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Abstract

Restricted by high calculation cost of single engineering model run and large
number of model runs for sampling-based Sensitivity Analysis (SA), qualita-
tive SA are used for parameter study of the Vehicle Restraint System (VRS)
and quantitative SA of such models has always been a challenge. Sequential
approaches are proposed for SA of complex systems and the SA of a VRS is
realized: sampling-based SA methods are discussed; SA of a simple three points
dynamic bending test model is realized, the aims are to compare different two-
level screening methods and put into practice the sequential SA; crash test FE
model of a VRS is created and used for SA; influential uncertain parameters of
the VRS are identified qualitatively through screening analyses (SA with Two-
level screening and Morris Analysis), and Sobol’ indices are used to quantify the
influence of influential parameters with Kriging metamodeling. The uncertain
parameters which contribute the most to robustness of the VRS are identified
and their influences are quantified by combining screening analyses and Sobol’
Indices.
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Nomenclature

CD Cotter’s Design
CDF Cumulative Distribution Function
DOE Design of Experiment
FD full Factorial Design
FE Finite Element
FFD Fractional Factorial Design
HFFD Half Fractional Factorial Design
LHS Latin Hypercube Sampling
MA Morris Analysis
OA Orthogonal Arrays
OAT One-at-A-Time
PCE Polynomial Chaos Expansion
PS Parameter Study
SA Sensitivity Analysis
VBSA Variance Based Sensitivity Analysis
VRS Vehicle Restraint System

1. Introduction

Sensitivity Analysis (SA) is the study of how the uncertainty in a model
output can be apportioned to different sources of uncertainty in its input [1].
The responses of engineering systems cannot be predicted precisely because
the existence of uncertainty. Model can be simplified through SA by fixing non-
influential parameters and focusing on the ones whose uncertainties have a great
influence on system performances.

The Vehicle Restraint Systems (VRS) are specially designed to restrain an
errant vehicle by dissipating or absorbing the impact energy and redirecting
the vehicles to reduce the severity of impact. Crash test of VRS is commonly
associated to the development of new devices, but it provides a view of the
VRS performance of only one set of parameters. The real crash conditions of a
vehicle with VRS (e.g. vehicle dimensions & mass, impact speed & angle, etc.)
can be innumerable. Standards such as EN1317 [2] in Europe and MASH [3]
in the United States normalize the crash test conditions a VRS should undergo
to be in a certain performance class. Influenced by system uncertainties (e.g.
uncertainty of material mechanical properties, tolerances of manufacture, instal-
lation conditions), the results can be different for two crash tests even with the
same controlled test conditions. Dynamic FE simulation with programs such as
LS-DYNA [4][5] is used in the crash simulation of VRS [6][7], and it allow the
optimization [8][9] and robustness evaluation of a design taking into account all
the variations. SA of VRS helps to have a deep understanding of model uncer-
tainty and to identify the influential uncertain parameters that should be taken
into considerations during VRS performance studies and robust optimizations.

Challenges for SA of VRS and many other complex engineering systems
with numerical simulations include: a high simulation cost of single model run;
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Figure 1: Selection of SA methods[11]

a large number of uncertain parameters; numerical errors in the modeling and
simulation process (e.g. inaccurate physics models, simplification in modeling,
FE program accuracy, etc.). The SA of a VRS is realized by combining quali-
tative and quantitative methods: Sampling-based SA methods are discussed in
section 2; SA of a simple dynamic model, three point dynamic bending test of
steel reinforced wood beam, is realized in order to find an efficient way for SA of
the complex models, and the strategy for sequential SA (i.e. SA with sequential
steps by combining different methods) of the VRS is proposed in section 3; SA
of a VRS with the proposed strategy is presented in section 4; Conclusions are
given in section 5.

2. Sampling based Sensitivity Analysis

Sampling-based [10] approaches for SA are both effective and widely used.
The methods selection for SA of a model is based on the complexity of model
and the number of variables (see Fig.1 [11]). Different SA methods might be
needed for analysis of complex models: Fig.2 [12] illustrates the SA strategies.

Regression [13] analyses are the methods that could be used to discuss the
linear relationship between inputs and outputs. Differential approach [1] reduces
the samples by estimating the model input and output relationship only at a
local position. Generally, properties are unknown for an engineering system.
Screening basing on a two-level DOE is efficient for SA of a monotonic model
[1][14]. Multi-level screening, Morris Analysis (MA) [1][14], can be used for SA
of non-monotonic systems. Variance Based Sensitivity Analysis (VBSA), Sobol’
indices [1][14], can quantify the main effect and the interaction effects of each
input parameter on outputs, regardless of the linearity and monotonicity of the
system, and the metamodel could be used for the calculation of Sobol’ indices
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Figure 2: SA strategies for different kind of systems[12]

as it requires thousands of model evaluations. Group sampling [14] allows the
analyst to generate smaller designs that can still isolate influential parameters,
and is proposed when the number of inputs is high (>20).

