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Majorize-Minimize Adapted Metropolis–Hastings
Algorithm

Yosra Marnissi, Student Member, IEEE, Emilie Chouzenoux, Member, IEEE,
Amel Benazza-Benyahia, Member, IEEE, and Jean-Christophe Pesquet, Fellow, IEEE

Abstract—The dimension and the complexity of inference prob-
lems have dramatically increased in statistical signal processing.
It thus becomes mandatory to design improved proposal schemes
in Metropolis-Hastings algorithms, providing large proposal tran-
sitions that are accepted with high probability. The proposal
density should ideally provide an accurate approximation of
the target density with a low computational cost. In this paper,
we derive a novel Metropolis-Hastings proposal, inspired from
Langevin dynamics, where the drift term is preconditioned
by an adaptive matrix constructed through a Majorization-
Minimization strategy. We propose several variants of low-
complexity curvature metrics applicable to large scale problems.
We demonstrate the geometric ergodicity of the resulting chain
for the class of super-exponential distributions. The proposed
method is shown to exhibit a good performance in two signal
recovery examples.

Index Terms—MCMC methods, Langevin diffusion,
Majorization-Minimization, signal recovery

I. INTRODUCTION

THE resolution of an inverse problem consists of estimat-
ing an unknown signal from measurements based on the

direct model linking the target signal to the observed one.
However, perfect measurements are generally not available due
to the presence of some random parasite signals that make
difficult the extraction of useful information. In this work, we
consider the following observation model:

z = D(Hx) (1)

where x ∈ RQ denotes the target signal, z ∈ RN is the
measured data, H ∈ RN×Q is an observation matrix describ-
ing the linear acquisition model, and D expresses nonlinear
degradations and measurement errors considered as noise.
Such model arises in several signal processing applications
(deblurring, denoising, super resolution, reconstruction, com-
pressive sensing, inpainting) with appropriate definitions of the
operator H and the noise model D [1]–[4].
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The Bayesian framework has been widely adopted to per-
form the task of retrieving an estimate of the target signal
given the data z and the model matrix H. Bayesian modeling
considers the parameters of interest as random variables rather
than deterministic ones. Hence, this approach requires to
specify a prior probability density p(x) that describes what
is known about the sought signal before data are observed.
Estimates are then computed relying on the posterior law that
takes into account the prior p(x) combined with information
about observations p(z|x) via Baye’s rule:

p(x|z) =
p(z|x)p(x)∫

RQ p(z|x′)p(x′)dx′
. (2)

A major challenge in Bayesian methods is the calculation of
the posterior distribution, or more precisely, its exploration.
In addition, nowadays, it is common in many fields such as
medicine, astronomy and microscopy, to handle huge amounts
of data with increasingly sophisticated models [5]. In these
challenging settings, even if the prior and the observation
model are simple, the posterior law is almost always in-
tractable in the sense that it can only be known up to a mul-
tiplicative constant and/or has a complicated form which re-
quires massive computing resources for handling it. Regarding
the difficulty in directly dealing with the posterior distribution,
many methods have been proposed [6]. In this paper, we are
interested in Markov chain Monte Carlo (MCMC) simulation
based techniques for large scale signal processing problems.

MCMC methods are stochastic simulation methods that
allow to approximate a given target distribution such as the
posterior law, by relying on Markov chain theory and Monte
Carlo integration. They proceed in two main steps. First, a
Markov chain is built with a given transition rule so that its
stationary states follow the posterior law [7]–[10]. Once the
Markov chain has reached its stationary distribution, Monte
Carlo approximation is used to infer the posterior character-
istics. A famous MCMC method is the Metropolis-Hastings
(MH) one. This algorithm has been firstly introduced in [11]
and then has been generalized to a more statistical setting
in [7]. In order to draw a sample from a target distribution
p(x|z), two steps are applied alternately. First, a sample x̃(t) is
generated according to some proposal distribution of density
g(.|x(t)) that may depend on the current state x(t) at each
iteration t and should be easy to draw from. The proposed
variable is then accepted or rejected according to the following
acceptance probability:

α(x(t), x̃(t)) = min

(
1,

p(x̃(t)|z)g(x̃(t)|x(t))

p(x(t)|z)g(x(t)|x̃(t))

)
. (3)
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However, the performance of the MH algorithm is obviously
strongly related to the choice of the proposal distribution. This
issue becomes especially critical in large scale problems. In
general, when selecting a proposal in MH algorithms, one
should consider two issues. First, whilst MH algorithms are
guaranteed to yield samples from the target distribution after
some burn-in period, the number of iterations required to reach
convergence may be infeasibly large. Second, the generated
samples after convergence may be correlated. This correlation
originates from two main sources: (i) the correlation intro-
duced by keeping unchanged the parameter value because
the newly generated one was rejected; (ii) the correlation
between successive samples for non-independent proposals.
A poorly mixed chain tends to generate samples that are
highly correlated leading to an incomplete summary of the
target distribution and highly biased estimators. Consequently,
more samples are needed to achieve the same precision as i.i.d
methods (e.g., importance sampling [12], rejection sampling
[13]). In [14], the efficiency of MH algorithms is discussed
with respect to the acceptance probability. In general, a good
proposal should be a good approximation (or at least, a good
local approximation) to the target density without being costly
to sample from. This problem is often tackled in an empirical
manner. However, it is also possible to determine theoretically
an optimal proposal scaling [14] or to use adaptive algo-
rithms in order to find a local approximation of the target
distribution automatically [15]. One typical approach is the
Random Walk (RW) whose adaptive proposal law takes the
form of a Gaussian distribution centered at the current state
[16]. The popularity of this algorithm is mainly related to
its simplicity of implementation. However, the RW usually
takes too many steps to reach stability for high dimensional
models. Furthermore, slow convergence together with bad
mixing behavior could make the Markov chain more likely
to get trapped into some regions and thus fail to explore
efficiently the whole target space [17]. Intuitively, a good
proposal density should take advantage of the local properties
of the target distribution to accelerate the exploration of
regions with high probability values. In particular, it should
reflect the dependence structure of the target distribution for
large scale problems. In this respect, a large amount of works
has been devoted to construct proposals in MH algorithms in
an attempt to meet these requirements [18]–[26]. In this work,
we are interested in proposals based on the Euler discretization
of the Langevin stochastic differential equation where the
drift term accounts for the slope and curvature of the target
law. Our main contribution is to propose a preconditioned
version of the standard Metropolis Hastings adapted Langevin
algorithm using an adaptive matrix based on a Majorize-
Minimize strategy.

This paper is organized as follows. In Section II, we
formulate the problem and we give a brief overview of the
Langevin diffusion process. In Section III, we describe the new
Majorize-Minimize adapted MH algorithm. In Section IV, a
particular attention is paid to the convergence proof of the pro-
posed algorithm. Section V is devoted to experimental results.
Finally, some concluding remarks are drawn in Section VI.

