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3CPHT, École Polytechnique, CNRS, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau, France

4ETH Zürich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland

(Received 17 October 2018; published 27 December 2018)

Motivated by the relation existing between the gluon density in a hadron and the multiplicity of the
particles measured in the final state of hadron-nucleus collisions, we study systematically the fluctuations
of the gluon density in onia, which are the simplest dilute hadrons, of different sizes and at various
rapidities. We argue that the small and the large-multiplicity tails of the gluon distributions present
universal features, which should translate into properties of the multiplicity of the particles measured in the
final state of high-energy proton-nucleus collisions, or of deep-inelastic scattering at a future electron-ion
collider. We propose simple physical pictures of the rare events populating the tails of the multiplicity
distribution that allow us to derive analytical formulas describing these universal behaviors, and we
compare them to the results of Monte Carlo simulations.
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I. INTRODUCTION

Measurements of the number of particles produced in the
final states of high-energy hadron-nucleus (p-A) collisions
have opened new windows in the study of dense partonic
systems. Indeed, the multiplicity of particles detected in
p-A collisions in the region of fragmentation of the hadrons
is expected to be sensitive to the properties of their partonic
content at the time of interaction. Nowadays, distributions
of particle multiplicities are measured with great accuracy
at particle colliders, most notably, in p-Pb collisions at the
Large Hadron Collider (LHC)[1–3], and the possibility of
relating the experimental data to the small-x dynamics of
the parton distributions has triggered a lot of activity in
the theoretical community [4–6]. A striking observation
made in experiment is that multiplicity distributions in p-Pb
collisions present a high-multiplicity tail that is much
longer than in Pb-Pb collisions, as expected from the fact
that p-A collisions are more fluctuation-dominated [7].
This tail may, then, contain valuable information about the
wave functions of the projectile protons, and their event-by-
event fluctuations.
Models of multiplicity fluctuations in the framework of

high-energy hadronic collisions are mainly of two kinds.
On the one hand, we have purely phenomenological

models, that serve as initial conditions for hydrodynamic
calculations, and that are typically based on rather ad hoc
modifications of the Glauber model [8,9]. These models
have largely grown in complexity over the past few years,
and include now prescriptions to model the subnucleonic
degrees of freedom (d.o.f.) in the proton [10–13]. Although
such prescriptions are very successful in reproducing the
experimental data, providing insight about the underlying
dynamics of the parton distributions is beyond their scope.
A different kind of calculations of particle multiplicities,
that takes as input the configurations of gluons inside
protons and nuclei, have instead been achieved within the
color glass condensate picture [14–18] of high-energy
quantum chromodynamics (QCD). These calculations are
also very successful in phenomenological applications.
A famous example is that of the number of gluons produced
from the decay of color flux tubes in the glasma framework
[19], which is distributed according to a negative binomial
distribution, whose long tail at large multiplicity provides
naturally a good description of proton-proton data.
In this paper, we work in the theoretical framework of

high-energy QCD, and, following the picture of particle
production introduced in Refs. [20,21], we argue that the
multiplicity of particles probed around some off-forward
rapidity in the region of fragmentation of the hadrons
reflects, in each event, the integrated gluon density in the
corresponding realization of the Fock state of the hadron at
the time of interaction. In this picture, then, fluctuations of
the multiplicity of particles are strictly related to the event-
by-event fluctuations of the gluon density. Instead of study-
ing this phenomenon directly in the case of proton-nucleus
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collisions at the LHC, which will require us to introduce
some amount ofmodelization for the evolution of the proton,
we focus on the simpler case of onium-nucleus collisions,
where one can gain a very solid theoretical understanding in
controlled asymptotic limits that allow to study multiplicity
fluctuations analytically. To this purpose, we shall work
within the color dipole model (supplemented with an
infrared cutoff for parton confinement), whose formulation
is particularly well suited to address this problem.
Our starting point is the main result of Ref. [21], namely,

an analytical estimate of the behavior of the high-
multiplicity tail of the gluon number density in a boosted
onium. After reviewing this calculation, we extend the
analysis to the opposite case of low-multiplicity events, and
we derive a new formula for the behavior of the low-
multiplicity region of the gluon number density. However,
both our calculation and that of Ref. [21] rely largely on
conjectures, and leave important parameters undetermined.
The main thrust of this paper is, eventually, that of checking
the validity of these derivations, and better understand
them, by means of extensive Monte Carlo simulations of
the small-x evolution of the Fock state of an onium in the
dipole picture. Our goal is that of showing that the
asymptotics of gluon density fluctuations in an onium
present robust universal features.
Our motivation for pursuing theoretical studies of

multiplicity fluctuations in the dipole model, pioneered
over 20 years ago by Salam [22], is twofold. First, the
theoretical understanding of dipole evolution has improved
since then, as well as the numerical capabilities, making
possible much more accurate evaluations of distributions.
Second, and more importantly, there is now a strong
motivation to better understand this physics, since the
LHC is taking data for which such studies are relevant
and timely. Our work may also be of interest for a future
electron-ion collider, and actually, easier to connect to the
experimental data in that case: Indeed, in a high-energy
scattering, the interaction between an electron and an ion is
mediated by a photon, whose qq̄ (onium) component of the
wave function is perfectly determined in the framework of
quantum electrodynamics (QED).
Our paper is organized as follows. In Sec. II, we recall

the connection between the final-state multiplicity in
hadron-nucleus collisions and the integrated gluon number
density in the hadron, and we explain how to compute
the fluctuations of the latter in the case in which the hadron
is a heavy onium. In Sec. III, we propose physical pictures
of the events populating the tails of the gluon number
distributions, and we establish analytical formulas to
describe them. Section IV contains the main new results
of this paper, namely, a thorough numerical investigation of
the tails of gluon density fluctuations in an onium. The final
section V presents our conclusions. Technical details on the
numerical calculations are gathered in the Appendices.

II. MULTIPLICITY IN HADRON-NUCLEUS
COLLISIONS

We recall the picture of particle production in p-A
scattering introduced in Refs. [20,21]. We first relate the
final state particle multiplicity to the gluon number density
in the Fock state of the incoming hadron at the time of its
interaction with the nucleus, before explaining how the
event-by-event fluctuations of the gluon density can be
thought of.

A. Relation to the gluon number density
in the hadron

Let us consider most generally the scattering of a dilute
hadron, such as a proton or a quarkonium (which may be
either a model for a hadron, or an actual state of a virtual
photon), off a large nucleus, occurring at an energy
corresponding to the total relative rapidity Y, assumed
large compared to 1. The gluons in the Fock state of the
hadron at the time of the interaction1 that have a transverse
momentum smaller than the saturation scale of the nucleus
undergo scatterings, which may put them on-shell with
high probability. The ones that have a transverse momen-
tum larger hardly interact, and thus do not pick up the
energy that would be needed to produce them. Therefore,
they must recombine with other partons before they
reach the final state. Hence, naively, the number of hadrons
measured in the final state at a given rapidity y0 with
respect to the nucleus, in a given event, is proportional to
the number of gluons with transverse momentum smaller
than the saturation momentum Qsðy0Þ of the nucleus in the
corresponding Fock state of the hadron [20]. It is tanta-
mount to the gluon number density integrated up to this
momentum which carry a specific momentum fraction
of the hadron in the initial state. We shall denote it by
xGðx;Q2

sðy0ÞÞ. The ordinary gluon density xG would be
equal to the mean of xG when averaged over the events.
More precisely, let us call M the mass of the onium and

dN=dy the number of gluons per unit rapidity observed at
an angle corresponding to the rapidity y0 relative to the
nucleus (resp. y≡ Y − y0 relative to the onium). Then, a
calculation in the double-logarithmic approximation of
QCD leads to [20,23]2

dN
dy

¼ xGðx;Q2
sðy0ÞÞ where x ¼ e−y

Qsðy0Þ
M

: ð1Þ

1We recall that the Fock state of a highly boosted hadron is
essentially made of gluons. States containing extra quark-
antiquark pairs are subdominant, and can be neglected in the
so-called “leading-logarithmic” approximation. (See below for a
definition of the latter.)

2The relation was actually proven for the usual gluon density,
namely averaged over events. We assume it holds true also for
each event individually.
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A schematic representation of the mechanism behind the
correspondence formalized by this equation is given in
Fig. 1. The gluons/hadrons produced in the final state have
transverse momentum of the order of Qsðy0Þ: Indeed, the
multiple scatterings broaden the transverse momentum of
the gluons to that value.
Note that in the present model, the saturation scaleQsðy0Þ

is a momentum which fully characterizes the nucleus [24]
and depends only on the rapidity y0, not on the considered
event. Indeed, since the nucleus in its ground state is already
a dense object, the statistical fluctuations of its partonic
content can be neglected throughout its rapidity evolution.
The Fock state of the hadron instead results of a stochastic
evolution up to the rapidity y, starting with a few partons.
Hence it shows large event-by-event fluctuations, which
directly translate into large fluctuations of the multiplicity
observed in the final state.
Although our paper has a purely theoretical scope, a

comment on the phenomenological applicability of our
results and a justification of the relevance of our picture for
proton-nucleus scattering at the LHC is in order. Our
calculation requires a large nuclear saturation momentum
Qsðy0Þ, of a few GeV, in order for perturbation theory
to be justified; Hence the rapidity y0 should be relatively
large. The hadron carries the remaining available rapidity,
Y − y0, which is assumed to be large, but small compared
to rapidities at which nonlinear effects should be taken

into account in its evolution (namely, parametrically,
Y − y0 ≪ ln2 1=α2s , see for example [25–27]). This is
consistent with the kinematics of LHC, where the beam
rapidity is of order Y ≃ 10, in such a way that we may pick
a suitable value of y0, to allow a large-enough saturation
momentum in the nucleus, and still moderate evolution in
the proton.
The simplest hadron we can think of is a quark-antiquark

pair in a color singlet state, which we call “onium”. The
Fock states of such an object are most easily described,
analytically and numerically, in the framework of the color
dipole model. Let us recall briefly how this works.