For the VRS studied, model simulation is of high computational cost (5h/runs)
and eleven input uncertain parameters are chosen. Sobol’ indices can be used for
quantitative SA of such models. Screening analyses are preferred to identify the
influential uncertain parameters and to reduce the number of input parameters
before the quantitative analysis.

2.1. Screening analysis

The choice of a well-designed experiment for the screening analysis is essen-
tial to identify qualitatively the few influential uncertain parameters.

2.1.1. Two-level Design of Experiment

Two-level analysis [1][14], namely each input variable has two values. The
main effect MEr(Y ) of parameter Xr on Y is obtained by taking half the dif-
ference of the average Y values for Xr at the two levels:

MEr(Y ) =
1

2

 1

k1

∑
xjr=1

yj −
1

k0

∑
xjr=0

yj

 (1)

where k1 is the number of samples with Xr at level 1 and k0 is the number
of samples with Xr at level 0. SA analysis with inputs at only two levels can
greatly reduce the required number of samples, but no information is obtained
about linearity or continuity of the model and it can only be used for screening
analysis of monotonous models.
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Parameter Study. Each parameter is varied independently over the two levels,
holding all others at the specified baseline design. A small number of samples
are used, but it does not account for interactions among parameters.

One-at-A-Time. The value of only one parameter is changed between two con-
secutive simulations. This sampling strategy is efficient for linear model analysis.
Supposing:

Y = b0 +

k∑
r=1

brXr (2)

With the One-at-A-Time (OAT) DOE, we have the following equation, and
the quantity ∆yi = yi+1 − yi is an estimate of the effect on Y of changing Xi.

1 0 0 0 . . . 0
1 1 0 0 . . . 0
1 1 1 0 . . . 0
1 1 1 1 . . . 0
...

...
...

...
. . .

...
1 1 1 1 . . . 1




b0
b1
...
bk

 =


y1
y2
...

yk+1

 (3)

Full & Fractional Factorial Design. To take into consideration all the combina-
tions of the k parameters at the 2 levels, 2k samples are taken for full Factorial
Design (FD). Therefore the main disadvantage of using a FD is the enormous
number of simulations required, especially for models with many parameters.
Fractional Factorial Design (FFD), consisting of a carefully chosen fraction of
the full FD, can greatly decrease the number of samples. Although with rela-
tively low accuracy, DOE with Orthogonal Array (OA) [15] is one of the most
efficient sampling methods for FFD. Table 1 lists the OA for a two-level DOE of
seven parameters (1 and -1 are the two levels taken for each parameter). Only
8 samples are chosen for SA of a model with 7 parameters: note that half the
values in each column are 1, and that the others are -1; any two columns have
the property that the four combinations (1, 1), (1, -1), (-1, 1), (-1, -1) occur the
same number of times.

2.1.2. Cotter’s Design

Cotter’s Design (CD) [1] is a systematic fractional replicate design that re-
quires the following 2k + 2 runs for parameter screening of the model with k
parameters:

• One initial run with all parameters at their low levels;

• k runs with each parameter in turn at its upper level, while all other
parameters remain at their low levels;

• k runs with each parameter in turn at its low level, while all other param-
eters remain at their upper levels;
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Table 1: Two-level Orthogonal Array for seven parameters

X1 X2 X3 X4 X5 X6 X7

1 1 1 1 1 1 1
1 1 1 -1 -1 -1 -1
1 -1 -1 1 1 -1 -1
1 -1 -1 -1 -1 1 1
-1 1 -1 1 -1 1 -1
-1 1 -1 -1 1 -1 1
-1 -1 1 1 -1 -1 1
-1 -1 1 -1 1 1 -1

• One run with all parameters at their upper levels.

Denote the resulting outputs by y0, y1, y2, . . . , y2k+1. Then following mea-
sures can be used to estimate the order of importance for the parameters:

M(j) = |Ce(j)|+ |Co(j)|
with
Ce(j) = 1

4 [(y2k+1 − yk+j)− (yj − y0)]
Co(j) = 1

4 [(y2k+1 − yk+j) + (yj − y0)]

(4)

A major problem of the Cotter’s method is that an important parameter
may remain undetected. The measures may fail when a parameter has effects
that cancel each other out.

