decositpn of GG, we can decide whether
s ~q t by comparing by distanc& from s with G' from ¢ [6].

Corallary 8.3 For any end-regular graph of finite degree~ is decidable.

The representation of an end-regular gra@hby a graph grammar is axternal representationf G,
namely which is up to isomorphism: the vertices@f are not taken into account. To recall decidable
logical properties on end-regular graphs, we presenttemal representationf these graphs by naming
their vertices by words.

8.2 Suffix recognizable graphs

Another way to describe the end-regular graphs of finite @egs through rewriting systems. labeled
word rewriting systemR over an alphabetV is a finite A-graph of vertex sel’y € N* i.e. R C
N*xAxN* and R is finite. Each edge: —x v is arule labeled byaq, of left hand sidex and right
hand sidev. Thesuffix graphof R is the graph

N*R = {wu -5 wv| (u,a,v) € R AN weE N*}.
For instance let us consider the rewriting syst&rover N = {a,b,0, 1} defined by
0-%a0 1-%al 0-5b0 1-5%b1 0-%1 1-50

The connected component of the suffix graphi. R of vertex 0 is equal to the graplE.
These suffix graphs give an internal representation of teregular graphs of finite degree [6].
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Proposition 8.4 A connected graph of finite degree is end-regular if and ohityi$ isomorphic to a
connected component of a suffix graph.

Any suffix graph N*.R can be obtained by a first order interpretation in the souoreplete N-tree
Tn = {u-“wualue N* ANae N} ie.

N*R = {u—"=v|Ty | ¢a(u,v)}
where for anya € Ag, ¢, is the following first order formula

9a(2,Y) * Viuawerd (2 Lz Az

1---Qn

and the path relation: “*=%" y for n > 0 and ay,...,a, € Ar can be expressed by the first order
formula

F20, 020 (20 =521 Ao oA Znl B 2 A g =2 A 2y = ).
As the existence of a chain between two vertices can be esguidy/ a monadic (second order) formula,
any connected component @f*.R can be obtained by a monadic interpretatiori/ia . As T has a
decidable monadic theory [14] and by Proposition 8.4, amnected end-regular graph has a decidable
monadic theory. This is generalized [1, 12] to thfix recognizable graphsver N which are the graphs
of the form

U, Wi(U; *5 V;) wheren >0 and Uy, Vi, Wi,..., Uy, Vy, W, € Rec(N*)

for Rec(N*) the family of recognizable (regular) languages ovér These graphs are exactly the ones
we obtain by monadic interpretations in té-tree [1, 12].

Proposition 8.5 The suffix recognizable graphs ovéf are the graphs obtained by monadic inter-
pretations inTy hence have a decidable monadic second order theory.

In particular, we can decide whether a suffix recognizabéplgiG is rooted or is connected. For any
vertex v of G, the subset of vertices connected#ois an effective regular language [6]. It follows
that we can extract a regular set of representents of theectethcomponents. Precisely let, be the
length-lexicographic order extending a linear order/gn

Lemma 8.6 For any suffix recognizable graphs over N,

the set{ min_ (Vi) | C € Comp(G) } is an effective regular language.
12

We can also decide first order properties like the simpligitiych can be expressed by the following first
order formula:

any /\a (xi>y = Vb¢axi>y)
and this the same for the properties of being deterministiedeterministic, source-complete, target-
complete, and loop-complete.
We still have to consider the decidability of the forwardtegrtransitivity and the vertex-transitivity of
end-regular graphs of finite degree. The suffix recognizgldphs form a strict extension of end-regular
graphs that coincide for graphs of finite degree [6].

Proposition 8.7 Any end-regular graph is isomorphic to a suffix recognizajsegph.
Any suffix recognizable graph of finite degree is end-regular
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Note that a suffix recognizable graph o' of finite degree is of the form

Ui, Wi(u =% v;) wheren >0, ui,v1,...,up, v, € N* and Wi,..., W,, € Rec(N*).
By Proposition 8.7, these graphs constitute an internakssmtation of end-regular graphs of finite de-
gree. Note also thaf A™ -5 A™+" |m,n >0} = A*(e % A*) is a suffix recognizable graph
which is not an end-regular graph.
By monadic interpretation (or by a simple saturation metbadgraph grammars), the family of end-
regular graphs is closed under accessibility.

Corollary 8.8 For any end-regular graphG and any vertex-, G,- is end-regular.
By Corollaries 8.3 and 8.8, we can decide whethdy; ¢ for G end-regular of finite degree.
Coroallary 8.9 For any end-regular graphz of finite degree,| ¢ is decidable.

The forward vertex-transitivity of rooted graphs can beul to the accessible-isomorphism of a root
with its successors.