B. Event-by-event fluctuations of the
gluon number density

When probed in its rest frame with a wave of wavelength
of the order of its spatial extension, an onium is viewed
as a bare quark-antiquark pair: Indeed, although they are
ubiquitous, the quantum fluctuations are too short-lived on
the scale of the interaction time to play a role in the
interaction. If instead the onium is probed with the same
wave in a frame in which it has a large rapidity, then the
lifetimes of its quantum fluctuations are Lorentz-dilated.
Therefore, it appears essentially as a set of a large number
of gluons.
One can evaluate the probability of a particular Fock

state at a given rapidity by computing all diagrams
contributing to the probability amplitude of finding the
onium in that state. In the limit of a large number of colors
Nc, and in the leading logarithmic approximation in which
one keeps only the contributions for which the number of
powers of y accompanying each power of αs is maximum, a
convenient way to organize the calculation is the so-called
color dipole model [28].
The dipole model uses coordinates in the two-

dimensional plane orthogonal to the worldline of the
onium, instead of momenta, to label the partons in the
Fock state. Thanks to the large-Nc limit, the set formed by
the initial quark-antiquark pair along with its gluon
fluctuations can be replaced by a set of color dipoles,
the endpoints of which coincide with the position of the
quark, of the antiquark, or of one of the gluons. The graphs
contributing to a given state are generated by a stochastic
branching process in rapidity [28]. The latter is completely
defined by the elementary probability that a dipole defined
by the pair of the two-dimensional position vectors of its
endpoints, ðx0; x1Þ, branches into two dipoles, ðx0; x2Þ and
ðx2; x1Þ respectively, by emitting a gluon at position x2
when its rapidity is increased by the infinitesimal amount
dy. A calculation in the framework of perturbative QCD
leads to the following expression for the probability [28]

dp0jpQCD ¼ ᾱdy
d2x2
2π

x201
x202x

2
12

; ð2Þ

FIG. 1. Space-time picture of a scattering event of an onium off
a nucleus. The frame is chosen such that the nucleus is left-
moving and boosted to the rapidity y0, and the onium is right-
moving at rapidity y≡ Y − y0. In the particular event represented
here, the onium fluctuates into 4 dipoles. Two of them are much
larger than 1=Qsðy0Þ and interact with the nucleus, while the two
others are much smaller than 1=Qsðy0Þ and do not interact. The
scatterings are represented by gluon exchanges with the bulk of
the nucleus. In a double-logarithmic scheme, only the gluons
which are at the endpoints of the dipoles that scatter materialize in
the final state, eventually in the form of hadrons of transverse
momentum of the order of Qsðy0Þ. The other gluons recombine
before they reach the final state. (The decay products of the
nucleus are not represented).
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where ᾱ≡ αsNc=π, and we introduce the notation
xij ¼ jxijj, with xij ¼ xi − xj. Analyzing this equation,
one sees that there is a non-negligible probability that
the gluon be emitted at a large distance of the initial onium.
However, confinement should forbid, at least in principle,
the production of dipoles which are bigger than, typically,
1=ΛQCD. Being an intrinsically nonperturbative effect,
we cannot attain it through a perturbative calculation.
Therefore, we add it to the original model in the form of
a “cutoff function” Θ that forbids dipoles of size typically
larger than some infrared length scale R ∼ 1=ΛQCD to be
produced. This leads to the following modification of the
splitting probability:

dp0jpQCD → dp0 ¼ ᾱdy
d2x2
2π

x201
x202x

2
12

Θðx02; x12;RÞ: ð3Þ

Most generally, the cutoff function Θ must satisfy the
following limits:

Θðx02; x12;RÞ →
�
0 if x02 ≫ R or x12 ≫ R

1 if x02 ≪ R and x12 ≪ R:
ð4Þ

It is also expected to reach 0 “fast enough” (that is, at least
exponentially) when x02 or x12 become larger than R. This
function is arbitrary in our treatment, however, it will
become clear that the observables we are interested in can
depend only marginally on its precise form.
The relation between the number of dipoles and the

gluon density is very simple if one restricts oneself to
double-logarithmic accuracy:

xGðx;Q2
sÞ ¼

∂
∂y nðrs ¼ 1=Qs; x01; yÞ

����
y¼ln 1=x

; ð5Þ

where nðrs; x01; yÞ is the number of dipoles of size larger
than rs in the state of an onium of initial size x01, observed
at rapidity y. The derivative enters the right-hand side
because xGðx;Q2

sÞ is the density of gluons of a fixed
momentum fraction x, while nðrs; x01; yÞ enumerates the
dipoles which have a rapidity smaller than y. It is the
double-logarithmic approximation that enables one to
identify the size rs to the inverse momentum 1=Qs;
Sizes and momenta being conjugate to each other through
Fourier transform, this identification does of course not
hold in general.
Thanks to Eq. (5), xG, and thus, through Eq. (1), the

number of particles produced in a given rapidity slice in the
final state, have the same fluctuations as the number of
dipoles in the Fock state of the onium at the time of the
interaction. Therefore, the scope of the following sections
will be to study first analytically, and then numerically, the
probability Pnðrs; x01; yÞ to have n dipoles of size larger
than rs in the Fock state of the onium after evolution of a
dipole of initial size x01 over the rapidity interval y.

III. TAILS OF THE DIPOLE
NUMBER DISTRIBUTION

In this section, we study analytically the high and
low-multiplicity tails of the dipole number distribution
Pnðrs; x01; yÞ, developing physical pictures which will
prove useful for the interpretation of the numerical data.
“High” and “low” are intended with respect to the

expected multiplicity. In both cases, we will assume that
the dipole numbers are much larger than unity. In this limit
n ≫ 1, the probability Pn, which is defined as a function of
the integer n, can be thought of as a function of a
continuous variable, and thus as a probability density.
The probability to observe a number n of dipoles in the
interval ½n1; n2� then reads

R
n2
n1

dnPn.

A. High-multiplicity tail

1. Heuristics

1. No infrared cutoff. Let us recall that in perturbation
theory, in the absence of an infrared cutoff, the rapidity-
evolution of the expected number of dipoles larger than
some size rs, starting from an onium of size x01, is
governed by the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
equation [29,30]

∂
∂y n

ð1Þðrs; x01; yÞ ¼
Z

dp0jpQCD
dy

½nð1Þðrs; x02; yÞ

þ nð1Þðrs; x12; yÞ − nð1Þðrs; x01; yÞ�;
ð6Þ

where the integration goes over the whole transverse plane.
Denoting by ᾱχðγÞ, where

χðγÞ ¼ 2ψð1Þ−ψðγÞ−ψð1− γÞ with ψðxÞ ¼ d lnΓðxÞ
dx

;

ð7Þ

the eigenvalue of the kernel of the BFKL equation
associated to the eigenfunction ðx201=r2sÞγ, we can write
the solution of equation (6) as a continuous superposition
of the eigenfunctions weighted by eᾱyχðγÞ. The initial
condition corresponding to one single dipole of size x01
reads nð1Þðrs; x01; y ¼ 0Þ ¼ θðx01 − rsÞ. The solution to the
BFKL equation then reads

nð1Þðrs; x01; yÞ ¼
Z

dγ
2iπγ

�
x201
r2s

�
γ

eᾱyχðγÞ: ð8Þ

The leading behavior of nð1Þ at large rapidities is given by a
saddle point:
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nð1Þjspðrs; x01; yÞ

≃
1

γs

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πᾱyχ00ðγsÞ

p �
x201
r2s

�
γs
eᾱyχðγsÞ;

where γs solves ᾱyχ0ðγsÞ þ ln x201=r
2
s ¼ 0: ð9Þ

It is useful to represent the dipole evolution in the two-
dimensional ðr; ỹÞ plane as the curve connecting the points
ðx01; 0Þ and ðrs; yÞ and that solves the saddle-point equation