2.1.3. Multi-level screening—Morris Analysis

MA [1][14][16] (i.e. Elementary Effect Method) is based on the concept
that two successive points within a trajectory differ from each other only in
one dimension by a fixed amount ∆. Consider a model with k independent
inputs which varies in the k-dimensional unit cube across p selected levels. The
elementary effect of the ith input parameter EEi is defined as:

EEi =
Y (X1, X2 . . . Xi + ∆, . . . , Xk)− Y (X1, X2, . . . )

∆
(5)

where Y is the model under study and k is the number of model parameters.
One EE is produced per parameter from each trajectory. It estimates at dif-
ferent points in the input space the main effect of a parameter by computing a
number r of trajectories with k + 1 model evaluations for each trajectory, and
then taking their average. The average value of EEi for the r trajectories µi

and its variance σ2
i are calculated with eq.6 and eq.7. However, µi may not de-

tect some parameters to be influential due to positive and negative EEi values
canceling each other for non-monotonous models. Instead of µi, the mean of
the absolute values of EEi eq.8 [17] is recommended for main effect calculation
of a parameter.
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µi =
1

r

r∑
j=1

EEj
i (6)

σ2
i =

1

r − 1

r∑
j=1

(
EEj

i − µi

)2
(7)

and

µ∗i =
1

r

r∑
j=1

∣∣∣EEj
i

∣∣∣ (8)

MA can determine which input parameters could be considered to have ef-
fects which are negligible, linear and additive, or nonlinear or involved in inter-
actions with other parameters. This method is ideal when the number of input
parameters is too large to allow the application of computationally expensive
quantitative analysis. It helps to identify the few parameters that are influen-
tial and the reduction of the input variables makes quantitative SA possible for
complex engineering systems.

2.2. Sobol’ indices

Working within a probabilistic framework, the VBSA [1][14][18] decomposes
variance of the model output into fractions which can be attributed to inputs.
For model Y (X), where X = (X1, X2, . . . , Xk) is the k-dimensional input vector.
With the hypothesis that all input variables are independent with each other, the
variance of output V (Y ) can be decomposed as partial variances of increasing
orders:

V (Y ) =

k∑
i=1

Vi +
∑
i 6=j

Vij + · · ·+ V12...k (9)

where

Vi = V (E(Y |Xi))

Vij = V (E(Y |Xi, Xj))− Vi − Vj
Vijl = V (E(Y |Xi, Xj , Xl))− Vi − Vj − Vl

−Vij − Vjl − Vil
. . .

Let Si = Vi/V (Y ), Sij = Vij/V (Y ), etc. Then

k∑
i=1

Si +
∑
i 6=j

Sij + · · ·+ S12...k = 1 (10)

where Si is first order effect index to measure the individual contribution of Xi

to the model output variance; Sij is second order effect index which quantifies
the interactive contribution between Xi and Xj to variance of output, etc.
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Figure 3: Bending test of steel reinforced wood Beam[22]

Eq.10 has 2k − 1 terms and it is not practical to calculate all the indices.
Total effect index STi is defined as the sum of all order effect indices of Xi:

STi = Si +

k∑
j=1,j 6=i

Sij + · · ·+ S12...k (11)

Sobol’ indices can deal with nonlinear responses and measure the effect of
interactions in non-additive systems. Usually only first and total order effects
indices, Si and STi, are estimated to measure sensitivity across the whole input
space: Si reflects the main effect of an input Xi and STi accounts for the total
contribution to the output variation due to the variation of Xi.

VBSA can quantify the influences of inputs uncertainties on the model per-
formances. Saltelli [14] described the Monte-Carlo based procedure for the com-
puting of Si & STi and proposed the improvements [19]. However large number
of samples is still needed and the model runs increase linearly with the number
of input variables. Kriging metamodeling is highly efficient in calculation of the
Sobol’ indices[20] and has been integrated in mathematical softwares such as
the Matlab toolbox DACE[21].

3. Approach study

3.1. SA of a bending test model

The three points dynamic bending test of a steel reinforced wood beam was
realized (see Fig.3) and the numerical simulation was carried out using Ls-Dyna
(see Fig.4) [22]. The wood beams consisted in cylinders of 200 mm in diameter
and a length of two meters, with the rear side machined and reinforced with a
S235 steel plate. A rigid impactor of 2000 kg impacts the beam at 20 km h−1.
Screening methods and Sobol’ indices are used for SA of the simple dynamic
model: efficiency and accuracy of different methods are compared.

Six uncertain parameters are chosen: Wood mechanical properties are in-
fluenced by its Moisture Content (MC), Temperature (T ) and wood Grade
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Figure 4: Numerical model of the bending test[22]

Table 2: Distribution of uncertain parameters for the test

Factors Distribution Unit Mean St D

MC Uniform % 16.5 4.9
T Uniform ◦C 15.5 8.37
G Gauss 1 0.635 0.135
Y Gauss MPa 284.5 21.5
MY Gauss GPa 210 12.6
MT Gauss GPa 0.86 0.08

(G) [23]; Uncertainties of mechanical properties of the reinforced plate, Yield
strength (Y ), Young’s Modulus (MY ), Tangent Modulus (MT ), are considered
[24]. The possible distributions of the uncertain parameters are listed in Table
2. Fig.5 shows velocities of the impactor with uncertain parameters at different
possible values. Mechanical properties of the beam are highly influenced by
uncertain parameters. The final velocity (v∞) of the impactor reflects ability
of the beam to absorb the impact energy and is treated as the output criterion.

