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NORMAL REAL AFFINE VARIETIES WITH CIRCLE ACTIONS

ADRIEN DUBOULOZ AND ALVARO LIENDO

Dedicated to Mikhail Zaidenberg on his 70th birthday

ABSTRACT. We provide a complete description of normal affine algebraic varieties over the real numbers

endowed with an effective action of the real circle, that is, the real form of the complex multiplicative group

whose real locus consists of the unitary circle in the real plane. Our approach builds on the geometrico-

combinatorial description of normal affine varieties with effective actions of split tori in terms of proper

polyhedral divisors on semiprojective varieties due to Altmann and Hausen.

INTRODUCTION

Normal algebraic varieties X over a field k endowed with actions of split tori T = Gn
m,k are quite well

understood in terms of various geometrico-combinatorial presentations. The case where T acts faithfully

on X and dim(T) = dim(X) is known as toric variety and was first studied by Demazure in [4]. These

varieties are fully described in combinatorial terms by means of suitable collections of convex polyhedral

cones in the real vector space NR = N ⊗Z R obtained from the lattice N of 1-parameter subgroups of

T. Successive further generalizations [5, 8, 1, 2] have led to complete descriptions of normal k-varieties

endowed with T-actions in terms of certain collections of so-called polyhedral divisors, which are Weil

divisors D on suitable rational quotients for the action, whose coefficients are convex rational polyhedra

in the vector space NR.

For normal algebraic k-varieties endowed with actions of non-split tori, that is, algebraic groups G
defined over k whose base extensions to an algebraic closure k of k are isomorphic to split tori Gn

m,k
but

which are not isomorphic over k to Gn
m,k, much less is known regarding the existence of geometrico-

combinatorial descriptions similar to the split case. Toric varieties with respect to non-split tori have

been considered by several authors, see for instance [16, 7, 6]. In another direction, the geometrico-

combinatorial presentation of Altmann-Hausen was partially extended by Langlois [11] to yield a de-

scription of affine varieties X endowed with an effective action of a non-split torus G of dimension

dim(X) − 1. Nevertheless, the general case remains elusive. A natural and crucial step towards a

geometrico-combinatorial description of such varieties would be to extend the Altmann-Hausen presen-

tation in terms of polyhedral divisors [1] to arbitrary normal affine k-varieties X endowed with effective

actions of tori G, split or not. Since every torus G splits after base change to a finite Galois extension

K/k of k, this naturally leads to seek for such an extension in the form of a geometrico-combinatorial

description of affine K-varieties X with effective actions of split tori T which are compatible with addi-

tional Galois descent data on X and T for the finite Galois cover Spec(K) → Spec(k).
In this article we lend support to this approach by considering a simple case of independant geo-

metric interest for which both the combinatorics and the Galois descent machinery are reduced to their

minimum: normal real affine varieties with an effective action of the unit circle

S1 = Spec(R[x, y]/(x2 + y2 − 1)),
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2 ADRIEN DUBOULOZ AND ALVARO LIENDO

the only non-split real form of Gm,R. In this context, a descent datum on a normal complex affine variety

V for the Galois cover Spec(C) → Spec(R) boils down to anti-regular involution σ of V called a real

structure.

Our main results, Theorem 2.7 and Theorem 2.11, give a description of S1-actions in the language

of [1] extended to complex affine varieties with real structures. We chose to use the Altmann-Hausen

formalism since it is particularly suited for a generalization to any non-necessarily split algebraic torus

over a field of characteristic zero which we will tackle in a near future. Nevertheless, it is well-known

that for a 1-dimensional split torus, polyhedral divisors in the sense of [1] correspond equivalently to

data consisting of certain pairs of Weil Q-divisors, a formalism first used by Dolgachev, Pinkham and

Demazure and then extended by Flenner-Zaidenberg to describe Gm,C-actions on normal complex affine

surfaces via Q-divisors on their quotients (see the references in [8]). Corollary 2.16 provides a description

of normal real affine varieties with an effective S1-action in this equivalent language, which can be

summarized as follows:

Theorem. A normal real affine variety X endowed with an effective S1-action is uniquely determined

by the following data:

(1) A normal real semiprojective variety Z corresponding to a normal complex semi-projective variety

with real structure (Y, τ) representing the ”real Altmann-Hausen quotient” of X by S1 (see Defini-

tion 2.1)

(2) A pair (D,h) consisting of a big and semiample Q-Cartier divisor D on Y and τ -invariant rational

function h on Y satisfying D + τ∗D ≤ div(h).

The contents of the article is as follows. In Section 1 we recall the classical equivalence of categories

between quasi-projective real varieties and quasi-projective complex varieties equipped with a real struc-

ture. We establish in Lemma 1.4 the corresponding representation of quasi-projective real varieties with

circle actions under this equivalence of categories. In section 2 we establish the main classification re-

sults extending the description by Altmann and Hausen for split torus actions to the case of circle actions

on normal real affine varieties. Finally, in Sections 3 and 4 we present several instances of applications

of our techniques to examples taken from algebraic and differential geometry.

1. BASIC FACTS ON REAL ALGEBRAIC VARIETIES AND CIRCLE ACTIONS

In what follows, we identify the field R of real numbers with a subfield of C via the standard inclusion

j∗ : R →֒ C = R[i]/(i2 + 1) so that the usual complex conjugation J : C → C, z 7→ z coincides with

the homomorphism of R-algebra defined by i 7→ −i.
The term k-variety, where k = R or C, will refer to a geometrically integral scheme X of finite type

over k. A morphism of k-varieties is a morphism of k-schemes.

1.1. Real quasi-projective varieties as complex varieties with real structures. Let us briefly recall

the classical correspondence [3] between quasi-projective real algebraic varieties and quasi-projective

complex algebraic varieties equipped with a real structure.

Every complex algebraic variety p : V → Spec(C) can be viewed as an R-scheme j ◦ p : V →
Spec(R), and a real structure on such a variety V is an involution σ : V → V of R-schemes such that

p ◦ σ = J ◦ p, where J denotes the complex conjugation.

Every complex variety XC = X ×Spec(R) Spec(C) obtained from a real algebraic variety X by the

base change Spec(C) → Spec(R) is canonically endowed with a real structure σX = idX × J for which

the morphism pr1 : XC → X coincides with the quotient XC/〈σX〉. Conversely, if p : V → Spec(C)
is equipped with a real structure σ and covered by σ-invariant affine open subsets -so for instance if V is

quasi-projective-, then the quotient π : V → V/〈σ〉 exists in the category of schemes and the structure

morphism p : V → Spec(C) descends to a morphism V/〈σ〉 → Spec(R) = Spec(C)/〈τ〉 making

V/〈σ〉 into a real algebraic variety X such that V ≃ XC. This correspondence extends to a well-known

equivalence of categories which can be summarized as follows:
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Lemma 1.1. The category of quasi-projective real algebraic varieties is equivalent to the category C
whose objects are pairs (V, σ) consisting of a quasi-projective complex algebraic variety V and a real

structure σ : V → V and whose morphisms (V, σ) → (V ′, σ′) are morphisms of complex algebraic

varieties f : V → V ′ such that σ′ ◦ f = f ◦ σ.

In particular, two real structures σ and σ′ on the same quasi-projective complex variety V define

isomorphic real algebraic varieties V/〈σ〉 and V/〈σ′〉 if and only if there exists an isomorphism of

complex algebraic varieties f : V → V such that σ′ ◦ f = f ◦ σ.

In the sequel, we will indistinctly represent a quasi-projective real variety X by a pair (V, σ) where

V is a quasi-projective complex variety and σ is a real structure on V such that V/〈σ〉 is isomorphic to

X. Similarly, we will represent a morphism (resp. a rational map) f : X → X ′ between real varieties

represented by pairs (V, σ) and (V ′, σ′) respectively by a morphism (resp. a rational map) f̃ : V → V ′

such that σ′ ◦ f̃ = f̃ ◦ σ. We sometimes abbreviate this condition by saying that f̃ is a real morphism

(resp real rational map).