II. PROBLEM STATEMENT AND RELATED WORK

A. Langevin diffusion

A Q-dimensional Langevin diffusion is a continuous time
Markov process (x(t))t∈[0,+∞[ with values in RQ defined as
the solution to the following stochastic differential equation
[27]:

(∀t ∈ [0,+∞[) dx(t) = b(x(t))dt+ V(x(t))dB(t), (4)

where x(0) ∈ RQ, (B(t))t∈[0,+∞[ ∈ RQ is a Brownian
motion, and for every x ∈ RQ, V(x) ∈ RQ×Q is the volatility
matrix and b(x) = (bi(x))Qi=1 is the drift term defined as
follows:

(∀i ∈ {1, . . . , Q}) bi(x) =
1

2

Q∑
j=1

Ai,j(x)
∂ log π(x)

∂xj

+ |A(x)| 12
Q∑
j=1

∂

∂xj

(
Ai,j(x)|A(x)|− 1

2

)
(5)

where A(x) = V(x)V(x)> = (Ai,j(x))1≤i,j≤Q is a symmet-
ric definite positive matrix and |A(x)| denotes its determinant.
Note that the process is stationary and π is the density of the
stationary distribution of the diffusion i.e., if a state x(t0)
follows the distribution of density π, all subsequent states
x(t0 + τ), τ > 0 also follow the same distribution. This
density is here assumed to be differentiable. Thereby, when
π(·) = p(· | z), one can construct a Langevin Markov chain
whose stationary law is the target posterior distribution. In the
following, this choice for π is made.

The Langevin diffusion describes a dynamic in continuous
time. However, one can still approximate this equation by
discretizing time. This is done by splitting the time interval
into a series of small intervals of length ∆t = ε2. The smaller
the value of ε, the closer the approximation to the dynamic in
continuous time. Numerous procedures have been developed
for time discretization [28]. We focus here on Euler’s scheme.
Then, the Langevin diffusion reads

(∀t ∈ N) x(t+1) = x(t) + ε2b(x(t)) + εA1/2(x(t))ω(t+1)

(6)
where ε > 0 is the stepsize resulting from Euler’s discretiza-
tion and

(
ω(t)

)
t∈N ∈ RQ is a realization of zero-mean white

noise with covariance matrix IQ. Scheme (6) is referred to
as the Unadjusted Langevin Algorithm (ULA) [18]. Due to
the discretization error, the Markov chain following ULA
scheme may behave differently from the diffusion process
resulting from (5). In particular, it may sway away from
the target stationary distribution as pointed out in [18], [23].
This discrepancy can be corrected by adding a Metropolis
acceptance test at each iteration to guarantee the reversibility
of the chain with respect to the posterior distribution. The
resulting sampler can be seen as an MH algorithm where, for
every t ∈ N, g(· | x(t)) is the density of a Gaussian distribution
with mean x(t) + ε2b(x(t)) and covariance matrix ε2A(x(t)).
Note that convergence properties have also been obtained for
some variants of ULA in [18], [29], [30].
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It is worth noting that two scale parameters play an im-
portant role in (6): ε determines the length of the proposed
jumps, whereas the scale matrix A(·) controls their direction.
Various classes of algorithms have been developed from this
diffusion model depending on the choice of this matrix. In the
subsequent subsection, we will review the most popular ones.

B. Choice of the scale matrix

The standard Metropolis adjusted Langevin algorithm
(MALA) is the simplest form of diffusion (6) when A(·)
equals IQ [18]:

(∀t ∈ N) x(t+1) = x(t) +
ε2

2
∇ log p(x(t)|z) +εω(t+1). (7)

It can be proved that MALA has p(x|z) as its stationary
distribution and is more likely to accept proposed values
than a standard RW [18]. Indeed, the gradient information
of the target distribution allows the chain to be guided toward
regions of higher probability where most of the samples should
lie and hence, it enables to achieve high acceptance rates.
As a consequence, MALA explores the invariant distribution
much faster than the standard RW [14], [31]. Moreover, it
should be noted that a bad adjustment of ε can significantly
affect the convergence rate especially for high dimensional
problems [26]. For this reason, many methods have focused
on how to choose a suitable stepsize in order to make the
asymptotic average acceptance rate bounded away from zero
in high dimensions [21], [26]. Despite these improvements,
when the variables of interest are strongly correlated with
strongly differing variances, MALA algorithm fails to explore
efficiently the target space. In fact, since the third term
in the MALA update is an isotropic Brownian motion, the
discretization stepsize ε in such a parameter space, is generally
constrained to take very small values in order to deal with the
directions with smallest variances, which may result in a slow
convergence of the algorithm, poor mixing of the chain and
highly correlated samples [23]. The performance of MALA
can be improved by introducing a scale matrix different from
the identity matrix [27]. Some approaches have been proposed
to accelerate the algorithm by preconditioning the proposal
density with a constant scale matrix [20], according to the
following scheme:

(∀t ∈ N) x(t+1) = x(t)+
ε2

2
A∇ log p(x(t)|z)+εA1/2ω(t+1),

(8)
where A ∈ RQ×Q is a constant symmetric positive definite
matrix. While the stepsize ε can easily be tuned with respect
to the asymptotic acceptance rate, there is no clear guiding
strategies for the selection of the constant matrix in the
absence of some knowledge about the moments of the target
density which are usually unknown. Furthermore, the use of
the same preconditioning matrix in the whole algorithm may
be inefficient since optimal scaling in the burn-in period may
differ from that in the stationary phase [32]. Therefore, rather
than employing a fixed global scale matrix in the proposal
density, a position dependent matrix may be employed to take
into account the local structure of the target density at each

state of the Markov chain. In that respect, many algorithms
[15], [22]–[25], [33] rely on adaptive procedures where A(·)
is tuned automatically according to the past behavior of the
Markov chain resorting to some deterministic optimization
tools. For example, when setting A(x) to the inverse of the
Hessian matrix of − log p(x|z) at every x ∈ RQ, and assuming
a locally constant curvature, the term involving the derivatives
of the scale matrix in (5) reduces to zero. Consequently, the
generated sample at each iteration t ∈ N reads:

x(t+1) = x(t)+
ε2

2
A(x(t))∇ log p(x(t)|z)+εA1/2(x(t))ω(t+1)

(9)
where, for every x ∈ RQ, A−1(x) = −∇2 log p(x|z) that is,
for every i ∈ {1, . . . , Q} and, for every j ∈ {1, . . . , Q},[
A−1

]
i,j

(x) = − ∂2 log p(x|z)

∂xi∂xj
. Consequently, the compu-

tation of the drift term b(·) becomes a scaled Newton step for
minimizing − log p(·|z). Thus, a new sample of the Newton-
based MCMC is more likely drawn from a highly probable
region and then more likely accepted, which can speed up the
convergence of the sampling process [24], [25], [33]. Note
that, in practice, this method has a high computational cost
since it requires the computation of the full Hessian matrix
and its inverse at each iteration. This is especially critical
for large scale problems and/or when the Hessian matrix is
not positive definite. One appealing solution is to replace the
Hessian by a scale matrix that provides information similar
to the Hessian with a lower computational cost. In particular,
several methods rely on the Fisher information matrix as a
preconditioning matrix in the Langevin diffusion [22], [23],
and can thus be interpreted as the discretization of the MALA
algorithm directly on the natural Riemannian manifold where
the parameters live. In the following, we propose a new
approach where the scale matrix of the Langevin diffusion
is chosen according to a Majorize-Minimize strategy.

III. PROPOSED ALGORITHM

A. Majorize-Minimize framework

The Majorization-Minimization (MM) principle is a power-
ful tool for designing optimization algorithms. The idea behind
the MM approach is to replace an original complicated mini-
mization problem with successive minimizations of some well
chosen surrogate functions, satisfying the so-called tangent
majorant conditions [34]–[36]:

Definition III.1. Tangent majorant.
Let J : RQ → R and let x′ ∈ RQ. A function f(x′, ·) is said
to be a tangent majorant function of J at x′ if{

P1 : f(x′,x′) = J (x′),
P2 : f(x′,x) > J (x) (∀x ∈ RQ).