ỹ ¼ 1

ᾱχ0ðγsÞ
ln r2s=r2; ð10Þ

when the value of γs is fixed by the boundary conditions,
i.e., when it solves Eq. (9). In log r scale, this curve is just a
straight line, see Fig. 2. It represents the most probable
evolution path.
If instead of the expected dipole number nð1Þ we are

interested in the probability Pn of having a given number n
of dipoles in the Fock state, or if, equivalently, we focus on
the set of moments nðkÞ of the dipole number, then the path
that corresponds to the main contribution is not necessarily
a straight line. It was shown in Ref. [21] that when n is large
compared to its expected value (or equivalently, k is large
compared to 1), this path essentially consists in two steps:
The initial onium generates, through a fast evolution, a
dipole of large size rmax, which subsequently decays into
many (mainly smaller) dipoles. The presence of the large
dipole at an early stage of the evolution is necessary if one
asks for a large multiplicity, because large dipoles yield
much more offspring of size larger than rs than smaller

ones. This first step has a low probability, which decreases
as rmax increases. But on the other hand, the number of
offspring increases with rmax. The optimal size rmax of
the intermediate large dipole depends on the maximum
rapidity and of the final number of dipoles of which the
probability is evaluated.
Following Salam in Ref. [31], we assume that the

production of the large dipole occurs literally in the very
first step of the evolution. As we will check a posteriori, its
size increases with n, and thus rmax can be made arbitrarily
large, say rmax ≫ rs, by selecting very large values of n at
fixed y. Once the large dipole has been produced, it decays
into much smaller ones. This second step in the evolution is
dominated by decays which are strongly ordered in the
dipole sizes, from large to small. The solution to the saddle-
point equation in Eq. (9) is close to γs ≃ 0, a region in
which χðγsÞmay be approximated by 1=γs. In this limit, the
number of dipoles larger than rs resulting from the decay of
a dipole of size rmax ≫ rs reads

nð1ÞjDLðrs; rmax; yÞ ≃ e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱy ln r2max=r2s

p
: ð11Þ

This is the well-known “double-logarithmic” (DL) limit.
In Ref. [21], it was proven that the fluctuations of the
dipole number n on such an evolution path are suppressed
exponentially. We will check a posteriori that these
fluctuations are overall negligible, and thus, that we can
assume that the second step of the evolution is determin-
istic. Consequently, the probability to observe more than
say N dipoles,

R
∞
N dnPn, coincides with the probability

that rmax be larger than R, where R is such that
nð1ÞjDLðrs;R; yÞ ¼ N. Solving this elementary equation
for R, the relation between the probability distribution of
the dipole number n to that of the size of the intermediate
large dipole takes the following form:

Probaðn ≥ NÞ ¼ Probaðrmax ≥ rseln
2N=ð8ᾱyÞÞ: ð12Þ

The probability that the initial dipole of size x01 splits
into a dipole of size r larger than some given R, itself much
larger than x01, is suppressed by the ratio of the squared
sizes, see Eq. (3). Indeed, the distribution of the sizes of
dipoles produced in the splitting of a dipole of size x01,
conditioned to the occurrence of a splitting into similar or

larger-size dipoles reads 1
N ᾱ

dp0jpQCD
dy , where N is a normali-

zation factor of order 1. Thus the probability of having a
dipole of size rmax larger than R is just the following
integral:

Probaðrmax≥RÞ ≃
R≫x01

1

N

Z þ∞

R

d2x2
2π

x201
x202x

2
12

≃
1

2N
x201
R2

: ð13Þ

Now, to arrive at the distribution of the dipole number n, it
is enough to replace R by rseln

2N=ð8ᾱyÞ [see Eq. (12)] in the
previous equation. Note that this quantity is the typical size

FIG. 2. Evolution paths leading to typical or high-multiplicity
dipole configurations. The typical evolution can be represented as
a straight line starting with the onium of size x01 at rapidity ỹ ¼ 0
through the final size rs at rapidity ỹ ¼ y (dotted line). In large-
multiplicity rare events, there are two steps: in the first step, the
initial onium rapidly evolves into a dipole of large size, function
of the final multiplicity (dashed line), or of the order of the
effective infrared cutoff R in the presence of such a cutoff
(continuous line). This large dipole subsequently decays into
smaller ones through normal BFKL evolution (second step).
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of the intermediate dipole, which confirms the a priori
assumption made above that it grows with n. Taking finally
the derivative with respect to N and evaluating it at N ¼ n,
we obtain the density3 Pn:

Pn ¼ −
dProbaðn ≥ NÞ

dN

����
N¼n

¼ 1

2N
x201
r2s

1

2ᾱy
ln n
n

exp

�
−
ln2n
4ᾱy

�
: ð14Þ

We note that the large-n tail of Pn is much fatter than an
exponential decay. This is the a posteriori justification for
having neglected the stochasticity in the second step of
the evolution, consisting in the decay of the large dipole of
size rmax.
A comment is in order. Dipole evolution is often

assimilated with a branching random walk (BRW). This
is correct when one looks, for example, at an observable
probing the number of dipoles overlapping with a given
point in the transverse plane. But in a BRW, the number of
objects after some given evolution is distributed exponen-
tially, by contrast with Eq. (14). The fat tail we find here is a
feature of QCD which shows up when we count all dipoles
(larger than a given size, to talk of an infrared-safe quantity)
independently of their transverse position. Technically, it is
related to the size-dependence of the dipole splitting rate,
while in a BRW such as, e.g., the branching Brownian
motion, particle splitting and diffusion are completely
uncorrelated. We are going to see that we actually recover
an exponential distribution when we enforce an infrared
cutoff on the evolution.
2. Enforcing an infrared cutoff. We now consider the

modified dipole model which incorporates an infrared
cutoff in the form of the Θ function, see Eq. (3).
With an infrared (IR) cutoff, the typical size of the

dipoles generated in the first step of the evolution even-
tually becomes limited by the infrared boundary if one
focuses on very large values of n. Hence the size rmax of the
intermediate dipole will always end up being of order R.
So unlike in the purely perturbative QCD case, the
stochasticity in n cannot come from the first step. It
necessarily stems from the second step, consisting in the
decay of the large dipole. Let us try to understand the form
of the distribution of these fluctuations.
The IR cutoff forces the produced dipoles to be smaller

than, typically, R throughout the evolution. On the other
hand, because it is probabilistically disfavored, a small
dipole does not split to much larger dipoles. So starting
from a dipole of size close toR, the final number of dipoles
is essentially built up by a backbone of successive splittings
of dipoles to similar-size or smaller, but not much smaller,

dipoles, each of which gets dressed by a number of very
small dipoles (of size of order rs) proportional to the
rapidity interval over which it evolves. Hence this second
step in the evolution essentially looks like a 1 → 2
branching process, in which the branchings occur at an
almost constant rate, as in a BRW (see the comment above).
The fluctuations in such a process are known to be
exponential, ∝ e−n=n1=n1, where n1 is the mean number
of objects eventually produced at the final rapidity.4 Hence,
we expect the shape of the dipole number distribution to
follow such a law. We now need to understand the overall
normalization, as well as the parameter n1.
Concerning the slope of the exponential, n1, a good

estimate can be obtained from the mean number of dipoles
produced by an initial dipole of size rmax of order R. It
satisfies a modified BFKL equation, i.e., Eq. (6) with the
substitution dp0jpQCD → dp0, which however cannot be
solved exactly because the eigenfunctions of the kernel of
such an equation are not simple in general. However, we
may obtain a good approximation to its solution by
replacing the Θ function by a sharp Heaviside distribution,
which in turn is tantamount to an absorptive boundary.
Then, the method of images can be used to arrive at a
solution to this problem.
We start with the solution to the ordinary BFKL

equation without a cutoff, Eq. (8). We may evaluate the
integral in the saddle point approximation for large y,
using Eq. (9) with the substitution x01 → r. We anticipate
that the saddle point equation (9) for γs has a solution near
γs ¼ 1

2
, therefore we replace χðγÞ by its expansion around

γ ¼ 1
2
:

χðγsÞ ≃ χ

�
1

2

�
þ χ0

�
1

2

��
γs −

1

2

�
þ 1

2
χ00
�
1

2

��
γs −

1

2

�
2

¼ 4 ln 2þ 14ζð3Þ
�
γs −

1

2

�
2

; ð15Þ

where ζ is the Riemann zeta function. Then

nð1Þjspðrs; rmax; yÞ ≃ eᾱy4 ln 2
rmax

rs

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

πᾱy14ζð3Þ

s

× exp

�
−
ln2ðr2max=r2sÞ
ᾱy56ζð3Þ

�)
: ð16Þ

Following Ref. [33], the absorptive boundary is imple-
mented through the method of images applied to the

3Only the exponential factor is under control in Eq. (14): the
other factors are not systematic. It was tested successfully against
numerical simulations of the dipole model already in Ref. [31].

4In a 1 → 2 branching process in time at fixed rate r, a
straightforward calculation shows that the probability to have n
particles in the system at time t reads e−rtð1 − e−rtÞn−1, when one
starts with one particle at t ¼ 0. Since hni ¼ ert, this probability
also writes e−n=hni=hni when n ≫ 1 (see e.g., Ref. [32], Sec. III).
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diffusive part, represented (up to numerical constants) by
the factor in the curly brackets in the previous equation.
The result reads

nð1Þjsp;Θðrs; rmax; yÞ ≃ eᾱy4 ln 2
rmax

rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

πᾱy14ζð3Þ

s

×

�
exp

�
−
ln2ðr2max=r2sÞ
ᾱy56ζð3Þ

�

− exp

�
−
ln2ðR4=r2maxr2sÞ

ᾱy56ζð3Þ
�	

: ð17Þ

It is easy to check that this solution obeys the (ordinary)
BFKL equation, and that it satisfies indeed the boundary
condition nð1Þjsp;Θðrs;R; yÞ ¼ 0.
We observe that there is an optimal dipole size, that

maximizes the mean number of dipoles at the end of
the evolution: nð1Þjsp;Θ as a function of rmax exhibits a
maximum at rmax ¼ OðRÞ, located between 0 and R.
Indeed, it vanishes linearly with rmax as rmax → R as a
consequence of the presence of the absorptive boundary,
and also goes to zero as rmax → 0.
Concerning the normalization of the exponential, the

probability to generate a dipole of size rmax of order R
in the first step of the evolution is a factor in Pn
independent of n for large n. It can be estimated by
replacing R by R in Eq. (13): The result is proportional
to x201=R