Definition 1.2. A real form of a real algebraic variety X = (V, σ) is a real algebraic variety X ′ =
(V ′, σ′) such that V and V ′ are isomorphic as complex varieties. Isomorphy classes of real forms of X
are classified by the Galois cohomology group H1(Gal(C/R),AutC(V )) where the non-trivial element

of Gal(C/R) = µ2 acts on AutC(V ) by conjugation f 7→ σfσ−1.

Recall that an algebraic variety V is said to be semi-projective if its coordinate ring Γ(V,OV ) is finitely

generated and the canonical morphism V → Spec(Γ(V,OV )) is projective. When X is a real algebraic

variety represented by a pair (V, σ), we denote by Γ(σ) the unique real structure on Spec(Γ(V,OV )) for

which the canonical morphism (V, σ) → (Spec(Γ(V,OV ),Γ(σ)) is a real morphism.

1.2. Circle actions on quasi-projective real varieties.

Definition 1.3. The real circle S1 is the only non-trivial real form

R1
C/RGm,C = Spec(R[x, y]/(x2 + y2 − 1))

of the multiplicative group Gm,R. The group structure on S1 is given by

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + yx′),

and the morphism of group schemes

ρ0 : S
1 → SL2,R = Spec(R[a11, a12, a21, a22]/(a11a22 − a12a21 − 1))

(x, y) 7→ (x, y,−y, x)
(1.1)

induces an isomorphism between S1 and the closed subgroup SO2,R defined by the equation a11−a22 =
a12 + a21 = 0.

It is straighforward to check that the map

ϕ : Gm,C = Spec(C[t±1]) → S1C, t 7→ (x, y) = ((t+ t−1)/2, (t − t−1)/2i) (1.2)

is an isomorphism of complex group schemes. The pull-back of the canonical real structure σS1 on S1C
by ϕ is the real structure ρ on Gm,C defined as the composition of the involution t 7→ t−1, induced by the

involution −idM : m 7→ −m of the character lattice M ≃ Z of Gm,C, with the complex conjugation. We

henceforth identify the group object S1 in the category of real algebraic varieties with the pair (Gm,C, ρ).

Lemma 1.4. There is a one-to-one correspondence between quasi-projective real algebraic varieties

endowed with an effective S1-action and triples (V, σ, µ) consisting of a quasi-projective real algebraic

variety X = (V, σ) and an effective Gm,C-action µ : Gm,C × V → V such that the following diagram
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commutes:

Gm,C × V
µ

//

ρ×σ

��

V

σ

��

Gm,C × V
µ

// V.

(1.3)

Proof. An S1-action on X = (V, σ) corresponds by definition to an effective S1C-action η on V such that

σ◦η = η◦(σS1×σ), hence, composing with the real isomorphism ϕ of (1.2), to an effective Gm,C-action

µ = η ◦ (ϕ× idV ) with the announced property. �

Convention 1.5. In the rest of the article, we will indistinctly represent a quasi-projective real variety X
endowed with an effective S1-action by one of the following data:

(1) a quasi-projective real algebraic variety X and a morphism of real algebraic varieties S1 ×X → X
defining an effective S1-action; or

(2) a triple (V, σ, µ) consisting of a quasi-projective complex algebraic variety V endowed with a real

structure σ and a morphism of complex algebraic varieties µ : Gm,C × V → V defining an effective

Gm,C-action on V such that µ ◦ (ρ× σ) = σ ◦ µ.

Definition 1.6. A real form of a quasi-projective real S1-variety X = (V, σ, µ) is a quasi-projective real

S1-variety X ′ = (V ′, σ′, µ′) such that V is Gm,C-equivariantly isomorphic to V ′.

1.3. The case of real affine varieties. Specializing further to the case where X = (V, σ) is a real affine

algebraic variety, say V = Spec(A) for some finitely generated integral C-algebra A, the Gm,C-action µ
on V is equivalently determined by its co-morphism µ∗ : A→ A⊗CC[t

±1]. Recall that a semi-invariant

regular function of weight m ∈ Z on V for the action µ is an element f ∈ A such that µ∗f = f ⊗ tm,

and that A is then Z-graded in a natural way by its sub-spaces Am of semi-invariants of weight m for all

m ∈ Z. The action µ is said to be hyperbolic if there exists m < 0 and m′ > 0 such that Am and Am′

are non-zero.

Lemma 1.7. Let X = (V = Spec(A), σ, µ) be a real affine algebraic variety endowed with an effective

S1-action and let A =
⊕

m∈ZAm be the decomposition of A into semi-invariants sub-spaces for the

Gm,C-action µ. Then the following hold:

(i) The action µ is hyperbolic and Am 6= 0 for all m ∈ Z

(ii) For all m ∈ Z, σ∗(Am) = A−m,

(iii) The restriction of σ∗ to A0 = AGm,C is the co-morphism of a real structure σ on the algebraic

quotient V//Gm,C = Spec(A0) of V .

Proof. The commutativity of the diagram (1.3) implies that for every semi-invariant f of weight m ∈ Z,

we have

µ∗σ∗(f) = (σ∗ ⊗ ρ∗)(f ⊗ tm) = σ∗(f)⊗ t−m,

hence that σ∗(f) is a semi-invariant of weight −m. The equality σ∗(Am) = A−m follows from the fact

that σ∗ is an automorphism of A, which proves the second assertion. Since µ is non trivial, there exists a

semi-invariant function f of non-zero weight m, and hence a semi-invariant function σ∗(f) of non-zero

weight −m. This shows that µ is hyperbolic, and the second part of the first assertion is a standard fact

for such actions. Indeed, since the action is effective, the set {m ∈ Z | Am 6= {0}} is not contained in

any proper sublattice d ·Z, d > 1. Hence, there exists e < 0 and e′ > 0 relatively prime such that Ae and

Ae′ are non-zero. Let f and g be non-zero elements in Ae and Ae′ , respectively. Now, for every integer

m ∈ Z, there exist integers a < 0 and b > 0 such that ae − be′ = m. Then fagb ∈ Am is a non-zero

element, as desired.

The last assertion is straightforward. �

With the notation above, it follows from Lemma 1.1 (iii) that X//S1 = (V//Gm,C, σ) is a real affine

algebraic variety and that the morphism π : X = (V, σ) → X//S1 = (V//Gm,C, σ) induced by the
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inclusion A0 →֒ A is an S1-invariant morphism of real algebraic varieties, which is a categorical quotient

in the category of real affine algebraic varieties.

2. ALTMANN-HAUSEN PRESENTATION OF A CIRCLE ACTION

The aim of this section is to establish a counter-part for real affine varieties with circle actions of the

geometrico-combinatorial presentation of affine varieties with split tori actions developped by Altmann

and Hausen in [1].

We first need to introduce a special kind of rational quotient for a real affine algebraic variety endowed

with an effective S1 which is the real counterpart of the quotient constructed in [1] for normal affine

varieties with split tori actions. Keeping the same notation as in § 1.3 above, we let d > 0 be minimal

such that
⊕

m∈ZAdm is generated byA±d as a gradedA0-algebra. By virtue of Lemma 1.7 (ii) and (iii),
the closed sub-scheme W of Y0(V ) = V//Gm,C = Spec(A0) with defining ideal I = 〈Ad ·A−d〉 ⊂ A0

is σ-invariant.

Definition 2.1. The real AH-quotient of X = (V, σ, µ) by the S1-action µ is the real quasi-projective

variety formed by total space of the blow-up π : Y (V ) → Y0(V ) of Y0(V ) with center at W , endowed

with the lift τ of the real structure σ.

The complex variety Y (V ) is semi-projective, and by virtue of [15, Theorem 1.9] (see also [13]), it is

isomorphic to the irreducible component of the fiber product

Proj(
⊕

m≤0

Am)×Y0(V ) Proj(
⊕

m≥0

Am)

which dominates Y0(V ). So Y (V ) coincides with the AH-quotient of V for the Gm,C-action µ in the

sense of [1]. By construction, π : (Y (V ), τ) → (Y0(V ), σ) is a morphism of real algebraic varieties.