(10)

Let x(0) ∈ RQ be an arbitrary initial value and let
(
x(t)

)
t≥1

be the sequence constructed as follows

(∀t ∈ N) x(t+1) = argmin
x∈RQ

f(x(t),x). (11)
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According to (10), the scheme (11) will produce a monotically
decreasing sequence (J (x(t)))t∈N since we have

J (x(t)) =
(a)

f(x(t),x(t)) >
(b)
f(x(t),x(t+1)) >

(c)
J (x(t+1))

(12)
where (a) follows from the tangency property P1, (b) from the
minimization step (11), and (c) from the majorization property
P2 (see Figure 1). Then, under mild assumptions, the sequence
can be shown to converge to a stationary point of J [37].

Fig. 1: MM algorithm: the new iterate x(t+1) is the minimizer
of the tangent majorant f(x(t), .) of J at x(t).

The performance of MM algorithms depends crucially on
the choice of the surrogate function f . In particular, it has to
be chosen so that a minimizer of it is easy to compute. A
simple choice is to adopt an MM quadratic strategy, which
consists in assuming the existence, for every x′ ∈ RQ, of a
positive definite matrix Q(x′) ∈ RQ×Q such that the following
quadratic function defined, for every x ∈ RQ, by

f(x′,x) = J (x′)+(x−x′)>∇J (x′)+
1

2
(x−x′)>Q(x′)(x−x′)

(13)
is a tangent majorant of J at x′. Then, the MM optimization
algorithm reduces to building a sequence (x(t))t∈N through
the following preconditioned gradient scheme:

(∀t ∈ N) x(t+1) = x(t) − ε2

2
Q−1(x(t))∇J (x(t)) (14)

with ε ∈]0,
√

2] is a relaxation stepsize. Note that (14)
implies that inequality (b) in (12) is satisfied, by noticing that
2ε−2Q(x′) � Q(x′), for every x′ ∈ RQ and every ε ∈]0,

√
2].

B. Proposed sampling algorithm

In this work, we propose to extend the idea behind the afore-
mentioned MM quadratic strategy to the context of stochastic
samplers. More specifically, our idea is to push the proposal
distribution of the MH algorithm at each iteration from the
current state to a region with high density value. Unlike the
RW where the proposal is centered on the current state, we
propose to pick the mean of the proposal density using an
MM search step of the form (14), and then to explore the
space around this center according to an MM curvature matrix
Q(x(t)) that should well describe the local curvature of the
target distribution. This results in a preconditioned Langevin

proposal where the scale matrix A(x(t)) in (9), equal to the in-
verse of the curvature matrix Q(x(t)), is constructed according
to the MM strategy. Similarly to Newton-based MCMC meth-
ods, the drift term, when assuming zero curvature changes,
leads, from a current state x(t), to a state with a higher
value of log p(x|z) since it results from an iteration of MM
algorithm minimizing J (x) = − log p(x|z). Consequently,
the obtained proposal reduces to a stochastically perturbed
version of an MM iteration for minimizing − log p(x|z). The
proposed sample is then subjected to the accept/reject rule
of the MH algorithm. The resulting sampler called 3MH is
described by Algorithm 1.

Algorithm 1 Majorize-Minimize adapted Metropolis–Hastings
(3MH) algorithm

Initialize: x(0) ∈ RQ, ε ∈]0,
√

2]
1: for t = 0, 1, . . . do
2: Generate

x̃(t) ∼ N
(
m(x(t)), ε2Q−1(x(t))

)
where

m(·) = ·+ ε2

2
Q−1(·)∇ log p(· | z)

3: Acceptance-Rejection:
4: Generate u ∼ U(0, 1)
5: Compute

α(x(t), x̃(t)) = min

(
1,

p(x̃(t)|z)g(x̃(t)|x(t))

p(x(t)|z)g(x(t)|x̃(t))

)
where, for every v ∈ RQ,

g(· | v) ∝ |Q(v)| 12 exp

(
− 1

2ε2
‖ · −m(v)‖2Q(v)

)
6: if u < α(x(t), x̃(t)) then
7: Accept: x(t+1) = x̃(t)

8: else
9: Reject: x(t+1) = x(t)

10: end if
11: end for

The metric Q(·) is thus the precision matrix of the Gaussian
proposal distribution, the choice of which is crucial for the ef-
ficiency of the sampling algorithm. We propose to set Q(x(t))
at each iteration t ∈ N such that (13) is a tangent majorant
to the minus logarithm of the posterior density at the current
state x(t), i.e. it should satisfy Properties P1 and P2 in (10).
Furthermore, for practical efficiency, it must be chosen so as
to provide a good approximation to the local curvature of the
posterior distribution. In the following, we propose a general
procedure for building such a set of suitable preconditioning
matrices {Q(x)}x∈RQ under some mild conditions on the
posterior distribution.

C. Construction of the tangent majorant

We focus on the case when the minus-log of the target
density function J = − log p(· | z) can be expressed up to an
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additive constant as

(∀x ∈ RQ) J (x) = Φ(Hx− z) + Ψ(x) (15)

where z ∈ RN , H 6= 0N×Q, and

Ψ(x) =

S∑
s=1

ψs(‖Vsx− cs‖) (16)

with (∀s ∈ {1, . . . , S}) Vs ∈ RPs×Q, cs ∈ RPs , and
(ψs)16s6S is a set of nonnegative continuous functions. Note
that this form of posterior density is very versatile. It is
frequently encountered in inverse problems where z is the
observation, Φ is the data fidelity term and Ψ is the minus
logarithm of the prior density involving some linear opera-
tors V1, . . . ,VS . For instance, (Vs)1≤s≤S may be matrices
computing the horizontal and vertical discrete gradients (or
higher order differences) between neighboring pixels, which
are useful for edge preserving in image restoration problems.
In this case, by setting Ps = 1 and ψs = | · |, we recover the
anisotropic total variation while for Ps = 2 and ψs equal to
the `2 norm, we obtain the isotropic form of it [38]. Another
important choice, is the analysis frame regularization where
V = [V>1 , . . . ,V

>
S ]> is a frame of RQ. For example, V1

may be the operator that computes low frequency wavelet
coefficients and ψ1 a function enforcing smooth solutions,
while the remaining operators give the high frequency ones
that can be well described using suitable heavy tailed functions
ψs such as the `pp penalties for p < 1, the Cauchy, or
the Bernoulli-Gaussian models [38], [39]. As Langevin based
algorithms require the use of differentiable regularizations, one
can use smoothed approximations of these functions that have
a quadratic behavior near 0 [40]–[43].

We further make the following assumptions:

Assumption III.1.
(i) Φ is a continuous coercive differentiable function with

an L-Lipschitzian gradient, that is, for every (u,v) ∈
(RN )2,

‖∇Φ(u)−∇Φ(v)‖ 6 L‖u− v‖,

with L ∈]0,+∞[.
(ii) (∀s ∈ {1, . . . , S}) ψs is a differentiable function the

derivative of which is denoted by ψ̇s.
(iii) (∀s ∈ {1, . . . , S}) ψs(

√
·) is concave over R+.