2.
All in all, these heuristic considerations lead us to the

following expression for Pn:

Pn ∝
x201
R2

1

n1
e−n=n1 : ð18Þ

This formula is indeed of the same form as the one
derived in Ref. [21] with a different, more mathematical,
method. The advantage of the present heuristic approach is
that it comes with a simple picture of the evolution of the
Fock states into high-multiplicities, while the more abstract
method uses the factorial moments, for which it may be
more difficult to build an intuition. Also, we see that we
have not used any detailed property of the cutoff function
Θ: It just needs to be “sharp enough,” namely it must decay
faster than some power of R=x02, when x02 (and thus x12)
gets larger than R. This shows that the high-multiplicity
tail of the distribution of n cannot be very sensitive to the
precise form of Θ.
Note that there is actually an awkward point in our

heuristic discussion. Indeed, when the initial dipole has a
small size x01 compared to the infrared cutoff R, if the
production of the large-size dipole really consisted in one
single splitting, then due to the geometry of dipole splitting,
one would have two dipoles of sizes x02 and x12 very close

to each other, and not one.5 Indeed, x01 ¼ x02 þ x21, so if
x02 ∼R ≫ x01, then x12 ∼ x02. But in a situation in which
x02 ¼ x12, a simple calculation shows that the fluctuations of
the number of offspring of this pair of dipoles would be
distributed as ∝ n × e−n=n1 instead of a simple exponential.
Aswewill see in the detailed simulation of Sec. IV, thiswould
contradict our numerical results. There may be twoways out.
First, the two dipoles are never exactly of the same size, and
consequently, the mean dipole yields n1 associated to each of
them are not exactly the same [see Eq. (17)]. Then, for very
large n, the fluctuations are always dominated by the off-
spring of one of the dipoles (the one that yieldsmost offspring
on the average). Second, in the more detailed analysis of
Ref. [21], the production of the large dipole resulted from a
BFKL-like evolution, not from one single splitting (although
that evolution turned out to be very fast when n was set to be
very large). In this case, there is no reason why there should
systematically be two large dipoles of (almost) identical size.
Finally, the exponential decay (without a n-dependent pre-
factor) of Pn with n was found in the more straightforward
calculation presented in Ref. [21] (and reproduced, for
completeness, in the next section), and it seems well
supported by the numerical data, see below Sec. IV.

2. Solution from an Ansatz

We introduce the generating function Zðrs; x01; yjuÞ of
the factorial moments of the dipole number:

Zðrs; x01; yjuÞ ¼
X∞
n¼1

unPnðrs; x01; yÞ: ð19Þ

It is well-known [28] that it obeys the Balitsky-Kovchegov
(BK) equation [14,36] (modified by the infrared cutoff
here):6

∂
∂yZðrs; x01; yjuÞ ¼ ᾱ

Z
d2x2
2π

x201
x202x

2
12

Θðx02; x12;RÞ

× ½Zðrs; x02; yjuÞZðrs; x12; yjuÞ
− Zðrs; x01; yjuÞ�: ð20Þ

5A similar problem arose in the phenomenological studies of
front fluctuations of Refs. [34,35]. The so-called “tip fluctua-
tions” studied in there, which are similar to the fluctuations to
large dipoles in the present work, have always been assumed to
consist in a single object produced in one step, independently of
the model, although such an assumption is in general difficult to
justify. But this effective description proved to lead to accurate
analytical results in the context of Refs. [34,35], for reasons that
have not been clarified so far.

6Note that this equation, first written by Mueller in Ref. [28], is
nonlinear, although it describes purely linear parton evolution.
But if the generating function Z, a mere mathematical device that
we use to easily get equations for the factorial moments nðkÞ, is
replaced by a dipole-nucleus elastic S-matrix element, as was
done by Kovchegov in Ref. [36], then the nonlinearity describes a
genuinely nonlinear process: multiple scatterings.
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For the analytic calculation, we choose a factorized form
for Θ:

Θðx02; x12;RÞ ¼ θ̃ðx02=RÞ × θ̃ðx12=RÞ; ð21Þ

where the function θ̃ has the limits

θ̃ðXÞ⟶X≪1
1 and θ̃ðXÞ⟶X≫1

0: ð22Þ

Its precise form is not really relevant for the asymptotic
calculations we will carry out, except for one step (see

below), for which we will need to pick a specific function
for θ̃, to arrive at a simple expression.
Even in the case of purely perturbative QCD (R ¼ þ∞

or equivalently θ̃ ¼ 1), we do not know how to solve the
BK equation (20) accurately enough to be able to extract
the probabilities Pn from the solution for Z. However, we
may notice that the large-n asymptotics of Pn is connected
to the large-k asymptotics of the factorial moments nðkÞ.
It is straightforward to convert the BK equation into a
hierarchy of equations for nðkÞ:

∂
∂y n

ðkÞðrs; x01; yÞ ¼ ᾱ

Z
d2x2
2π

x201
x202x

2
12

θ̃ðx02=RÞθ̃ðx12=RÞ
�
nðkÞðrs; x02; yÞ þ nðkÞðrs; x12; yÞ

− nðkÞðrs; x01; yÞ þ
Xk−1
j¼1

�
k

j

�
nðk−jÞðrs; x02; yÞnðjÞðrs; x12; yÞ

�
; ð23Þ

where the factorial moments nðkÞ are defined as the event-
averages of the products nðn − 1Þ � � � ðn − kþ 1Þ, i.e.,

nðkÞ ¼



n!
ðn − kÞ!

�
: ð24Þ

Again, it is not possible to find an explicit solution for
nðkÞ—unsurprisingly, since the infinite set of equations (23)
is equivalent to Eq. (20). However, it is not difficult to
figure out a plausible Ansatz. We try

nðkÞðrs; x01; yÞ ¼
x201
R2

θ̃ðx01=RÞCk½nð1Þðrs;R; yÞ�k; ð25Þ

where the Ck’s are constants.
Taking nð1Þ ¼ nð1Þjsp from the saddle-point solution of the

BFKL equation, Eq. (9), inserting Eq. (25) into Eq. (23), and
keeping only the leading term in the limit of large rapidities,
nð1Þ ∝ eᾱyχðγsÞ, the equation for the moments nðkÞ boils down
to an equation for the constants Ck:

χðγsÞθ̃ðx01=RÞkCk ¼
�
Ck

Z
d2x2
2π

x201
x202x

2
12

θ̃ðx02=RÞθ̃ðx12=RÞ
�
x202
x201

θ̃ðx02=RÞ þ x212
x201

θ̃ðx12=RÞ − θ̃ðx01=RÞ
�	

þ
Xk−1
j¼1

CjCk−j

�
k

j

�Z
d2x2
2πR2

θ̃2ðx02=RÞθ̃2ðx12=RÞ: ð26Þ

The integrals over x2 are finite functions of x01=R. We
anticipate that the first terms in the right-hand side, inside
the curly brackets, are negligible compared to the other
terms. Under this assumption, which we will check
a posteriori, the equation to solve simplifies to

χðγsÞθ̃ðx01=RÞkCk

¼
Xk−1
j¼1

CjCk−j

�
k

j

�Z
d2x2
2πR2

θ̃2ðx02=RÞθ̃2ðx12=RÞ: ð27Þ

To push further the analytical calculation, we now need an
explicit form for the infrared cutoff function θ̃. We choose a
Gaussian:

θ̃ðXÞ ¼ e−X
2=2: ð28Þ

After the appropriate replacements have been done, the
integration over x2 in Eq. (27) can be performed:

Z
d2x2
2πR2

e−ðx202þx2
12
Þ=R2

¼ e−x
2
01
=R2

Z þ∞

0

dx02
R2

x02e−2x
2
02
=R2

Z
2π

0

dθ
2π

e2x01x02 cos θ=R
2

¼ e−x
2
01
=R2

Z þ∞

0

dx02
R2

x02e−2x
2
02
=R2

I0ð2x01x02 cos θ=R2Þ

¼ 1

4
e−x

2
01
=ð2R2Þ; ð29Þ
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which is just θ̃ðx01=RÞ=4. Therefore, Eq. (27) boils down
to an algebraic recursion for the constants Ck of the form

kCk ¼
1

4χðγsÞ
Xk−1
j¼1

�
k

j

�
CjCk−j: ð30Þ

Inspection of this equation straightforwardly shows that for
asymptotically large k, Ck behaves like akk!, where a is a
constant.
We are now in a position to go back to Eq. (26) and check

a posteriori that it was indeed justified to neglect the terms
in the curly brackets. This simply stems from the fact that
these terms are overall proportional to Ck, while the sum
of all the other terms, the ones we have kept, gives a
contribution proportional to k × Ck, which is much larger
for k ≫ 1.
Putting everything together, we see that the factorial

moments of the dipole number read

nðkÞ ¼ c × 4χðγsÞ
x201
R2

e−x
2
01
=ð2R2Þk!nk1; ð31Þ

where n1 ¼ a × nð1Þ and c is a constant which we expect to
be of order 1.
Now, from the knowledge of the moments we can obtain

the probability density function Pn. Since we deal with
typical multiplicities much larger than 1, factorial moments
of order k can be approximated by ordinary moments of the
same order, i.e.,

nðkÞ≃hnki≃
Z

∞

0

dnnkPn⇒Pn¼
Z

dk
2iπ

n−k−1nðkÞ ð32Þ

which, using Eq. (31), leads to the final result:

Pn ¼ c × 4χðγsÞ
x201
R2

e−x
2
01
=ð2R2Þ 1

n1
e−n=n1 : ð33Þ

This is fully consistent with Eq. (18) found in the heuristic
approach. The extra Gaussian factor in Eq. (33) is depen-
dent on the form of the cutoff function Θ.