2.1. Proper hyperbolic segmental divisors. Recall that a Weil Q-divisor D on a normal algebraic

variety Y is called Q-Cartier if nD is Cartier for some n ≥ 1. Furthermore, D is semiample if there

exits n ≥ 1 such that the linear system |nD| is base point free, equivalently such that the sheaf OY (nD)
is invertible and globally generated. The divisor D is called big if there exists E ∈ |nD| with affine

complement for some n ≥ 1. In the sequel, all our divisors will be Q-Cartier Weil Q-divisors. We will

refer to such divisors simply as Q-Cartier divisors.

Notation 2.2. Given a Q-Cartier divisor D on a normal variety Y , we denote the round-down of D by

⌊D⌋. We identify the Γ(Y,OY )-module Γ(Y,OY (⌊D⌋)) with the sub-Γ(Y,OY )-module of the field of

rational functions Frac(Y ) of Y generated by rational functions g ∈ Frac(Y ) such that div(g) + ⌊D⌋ ≥
0. Under this identification, a rational function g ∈ Frac(Y ) satisfies div(g) + ⌊D⌋ ≥ 0 if and only if

div(g) + D ≥ 0. So we can set without ambiguity Γ(Y,OY (⌊D⌋)) := Γ(Y,OY (D)) and remove the

round-down brackets from the notation.

We now review a simple special case adapted to our context of the general notion of polyhedral

divisor defined in [1]. Let N ≃ Z be a rank one lattice and let M be its dual. Let J be the set of all

closed intervals [a, b] of N ⊗Z R ≃ R with rational bounds, where we admit singleton intervals with

a = b as [a, a] = {a}. The set J has the structure of an abelian semi-group for the Minkowski sum

[a, b] + [a′, b′] = [a + a′, b + b′], with identity [0, 0] = {0}. Every element m ∈ M determines a

semi-group homomorphism

evm : J → Q, [a, b] 7→ min(ma,mb) =

{
ma if m ≥ 0

mb if m < 0
.

Definition 2.3. A segmental divisor [13] on a normal algebraic variety Y is an element

D =
∑

[ai, bi]⊗Di ∈ J ⊗Z WDiv(Y )
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of the semi-group of formal finite sums with coefficients in J of prime Weil divisors on Y . A segmental

divisor D =
∑

[ai, bi]⊗Di is called proper if for every m ∈ Z, the Weil Q-divisor

D(m) := (evm ⊗ id)(D) =
∑

min(mai,mbi)Di

is a big, semiample Q-Cartier divisor on Y .

Every Weil divisor D on Y determines a segmental divisor {1} ⊗ D, in particular every non-zero

rational function f on Y determines a principal segmental divisor {1} ⊗ div(f). Note in addition that

the definition of the evaluation homomorphisms evm guarantees that for every segmental divisor D and

every pair of integers m,n ∈ Z the Weil Q-divisors D(m) +D(n)−D(m+ n) are all anti-effective. In

particular, D(m) +D(−m) ≤ D(0) = 0 for all m ∈ Z.

Definition 2.4. Given a dominant rational map ψ : Y ′
99K Y between normal algebraic varieties and a

segmental divisor D =
∑

[ai, bi] ⊗Di on Y , the pull-back of D by ψ is the segmental divisor ψ∗D :=∑
[ai, bi]⊗ ψ∗Di on Y ′ where for every i, ψ∗Di is the usual pull-back on Y ′ of the Weil divisor Di on

Y by ψ.

Recall that the real structure ρ on Gm,C is given as the composition of the automorphism induced by

the involution −idM of its character lattice M ≃ Z with the complex conjugation. The dual involution

−idN = (−idM )∗ of the lattice N ≃ Z of 1-parameter subgroups of Gm,C induces an involution of

J . Moreover, when Z is a normal real algebraic variety represented by a complex variety Y with real

structure τ , the pull-back of Weil Q-divisors on Y by the real structure τ induces an involution τ∗ on

Q-divisors on Y . Putting these two involutions together, we obtain an involution

(−idM )∗⊗τ∗ : J ⊗ZWDiv(Y ) → J ⊗ZWDiv(Y ), D =
∑

[ai, bi]⊗Di 7→
∑

[−bi,−ai]⊗τ
∗Di.

Definition 2.5. A proper hyperbolic segmental pair (phs-pair) on normal real algebraic variety Z =
(Y, τ) is a pair (D, h) consisting of a proper segmental divisor D =

∑
[ai, bi] ⊗ Di and a τ -invariant

rational function h on Y such that

((−idM )∗ ⊗ τ∗)(D) = D + {1} ⊗ div(h). (2.1)

It will be convenient in practice to separate the homomorphism coming from the real structure on Y
from that coming from the real structure on Gm,C. So, up to changing h for h−1, we can rewrite (2.1)

equivalently as

τ∗(D) = D̂ + {1} ⊗ div(h),

where D̂ = ((−idM )∗ ⊗ id)(D) =
∑

[−bi,−ai]⊗Di.

Remark that our definition of phs-pair agrees with [11, Definition 5.8] in the particular case where Z
is a normal real curve.

Lemma 2.6. Let (D, h) be a phs-pair on a normal semi-projective real algebraic variety Z = (Y, τ).
Then the following hold:

(i) The sheaf OY (D(m)) has a nonzero global section for all m ∈ Z.

(ii) The real structure τ induces an isomorphism of Γ(Y,OY )-modules

τ∗m : Γ(Y,OY (D(m)))
≃

−→ Γ(Y,OY (D(−m))), g 7→ hm · τ∗g, for all m ∈ Z. (2.2)

Furthermore, τ∗0 = Γ(τ)∗ and τ∗−m ◦ τ∗m = id.

Proof. The first assertion, in analogy with Lemma 1.7 (i), is again a standard fact for proper segmental

divisors. Since D(±1) is a big, there exist relatively prime positive integers e and e′ and non-zero global

sections f and g of OY (D(e)) and OY (D(−e′)), respectively. Now, for every integer m ∈ Z, there

exists integers a < 0 and b > 0 such that ae − be′ = m. Then fagb is non-zero global section of

D(ae− be′) = D(m) as desired.

For the second assertion, the fact that τ∗0 = Γ(τ)∗ follows from the definition of the real structure

Γ(τ) on Spec(Γ(Y,OY ) (see § 2). Given m ∈ Z \ {0}, it follows from the definition of a phs-pair that
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τ∗(D)(m) = D(−m) + m div(h). This implies that the homomorphism τ∗m in (2.2) is well-defined.

Since τ∗ is an involution, τ∗−m ◦ τ∗m is the identity of Γ(Y,OY (D(m))), and so τ∗m is an isomorphism

with inverse τ∗−m. �

2.2. Real Altmann-Hausen presentations. In this section, we state and prove our main theorem giving

a geometrico-combinatorial presentation of normal real affine varieties endowed with a circle action.

Let Y be a normal semi-projective complex variety and let D be a proper segmental divisor on Y .

Then it follows from [1, Theorem 3.1] that the C-scheme

V = V (Y,D) := Spec

(⊕

m∈Z

Γ (Y,OY (D(m)))

)

is a normal complex affine variety of dimension dimY + 1. Furthermore, the Z-grading of its coordi-

nate ring uniquely determines an effective Gm,C-action µ : Gm,C × V → V with algebraic quotient

isomorphic to Spec(Γ(Y,OY ) and whose AH-quotient is birationally dominated by Y .

Theorem 2.7. Let Z = (Y, τ) be a normal semi-projective real algebraic variety, represented by a

complex variety Y with real structure τ , and let (D, h) be a phs-pair on Z . Then the following hold:

(1) The normal complex affine variety V = V (Y,D) carries a real structure σ such that σ ◦ µ =
µ ◦ (ρ× σ).