(iv) (∀s ∈ {1, . . . , S}) (∃ ω̄s > 0) such that (∀u > 0),
0 6 ψ̇s(u) 6 ω̄su and lim

u→0
ψ̇s(u)/u ∈ R.

Assumption III.1(i) holds for a large number of data fidelity
terms. This includes for example the Gaussian noise model, the
Huber function which may be useful for limiting the influence
of outliers present in some datasets [44], the Cauchy model
[45], and the signal-dependent Gaussian model generally used
as a second order approximation of mixed Poisson-Gaussian
noise [46], as well as the exact Poisson-Gaussian likelihood
[47]. More examples can be found in [35]. Furthermore,
Assumptions III.1(ii)-(iv) are satisfied for several commonly
used prior models such as the Student-t distribution, the
Gaussian distribution as well as smoothed approximation of
`pp regularization functions for p 6 2 and `2 − `0 penalties

(asymptotically constant with a quadratic behavior near 0)
used to approximate the `0 pseudo-norm [35], [48]–[50].1

Under Assumptions III.1(i)-(iv), convex quadratic tangent
majorants of (15) can be obtained by setting (see [35]):

(∀x ∈ RQ) Q1(x) = µH>H + V>Diag{ω(x)}V + ζ IQ
(17)

where µ ∈ [L,+∞[, V =
[
V>1 , . . . ,V

>
S

]>
and ω(x) =

(ωi(x))1≤i≤P is such that, for every s ∈ {1, . . . , S} and
p ∈ {1, . . . , Ps},

ωP1+P2+...+Ps−1+p(x) =
ψ̇s(‖Vsx− cs‖)
‖Vsx− cs‖

. (18)

Hereabove, ζ is a nonnegative constant that can be useful to
ensure the invertibility of Q1(x) for every x ∈ RQ.

The numerical efficiency of the proposed algorithm relies
on the use of quadratic majorants that provide tight approxi-
mations of the target density but also whose curvature matrices
are simple to compute. However, sampling from the proposal
constructed by the MM strategy when using the curvature
matrix Q1(·) given by (17) is often very difficult because of
the high computational cost of each iteration and/or memory
limitations. In fact, similarly to Newton MCMC samplers,
the main computational cost is related to the computation
of the inverse of (17) and sampling from the associated
high-dimensional Gaussian distribution at each iteration. In
the following, we will propose alternative choices of the
curvature matrix, when matrix Q1(·) given by (17) leads to
an intractable scheme. The practical efficiency of the different
metric strategies will be analyzed in our experimental part.

Constant curvature matrix: We can resort to the follow-
ing constant curvature matrix which can be seen as a majorant
of (17) constant with respect to variable x:

Q2 = µH>H + max
16s6S

ωs V>V + ζIQ. (19)

It can be noted that in the special case when H is circulant
and V>V = νIQ with ν > 0, which is the case for example
when V is a tight frame analysis operator, then Q2 is easily
invertible in the Fourier domain. More generally, when H and
V can be diagonalized in the same basis, the inversion and
the square root decomposition of (19) can be easily performed
in this basis.

Diagonal curvature matrix: We also propose the fol-
lowing alternative choice described in [51], which can be
understood as a diagonal approximation of Q1:

(∀x ∈ RQ) Q3(x) = Diag
(
µL>1N + P>ω(x)

)
+ ζIQ

(20)

where L ∈ RN×Q, P ∈ RP×Q, with P =
S∑
s=1

Ps, are matrices

whose elements are given, respectively, by

(∀i ∈ {1, . . . , N})(∀j ∈ {1, . . . , Q}) Li,j = |Hi,j |
Q∑
k=1

|Hi,k|,

(21)

1Note that, in this work, improper prior laws are allowed provided that the
resulting posterior distribution is proper.
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and

(∀i ∈ {1, . . . , P})(∀j ∈ {1, . . . , Q}) Pi,j = |Vi,j |
Q∑
k=1

|Vi,k|.

(22)

IV. CONVERGENCE ANALYSIS

In this section, we establish the convergence of the proposed
algorithm.
It can be first noticed that the drift term in Algorithm 1 is
equivalent to

(∀x ∈ RQ) b(x) =
ε2

2
Q−1(x)D(x) (23)

where D(x) is the truncated gradient defined by

D(x) =
d

max(d, ‖∇ log p(x|z)‖)
∇ log p(x|z), (24)

provided that the parameter d > 0 tends to +∞. Similarly to
[15], we will study the asymptotic behaviour of the algorithm
when using the modified drift term (23).

We further make the following assumptions:

Assumption IV.1. p(· | z) is the density of a super-exponential
distribution that is p(· | z) is positive and has continuous first
derivatives such that

lim
‖x‖→+∞

x>∇ log p(x|z)

‖x‖
= −∞, (25)

and

lim sup
‖x‖→+∞

x>∇ log p(x|z)

‖x‖ ‖∇ log p(x|z)‖
< 0. (26)

Assumption IV.2. For every x ∈ RQ, the preconditioning
matrix Q(x) has a bounded spectrum i.e., there exist two
constants νmin > 0 and νmax > 0 independent of x such
that (

∀x ∈ RQ
)
νminIQ � Q(x) � νmaxIQ. (27)

Remark IV.1. Assumption IV.2 holds for all the curvature
matrices Q1(·), Q2 and Q3(·) proposed in Section III-C
provided that ζ > 0. Furthermore, Assumption IV.2 together
with (24), imply that the drift term b is bounded that is(

∀x ∈ RQ
)
‖b(x)‖ 6 ε2

2
ν−1mind. (28)

We now state sufficient conditions for Assumption IV.1 to
be satisfied.

Proposition IV.1. Consider Model (15) with Φ = 1
2‖ · ‖

2

and (ψs)16s6S satisfying Assumptions III.1(ii)-(iv). Then,
Assumption IV.1 is satisfied if one of the following properties
holds:
• H is injective, for example H = IQ which is the case for

denoising problems;
• there exists s0 ∈ {1, . . . , S} such that

(i) Ker(H) ∩Ker(Vs0) = {0Q},2

2Ker(H) and Ker(Vs0 ) denote the nullspaces of H and Vs0 , respec-
tively.

(ii) lim
u→+∞

ψ̇s0(u)/u > 0,

Proof. See Appendix A.

Subsequently, we can establish the geometric ergodicity of
the proposed algorithm based on the results concerning RW
in [52] and by adapting the proofs in [15], [18], [53]. Since
the algorithm appears as a special case of the MH algorithm,
the chain

(
x(t)

)
t∈N constructed by the 3MH algorithm has

p(x|z) as an invariant distribution. The first important step of
the proof of geometric ergodicity is to compare the proposal
density g to Gaussian proposals.

Proposition IV.2. Under Assumption IV.2, there exists
(k1, k2, σ1, σ2) ∈ (]0,+∞[)4 such that for every (x,y) ∈
(RQ)2,

k1n (y; x, σ2
1IQ)6g(x|y)6k2 n(y; x, σ2

2IQ) (29)

where n(·; x, σ2
i IQ), is the density of the Gaussian distribution

of mean x and covariance matrix σ2
i IQ, i ∈ {1, 2}.

Proof. See Appendix B.

Theorem IV.1. Under Assumptions IV.1 and IV.2, the Markov
chain defined by the 3MH algorithm using the truncated gra-
dient (24) is geometrically ergodic with stationary distribution
Px|z.