B. Low-multiplicity tail [37]

We now turn to the evaluation of the distribution of the
low multiplicities. By “low” we mean much lower than the
typical or mean multiplicity n̄ ≃ nð1Þ, but at the same time
still much larger than 1. This region has not drawn as much
attention as the high-multiplicity region, with the exception
of Ref. [38], in which Iancu and Mueller analyzed it with a
view to understanding the Levin-Tuchin law [39] for total
dipole-nucleus versus dipole-dipole cross section deep in
the saturation region.
The only way to generate events with n ≪ n̄ is to veto

the splittings of the initial dipole in the beginning of the

evolution, except if the latter are small enough: Indeed, we
know that dipoles which have sizes close to the saturation
radius rs cannot evolve into high-multiplicity states except
by creating large dipoles, but this has a large cost in
probability which makes such a process subdominant. On
the other hand, once the initial dipole has split into similar-
size or larger dipoles, then the cost of keeping the density of
the state low becomes large. Once a couple of dipoles have
been emitted, the subsequent evolution can be considered
deterministic, and the latter generates a number of dipoles
which grows fast with the rapidity. Hence we expect the
low-multiplicity tail of Pn to be made of events in which the
occupation number is kept low throughout the initial stages
of the evolution. The evolution of such configurations is
schematized in Fig. 3.
We are going to derive an expression for the low-

multiplicity asymptotics of Pn from these simple consid-
erations. We shall assume that the probability of a given
dipole number n coincides with a suppression factor for
dipole splitting inside an appropriate region D of rapidity
and transverse size, up to slowly-varying prefactors that
we shall discard:

Pn ≃ const × exp

�
−ᾱ
Z Z

D
dỹ

d2x2
2π

x201
x202x

2
12

�
: ð34Þ

For n small enough compared to the typical multiplicity n̄,
D must also include relatively small dipoles compared to
x01, namely either x02 ≪ x01 or x12 ≪ x01. Let us call rðỹÞ
the lower boundary of D at some fixed ỹ, namely the
minimum size of the dipoles included in the domain over
which we integrate. Since the integral over x2 diverges
logarithmically when rðỹÞ goes from Oðx01Þ to zero, while
the contribution of the dipoles larger than x01 to the integral
is finite and of order 1, keeping only the strongly ordered
regions x02 ≪ x01, x12 ∼ x01 and x12 ≪ x01, x02 ∼ x01 is

FIG. 3. Evolution path leading to unusually low-dipole-number
configurations. The onium is prevented to split into large dipoles
until a relatively large rapidity is reached. The forbidden region is
represented by the shaded area. In that region, the evolution is
limited to the emissions of small dipoles, of size smaller than r1.
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enough to get the dominant term in the limit rðỹÞ ≪ x01.
We write

Z
rðỹÞ

d2x2
2π

x201
x202x

2
12

≃
rðỹÞ≪x01

Z
x01

rðỹÞ

dx02
x02

þ
Z

x01

rðỹÞ

dx12
x12

¼ ln
x201
r2ðỹÞ :

ð35Þ

Coming back to Eq. (34), changing variable from x02 to
ρ ¼ ln x201=x

2
02, the following approximation can be written

for the probability:

Pn ≃ const × exp

�
−ᾱ
Z Z

D
dỹdρθðρÞ

�
: ð36Þ

We pick the simplest for D: We assume it just consists in
the rectangular-shaped region ðr; ỹÞ ∈ ½r1;þ∞½×½0; y1�.
We choose y1 and r1 such that a dipole of initial size
x01 starting to evolve deterministically at y1 produces
exactly n dipoles at the final rapidity y, and a dipole of
size r1 starting to evolve at rapidity 0 also produces n
dipoles at y. It is not difficult to figure out that these
conditions are enough to guarantee that no dipole emitted
outside of D can grow into a state of multiplicity much
larger than n. Hence in the presence of such a vetoed
region, writing ρ1 ¼ ln x201=r

2
1, the distribution of the

number of particles reads

Pn ∝ e−ᾱy1ρ1 : ð37Þ

Note that by choosing a rectangular region D, we neglect a
term in lnPn which is proportional to ðᾱy1Þ2.
We now use the defining conditions for y1 and r1 to

express these variables with the help of n and ᾱy. In the
double-logarithmic approximation (11), these conditions
read

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱðy−y1Þρs

p
¼ n and e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱyðρs−ρ1Þ

p
¼ n; ð38Þ

where we introduced the notation ρs ¼ ln x201=r
2
s . The

previous equations enable us to rewrite Eq. (37) as

lnPn ¼ const − ᾱy1ρ1 ¼ const − ᾱyρs

�
1 −

ln2n
4ᾱyρs

�
2

:

ð39Þ

Finally, for the sake of writing down a more compact
formula, we may use again the double-logarithmic approxi-
mation to express the product ᾱyρs with the help of the
expected dipole number n̄: 2

ffiffiffiffiffiffiffiffiffiffi
ᾱyρs

p
≃ ln n̄. The following

expression is obtained:

lnPn ¼ const −
1

4
ln2 n̄

�
1 −

ln2 n
ln2 n̄

�
2

; ð40Þ

or, when expanded and ordered by decreasing importance
in the limit n ≪ n̄:

lnPn ¼
1

2
ln2 n −

1

4

ln4 n
ln2 n̄

−
1

4
ln2 n̄þ const: ð41Þ

A remarkable feature of this result is that the leading
n-dependence at fixed n̄ ≫ 1 does not involve at all the
infrared, and actually does not depend on any scale at all.

IV. NUMERICAL STUDY

In this section, we test the validity of the physical
pictures proposed in Sec. III to understand the behavior
of the tails of the multiplicity distribution. To this aim,
we perform high-statistics Monte Carlo simulations of
dipole evolution for different values of the parameters.
We measure distributions of the dipole multiplicity, Pn,
and compare their large and the small-multiplicity tails to
Eqs. (33) and (41) respectively, for different values of the
parameters.
Although we do not report on it here, we have also tested

many choices of a rapidly falling Θ, and checked that the
qualitative shape of the tails were not altered [40], as
expected from general considerations. In the numerical
results we will present, we will restrict ourselves to the
Gaussian IR cutoff [Eq. (28)] which was employed in the
analytical calculations of Sec. III.

A. High-multiplicity tail

The parameters of our numerical simulations are set to be
the following: rs=R ¼ 1=40, x01=R are varied between
0.67 and 5 × 10−2, and ᾱy ¼ 2 to 5. Our analytical results
rely on the fact that the mean evolution betweenR and rs is
driven by an eigenvalue of the BFKL equation close to χð1

2
Þ:

In other words, the solution to the saddle point equation in
Eq. (9) (with x01 → R) was assumed to sit around γs ¼ 1

2
.

Let us check that it is indeed the case with the set of
parameters we have chosen:

χ0ðγsÞ ¼ −
lnR2=r2s

ᾱy
⇒ γs ≃ 0.45 ð42Þ

when ᾱy is set to be the value for which we have collected
most of the data, namely ᾱy ¼ 4.

1. Higher-order moments

To study the behavior of the high-multiplicity tail, we
look at the higher-order moments of Pn. In particular, for a
given moment nðkÞ, we look at its behavior as function of k,
for different values of the size of the initial dipole, x01. Our
goal is to check that Pn has an exponential tail, and to
provide a measurement of its slope.
If Pn were a strict exponential distribution of the form,

say, Pexp
n ¼ e−n=n1=n1, then its moments would simply read
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nðkÞexp ¼
Z

∞

0

dnnk
1

n1
e−n=n1 ¼ k!nk1: ð43Þ

the ratio of successive moments would satisfy the following
equality:

1

kþ 1

nðkþ1Þ
exp

nðkÞexp

¼ n1: ð44Þ

Since the large-multiplicity tail of the distribution is probed
by moments of high order, we look at the behavior of this
ratio for large k.
It is instructive to estimate the typical value of ns probed

by a moment of order k. This is given by the value of the
dipole number, n, that contributes most to the integral in
Eq. (43). When k is large, a saddle point at ns ¼ kn1
dominates the integrand. These are the typical values of n
probed by the kth moment.
Numerical results for Eq. (44) in the case of initial

dipoles of different relative sizes x01=R, evolved up to
ᾱy ¼ 4, are shown in Fig. 4. The very smooth behavior of
the data points and of the magnitude of the statistical errors
for different values of k is due to an intrinsic correlation of
errors at different k, which comes from the fact that for a
given value of x01=R, nðkÞ’s are computed using the same
sample of data. We draw a horizontal line at n1 ¼ 10500 as
an illustrative value of n1 that is compatible, within one
sigma, with all the curves shown in the plot for large-
enough k. We conclude that this value is independent
of x01=R.
We now check that the rapidity dependence of n1 is

essentially exponential, up to prefactors, as predicted by
Eq. (9). For selected values of x01=R, we report results at

different values of ᾱy in Fig. 5. Note that for any value of y,
this ratio tends to a constant n1ðyÞ, which is independent of
x01=R. The logarithmic scale on the y-axis makes it
obvious that n1 grows with y approximatively like an ex-
ponential, in agreement with the asymptotic identification
n1 ∼ nð1Þ.
Finally, our Ansatz predicts that the coefficient multi-

plying the exponential in Eq. (33) should present a specific
quadratic dependence on the size of the initial dipole, x01,
for x01 ≪ R. In order to test this, we exploit the fact that
this coefficient appears in the expression of the moments,
Eq. (25). This implies that the ratio of two moments nðkÞ
computed at two different values of x01=R provides direct
information about this coefficient. Hence, we compute the
ratio nðkÞ½x01=R�=nðkÞ½x01=R ¼ 1=6� in our calculations at
ᾱy ¼ 4. The results are shown in Fig. 6 up to k ¼ 12, after
which statistical uncertainties dominate. We compare the
numerical data with both a simple quadratic behavior
(dashed line), and a quadratic Ansatz corrected with a
Gaussian factor (solid line), i.e., the full prefactor in
Eq. (33). We observe that the data points tend to fall on
the expected curves7 as we move to larger values of k.
Moreover, it is clear that the dashed and the solid line
describe equally well the trend of the data points in the
region where x01=R is not close to unity. We emphasize
that this result is very important, because it implies that the
simple heuristic discussion leading to Eq. (18) allows us to