Lemma8.10 A graph G of root r is forward vertex-transitive iffr |o s forany r —¢ s.

Proof.

Let G be a graph with a root such thatr | s forany r —¢ s.

Let us check that7 is forward vertex-transitive.e. r | s for any r — s.

The proof is done by induction on > 0 for r —p% s.

For n = 0, we haver = s. For n > 0, let ¢ be a vertex such that — 7' t —¢ s.

By induction hypothesis, we have|¢ ¢ i.e. f(r) =t for some isomorphisny from G, to G};. As
t —¢ s, there exists”’ such thatr — ¢ ' and f(r') = s. Sor’ | s.

By hypothesisr | r’. By transitivity of |, we getr /g s. O

Let us transpose Lemma 8.10 to the vertex-transitive graptes forward vertex-transitivity of connected
graphs can be reduced to the isomorphism of a vertex witlljecant vertices.

Lemma8.11 A connected graph with a vertexis vertex-transitive if and only if
r ~qg s foranyr — gz g1 s.

Let us apply Lemma 8.10 and 8.11 with Corollaries 8.3 and 8.9.

Corollary 8.12 We can decide whether a rooted (resp. any) end-regular gEfpinite degree is
forward vertex-transitive (resp. vertex-transitive).

In this corollary, we do not need the connected conditiorttiervertex-transitivity since any end-regular
graph has only a finite number of non-isomorphic connectedpoments. We can establish the effective-
ness of previous Cayley graph characterizations for thelaegraphs of finite degree. This decidability
result does not require the assumption of the axiom of choice

Theorem 8.13 We can decide whether a suffix recognizable gra&phof finite degree is a Cayley
graph of a left-cancellative monoid, of a cancellative midnof a group, and whetheé is a gener-
alized Cayley graph of a left-quasigroup, of a quasigroua group.
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In the affirmative,G = C[Vg, —¢(r)] where[s] = a for any » -%5 s and with a computable
suitable binary operation oV and vertexr.

Proof.

i) Cayley graph of a left-cancellative or cancellative monoid

By Proposition 8.5 and Corollary 8.12, we can decide whetfieis rooted, simple, forward vertex-
transitive, deterministic (resp. and co-deterministie) by Theorem 3.6 (resp. Theorem 3.7) whetlaer

is a Cayley graph of a left-cancellative monoid (resp. chatbée monoid).

In the affirmative and by Proposition 3.8/, *,-) is a left-cancellative (resp. cancellative) monoid where
r isaroot of G, andG = C[Vg, —¢(r)] where [s] = a for any r <% s. It remains to check that
the path-operatior,. is computable.

We just need thatz is deterministic and forward vertex-transitive.

Let s,t € V. By Proposition 3.5, x,. t is a vertex that we can determine. The label sgt(i,.t) =
{ue Ag | r ¢t} ofthe paths fromr to ¢ is an effective non empty context-free language [6]: we
can construct a pushdown automaton recognidipgdr, t) hence we can compute a worde L (r, t).
Thus s *,. t is the target of the path from labeled byu i.e. s —“¢ s *, t.

ii) Cayley graph of a group

By Proposition 8.5 and Corollary 8.12, we can decide whetheis connected, vertex-transitive, deter-
ministic and co-deterministié.e. by Theorem 4.7, whethe¢ is a Cayley graph of a group. In the
affirmative and by Proposition 4.6, it remains to check that¢hain-operatiorx,. is computable where

r is any vertex ofG. We have seen that*, = &*,.. As r is a root of G which is deterministic and
forward vertex-transitive and by (i}, is computable.

iii) Generalized Cayley graph of a left-quasigroup

As G has a decidable first order theory, we can decide whefheis simple, deterministic, source-
completei.e. by Theorem 6.6, whethef; is a generalized Cayley graph of a left-quasigroup. In the
affirmative and by Propositions 5.3 and 6.1, it remains tackhbat the edge-operation.. x,- iS com-
putable wherer is any vertex and<G>> is the completion ofG' defined in the proof of Theorem 6.6.
This edge-operation that we denote bhas been defined for any;t € V5 by

s Sas-t for r Lot
r%os-t for s -sot and (a,b) € £, —
st =t for t € Vg — (—a(r) U —q(s))

wherel, = {(a,b) |3t (r gt As %, ) } and to each injective functiofi : A — Ag, we
have associated a permutatiéron A, extending/. Thus - is computable.
Moreover we can check thatis an effective ternary suffix-recognizable relation.

iv) Generalized Cayley graph of a quasigroup

As G has a decidable first order theory, we can decide whethiersimple, deterministic, co-deterministic,
source and target-compleiee. by Corollary 7.9 and under the assumption of the axiom of aoi
whetherG is a generalized Cayley graph of a quasigroup.