Proof. From Algorithm 1 and Proposition IV.2, g is positive
and, for every (x,y) ∈ (RQ)2, g(x|y) > 0. Since p(· | z) is
also positive and continuous, we can deduce from [52] that the
chain is aperiodic and p(x|z)- irreducible with unique invariant
distribution p(x|z).
Assumption IV.1 has been introduced in [52] as a sufficient
condition for the geometric ergodicity of the RW algorithm.
It has been shown that under Assumption IV.1, when (29)
holds, the MALA algorithm with truncated gradient (24) is
geometrically ergodic [15]. Since the drift term of the proposed
algorithm is bounded by a truncated gradient, the geomet-
ric ergodicity property can be deduced by a straightforward
adaptation of the proof in [15] for MALA algorithm with
truncated drift. Note that our convergence proof is valid
for any preconditioned MALA algorithm provided that the
preconditioning metric has a bounded spectrum.

V. EXPERIMENTAL RESULTS

To illustrate the benefits that can be drawn from the pro-
posed algorithm, we will focus on two applicative examples,
namely 1D signal deconvolution and multicomponent image
denoising.

A. Sparse signal deconvolution with a Student-t prior

Our first example focuses on the deconvolution of a seismic
signal. The original signal x̄ is a sparse vector of length
Q = 784 composed of a sequence of spikes called primary
reflection coefficients [54], [55] as depicted in Figure 2. The
non-zero coefficients give information about the travel time
of seismic waves between two seismic reflectors, and the
amplitude of the seismic events reflected back to the sensor
[54]. We assume that the signal is degraded by a known
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blur operator HQ×Q and further corrupted with an additive
Gaussian noise. Thereby, the observation model (1) reduces to
the following linear additive noise model: z = Hx+w, where
w is an additive zero mean Gaussian noise with variance σ2.
The aim is then to retrieve an estimate x̂ of x from H and z.

0 100 200 300 400 500 600 700
−1

−0.5

0

0.5

Fig. 2: Original signal.

1) Prior and posterior distributions: In order to promote
the signal sparsity, we suppose that its coefficients are indepen-
dent and identically distributed according to a Student-t (ST )
distribution. Then, we can identify the following functions:

Φ =
1

2σ2
‖ · ‖2 and Ψ(x) =

ν + 1

2

Q∑
i=1

log

(
γ2 +

(xi − µ)2

ν

)
(30)

where ν > 0 is the number of degrees of freedom determining
the shape of the distribution, µ is the position parameter, and
γ > 0 is the scale parameter [56]. Note that the Cauchy
distribution is recovered as a particular case when ν = 1.
The ST distribution is often used in image reconstruction
to model the distribution of wavelet coefficients [57]. This
penalty has also been proposed in [58] as a tradeoff between
the squared `2 norm and the non-convex approximation of
the semi-norm `0 presented in [59], with the aim to enforce
sparsity properties and better preserve discontinuities. Recall
that the ST distribution can be written as a scale mixture
of normal distribution where the hidden variable follows a
gamma distribution with both parameters equal to ν/2 [60].
In most Bayesian methods, it is generally used in this form:
the unknown signal x and the hidden variable are estimated
from their posterior joint distribution. In this work, we propose
to directly use the expression defined in (30).

In the following, we assume that ν is known, and that we
have only few prior information about the others parameters.
Thus, the set of hyperparameters to be estimated jointly with
x is Θ = {µ, γ}. More specifically, uniform distributions are
used for µ and γ defined on [−µm, µM ] and [γm, γM ] re-
spectively, where µm, µM , γm and γM are positive constants.
Thus, the posterior distributions of the parameters are given
by

p(µ|x, z, γ) ∝
Q∏
i=1

(
γ2 +

(xi − µ)2

ν

)− ν+1
2

1[−µm,µM ](µ),

p(γ|x, z, µ) ∝ γQν
Q∏
i=1

(
γ2 +

(xi − µ)2

ν

)− ν+1
2

1[γm,γM ](γ).

2) Sampling from the posterior distribution of the signal
and the hyperparameters: Φ and Ψ satisfy the properties in
Section III-C. We can thus apply the 3MH algorithm to sample
from the posterior distribution of x. More specifically, we

will test the performance of 3MH using the three different
curvature matrices proposed in Section III, namely Q1, the
constant circulant matrix Q2, and the diagonal matrix Q3. In
our context, these matrices are defined by

(∀x ∈ RQ) Q1(x) =
1

σ2
H>H + Diag{ω(x)}+ ζIQ, (31)

Q2 =
1

σ2
H>H +

ν + 1

νγ2
IQ, (32)

(∀x ∈ RQ) Q3(x) = Diag
(

1

σ2
L>1N + ω(x)

)
, (33)

where ω(x) = (ωi(x))1≤i≤Q is such that

(∀i ∈ {1, . . . , Q}) ωi(x) =
ν + 1

νγ2 + (xi − µ)2
(34)

and L ∈ RN×Q is given by (21). Hereabove, ζ > 0 is
a constant added to ensure the positive definiteness of the
matrix Q1. Matrix Q2 is positive definite for every x ∈ RQ.
Furthermore, Q3 is also ensured to be positive definite for all
x ∈ RQ provided that the observation matrix H contains no
column whose elements are all equal to zero. It is worth noting
that, the posterior density satisfies the sufficient conditions in
Proposition IV.1 when H is injective. Similarly to MALA
[18], the geometric ergodicity of 3MH is not theoretically
guaranteed if H is not injective.

The posterior laws of the ST prior parameters do not have
usual forms. Then, it is not easy to directly generate samples
of µ and γ. We propose therefore to estimate them using a RW
algorithm whose scale parameter is tuned automatically during
the burn-in period so as to reach an acceptance probability
equal to 0.33.

3) Results: The test signal is artificially degraded by a
band-pass filter with finite impulse response of length 41 with
a frequency band concentrated between 10 and 40 Hz and
an additive Gaussian noise of variance σ2 = 2.5 × 10−3

(see Figure 2). The initial signal-to-noise ratio (SNR) is
−4.58 dB. We fix ν = 1 which corresponds to the special
case of the Cauchy prior. Simulations are performed on an
Intel(R) Xeon(R) CPU E5-2630, @ 2.40 GHz, using a Matlab7
implementation. Figure 4 shows the error between the original
signal and the degraded one as well as the error between the
original signal and the restored one using the Minimum Mean
Square Estimator (MMSE) which corresponds to a SNR equal
to 8.24 dB.

We propose to compare the 3MH algorithm using the
different curvatures matrices Q1, Q2, and Q3 and the standard
MALA algorithm. All tested algorithms have been run until
convergence. The discretization stepsize ε is adjusted for all
these algorithms during the burn-in period to correspond to
an acceptance probability between 0.3 and 0.6. Note that in
order to reduce the complexity of each iteration when using
Q = Q1, the inversion of the curvature matrix is performed
in an approximate manner, using inner conjugate gradient
iterations and the generation of random variables according
to the proposal is then ensured using the sampling method
from [61]. Figure 5 shows the evolution of J with respect to
time. Following [15], we also compare the different methods



XXX 8

5 10 15 20 25 30 35 40
−0.5

0

0.5

1

0 100 200 300 400 500 600 700
−1

−0.5

0

0.5

Fig. 3: Blurring kernel (top). Degraded signal (bottom).