(2) The triple (V, σ, µ) is a normal real affine algebraic variety X(Z, (D, h)) of dimension dimZ + 1
endowed with an effective S1-action with algebraic quotient (Spec(Γ(Y,OY ),Γ(τ)) and real AH-

quotient birationally dominated to Z .

(3) Conversely, every normal real affine variety X = (V, σ, µ) endowed with a effective S1-action is

equivariantly isomorphic to X(Z, (D, h)) for a suitable phs-pair (D, h) on its real AH-quotient

Z = (Y (V ), τ).

Proof. Since (D, h) is a phs-pair, it follows from Lemma 2.6 (ii) that there exist isomorphisms τ∗m :

Γ(Y,OY (D(m)))
≃

−→ Γ(Y,OY (D(−m))) for every m ∈ Z. These collect into an involution σ∗ =⊕
m∈Z τ

∗
m on the direct sum A =

⊕
m∈Z Γ(Y,OY (D(m))). The latter corresponds to a real structure

σ on V such that by construction σ ◦ µ = µ ◦ (ρ × σ). It then follows from Lemma 1.7 that (V, σ, µ)
represents a normal real affine variety X endowed with an effective S1-action. The facts that X//S1 ≃
Spec(Γ(Y,OY ),Γ(τ)) and that the real AH-quotient of X is birationnally dominated by Z follow from

the corresponding assertions for V and the construction of σ. This proves 1) and 2).

For the converse 3), let A =
⊕

m∈ZAm be the decomposition of the coordinate ring of V into semi-

invariants sub-spaces for the Gm,C-action µ and let (Y0 = Spec(A0), σ) and (Y, τ) be the algebraic

quotient and the real AH-quotient of X respectively. By construction, Y is birational to Y0, and we can

therefore identify its field of rational functions with the field of fractions Frac(A0) of A0. By Lemma

1.7 (i), µ admits a semi-invariant regular function s of weight 1. Then [1, Theorem 3.4] guarantees the

existence of a proper segmental divisor D on Y such that for every m ∈ Z the sub-A0-module s−mAm

of Frac(A0) is equal to Γ(Y,OY (D(m))) and such that A is equal to
⊕

m∈Z Γ(Y,OY (D(m)) · sm as a

graded sub-A0-algebra of Frac(A0)(s).
We will now check that h = sσ∗(s) is a τ -invariant rational function on Y making (D, h) a phs-pair.

Note that by construction, h is a σ-invariant rational function on V . Since by Lemma 1.7 (ii), σ∗(s) is a

semi-invariant regular function of weight −1, it follows that h is a also Gm,C-invariant, hence an element

of Frac(A0). Since σ∗ coincides by definition with σ on A0 and τ is lifted from σ, we can thus view

h as a τ -invariant rational function on Y . Let m ≥ 1 be such that D(m) and D(−m) are Cartier and

globally generated, and let {Ui}i∈I be an open cover of Y such that D(m) and D(−m) are principal

in every Ui. Then, by the construction of D in [1, Theorem 3.4], for every i ∈ I there exists a rational

function g ∈ Frac(A0) such that gsm ∈ Am and div(g)|Ui
+ D(m)|Ui

= 0. In particular, we have

div(τ∗g)|τ−1(Ui) = −τ∗D(m)|τ−1(Ui). Since σ∗(gsm) = (τ∗g)hms−m ∈ A−m, it follows from the

construction of D that (τ∗g)hm ∈ Γ(Y,OY (D(−m))) and hence, we have

div(τ∗g) +m div(h) +D(−m) ≥ 0.
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Substituting div(τ∗g)|τ−1(Ui) = −τ∗D(m)|τ−1(Ui), we conclude that

(−τ∗D(m) +m div(h) +D(−m))|τ−1(Ui) ≥ 0.

Since {τ−1(Ui)}i∈I is also an open cover of Y , this inequality is independant on the open subset Ui, and

we obtain

−τ∗D(m) +m div(h) +D(−m) ≥ 0 (2.3)

for every m ∈ Z since all the terms in (2.3) are linear on m. Taking now a rational function g ∈
Frac(A0) such that gs−m ∈ A−m and D(−m)|Ui

= − div(g)|Ui
, we find by the same argument that

−τ∗D(−m)−m div(h) +D(m) ≥ 0, hence applying the involution τ∗ to this inequality that

−τ∗D(m) +m div(h) +D(−m) ≤ 0 (2.4)

for every m ∈ Z. The inequalities (2.3) and (2.4) together yield that τ∗(D)(m) = D(−m) +m div(h)

for every m ∈ Z, hence that τ∗D = D̂ + {1} ⊗ div(h). �

Remark 2.8. Given a normal real affine variety X = (V, σ, µ) endowed with a effective S1-action, the

construction of a proper segmental divisor D on the AH-quotient Y (V ) such that V is Gm,C-equivariantly

isomorphic to V = V (Y,D) depends on the non-canonical choice of a semi-invariant rational function s
of weight 1 on V . Different choices for s lead of course to different segmental divisors Ds on Y (V ). In

the proof of Theorem 2.7, we made a particular choice for s, but the proof actually shows that for every

other choice of s, the rational function hs = sσ∗(s) on Z = (Y (V ), τ)) is τ -invariant and (Ds, h) is a

phs-pair on Z .

Definition 2.9. A couple consisting of a real normal semiprojective variety Z = (Y, τ) and a phs-pair

(D, h) on it is called minimal if Z is the real AH-quotient of X(Z, (D, h)).

It follows from the definition of the real AH-quotient of X(Z, (D, h)) that a couple (Z, (D, h)) is

minimal if and only if Y is the AH-quotient of V (Y,D). This definition is thus equivalent to requiring

that the couple (Y,D) is minimal in the sense of [1, Definition 8.7].

Corollary 2.10. Let X = (V, σ, µ) be a normal real affine variety endowed with an effective S1-action

and let D be any proper segmental divisor on a complex semiprojective variety Y such that there exists

a Gm,C-equivariant isomorphism φ : V
≃
→ V (Y,D).

If the real structure σ on V//Gm,C ≃ V (Y,D)//Gm,C induced by σ lifts to a real structure τ on Y ,

which holds for instance if (Y,D) is minimal, then there exists a τ -invariant rational function h on Z =
(Y, τ) making (Z, (D, h)) a minimal phs-pair such that X(Z, (D, h)) is S1-equivariantly isomorphic to

X.

Proof. This follows from the same argument as in the proof of Theorem 2.7 (3), taking Y as in the

corollary instead of the AH-quotient Y (V ) of V . �

Theorem 2.11. For i = 1, 2, let Zi = (Yi, τi) be normal real semiprojective varieties and let Xi =
X(Zi, (Di, hi)) be normal real affine varieties with effective S1-actions determined by respective phs-

pairs (Di, hi) on Zi.

Then X1 and X2 are S1-equivariantly isomorphic and only if there exits a third normal real affine va-

riety X = X(Z, (D, h)) with effective S1-action for a certain phs-pair (D, h) on a normal real semipro-

jective variety Z = (Y, τ), real birational morphisms ψi : Zi → Z and rational functions fi on Yi,
i = 1, 2, such that

ψ∗
i (D) = Di + {1} ⊗ div(fi) and ψ∗

i (h) = (fi · τ
∗
i fi) · hi.