Assume that is simple, deterministic, co-deterministic, source amgeggcomplete.

We do not need the assumption of the axiom of choice: we wilhdea computable quasigroup operation
on Vi . Let r be any vertex ofG.

By Proposition 7.1 (and as for the proof of Theorem 7.8), isudficient to define a complete graph
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H O G of vertex setV with the same properties & such thaty x,. is computable.
When V; is finite and by Lemma 7.4, such a completiéh is effective hencey x,. is computable. We
have to deal with the case whet; is infinite.
The setVy is a regular language over some finite alphabet that we ootidhyt
For any integeri > 0, we can compute théth vertex v; by length-lexicographic order.
We can assume that the finite label skt is disjoint of N. Let us define a mappin@’ from NxN into
A UN such that the completion aff is H = { v; e vj 4,7 >0}.
By Lemma 7.6 and Proposition 7.7, is defined for anyi, 7 > 0 by
(i, ) a if (v,a,v;) €@
J min(N — {T(;,0),...,T(i,j — 1), T(0,5),...,T(i — 1,5)}) otherwise.
Thus T is a Latin square: for each € N and a € Ag UN, there are uniquej, & € N such that
T(i,j) = a = T(k,i). ThereforeT is computable hence alsgx,. .
V) Generalized Cayley graph of a group
As G has a decidable first order theory and by Corollary 8.12, wedsride whethelG is simple,
vertex-transitive, deterministic and co-determinigte. by Theorem 4.10 and under the assumption of
the axiom of choice, whethe® is a generalized Cayley graph of a group.
Assume thatG is simple, vertex-transitive, deterministic and co-deii@istic.
We do not need the hypothesis of the axiom of choice: we wiindea computable extended chain-
operation. LetN be the alphabet of the words 6f. We take a linear order oV. By Lemma 8.6,
P = {min_ (V&) | C € Comp(G) }
is an effective regular language.
Let Rk(u) = [{v € P|v <, u}| betherankofu € P accordingto <,, i.e. u is the RKu)-word
in P by <,,. We have a grougP, +) for v + v defined for anyu,v € P by
Rk(u +v) = Rk(u) + Rk(v) (mod |P|) for P finite,
and for P countable, we consider the bijectidn || : P — Z defined for anyu € P by

<Ll(

Ll Rhk(u) if Rk(u) is even,
u =

—BEWEL it Rk(u) is odd
and we defineu +v e P by |lu+ov| = ||ul|+ ]| v].

Let x € Vi . Itis connected ta, = min_ (V) for C € Comp(G) andz € V¢ .

The label setl, = {u € (Ag U Ag)* | v, —=¢ = } of the chains between, and x is an effective
context-free language. A& is vertex-transitive, the extended chain-operatiory has been defined by

ol .
Upty — ¢ -y With ¢, € L, and?, € L,,.
Thus - is an effective group operation. O

We can consider the generalization of Theorem 8.13 to alttffiéx-recognizable graphs (allowing ver-
tices of infinite degree) which form the first level of a stagrhrchy for which any graph has a decidable
monadic theory [5]. To extend Theorem 8.13 to any graph of tierarchy, we have to decide on the
forward vertex-transitivity (resp. vertex-transitivitwhen these graphs are deterministic (resp. and co-
deterministic).

The decidability result given by Theorem 8.13 is a first aggilon of the Cayley graph characteriza-
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tions presented in this paper. Another application is taides differently a generalized Cayley graph
by defining another operation on its vertex set. A trivialrapde is given by the quasigrou(?, —) of
right identity 0. Its Cayley graphC(Z) is strongly connected, vertex-transitive, determinisiid co-
deterministic. Its path-operation frof is x; = + hence by Theorem 4.4, it is equal & Z] for the
group (Z,+) with [n] = —n forany n € Z. In particular for anyP C Z, the generalized Cayley graph
ClZ, P] of the quasigroup(Z, —) is equal to the generalized Cayley graghZ, —P]’ of the group
(Z,+) with [—-n]’ = [n] for any n € P. Similarly by Theorem 6.6, any finitely labeled generalized
Cayley graphG of a left-cancellative magma is a generalized Cayley grdphleft-quasigroup and its
operation is computable fo& end-regular.

9 Conclusion

We obtained simple graph-theoretic characterizationsCayley graphs of elementary algebraic struc-
tures. We have shown the effectiveness of these charaatierig for infinite graphs having a structural
regularity. This is only a first approach in the structuraatetion and its effectiveness of Cayley graphs
of algebraic structures.

This paper is archived in arXiv:1803.08518.
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