0 100 200 300 400 500 600 700
−0.5

0

0.5

1

0 100 200 300 400 500 600 700
−0.5

0

0.5

1

Fig. 4: Initial error x̄− z (top). Estimation error x̄− x̂ (bottom).

in terms of the Mean Square Jump (MSJ) at stationarity
which indicates how much the Markov chain is exploring the
whole target space after convergence. Note that MSJ has been
estimated with an empirical average over T = 5000 samples
x(t0+1), . . . ,x(t0+T ) generated after the burn-in period as
follows

MSJ =

(
1

T − 1

T−1∑
t=1

‖x(t0+t) − x(t0+t+1)‖2
)1/2

. (35)

In Table I, we show estimates of the mean square jump per
second at stationarity which is defined as the ratio of the mean
square jump and the computational time per iteration. We also
compare the statistical efficiency of the different samplers with
respect to MALA defined as the mean square jump per second
for each sampler over the mean square jump per second of
MALA.

TABLE I: Mixing results for the different algorithms. First
row: Estimates of the mean square jump at stationarity. Sec-
ond row: Estimates of the mean square jump per second in
stationarity. Third row: Efficiency relatively to MALA.

MALA 3MH-Q1 3MH-Q2 3MH-Q3

MSJ 1.40 e-5 8.14 e-5 1.39 e-5 2.32 e-5
MSJ per s. 3.60 e-2 8.65 e-4 1.17 e-2 3.89 e-2
Efficiency 1 0.02 0.32 1.08

One can notice that the behavior of 3MH algorithm using
the constant curvature matrix Q2 is close to MALA in terms

0 0.5 1 1.5 2 2.5
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Fig. 5: Convergence speed of MALA, 3MH - Q1, 3MH - Q2 and
3MH - Q3.

of convergence speed. This fact can be explained by the low
dispersion of the eigenvalues of Q2 in this particular example.
Nevertheless, the use of the matrix Q1 at each iteration
becomes more expensive as the problem dimension increases
which deteriorates the efficiency of the algorithm. The choice
of the diagonal adaptive matrix Q3 appears to outperform the
other algorithms due to the low complexity that it induces at
each iteration. It allows to reach stability much faster than the
other algorithms while achieving mixing properties slightly
better than MALA at convergence.

B. Multispectral image denoising with a multivariate prior

In our second example, we are interested in the denoising of
a multispectral image with R pixels and B spectral channels
corrupted with independent additive white Gaussian noises
N (0, σ2). We assume that the noise variance σ2 is known.
We denote by ȳ1, . . . , ȳB the vectors that correspond to the
reshaped unknown spectral images into vectors in RR. The
objective is to recover these vectors from observed noisy
vectors z1, . . . , zB . Our recovery procedure will operate in the
wavelet transform domain since the wavelet representations
of the B unknown spectral images are sparse. To this end,
we choose a set of orthogonal wavelet synthesis operators
F∗1, . . . ,F

∗
B [62]. More precisely, for each spectral position

b ∈ {1, . . . , B}, F∗b is a linear mapping from RK to RR with
K > R that outputs ȳb from the vector x̄b ∈ RK of frame
coefficients:

ȳb = F∗b x̄b. (36)

Each spectral component with index b is decomposed into
M subbands with sizes Km, m ∈ {1, . . . ,M} according
to different orientations and resolutions. Obviously, we have∑M
m=1Km = K and the vector x̄b is defined by

x̄b = (x̄b,1,1, . . . , x̄b,1,K1
, . . . ,

x̄b,m,1, . . . , x̄b,m,Km , . . . ,
x̄b,M,1, . . . , x̄b,M,KM )>.

(37)

Thus, the problem of recovering the multispectral image can
be viewed as a special case of (1) expressed by z = Hx + w,
where N = Q = KB, z = [z>1 , . . . , z

>
B ]> ∈ RN , x =
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[x>1 , . . . ,x
>
B ]> ∈ RQ, w ∼ N (0N , σ

2IN ) and, the matrix H
is given by

H =


F∗1 0 . . . 0
0 F∗2 0 0
. . . . . . . . . . . .
0 0 0 F∗B

 . (38)

Our objective is to build an estimate x̂ of the frame coefficients
x based on the available observed frame coefficients z and the
transform domain matrix H.

1) Prior and posterior distributions: It is worth noting
that the mutual similarities between the spectral images also
propagate to their corresponding frame coefficients. Our idea is
to capture such dependencies by resorting to a joint estimation
of the frame coefficients of all the B components at a given
orientation and resolution. To this end, for each subband m ∈
{1, . . . ,M}, we stack the coefficients of all the B channels at
the same spatial position k ∈ {1, . . . ,Km} so as to build the
vectors xm,k = (xb,m,k)16b6B ∈ RB . Mathematically, it is
easy to show that these vectors result from a linear transform
of x: xm,k = Pm,kx, where Pm,k ∈ RB×Q denotes a
sparse matrix containing B lines of an appropriate permutation
matrix.

The sparsity of the frame coefficients and the spectral
redundancies are captured by assuming that for each orien-
tation and scale associated to index m, the vectors xm,1, . . .,
xm,Km correspond to Km realizations of a random vector
whose distribution is a generalized multivariate exponential
power distribution (GMEP) characterized by its scale matrix
Σm, its shape parameter βm and its smoothing parameter
δm [63]. Consequently, the likelihood function Φ can be
defined similarly to (30). Furthermore, the minus-log of the
prior density is easily derived (up to an additive constant):

Ψ(x) =

M∑
m=1

Km∑
k=1

ψm(‖Σ−1/2m (Pm,kx− am)‖) (39)

where, for every m ∈ {1, . . . ,M}, am is a vector of RB and
for every real t, ψm(t) = 1

2 (t2 + δm)βm . It should be pointed
out that for every m ∈ {1, . . . ,M}, the shape of the GMEP
is controlled by βm. Indeed, heavier tailed distributions than
the Laplace one correspond to βm < 0.5 whereas Gaussian-
like ones are associated to βm close to 1. In our work, for
the sake of simplicity, the values of every βm and δm are
assumed to be known. However, it has to be emphasized that
these values may change from a subband to another. Very small
values (βm < 0.5) are assigned at the first scales in order to
promote the frame coefficients sparsity but relatively higher
values (0.5 < βm < 1) are chosen at higher scales. Finally,
a normal distribution is often retained for the approximation
subband at the coarsest scale. The value of δm is adjusted to
a positive small value to guarantee the differentiability of Ψ
given in (39). Furthermore, we need to decompose the scale
matrix, for every m ∈ {1, . . . ,M} as follows:

Σm = γ−1/(2βm)
m Diag(nm)−1RmDiag(nm)−1, (40)

where Rm is the normalized correlation matrix of size B×B
(with diagonal elements equal to 1 and the remaining ones

correspond to the correlation factors between the coefficients),
nm is a B-dimensional vector of positive elements whose sum
is equal to 1 and γm is a positive real. It is worth noting
that γ1/(2βm)

m nm can be seen as the vector containing the
square root of the scale parameters for all the B components
in subband m. For the sake of simplicity, we assume without
loss of generality that the different spectral components of the
image have the same correlation and weights in all subbands
i.e., R = Rm and nm = n for all m. Moreover, n and
R are assumed to be known. In this way, all the unknown
hyperparameters form the set:

Θ = {γ1, . . . , γM}. (41)

For every m ∈ {1, . . . ,M}, a gamma prior for γm is se-
lected: γm ∼ G(aγm , bγm) where aγm > 0 and bγm > 0 [64].
Consequently, γm has the following posterior distribution:

p(γm|x,R) ∝ γ
aγm+ Km

2βm
−1

m exp (−bγmγm)

× exp

(
−1

2

Km∑
k=1

(
γ

1
βm
m ‖R− 1

2 Diag(n)(Pm,kx− am)‖2

+δm)
βm
)
. (42)

Our goal is to compute the posterior mean estimates of the
target frame coefficients x as well as of Θ thanks to MCMC
sampling algorithms.