Proof. Recall that by definition, Xi = (Vi, σi, µi) where Vi = V (Yi,Di) and σi is the real structure on

Vi constructed in Theorem 2.7 (1). Assume first that X1 and X2 are S1-equivariantly isomorphic, let

Z = (Y, τ) be the AH-quotient of V1 endowed with the real structure induced by σ1. By [1, Defini-

tion 8.7], there exists a proper segmental divisor D on Y such that V = V (Y,D) is Gm,C-equivariantly

isomorphic to V1. It then follows from Corollary 2.10 that there exists a τ -invariant function h on Y
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such that (D, h) is phs-pair and X(Z, (D, h)) = (V, σ, µ) is S1-equivariantly isomorphic to X1. By [1,

Theorem 8.8], there exist birational morphisms ψi : Yi → Y such that ψ∗
i (D) = Di + {1} ⊗ div(fi)

for some rational functions fi on Yi. Furthermore, the real structures τi on Yi and τ on Y are all lifts

of the real structure σ1 on the algebraic quotient V1//Gm,C, which is birational to Yi and Y since the

Gm,C-actions considered are all hyperbolic by Lemma 1.7 (i). Hence, we have τ ◦ ψi = ψi ◦ τi which

shows that ψi is a real birational morphism. By [1, Proposition 8.6], the isomorphism between V and Vi
is given by the collection of isomorphisms

Ψ∗
i : Γ(Y,OY (D(m)))

≃
−→ Γ(Yi,OYi

(Di(m))), g 7→ f−m
i · ψ∗

i (g). (2.5)

Let s and si be the regular functions on V and Vi corresponding respectively to 1 in degree 1 in the grad-

ing of their coordinate rings by the subspaces Γ(Y,OY (D(m))) and Γ(Y,OY (Di(m))). By construction,

we have h = sσ∗(s) and hi = siσ
∗
i (si). Since on the other hand Ψ∗

i (s) = fisi, we have

ψ∗
i (h) = ψ∗

i (sσ
∗(s)) = Ψ∗

i (s) ·Ψ
∗
i ◦ σ

∗(s) = Ψ∗
i (s) · σ

∗
i ◦Ψ

∗
i (s)

= fisi · σ
∗
i (fi)σ

∗
i (si) = fi · σ

∗
i (fi) · hi = (fi · τ

∗
i fi) · hi.

We now prove the converse statement. Let i = 1 or i = 2. By [1, Theorem 8.8], V is isomorphic to Vi
and the isomorphism is given by (2.5). The real structures σ on V and σi on Vi are given as in the proof

of Theorem 2.7 (1) via the collection of isomorphisms (2.2). To conclude that X is S1-equivariantly

isomorphic to Xi we only need to check that σ∗i ◦ Ψ
∗
i = Ψ∗

i ◦ σ
∗. But for every g ∈ Γ(Y,OY (D(m))),

we have

Ψ∗
i ◦ σ

∗(g) = Ψ∗
i (h

mτ∗(g)) = f−m
i · ψ∗

i (h
m) · ψ∗

i τ
∗(g) = f−m

i · fmi · τ∗i (f
m
i ) · hmi · ψ∗

i τ
∗(g)

= τ∗i (f
m
i ) · hmi · τ∗i ψ

∗
i (g) = σ∗i (f

m
i ψ

∗
i (g)) = σ∗i ◦Ψ

∗
i (g),

which concludes the proof. �

Corollary 2.12. Let (Zi, (Di, hi)) be minimal couples on real normal semiprojective varieties Zi =
(Yi, τi), i = 1, 2, determining normal real affine varieties Xi = X(Zi, (Di, hi)) with effective S1-

actions. Then X1 and X2 are S1-equivariantly isomorphic if and only if there exists a real isomorphism

ψ : Z1 → Z2 and a rational function f1 on Y1 such that

ψ∗(D2) = D1 + {1} ⊗ div(f1) and ψ∗(h2) = (f1 · τ
∗
1 f1) · h1.

Proof. This follows directly from [1, Theorem 8.8] which asserts that ψ1 and ψ2 in Theorem 2.11 are

both isomorphisms. �

Corollary 2.13. Let (Z, (D, h)) be a minimal couple on a real normal semiprojective variety Z = (Y, τ)
determining a normal real affine variety X = X(Z, (D, h)) with an effective S1-action. Then every

real form of the S1 variety X is S1-equivariantly isomorphic to X(Z ′, (D, h′)) form some real form

Z ′ = (Y, τ ′) of Z and a τ ′-invariant rational function h′ on Y making (D, h′) a phs-pair on Z ′.

Proof. Recall that by definition X = (V, σ, µ) where V = V (D, h′) is endowed with the Gm,C-action

µ given by the Z-grading of its coordinate ring, and σ is the real structure on V constructed in the proof

of Theorem 2.7 (1). On the other hand, by Theorem 2.7 (3), every real form X1 = (V1, µ1, σ1) of X is

S1 equivariantly isomorphic to X(Z1, (D1, h1)) for a suitable phs-pair (D1, h1) on its real AH-quotient

Z1 = (Y1, τ1). Since by definition V1 is Gm,C-equviariantly isomorphic to V and the couple (Y,D) is

minimal, it follows [1, Theorem 8.8] that there exist an isomorphism of complex varieties ψ : Y → Y1
such that D = ψ∗D1 + div(f) for some rational function f on Y . Letting τ ′ = ψ∗(τ1), the rational

function h′ = f(ψ−1τ1ψ(f))
−1ψ∗h1 on Y is τ ′-invariant, and (D, h′) is phs pair on Z ′ = (Y, τ ′) such

that X1 is S1-equivariantly isomorphic to X(Z ′, (D, h′)). �

Remark 2.14. A direct adaptation of [1, Section 8] in our context provides a notion of morphism of

phs-pairs for which the appropriate extension of Theorem 2.11 yields that the assignment (Z, (D, h)) 7→
X(Z, (D, h)) is a faithful covariant functor from the category of phs-pairs on normal real semiprojective

varieties to the category of normal real affine varieties with effective S1-actions.
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2.3. Real DPD presentations. It is well-known that proper segmental divisors can be described by a

simpler datum consisting of a suitable pair of Q-divisors. Indeed, given a proper segmental divisor D on

a normal complex algebraic variety Y , we let D+ = D(1) and D− = D(−1). The identity

D = {1} ⊗D+ + [0, 1] ⊗ (−D+ −D−) (2.6)

implies that D is equivalently fully determined by a couple of big and semiample Q-Cartier divisors

D+ and D− on Y satisfying D+ + D− ≤ 0 (see § 2.1). Furthermore, if (D, h) is a phs-pair for a

given additional real structure τ on Y , then the identity τ∗D = D̂ + {1} ⊗ div(h) is equivalent to

D− = τ∗D+ − div(h). Summing up, a phs-pair (D, h) on a normal real algebraic variety Z = (Y, τ) is

equivalently fully determined via (2.6) by a pair (D,h) satisfying D+ τ∗D ≤ div(h). The original data

is recovered from (2.6) by setting D+ = D and D− = τ∗D − div(h). By analogy with the terminology

introduced by Flenner and Zaidenberg [8] for the description of normal complex affine surfaces with

Gm,C-actions, we set the following definition:

Definition 2.15. A real DPD pair on a normal real algebraic variety Z = (Y, τ) is a pair (D,h) con-

sisting of a big and semiample Q-Cartier divisor D and a τ -invariant rational function h on Y satisfying

D + τ∗D ≤ div(h).

Here, DPD stands for Dolgachev, Pinkham and Demazure, respectively who where the first to describe

split Gm,C-actions via Q-divisors on their quotients, see the references in [8]. The following corollary is

a straightforward reformulation of Theorem 2.7 and Corollary 2.12 in terms of DPD-pairs:

Corollary 2.16. A normal real affine variety X with an effective S1-action is determined by the following

data:

(1) A real normal semiprojective variety Z = (Y, τ) representing the real AH-quotient of X,

(2) A pair (D,h) consisting of a big and semiample Q-Cartier divisor D and a τ -invariant rational

function h on Y satisfying D + τ∗D ≤ div(h).

Furthermore, for a fixed Z = (Y, τ), two pairs (D1, h1) and (D2, h2) determine S1-equivariantly

isomorphic affine varieties if and only if there exists a real automorphism ψ of Z and a rational function

f on Y such that

ψ∗D2 = D1 + div(f) and ψ∗(h2) = (f · τ∗f) · h1.