FIG. 4. Normalized ratio of moments of the dipole number distribution, Pn of successive order. The ratio nðkþ1Þ=½ðkþ 1ÞnðkÞ� is
displayed as a function of k, for ᾱy ¼ 4, and different values of x01=R. The dotted horizontal line is the constant n1. The error bars are
statistical.

7In Fig. 6, it seems that the two points corresponding to the
lowest values of x01=R are systematically above the theoretical
prediction, for all values of k. Actually this effect is not
significant since, again, the values of nðkÞ for the different values
of k have been calculated by averaging over the same sample of
events, and thus, they are strongly correlated.
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correctly predict the behavior of the numerical calculations.
This confirms the robustness of our intuitive picture of
high-multiplicity events, and supports our statement that
the exponential tail is universal irrespective of variations of
the (sharp) infrared cutoff function.
In summary, all the expectations of Sec. III are confirmed

by our numerical results. We conclude that, within our
uncertainties, the high-multiplicity tail is an exponential
correctly captured by Eq. (33).

2. Shape of Pn at large n

Let us show, then, the actual shape of the distributions of
dipole (gluon) number obtained in our Monte Carlo cal-
culations. Results are shown as circles in Fig. 7. We exploit
the result obtained in the previous subsection to character-
ize the tails at high multiplicity. We overlay our curves with
the asymptotics shown in Eq. (33),

Pn ¼ c × 4χðγsÞ
x201
R2

e−x
2
01
=ð2R2Þ 1

n1
e−n=n1 ; ð33Þ

where we set γs ¼ 1
2
, and use n1 ¼ 10500, i.e., the value

inferred from the analysis of Fig. 4, and we choose the
overall normalization factor to be c ¼ 2. The asymptotic
curves are shown as red dashed lines in Fig. 7. We find that,
with common values for n1 and for the normalization, c, the
exponential asymptotic trend is able to describe all the
multiplicity distributions at large n, irrespective of x01=R.
We note that the constant c is indeed of order unity, as
expected from the theory.

3. Slope parameter n1
As already mentioned, the parameter n1 in the expo-

nential appearing in Eq. (33) is expected to be related to
the mean number of dipoles larger than rs generated by the

FIG. 5. Normalized ratio of the moments of Pn of successive order. The ratio nðkþ1Þ=½ðkþ 1ÞnðkÞ� is displayed as a function of k, for
different values of x01=R and different rapidities. The results for ᾱy ¼ 4 are the same presented in Fig. 4. For ᾱy ¼ 5, numerical results
with x01=R > 0.05 are prohibitively difficult to obtain.

FIG. 6. Normalized moments of Pn as a function of the onium size. The nðkÞ’s scaled by the constant nðkÞ½x01 ¼ R=6� are shown,
for k ¼ 5 to k ¼ 12, as a function of x01=R, in logarithmic scale. The dashed straight lines correspond to the quadratic function
x201 × 62=R2 and the curved full line to the same function corrected by a Gaussian factor, see Eq. (33) and the legend. Errors are
statistical, and are computed via jackknife resampling.
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deterministic evolution over y units of rapidity of a dipole
of initial size rmax of the order of R. To check the
consistency of this interpretation of n1, let us compare
the analytical expectations of such a scenario to the
numerical data for n1. Putting numbers into Eq. (17), we
find that for ᾱy ¼ 4 andR=rs ¼ 40, n1 reaches a maximum
of about 11700 for rmax ≃ 0.37 ×R. This is consistent with
the value of n1 found in the numerical data (n1 ∼ 10500).
Remarkably, it is for such values of x01 that Pn is closest to
a pure exponential, see Fig. 7. This means that when one
sets x01 to the value rmax expected to maximize the number
of final dipoles, then the optimal path in the ðr; ỹÞ plane
(see Sec. III) is a straight line. The emission of large dipoles
in the initial steps is no longer advantageous, since the
probability is strongly dumped by the cutoff function. This
is a nice consistency check of the whole picture.
We have checked that the y-evolution of n1 which we

may deduce from Fig. 5 is also qualitatively reproduced
by Eq. (17).

B. Low-multiplicity tail

Now we turn our attention to the low-multiplicity tail
of the dipole number distribution, Pn. Again, we want to
check that the physical picture described in Sec. III for the
low-n tail is consistent with the Monte Carlo results. To this
aim, we shall perform fits of Pn in the low-multiplicity
region using the formula in Eq. (41).
Figure 8(a) shows the results for the low-multiplicity

tails of the distributions obtained at different values of
x01=R, for ᾱy ¼ 4. The dashed lines in the figure represent
fits obtained using Eq. (41). The values of the parameters of
the fits are reported in Table I. The strategy of our fitting

analysis is the following: For each tail, we fit the same
number of points (around 15), starting from the points with
lowest probability. We checked that, doing so, we do not
break the condition n ≪ n̄, which is required for Eq. (41) to
apply. We find that the χ2 per d.o.f. returned by our fits is
essentially the same for all values of x01=R, except for the
case x01=R ¼ 0.05, where the χ2=dof is twice larger (see
Table I). This behavior confirms our expectation that the
physical picture presented in Sec. III works as long as
1 ≪ n ≪ n̄, a requirement which is loosely satisfied by the
curves at small x01=R, where we observe events with n ∼ 1.
For each tail, the two-parameter fits return one overall
normalization, and a value for the mean of the distribution,
n̄. Remarkably, we find that the overall normalization varies
by less than a factor 2 among the different fits, as long as
x01=R > 0.1. Given that the relevant scale for the particle
numbers is logarithmic in our calculation, see Eq. (41), this
is a relatively small variation. This supports our conclusion
of a universal shape for the low-multiplicity tail, which is
simply shifted towards larger values of n if n̄ increases.
As for the fitted values of n̄, we obtain numbers which are
smaller than the actual mean value of the distribution,
although in a systematic way: The fitted n̄ at x01=R ¼ 0.5
is much closer to the true value than for the fit at
x01=R ¼ 0.05. Again, we understand this as a consequence
of the fact that in our calculations we do never reach
the fully asymptotic regime 1 ≪ n ≪ n̄, since even for
x01=R ¼ 0.5 we observe events with n ∼ 10. These sys-
tematics support the validity of Eq. (41).
To corroborate this statement in more generality, it is

useful to look at the results shown in Fig. 8(b). In this panel,
we focus on the multiplicity distribution at x01=R ¼ 0.05,

FIG. 7. Distribution of the number of dipoles. Pn is displayed as a function of n for different values of the onium size x01, from
x01=R ¼ 2=3 to x01=R ¼ 5 × 10−2, after evolution over ᾱy ¼ 4. The straight dashed lines on this plot are the analytical asymptotics
[Eq. (33)], with slope parameter n1 ¼ 10500, and global normalization c ¼ 2. In all cases, rUV=rs ¼ 10−2, and rs=R ¼ 1=40.
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which is the distribution providing the least satisfactory
results from the fit of the low-n tail. We show how the tail
evolves with the rapidity, ᾱy. We see that increasing
rapidity has an effect similar to that of increasing x01=R,
in the sense that the distribution gets shifted towards larger
values of n. Clearly, the quality of the fit improves as we
increase the value of ᾱy, except for the largest ᾱy ¼ 5, for

which the trend of the data is less well reproduced by the
theoretical curve. This is actually expected, because the
double-logarithmic approximation, crucial in the derivation
of Eq. (41), is less justified for larger values of ᾱy.
We now show that the shape of Pn in the low-multiplicity

region is not affected by the presence of the infrared cutoff,
Θ. To this aim, we perform calculations with fixed ratios

FIG. 8. Dipole number distribution on a logarithmic scale to emphasize the low-multiplicity tail. (a) Distribution of the dipole
number for different values of x01=R and fixed ᾱy ¼ 4. Dashed lines are fits using Eq. (41). (b) The same but for different values of
ᾱy and fixed x01=R ¼ 0.05.