2) Sampling from the posterior distribution of the image
and hyperparameters: Samples of vectors xm,k can be drawn
in an independent manner for every m ∈ {1, . . . ,M} and
k ∈ {1, . . . ,Km}. Indeed, as the posterior law is differen-
tiable, we propose to apply Langevin based MCMC algorithms
to produce samples according to the posterior law of xm,k.
Furthermore, adding a curvature matrix that accounts for the
cross-spectral dependencies can improve the sampling perfor-
mance. Note that its Hessian and Fisher matrices are equal
because of the Gaussianity of the fidelity term. Nevertheless,
the convexity of ψm only holds when βm > 0.5 and, hence
there is no guarantee that the Hessian and the Fisher matrices
are definite positive if βm < 0.5. For every m ∈ {1, . . . ,M},
ψm is differentiable and, the concavity on R+ of the function
t 7→ ψm(

√
t) is valid when βm 6 1. Consequently, we propose

to employ the curvature matrices built by the MM strategy
described in Section III-C. More precisely, we make use of
the curvature matrix introduced in (17). Its expression for each
subband m, is given by

(∀c ∈ RB) Q
(m)
1 (c) =

1

σ2
IB+Σ−1m

ψ̇m

(
‖Σ−1/2m (c− am)‖

)
‖Σ−1/2m (c− am)‖

.

(43)
Note that, the geometric ergodicity of the 3MH algorithm is
fulfilled as H is injective. It is also worth pointing out that in
the case when a normal distribution (i.e., βm = 1) is assigned
to the low frequency subband, it can be proved that the 3MH
algorithm is still geometrically ergodic for a deconvolution
problem (non necessarily injective H) because (ψm)16m6M

satisfy the assumptions of Proposition IV.1.
Because of the unusual form of the posterior law of Θ,
sampling from (42) is carried out by an independent MH
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algorithm with a gamma proposal of parameters ãγm =
aγm +Km/(2βm), and

b̃γm = bγm +

Km∑
k

‖R− 1
2 Diag(n)(Pm,kx− am)‖2βm . (44)

3) Results: In our experiments, we select the Hydice3 hy-
perspectral dataset containing 191 spectral components in the
range [0.4,2.4]µm of the visible and infrared spectrum. From
this dataset, we extract a portion of size R = 256× 256 over
B = 60 spectral channels that we consider as our test image.
Thus, the problem dimension amounts to N = 3 932 160. We
add a zero-mean white Gaussian noise with variance σ2 = 225
to this test image. The initial SNR is 12.15 dB. We apply to the
noisy image a three-stage orthonormal wavelet decomposition
using a Symlet wavelet of order 3. Hence, we have M = 10
and Q = N . Regarding the approximation coefficients (m =
M ), we retain a Gaussian prior (βM = 1, δM = 0). For all
the remaining subbands (m ∈ {1, . . . ,M − 1}, we choose
δm = 10−4. Moreover, we set βm = 0.2 for the wavelet
coefficients at the lowest resolution level, βm = 0.4 at the
second level of decomposition, and βm = 0.5 at the coarsest
level of decomposition. The Gibbs sampling algorithm is
run with enough iterations to reach the stability state. The
empirical MMSE estimator for the original image is computed
with the generated samples of the wavelet coefficients after
the burn-in period. Figure 6 displays the results achieved for
the various components in terms of SNR and SSIM (Structural
SIMilarity [65]). It appears that our method leads to a dramatic
improvement of the values of the objective metrics and the
perceptual ones for all the spectral components. For example,
the average increase of the SNR (resp. SSIM) values approxi-
mately amounts to 10 dB (resp. 0.3). The resulting gains tend
to indicate that the MMSE estimator leads to good numerical
results. This is also corroborated by a visual inspection of
the recovered components. Indeed, the reduction of the noise
degradation in the different components is clearly noticeable
in Figure 7. Besides, small details have been enhanced in a
satisfactory manner.

As benchmarking, we compare the performance of the
Gibbs sampler when the posterior law of the wavelet coef-
ficients is explored using either RW, MALA, or 3MH algo-
rithms. Simulations were performed on an Intel(R) Xeon(R)
CPU E5-2630, @ 2.40 GHz, using a Matlab7 implementation.
Figure 8 illustrates the evolution of the scale parameter γm in
the horizontal subband at the first level of decomposition with
respect to the computational time employing the underlying
algorithms. Table II provides their related mixing results in
terms of mean square jump per second in stationarity. It can
be noticed that the stationary state is reached by our novel
algorithm much faster than by the RW and MALA algorithms.
More precisely, about 500 seconds are enough for the 3MH
algorithm to reach stability which is fourfold less than the time
required by MALA algorithm. Furthermore, the RW algorithm
appears as the slowest algorithm since it needs about 10 000
seconds to converge. Moreover, it is worth emphasizing that

3https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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Fig. 6: Restoration results for the B = 60 channels of the
degraded (blue) and restored (red) images.

Fig. 7: From top to bottom: Components 20 and 40 of the
degraded (left) and restored (right) images. SNR= (16.67 dB,
25.48 dB) (9.45 dB, 22.57 dB).

the 3MH algorithm presents the best mixing properties at
stability in terms of MSJ. Thus, our proposed method also
is the most efficient choice after reaching stability compared
with MALA and RW even though the computational load of a
single iteration of the 3MH algorithm is around twice higher
than that of the RW.

Another appealing property of the proposed Gibbs sampler
concerns its straightforward extension to the case of a decon-
volution problem corresponding to the case of H = DF∗,
the matrix D being a blurring operator. This extension can be
realized by inserting an additional step in the Gibbs algorithm
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Fig. 8: Convergence speed of RW, MALA and 3MH.

TABLE II: Results for the different proposed algorithms.
First row: Estimates of the mean square jump in stationarity.
Second row: Estimates of the mean square jump per second in
stationarity. Third row: Relative efficiency compared to RW.

RW MALA 3MH
MSJ 5.95 10.65 15.52
MSJ per s. 9.15 9.95 12.31
Efficiency 1 1.08 1.34

to draw samples of auxiliary variables [66].

VI. CONCLUSION

In this work, we have proposed a new MCMC algorithm
that can be considered as a scaled MALA where the scale
matrix is adapted at each iteration by following an MM
strategy. We have shown that the geometric ergodicity property
of the standard Langevin MH algorithms is maintained by
introducing this scale matrix for the class of super-exponential
distributions. We have then applied this algorithm to compute
the MMSE estimator in signal and multicomponent image
recovery problems. Experimental results emphasize the good
performance of this new MCMC method compared to the
standard MALA algorithm.

APPENDIX A
PROOF OF PROPOSITION IV.1

Let x ∈ RQ \ {0}. According to Assumption (ii), we have

∇J (x) = H> (Hx− z)+

S∑
s=1

V>s (Vsx− cs)
ψ̇s(‖Vsx− cs‖)
‖Vsx− cs‖

.