Remark 2.17. Given a real algebraic variety Z = (Y, τ), the group of K(Y )∗ of invertible rational

functions on Y has the structure of Galois module under the action of τ . In terms of this structure, the

condition ψ∗(h2) = (f · τ∗f) · h1 in Corollary 2.12 and Corollary 2.16 means that h1 and ψ∗(h2) have

the same class in the Galois cohomology group

H2(Gal(C/R),K(Y )∗) = (K(Y )∗)τ
∗

/Im(id× τ∗).

3. LOW DIMENSIONAL EXAMPLES

In this section we consider real affine curves and surfaces with S1-actions. In the surface case, rephras-

ing Corollary 2.16, we obtain in particular a real counterpart of Flenner-Zaidenberg DPD-presentation

of normal complex affine surfaces with Gm,C-actions [8]. We illustrate the methods to explicitly find

phs-pairs and DPD-pairs corresponding to given S1-actions on various on examples.

3.1. Real affine curves with S1-actions. Let us first explain how to re-derive the following classical

characterization of real affine curves with a effective S1-actions:

Proposition 3.1. Up to equivariant isomorphism there exists precisely two normal real affine curves with

an effective S1-action:

(a) The circle S1 = Spec(R[x, y, ]/(x2 + y2 − 1) acting on itself by translations

(b) The curve C = Spec(R[u, v]/(u2 + v2 + 1)) ⊂ A2
R on which S1 acts by restriction of the represen-

tation ρ0 : S
1 → SO2,R defined in (1.1).
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Proof. Since the complex punctured affine line A1
∗ = Spec(C[z±1]) is the only normal complex affine

curve admitting an effective hyperbolic Gm,C-action, namely the one µ by translations t·z = tz, a normal

real affine curve X endowed with an effective S1-action is represented by a triple (V = A1
∗, σ, µ). Its

real AH-quotient is thus isomorphic to Spec(C), endowed with the complex conjugation, an a phs-pair

(D, h) on it consists of the trivial divisor and a non-zero real number h ∈ R∗. By Theorem 2.11 and

Remark 2.17, two real numbers h and h′ determine S1-equivariantly isomorphic curves if and only if

they have the same class in H2(Z2,C
∗) ≃ R/R+, that is, if and only if they have the same sign. We thus

have two cases:

(a) h = 1. The corresponding real structure σ on A1
∗ as constructed in Theorem 2.7 is given by the

composition of the involution z 7→ z−1 with the complex conjugation. The invariants are then

generated by x = 1
2(z+z

−1) and y = 1
2i(z−z

−1), and we conclude thatX = Spec(C[z±1]σ
∗

) ≃ S1

on which S1 acts by translations.

(b) h = −1. The corresponding real structure σ is given by the composition of the involution z 7→ −z−1

with the complex conjugation The invariants are generated by u = 1
2(z− z

−1) and v = 1
2i(z+ z

−1),

and the corresponding real affine curve X = Spec(C[z±1]σ
∗

) is isomorphic to C with the announced

S1-action.

�

3.2. Real DPD-presentation of affine surfaces with S1-actions. Given a normal real affine surface

endowed with an effective S1-action X = (V, σ, µ), the AH-quotient Y (V ) of V coincides with its

algebraic quotient Y0(V ) = V//Gm,C, which is a normal, hence smooth complex affine curve. The pair

(Y0(V ), σ) is thus a smooth real affine curve. Corollary 2.16 can be rephrased in this case in the form

of the following real counterpart of Flenner-Zaidenberg DPD-presentation of normal complex affine

surfaces with Gm,C-actions [8]:

Proposition 3.2. A normal real affine surface X with an effective S1-action is determined by a smooth

real affine curve C = (Y, τ) and a pair (D,h) consisting of a Weil Q-divisor D and a τ -invariant

rational function h on Y such that D + τ∗D ≤ div(h).

Example 3.3. Given a non-constant polynomial P ∈ R[w], we letX(P ) be the normal real affine surface

in A2
R×A1

R = Spec(R[x, y][w]) defined by the equation x2+y2−P (w) = 0. The action of S1 on A2
R×A1

R

defined by the direct sum of the representation ρ0 : S
1 → SO2,R of (1.1) on the first factor with the trivial

representation on the second factor restricts to an effective S1-action onX(P ). We will show that a DPD-

presentation for X(P ) is (D,h) = (0, P (w)) on the curve C = Spec(R[w]) = (Spec(C[w]), τ), where

τ is the complex conjugation.

Indeed, by making the complex coordinate change (u, v) = (x + iy, x − iy), we see that X(P )
endowed with its S1-action is represented by the triple (V (P ), σ, µ) where V (P ) is the normal complex

surface with equation uv − P (w) = 0 in A3
C, σ is the real structure defined as the composition of the

involution (u, v) 7→ (v, u) with the complex conjugation and µ is the effective Gm,C-action induced

by the linear action t · (u, v, w) = (t−1u, tv, w) on A3
C. The quotient V (P )//Gm,C is isomorphic to

Spec(C[w]) on which σ induces the complex conjugation τ . Choosing v as a semi-invariant function of

weight 1 on V (P ) as in the proof of Theorem 2.7, we deduce from the identification:

Γ(V (P ),OV (P )) ≃
⊕

n<0

C[w] · P (w)−nvn ⊕ C[w]⊕
⊕

n>0

C[w] · vn ⊂ C(w)(v)

that V (P ) is Gm,C-equivariantly isomorphic to V (Spec(C[w]),D), where D is determined by D(n) =
div(1) = 0 and D(−n) = div(P (w)−n), for all n > 0. We obtain from (2.6) that

D =
∑

[0, pi]⊗ {ai}+
∑

[0, qi]⊗ ({bi}+ {bi}) ,

where ai, bi and bi are the real and complex roots of P respectively, and pi, qi are their respective

multiplicities. Furthermore, h = vσ∗v = vu = P (w), and so, the DPD-presentation of X(P ) is

(D(1), P (w)) = (0, P (w)) as claimed.
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Note that in Example 3.3 above, the special case where P (w) = w corresponds to a surface X(P )
equivariantly isomorphic to the affine plane A2

R endowed with the effective S1-action defined by the rep-

resentation ρ0 : S1 → SO2,R. The following is a counter-part for S1-actions of Gutwirth’s linearisation

theorem [10] for Gm-actions on the plane:

Proposition 3.4. Every effective S1-action on A2
R is conjugate by an automorphism of A2

R to that defined

by the representation ρ0 : S
1 → SO2,R.

Proof. Indeed, let (V = A2
C, σA2

R

, µ) be a triple representing the given S1-action on X = A2
R. Since

by virtue of Lemma 1.7, the Gm,C-action µ is hyperbolic, it follows from Gutwirth’s theorem [10] that

µ is conjugate by an automorphism ϕ of A2
C to a linear action ν of the form t · (u, v) = (t−pu, tqv)

for some relatively prime positive integers p and q. It follows that X endowed with its S1-action is also

represented by the triple (V, σ, ν) where σ = ϕ∗σA2

R

= ϕ−1σA2

R

ϕ is the pull-back of σA2

R

by ϕ.

The algebraic quotient V//Gm,C is isomorphic to Spec(C[z]) ≃ A1
C, where z = uqvp. Letting a and

b be positive integers such that −ap + bq = 1, s = uavb is a semi-invariant regular function of weight

1 on V which determines a Gm,C-equivariant isomorphism between V and V (A1
C,D

′) for the segmental

divisor D′ = [−a/q, b/p] ⊗ {0}. Since C = (V//Gm,C, σ) is a real form of A1
R, hence is isomorphic to

the trivial one, there exists an automorphism ψ : z 7→ αz + β of V//Gm,C, where α ∈ C∗ and β ∈ C,

such that σ = ψ∗σA1

R

. So σ is the composition of the automorphism z 7→ αα−1z + α−1(β − β) of

V//Gm,C with the complex conjugation. The condition σ∗D′ = D̂′ + 1 ⊗ div(h′) for some σ-invariant

rational function h′ ∈ C(z) then reads

[−a/q, b/p] ⊗ {α−1(β − β)/} = [−b/p, a/q] ⊗ {0}+ 1⊗ div(h′).