TABLE I. The table reports the details of the fits performed on the low-multiplicity tails of the distributions shown in Figs. 8(a), 9, and
10. For each distribution, specified in the leftmost column of the table, we list: The range in n chosen for the fit; The fitted parameters of
Eq. (41), i.e., the fitted n̄, and an overall constant factor; The actual value of n̄ (“true n̄”) of the multiplicity distribution; The χ2 per d.o.f.
returned by the fit. The quality of the fit seen on the figures is correlated to the value of the χ2=dof as well as to the ratio between the
fitted n̄ and the true n̄. In the case of Figs. 8(a) and 9, the former turns out to be typically a factor 2 (up to 5 for the smallest values of
x01=R) lower than the latter, but this mismatch amounts to about 10%–20% when counted on a logarithmic scale, which is the one
relevant here, see Eq. (41).

Figure 8(a)
x01=R Fit range [nmin, nmax] Const. (×10−5) Fitted n̄ True n̄ χ2=dof

0.5 [85, 1157] 1.05 9751 18441 1.71
0.33 [102, 1289] 2.25 9622 15666 1.43
0.25 [86, 1086] 2.15 7106 13467 2.26
0.17 [40, 921] 2.67 4585 10480 1.39
0.125 [24, 533] 2.19 2968 8598 1.93
0.1 [13, 320] 1.90 2034 7289 0.80
0.0625 [3, 177] 2.59 1038 5035 2.00
0.05 [1, 99] 3.07 743 4174 3.69

Figure 9
x01=R Fit range [nmin, nmax] Const. (×10−6) Fitted n̄ True n̄ χ2=dof
0.5 [85, 1157] 10.50 9751 18441 1.71
0.25 [238, 2808] 8.25 15980 30657 1.22
0.125 [400, 4706] 7.02 19688 42886 1.08
0 [R ¼ ∞] [227, 7941] 3.00 19283 81940 0.90

Figure 10
ᾱy, x01=rs Fit range [nmin, nmax] Const. (×10−6) Fitted n̄ True n̄ χ2=dof
1, 108 [331, 6431] 32.82 22830 22798 1.14
2, 105 [2221, 35624] 5.54 100086 118809 1.12
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x01=rs and x01=rUV, whereas we vary R=x01, i.e., the
distance between the initial dipole size and the infrared
cutoff. We test very different scenarios: We consider a
range of values for x01=R, as well as the case where the
infrared cutoff is absent, i.e., x01=R ¼ 0. We obtain the
results shown in Fig. 9. The two-parameter fits, obtained
from Eq. (41), are of excellent quality, and return a χ2=dof
close to unity, as reported in Table I. We conclude that the
infrared cutoff has simply the effect of translating Pn
towards lower values of n, without altering the shape of
the low-multiplicity tail.
Note that the agreement we have found is better than one

would have expected, considering the values of the param-
eters we have chosen. Indeed, the double-logarithmic
approximation was heavily used in deriving Eq. (41),
and the latter is supposed to be best justified for γs → 0,
where γs is evaluated using Eq. (42), with the substitution
R → x01. It turns out that γs ranges between 0.41 and 0.46

when computed with the parameters with which our data
has been generated.
Therefore, it is important to confirm that the analytical

formula (41) works also very well in the kinematical region
which satisfies the assumptions made for its derivation.
To this aim, we generate data at lower rapidities and much
larger values of x01=rs:

ᾱy ¼ 1 and
x01
rs

¼ 108 ⇒ γs ≃ 0.16

ᾱy ¼ 2 and
x01
rs

¼ 105 ⇒ γs ≃ 0.28: ð45Þ

The corresponding values of γs are now such that the
double-logarithmic (DL) approximation is very well justi-
fied. The agreement between the numerical data and the
theoretical parametrization is indeed extremely good. Both
fits return a value of χ2=dof close to unity (see Table I and
Fig. 10), although the fit is of slightly better quality for
x01=rs ¼ 108 and ᾱy ¼ 1, as expected from the fact that γs
is closer to zero in this configuration.
In conclusion, the shape of gluon number distribution in

the region of lowmultiplicity is not affected by the presence
of an infrared cutoff, and it is correctly captured by the
physical picture of Sec. III B, as long as the parameters ᾱy,
x01 and rs are such that there is a large-enough region in
which the inequalities 1 ≪ n ≪ n̄ are satisfied.

V. SUMMARY AND OUTLOOK

We have studied analytically and numerically the tails
of the multiplicity distribution of gluons corresponding to
dipoles larger than a given size rs ∼ 1=Qsðy0Þ in the Fock
state of an initial onium.
The low-multiplicity tail shows very robust features, as

its leading dependence in n does not depend on any scale or
parameter. In particular, it does not depend on the infrared
cutoff, and we have been able to describe it with Eq. (41)

FIG. 9. The same as in Fig. 8, but x01=rs is now kept fixed, and
different values of the infrared cutoff are taken. Again, ᾱy ¼ 4.
x01=R ¼ 0 means that there is no infrared cutoff.

FIG. 10. Dipole number density in log scale, for lower ᾱy and rs. The line, that represents the fit, is continuous in the range in which
the data have been taken into account for the determination of the parameters, and dashed when it represents an extrapolation. In both
plots, R ¼ þ∞.
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even at the border of the double-logarithmic region. The
large-multiplicity tail is exponential: A proxy for the
parameter of this exponential is the mean integrated gluon
density in a dilute hadron evaluated at the saturation scale
Qsðy0Þ. The onset of the exponential depends on the ratio
of the onium size to the confinement size.
It is important to appreciate that the fluctuations of the

gluon density, which are relevant for the multiplicity dis-
tribution in hadron-nucleus scattering we have studied, are
fundamentally different in nature from the event-by-event
fluctuations of the saturation scale discussed in Ref [41,42].
The source of these fluctuations was identified to be the
saturation of the dipole density in the evolution itself (whose
mechanism may be recombinations, or screening of further
emissions), which we have not implemented in the dipole
model and which are not relevant at the energies of the
present colliders. The fluctuations studied here are also
different from the so-called “front” and “tip” fluctuations in
branching randomwalks identified in Ref. [35,43]. The latter
prove relevant in QCD for observables for which only
dipoles overlapping with a given impact parameter may
play a role, or only the fluctuations of the size of the largest
dipole(s): The total and diffractive γ�-A deep-inelastic
scattering cross sections are examples of such observables,
whose evolution can be considered in the universality class
of branching random walks. The fluctuations which are at
work in the process we have been analyzing in this paper are
essentially equivalent to the statistical noise of the total
number of particles generated by a 1 → 2 branching process
after some given evolution.
Going from our study of the multiplicity of gluons

produced in onium-nucleus collisions to the experimental
data on the hadron multiplicities in proton-nucleus scatter-
ing will require some modeling. First, the details of the
initial state of the proton will certainly determine the overall
normalization, but may also introduce n-dependent pre-
factors. Second, a hadronization model will be needed to
link our parton-level calculation to the actual hadronic final
state. The modelization of the proton is presumably not
easy. Several recent studies model its color field as a
classical Gaussian field, see Ref. [44] and references
therein. We deem that a set of a few partons is more
appropriate, but whether a diquark dipole would be a good
representation for its ground state is questionable. Ex-
clusive diffractive processes may help constraining the
initial condition for the evolution, see, e.g., Ref. [45].
But while the detailed form of the multiplicity distribution

will certainly depend on the model for the initial hadron, we
expect its general features to be robust. An interesting
observable that could be amenable to dipole model descrip-
tion is multiplicity in the final state of deep-inelastic γ�-A
scattering, for sets of events in which the photon virtuality is
chosen smaller than the nuclear saturation scale. In such a
case, the virtual photon interacts through its quark-antiquark
pair fluctuations, the distribution of the size of which is

obtained from a straightforward QED calculation. Therefore,
this process is very close to onium-nucleus scattering studied
in the present paper.
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APPENDIX A: IMPLEMENTATION OF THE
MODIFIED DIPOLE MODEL

In this Appendix, for completeness, we describe our
numerical implementation of the color dipole model. It
actually follows closely the one in Ref. [31]. Other versions
of the code have been written, incorporating different
variations of the model to make it more suitable for
phenomenological studies, such as energy conservation
or gluon recombination; see e.g., Ref. [46].
The dipole model is a 1 → 2 branching process. Each

dipole of a given set may split, independently of the other
dipoles, into two dipoles when the rapidity is increased by
dy. For definiteness, let us consider a generic dipole whose
endpoints are labeled by the two-dimensional vectors x0
and x1. The probability dp0 it emits a gluon at position x2
up to d2x2 was given in Eq. (3):

dp0 ¼ ᾱdy
d2x2
2π

x201
x202x

2
12

Θðx02; x12;RÞ: ð3Þ

This probability diverges when x2 coincides with the
endpoints x0 or x1: as well-known, the probability to split
into very small dipoles can be arbitrarily large due to the
collinear singularity. We thus need to introduce a lower
cutoff rUV on the sizes of the produced dipoles in order to
get a meaningful distribution. We choose to enforce it as
sharp Heaviside θ function:

dp0 → dp0 × θðx02 − rUVÞθðx12 − rUVÞ; ðA1Þ

where rUV is an arbitrary ultraviolet regulator, that needs to
be taken much smaller than all distance scales relevant to
our problem in such a way that it does not affect the
physical results. The value of rUV we chose in practice is
checked to satisfy this requirement in Appendix B.
Having the expression of the probability that the dipole

splits in the infinitesimal rapidity interval dy, we can easily
write the expression of the probability that the dipole splits
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(for the first time) at finite rapidity y (up to dy) by emitting
a gluon at position x2 (up to d2x2):

dp ¼ dp0θðx02 − rUVÞθðx12 − rUVÞe−ᾱλðx01;rUV;RÞy ðA2Þ

where ᾱλ is the inverse “lifetime” of the dipole, namely the
inverse of the typical rapidity interval between two suc-
cessive dipole splittings:

λðx01; rUV;RÞ ¼
Z

1

ᾱ

dp0

dy

¼
Z

d2x2
2π

x201
x202x

2
12

θðx02 − rUVÞ

× θðx12 − rUVÞΘðx02; x12;RÞ: ðA3Þ

We use two elementary techniques to implement dipole
splitting in a Monte Carlo code. The first one is based on
the following mathematics: If fðxÞ is the probability
density of the real variable x, if FðxÞ ¼ R x−∞ dx0fðx0Þ is
its cumulative distribution function, and if y is distributed
uniformly between 0 and 1, then x ¼ F−1ðyÞ is distributed
according to f. The algorithm that follows from this
observation is practical whenever F and its inverse have
analytical expressions. When this is not the case, then we
use a rejection algorithm: We pick a density f̃ðxÞ whose
inverse cumulative distribution may be expressed by a
simple analytical formula, and which is such that f̃ðxÞ ≥
fðxÞ for all x. We then generate realizations of x according
to f̃, and accept the generated values with probabil-
ity fðxÞ=f̃ðxÞ.