(45)
We deduce that4

‖∇J (x)‖ 6 ‖H‖‖Hx− z‖+

S∑
s=1

‖Vs‖ψ̇s(‖Vsx− cs‖)

(46)

6 ‖H‖(‖Hx‖+ ‖z‖) +

S∑
s=1

ω̄s‖Vs‖(‖Vsx‖+ ‖cs‖),

(47)

4The spectral norm is employed for matrices.

where the second inequality stems from Assumption III.1(iv).
It follows from (45) that

x>∇J (x) = ‖Hx‖2 +

S∑
s=1

‖Vsx‖2
ψ̇s(‖Vsx− cs‖)
‖Vsx− cs‖

+ h(x)

(48)
where

h(x) = −x>

(
H>z +

S∑
s=1

V>s cs
ψ̇s(‖Vsx− cs‖)
‖Vsx− cs‖

)
. (49)

Assume that H is injective. According to (48) and using
Assumption III.1(iv), we obtain

x>∇J (x)

‖x‖
>
‖Hx‖2

‖x‖
+
h(x)

‖x‖
=
‖Hx‖2

‖x‖
+O(1). (50)

Then, (25) is satisfied. Moreover, using (47), we have

x>∇J (x)

‖x‖‖∇J (x)‖

>
‖Hx‖2 + h(x)

‖x‖(‖H‖(‖Hx‖+ ‖z‖) +
S∑
s=1

ω̄s‖Vs‖(‖Vsx‖+ ‖cs‖))

≥ ‖Hx‖2

(‖H‖2 + ‖Vs‖2)‖x‖2
(1 + o(1)) + o(1). (51)

Thus, (26) also holds, and so does Assumption IV.1.
Let us now consider the case when H is not injective and

our second set of assumptions applies. According to (48), we
have

x>∇J (x)

‖x‖
>
‖Hx‖2

‖x‖
+
‖Vs0x‖2ψ̇s0(‖Vs0x− cs0‖)

‖x‖‖Vs0x− cs0‖
+O(1).

(52)
According to Assumption III.1(iii), u 7→ ψ̇s0(u)/u is decreas-
ing on ]0,+∞[ and, by using Assumption (ii), we deduce that
there exists αs0 > 0 such that (∀u ∈]0,+∞[) ψ̇s0(u)/u ≥
αs0 . Then, (52) yields

x>∇J (x)

‖x‖
>
‖Hx‖2 + αs0‖Vs0x‖2

‖x‖
+O(1). (53)

It then follows from Assumption (i) that (25) is satisfied.
Moreover, using (46) and (47), we have

x>∇J (x)

‖x‖‖∇J (x)‖

>
‖Hx‖2 + h(x)

‖x‖
(
‖H‖(‖Hx‖+ ‖z‖) +

S∑
s=1

ω̄s‖Vs‖(‖Vsx‖+ ‖cs‖)
)

+

‖Vs0x‖2ψ̇s0(‖Vs0x− cs0‖)
‖Vs0x− cs0‖

‖x‖
(
‖H‖‖Hx− z‖+

S∑
s=1
‖Vs‖ψ̇s(‖Vsx− cs‖)

) .
(54)

If x ∈ (Ker(H))⊥, we have

x>∇J (x)

‖x‖‖∇J (x)‖
>

‖Hx‖2

a‖x‖2 + b‖x‖
+ o(1) (55)
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where

a = ‖H‖2 +

S∑
s=1

ω̄s‖Vs‖2 (56)

b = ‖H‖‖z‖+

S∑
s=1

ω̄s‖Vs‖‖cs‖. (57)

Suppose now that x ∈ Ker(H), then x ∈ (Ker(Vs0))⊥. First
note that since, for every s ∈ {1, . . . , S}, u 7→ ψ̇s(u)/u is
a nonnegative decreasing function on ]0,+∞[, there exists
αs ∈ [0,+∞[ such that limu→+∞ ψ̇s(u)/u = αs. According
to Assumption (ii),

lim
u→+∞

ψ̇s(u)

ψ̇s0(u)
=

αs
αs0

< +∞. (58)

In addition,

x>∇J (x)

‖x‖‖∇J (x)‖

>
‖Vs0x‖2

‖x‖(‖Vs0‖‖x‖+ ‖cs0‖)
1

‖Vs0‖+ ε(x)
+ o(1), (59)

where

ε(x) =

‖H‖‖z‖+
∑
s6=s0
‖Vs‖ψ̇s(‖Vsx− cs‖)

ψ̇s0(‖Vs0x− cs0‖)
≥ 0. (60)

Moreover, according to (58) and Assumption (ii), ε(x) =
O(1). Then, by using (55) and (59), we conclude that Condi-
tion (26) holds. Hence the result.

APPENDIX B
PROOF OF PROPOSITION IV.2

Let x ∈ RQ and µ(x) = x + b(x). On the one hand,

− log g(x|y) =
1

2ε2
‖y − µ(x)‖2Q(x) −

1

2
log |Q(x)|

+
Q

2
log(2πε2). (61)

From Assumption IV.2, we obtain

νmin‖y − µ(x)‖2 6 ‖y − µ(x)‖2Q(x) 6 νmax‖y − µ(x)‖2,
(62)

and
νQmin 6 ‖Q(x)‖ 6 νQmax. (63)

On the other hand, by using (28) and the triangle inequality,
we have

‖y − x‖ 6 ‖y − µ(x)‖+ ‖µ(x)− x‖,

6 ‖y − µ(x)‖+
ε2

2
ν−1mind. (64)

By using Jensen’s inequality, it follows that

‖y − x‖2 6 2

(
‖y − µ(x)‖2 +

ε4

4
ν−2mind

2

)
. (65)

Similarly, we have

‖y − µ(x)‖ 6 ‖y − x‖+ ‖µ(x)− x‖,

6 ‖y − x‖+
ε2

2
ν−1mind (66)

and

‖y − µ(x)‖2 6 2

(
‖y − x‖2 +

ε4

4
ν−2mind

2

)
. (67)

It follows from (62), (65) and (67) that

νmin

4ε2
‖y − x‖2 − ε2d2

8νmin
6

1

2ε2
‖y − µ(x)‖2Q(x)

6
νmax

ε2
‖y − x‖2 +

ε2νmaxd
2

4ν2min

.

(68)

Then, by using (61), (63) and (68), the lower bound in (29)
holds for

k1 =

(
νmin

2νmax

)Q
2

exp

(
−ε

2νmaxd
2

4ν2min

)
, σ2

1 =
ε2

2νmax
,

and Inequality (b) in (29) is satisfied for

k2 =

(
2νmax

νmin

)Q
2

exp

(
ε2d2

8νmin

)
, σ2

2 =
2ε2

νmin
.
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[39] L. Chaâri, J.-Y. Tourneret, and H. Batatia, “Sparse bayesian regu-
larization using bernoulli-laplacian priors,” in Proc. European Signal
Processing Conf. (EUSIPCO 2013), Marrakech, Morocco, 9-13 Sep.
2013, pp. 1–5.

[40] M. Allain, J. Idier, and Y. Goussard, “On global and local convergence of
half-quadratic algorithms,” IEEE Trans. Image Process., vol. 15, no. 5,
pp. 1130–1142, 2006.
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