Since div(h′) is an integral Weil divisor, it follows that (−ap + bq)/pq = 1/pq is an integer. Thus

p = q = 1 and we can now assume further from the very beginning that a = 0 and b = 1, so that

s = v and D′ = [0, 1] ⊗ {0}. The condition σ∗D′ = D̂′ + 1 ⊗ div(h′) then implies that div(h′) =
{0} = {α−1(β − β)}, hence that β ∈ R and h′ = γz for some γ in C∗. The fact h′ is σ-invariant

implies in turn that γ = cα for some c ∈ R∗. The phs-pair (D′, h′) is thus the pull-back of the pair

(D′′, h′′) = ([0, 1]⊗{β}, cz) by the real isomorphism ψ : (A1
C, σ)

≃
→ (A1

C, σA1

R

). Since c, β ∈ R, we see

that (D′′, h′′) is in turn the pull-back of the phs-pair (D, h) = ([0, 1]⊗{0}, z) by the real automorphism

ϕ : z 7→ c(z − β) of (A1
C, σA1

R

). Summing up, we conclude that X is S1-equivariantly isomorphic to

X(Spec(R[z]), ([0, 1]⊗{0}, z)) hence to A2
R endowed with the action defined by representation ρ0. �

Example 3.5 (An algebraic model of the open Moebius band). Let X ′ ≃ A1
R × S1 be the real surface

endowed with the free S1-action by translations on the second factor represented by the triple

(V ′ = A1
C ×Gm,C = Spec(C[w][z±1]), σ′, µ′),

where σ′ is the composition of the involution (w, z) 7→ (w, z−1) with the complex conjugation and µ′ is

the Gm,C-action by translations on the second factor. A corresponding real DPD-presentation is given by

the DPD-pair (D,h) = ({0}, 1) on the real affine curve C ′ = (Spec(C[w]), τ) where τ is the complex

conjugation.

The involution (w, z) 7→ (−w,−z) of V ′ is both σ′ and Gm,C-equivariant. The quotient of V ′ by

this involution thus inherits a real structure and a Gm,C-action which correspond to a smooth real affine

surface X with an effective S1-action. Explicitly, letting x = wz−1 and y = z2, X is represented by

the triple (V, σ, µ) where V ≃ A1
C × Gm,C = Spec(C[x][y±1]), σ is the composition of involution

(x, y) 7→ (xy, y−1) with the complex conjugation, and µ is the effective Gm,C-action induced by the

linear action with weights (−1, 2). A phs-pair for X is

(D, h) =
(
1
2 ⊗ {0}, x2y

)
on the real affine curve C =

(
Spec(C[x2y]), τ

)
≃ A1

R ,
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where τ denotes the complex conjugation. A real DPD-presentation of X is given by the DPD-pair

(D(1), h) =
(
1
2 · {0}, x

2y
)
. Furthermore, we have a commutative diagram of real morphisms:

X ′ = (V ′, σ′, µ′)
(w,z)7→(x,y)=(wz−1,z2)

//

p1
��

X = (V, σ, µ)

(x,y)7→x2y
��

C ′
w 7→x2y=w2

// C.

The real locus X ′(R) of X ′ endowed with its natural structure of differentiable manifold is diffeo-

morphic to R× S1, on which S1, identified with the set of complex numbers exp(iθ) of norm 1, acts by

translations on the second factor. The real locus of X is then diffeomorphic to the open Moebius band

obtained as the quotient of R × S1 by the involution (w, exp(iθ)) 7→ (−w, exp(−iθ)), endowed with

the S1-action induced by that on R× S1.

4. HIGHER DIMENSIONAL EXAMPLES

In this section, to continue to illustrate the methods to explicitly find phs-pairs corresponding to given

S1-actions, we present two natural higher dimensional examples. We begin with a real form of the action

of the maximal torus Gm,R of SL2,R on SL2,R by multiplication, whose algebraic quotient morphism

turns out to provide an algebraic model of the Hopf fibration S3 → S2. We then consider certain

families of non-trivial forms of linear S1-actions on A4
R constructed by Moser-Jauslin [12].

4.1. An algebraic model of the Hopf fibration S3 → S2. Recall that the Hopf fibration S3 → S2

realizes the real sphere S3 as the total space of an S1-torsor over the real sphere S2 in the category of

differentiable real manifolds. Namely, the circle S1 identified with the set of complex numbers z =
x+ iy ∈ C∗ of norm 1 acts by component-wise multiplication on the real sphere S3 ⊂ R4 = C2 viewed

as set of pairs of complex numbers (z1 = x1 + iy1, z2 = x2 + iy2) such that |z1|
2 + |z2|

2 = 1. Letting

S2 ⊂ R3 be the 2-sphere with equation x2 + y2 + z2 = 1, the quotient map S3 −→ S3/S1 ≃ S2 is

defined by

(z1, z2) = (x1, y1, x2, y2) 7→ (x, y, z) =
(
|z1|

2 − |z2|
2 , 2Re(z1z2), 2Im(z1z2)

)

Putting S3 = Spec(R[x1, y1, x2, y2]/(x
2
1 + y21 + x22 + y22 − 1)) an algebraic model of the action of S1

on S3 is given by the restriction to S3 of the S1-action on A2
R×A2

R = Spec(R[x1, y1][x2, y2]) defined as

the direct sum of two copies of the representation ρ0 : S1 → SO2,R in (1.1). An algebraic model of the

quotient map is given by the morphism of real algebraic varieties

p : S3 → S2, (x1, y1, x2, y2) 7→ (x21 + y21 − x22 − y22, 2(x1x2 + y1y2), 2(x2y1 − x1y2)),

where S2 = Spec(R[x, y, z]/(x2 + y2 + z2 − 1)). Recall that the divisor class group of S2 is trivial

whereas the divisor class group of S2C is isomorphic to Z, generated by the class of the Cartier divisor

D = {x+ iy = 1− z = 0}.

Proposition 4.1. The real affine threefold S3 endowed with the so-defined S1-action is S1-equivariantly

isomorphic to X(S2, ({1} ⊗D, 1− z))

Proof. As a real threefold with S1-action, S3 can be equivalently represented by the smooth complex

affine quadric V = {u1v1 + u2v2 = 1} in A4
C, equipped with the real structure σ defined as the compo-

sition of the involution (u1, u2, v1, v2) 7→ (v1, v2, u1, u2) with the complex conjugation, and endowed

with the Gm,C-action µ defined by t · (u1, v1, u2, v2) = (tu1, t
−1v1, tu2, t

−1v2). The algebraic quo-

tient V//Gm,C is isomorphic to the smooth affine quadric S =
{
uv + z2 = 1

}
in A3

C and the quotient

morphism

V → V//Gm,C = S, (u1, v1, u2, v2) 7→ (u, v, w) = (2u1v2, 2u2v1, 2u1v1 − 1)

is a Gm,C-torsor whose class in H1(S,O∗
S) ≃ Pic(S) ≃ Z coincides with that of the line bundle

associated to the Cartier divisor D′ = {u = 1− z = 0} on S. It follows that S is the AH-quotient of V
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and that D′ = {1} ⊗D′ is a proper segmental divisor on S such that V is equivariantly isomorphic to

V (S,D′).
The real structure σ descends on S to the real structure σ defined as the composition of the involution

(u, v, w) 7→ (v, u,w) with the complex conjugation. Since σ∗D′ = {v = 1−z = 0} = −D′+div(1−z)
where 1−z is σ-invariant, we conclude that S3 is equivariantly isomorphic toX((S, σ), ({1}⊗D′, 1−z)).
The assertion then follows by noticing that the phs-pair ({1}⊗D, 1−z) is the pull-back of ({1}⊗D′, 1−
z) by the isomorphism of real algebraic surfaces

ϕ : (S2C, σS2)
≃

−→ (S, σ), (x, y, z) 7→ (u, v, z) = (x+ iy, x− iy, z).