1. Dipole evolution without an infrared cutoff

We first address dipole evolution defined by the prob-
ability dp in which the infrared cutoff is put to R ¼ þ∞,
namely with the cutoff function set to Θ ¼ 1: we shall
denote this probability by dpjpQCD. We start by explaining
how to generate the distribution of the position of the gluon
(or, equivalently, of the size vectors of the produced dipoles
in the splitting). Then, we generate the rapidity at which the
splitting occurs.

a. Distribution of the position of the emitted gluon

In practice, we implement the emission of a gluon off a
dipole whose endpoints ðx0; x1Þ are located at positions
x0 ¼ ð0; 0Þ and x1 ¼ ð1; 0Þ in the two-dimensional plane,
and use the invariance of the emission kernel dp0jpQCD
under Möbius transformations (including translations,
rotations and dilations) in order to convert it into an
emission off a generic dipole. Hence we shall rescale the
ultraviolet cutoff, defining r̄UV ¼ rUV=x01. Thanks to the
symmetries of dipole splitting under reflections, we can
restrict ourselves to generate gluons in the upper left
quadrant of the transverse plane, defined by

x02 cosφ <
1

2
and φmin < φ < π with

φmin ¼ θðr̄UV − 1=2Þ arccos 1

2r̄UV
; ðA4Þ

and perform mirror symmetries with respect to the ðOxÞ
and ðOyÞ axis, with probability 1

2
each, in order to recover

the correct distribution in the whole transverse plane.
When a gluon is emitted by such a dipole, it is found at

position x2 that we shall label by the polar coordinates
ðx02;φÞ, up to ðdx02; dφÞ, or at one of the 3 positions
deduced from x2 by mirror symmetries, with the probability

4

λð1; r̄UV;∞Þ
1

ᾱ

dp0jpQCD
dy

¼ dx02
dφ
2π

4

λ

θðx02 − r̄UVÞ
x02ð1þ x202 − 2x02 cosφÞ

ðA5Þ

where the restriction to the upper left quadrant is under-
stood. (Note that the ultraviolet cutoff r̄UV is fixed, so that
λ is a constant.)
The probability density f of x02 is easily determined by

marginalizing the joint density of x02 and φ, that can be
read off Eq. (A5), over the angle φ. The integral of the
probability density in Eq. (A5) with respect to the angle
over the interval ½φ; π� reads
Z

4

λ

1

ᾱ

dp0

dy
¼ dx02

x02

Z
π

φ

dφ0

2π

4

λ

θðx02− r̄UVÞ
1þx202−2x02 cosφ0

¼ dx02
4

λ

θðx02− r̄UVÞ
πx02j1−x202j

arctan

�j1−x02j
1þx02

cotan
φ

2

�
:

ðA6Þ

The distribution f of x02 follows by setting φ ¼ φmin in the
previous equation:

fðx02Þ¼
4

λ
×

8>><
>>:

θðx02−r̄UVÞ
2x02ð1−x202Þ

for x02≤ 1
2

1
πx02j1−x202j

arctan

�
j1−x02j
1þx02

ffiffiffiffiffiffiffiffiffi
x02þ1

2

x02−1
2

r �
for x02>

1
2
:

ðA7Þ

Since it is not possible to integrate analytically the function
f, we use a density f̃ðx02Þ to generate x02, such that
f̃ðx02Þ ≥ fðx02Þ, and which admits an integral straightfor-
ward to invert analytically. We eventually correct the
distribution of x02 with the help of a rejection algorithm.
In practice, we use

f̃ðx02Þ ¼
4

λ

5

½6x02ð1þ x202Þ�
ðA8Þ
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to generate realizations of x02, and accept the obtained
values with probability fðx02Þ=f̃ðx02Þ.
Once x02 has been determined, φ is easily generated

since its cumulative distribution function, deduced from
Eq. (A6), admits a simple inverse function.

b. Distribution of the rapidity of the first emission
of one dipole

We also need to generate the rapidity at which this
emission occurs.
Due to the independence of the dipole splittings, justified

by the large-number-of-color limit, the rapidity interval Δy
before the next emission of a gluon off the considered
dipole just follows an exponential law. Its distribution reads

pðΔyÞ ¼ ᾱλe−ᾱλΔy: ðA9Þ

Thus this law is completely determined by λ. Once this
parameter has been computed, realizations of Δy are trivial
to generate. λ is given by a two-dimensional integral, over
x02 and φ:

λð1; r̄UV;∞Þ ¼
Z þ∞

r̄UV

dx02
2πx02

Z
2π

0

dφ
1þ x202 − 2x02 cosφ

¼ 4

Z þ∞

r̄UV

dx02
2πx02

×
Z

π

θðx02−1
2
Þ arccos 1

2x02

dφ
1þ x202 − 2x02 cosφ

:

ðA10Þ

One can perform analytically the integral over the angle,
which leaves us with a one-dimensional integral

λ ¼ θðr̄UV − 1=2Þ ln
�
1

3

�
1

r̄2UV
− 1

��

þ 4

π

Z þ∞

maxð1=2;r̄UVÞ

dx02
x02

1

j1 − x202j

× arctan

 
j1 − x02j
1þ x02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ 1

2

x02 − 1
2

s !
; ðA11Þ

which needs to be performed numerically.

c. Generation of a full Fock state of an onium
at rapidity y

Once one gluon emission, corresponding to a 1 → 2
dipole splitting, is implemented, the full Fock state at a
given rapidity y is generated through a simple iteration.
Starting from one dipole ðx0; x1Þ, the rapidity Δy at

which it emits a gluon is generated. If this rapidity is found
to be larger than the final rapidity y, then the evolution
stops: the Fock state in this particular event consists in a

single dipole. If instead it is less than y, then the position x2
of the gluon is generated (see above), and the initial dipole
is replaced by two dipoles, ðx0; x2Þ and ðx2; x1Þ. This
procedure is then just applied recursively to the two new
dipoles over the rapidity interval y − Δy.

2. Enforcing the infrared cutoff

When the cutoff R is set to a finite value, i.e., when a
function Θ ≤ 1 is added to the splitting probability, then
the integral over the angle φ can in general not be done
analytically.
Two nested numerical integrals have now to be per-

formed to compute the inverse lifetime λ. In practice, it
proves useful to construct a lookup table containing the
numerical evaluations of the two-dimensional integral for a
set of sizes x01.
As for the distribution of the position of the emitted

gluon, the simplest is to generate the dipole sizes with the
weight given by the dipole model without the cutoff, and
then use a rejection algorithm to correct the distribution:
The splitting of a dipole of size x01 into two dipoles of
respective sizes x02 and x12 is accepted with probability
Θðx02; x12;RÞ. Since the cutoff function Θ cuts out a low-
probability region, in which two dipoles larger than the
initial one are produced, the efficiency of such an algorithm
is quite high.

APPENDIX B: NUMERICAL TEST OF THE
EFFECT OF THE UV CUTOFF

The ultraviolet cutoff protecting us from the collinear
divergence of dipole emission is unphysical, and as such,
any conclusion obtained within our model must be strictly
independent of its value. This means that we need to choose
a value of rUV which is small enough to yield no effect on
the shape of Pn. At the same time, since the typical number
of dipoles grows with rUV as a power, we can not pick a too
small value, for the sake of saving computation time.

FIG. 11. Effect of the UV cutoff on the distribution of the
multiplicity. We fix the values of the saturation scale rs and of the
onium size x01, and pick two different values for the UV cutoff,
see the legend. The rapidity is set to ᾱy ¼ 4.

DOMINÉ, GIACALONE, LORCÉ, MUNIER, and PEKAR PHYS. REV. D 98, 114032 (2018)

114032-18



In Fig. 11, we display how the multiplicity distribution
gets altered if we vary the UV cutoff by a factor 2, all
other parameters being fixed: ᾱy ¼ 4, rs=R ¼ 0.025 and
x01=R ¼ 0.5. We find that the shape is unaffected by this

choice. Simply, as could be expected, the number of dipoles
is globally slightly lower for larger cutoffs. For the practical
calculations, we have always set rUV ¼ rs=100, which, we
have tested, provides stable shapes of Pn at ᾱy ¼ 4.
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