�

More generally, recall that for every integer p ≥ 1, the Lens space L(p, 1) is the quotient of S3 =
{(z1, z2), |z1|

2 + |z2|
2 = 1} by the free action of the group Zp defined by (z1, z2) 7→ (ζz1, z2), where

ζ = exp(2iπ/p). This action is equivariant with respect to the S1-action on S3 by component-wise

multiplication, and so, L(p, 1) inherits a effective action of S1. A similar argument as in the proof of the

previous proposition shows that an algebraic model of L(p, 1) endowed with this S1-action is given by

the real affine threefold L(p, 1) := X(S2, ({1} ⊗ (pD), (1 − z)p)).

4.2. Linear and non-linearizable S1-actions on A4
R. Let again ρ0 : S

1 → SO2,R be the representation

defined in (1.1). For every integer r ≥ 0, the morphism

ν2,r : S
1 ×A4

R → A4
R, (s, (u1, v1, u2, v2)) 7→ (ρ0(s)

2 · (u1, v1), ρ0(s)
2r+1 · (u2, v2))

defines an effective action of S1 on A4
R = Spec(R[u1, v1][u2, v2]). With the notation of Lemma 1.4, the

latter is represented by the triple (V, σ, µ2,r), where V = A4
C = Spec(C[a, b][x, y]), σ is the real structure

defined as the composition of the involution (a, b, x, y) 7→ (b, a, y, x) with the complex conjugation, and

µ2,r is the linear hyperbolic Gm,C-action weights (2,−2, 2r + 1,−2r − 1).
For r = 1, Freudenburg and Moser-Jauslin [9] constructed an S1-action ν ′2,1 on A4

R which is a non-

trivial form of ν2,1, hence in particular a non-linearizable action. The construction was generalized later

on by Moser-Jauslin [12] for arbitrary r ≥ 2 to yield infinite families of pairwise non-conjugate non-

linearizable S1-actions on A4
R. Our aim is to give a complementary description of these actions in terms

of phs-pairs.

Given r ≥ 1, we let Q2,r be the closed subvariety of A4
C = Spec(C[u, v, z, w]) with equation uv =

z2r+1w2 and we let π : Y2,r → Q2,r be the blow-up of Q2,r with center at the closed subscheme W
with defining ideal (u, v, z2r+1, w2). We denote by E be the exceptional divisor of π, and by Dz,u, Dz,v,

Dw,u and Dw,v the respective proper transforms in Y2,r of the Weil divisors {z = u = 0}, {z = v = 0},

{w = u = 0} and {w = v = 0} on Q2,r. We let D2,r be the segmental divisor on Y2,r defined by

D2,r = r ⊗Dz,v + {1} ⊗Dw,v + [2r, 2r + 1]⊗ E.

The main result of [12] can now be reformulated as follows:

Theorem 4.2. Let r ≥ 1 be a fixed integer. Then for every polynomial P ∈ R[z], there exists a real

structure τP on Y2,r with the following properties:

(1) The rational function hP = zr((1− zP 2(z))w + Pn(z)v) on Y2,r is τP -invariant,

(2) (D2,r, hP ) is phs-pair on Z2,r,P = (Y2,r, τP ),
(3) The affine fourfold X(Z2,r,P , (D2,r, hP )) is isomorphic to A4

R.

Furthermore, two fourfolds X(Z2,r,Pi
, (D2,r, hPi

)), i = 1, 2, are S1-equivariantly isomorphic if and only

if there exists c ∈ R∗ such that P2(z) ≡ cP1(c
2z) modulo zr .

Proof. Letting n = 2r + 1, the matrix

MP =

(
1− abP 2(ab) anPn(ab)

−bnPn(ab)
∑2r

j=0(abP
2(ab))j

)
∈ SL2(C[a, b])

defines an automorphism ϕP of V over Spec(C[a, b]) which is equivariant for the Gm,C-action µ2,r. By

[12, Theorem 3.1 (i)], the composition σP = ϕP ◦σ is real structure on V such that (V, σP ) is isomorphic
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to A4
R. Since ϕP is Gm,C-equivariant, it follows from Lemma 1.4 that the triple (V, σP , µ2,r) is a smooth

real affine fourfold XP endowed with an effective S1-action which is a real form of X0 = (V, σ, µ2,r).
The main result in [12] asserts that XP1

is S1-equivariantly isomorphic to XP2
if and only if there exists

c ∈ R∗ such that P2(z) ≡ cP1(c
2z) modulo zr. So to complete the proof, it suffices to show that the

AH-quotient of V is equal to Y2,r, that V is Gm,C-equivariantly isomorphic to V (Y2,r,D2,r), and that

XP is S1-equivariantly isomorphic to X(Z2,r,P , (D2,r, hP )) for the claimed rational function hP on Y2,r
endowed with the real structure τP induced by σP .

First, it is clear that Q2,r is the algebraic quotient of V , the quotient morphism being given by

(a, b, x, y) 7→ (u, v, z, w) = (any2, bnx2, ab, xy). The fact that Y2,r is the AH-quotient of V then

follows from the observation that the minimal d for which the graded sub-algebra of A = C[a, b, x, y]
consisting of semi-invariants of positive (resp. negative) weights divisible by d is generated in degree 1,

is equal to 2n, and that A2n ·A−2n =
(
any2, bnx2, anbn, x2y2

)
=
(
u, v, zn, w2

)
is precisely the defining

ideal of the center of the blow-up π : Y2,r → Q2,r.

The fact that V ≃ V (Y2,r,D2,r) can then be derived for instance from the toric downgrading method

described in [1, Section 11]. In our case, V endowed with the Gm,C-action µ2,r is the restriction to

the sub-torus Gm,C →֒ G4
m,C, t 7→ (t2, t−2, tn, t−n) of the usual structure of toric variety of A4

C. This

sub-torus corresponds to the injection F : Z → Z4, 1 7→ (2,−2, n,−n) between the respective lattices

of 1-parameter subgroups, and we have an exact sequence 0 → Z
F
→ Z4 G

→ Z3 → 0 where

G : Z4 → Z3 is given by the matrix




1 1 0 0
0 0 1 1
n 0 0 2


 .

Let Σ′ be the fan in Z4 ⊗Z R generated by the cone cone(e1, e2, e3, e4) where ei are the standard

basis vectors. The coarsest fan Σ in Z3 ⊗Z R generated by the image by P of Σ′ is the simplicial fan

generated by f1 = (1, 0, n), f2 = (1, 0, 0), f3 = (0, 1, 0), f4 = (0, 1, 2) and the additional vector

f5 = (2, n, 2n) = 2f1 + nf3 = 2f2 + nf4. This fan describes Y2,r as a toric threefold in which the

invariant divisors corresponding the rays generated by the fi are respectively D(f1) = Dz,u, D(f2) =
Dz,v, D(f3) = Dw,v, D(f4) = Dw,u, while D(f5) is the exceptional divisor E of π : Y2,r → Q2,r. A

direct calculation now shows that D2,r is equal to proper segmental divisor supported on the union of the

D(fi) whose coefficients are the images by the section γ = rpr2 + pr3 : Z4 → Z of F of the segments

γ
(
R4
≥0 ∩ P

−1(fi)
)
, i = 1, . . . , 5. This implies that V ≃ V (Y2,r,D2,r)

Now recall from the proof of Theorem 2.7 and Remark 2.8 thatXP is then S1-equivariantly isomorphic

to X(Z2,r,P , (D2,r, sσ
∗
P s)), where s is the semi-invariant rational function of weight 1 on A4

C which

provides the identification C[a, b, x, y]m = Γ(Y2,r,OY2,r
(D2,r(m))) · sm for every m ∈ Z. Our choice

of section γ of F in the toric downgrading method used to construct D2,r corresponds to the choice

s = brx, and the fact that hP = (brx)σ∗P (b
rx) then follows from a direct calculation. �
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