Different screening methods—MA, FD, HFFD, OA, OAT, CD, PS, are used
for screening analyses of the system. Influential uncertain parameters are iden-
tified and their influences are then quantified by calculating the Sobol’ indices.
The normalized main effects of the uncertain parameters are listed in Table 3 :

• The Cumulative Distribution Function (CDF) value of a parameter is
unitless and uniformly distributed across the interval [0, 1] regardless of
the parameter distribution. In the MA, the CDF values of the parameters

Table 3: SA of the bending test model with V∞ as output

MC T G Y MY MT

MA 0.11 0.41 0.26 0.06 0.04 0.12
FD 0.14 0.47 0.28 0.03 0.02 0.06

HFFD 0.17 0.48 0.30 0 0.02 0.03
OA 0.12 0.30 0.28 0.08 0.02 0.20

OAT 0.16 0.26 0.20 0.25 0.10 0.03
CD 0.19 0.29 0.07 0.12 0.13 0.19
PS 0.20 0.09 0.49 0.03 0.04 0.15

Sobol 0.01 0.62 0.35 0.01
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Figure 5: Impactor velocity in bending test simulations with uncertain parameters at different
levels

were treated as inputs and 6 levels (1/12, 3/12, 5/12, 7/12, 9/12, 11/12)
were taken for each input with ∆ = 0.5. 9 trajectories with each trajectory
corresponds to 6+1 model executions based on One-at-A-Time sampling
strategy were selected and a total number of 63 model runs were realized.
The value of µ∗i (see eq.8) was calculated. The multi-level MA is one of the
most accurate screening method and the analysis results could be treated
as a reference for accuracy evaluation of two-level screening analyses;

• Suppose that v∞ is inversely proportional to rigidity of the beam. For
two-level screening analyses: values of inputs G, Y , MY , MT are taken
as the mean value plus/minus standard deviation; Mechanical properties
of wood [23] have monotonous relationship with MC in interval [8 30]%
and with T in interval [1 30] ◦C. Low MC may greatly degrade properties
of the wood and its energy absorption capability goes down when wood
freeze at T < 0◦C. Two levels of MC and T were taken as (8%, 26%)
and (1◦C, 30◦C) separately. Considering all possible combinations, FD is
the most accurate two-level screening method, with 64 model runs; HFFD
take half of the full FD samples, i.e. 32 samples, and is of relatively high
accuracy; only 8 samples were required for fractional design with OA,
and the OA well identified the non-influential parameters; OAT design is
efficient for linear models and needs 12 model runs to estimate the effect of
changing each parameter, but it is of low accuracy for screening analysis
of the bending test model; CD and PS take only one sample for every
parameter at each level, and the screening results are highly influenced by
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single model simulation precision;

• Both MA and FD screening results show that MC,T,G,MT are influ-
ential parameters. Their respective influences were then quantified with
Sobol’ indices. Though a single run of the bending test model requires only
10min, thousands of samples are needed for quantitative analysis. About
120 model runs were realized with samples generated through Latin Hy-
percube Sampling (LHS) in order to create the Kriging metamodel and
Sobol’ indices were calculated with the Monte-Carlo based procedure [19]
using the metamodel. Main effect Si for each parameter is listed in the
table 3, wood Temperature (T ) and wood Grade (G) were identified and
their influences were quantified.

3.2. Approaches for SA of VRS

In the modeling of systems with unknown properties, screening analyses help
to remove the noise and insignificant variables and terms, and to identify the
interactions in problems[25]. They are proposed before quantitative analysis in
the SA of complex models[12]. Both MA and Sobol’ indices could be used in SA
of black-boxes systems where no specific assumption is made. Lamoureux[26]
realized the SA of an aircraft engine’s pumping unit by combining MA and
Sobol’ indices. Ge[27] discussed the sequential SA with MA and Sobol’ indices
of the test functions (G function, G∗ function, K function, Morris function): his
study shows that the sequential SA has a very high accuracy in both qualitative
and quantitative SA of a high-dimensional model.

Oberkampf[28] discussed error and uncertainty in model simulations. Nu-
merical solution errors are inevitable in the modeling & simulation of complex
systems, and the field of numerical error estimation is separate from that of
uncertainty analysis. As for the dynamic problems, the simulation error
at the previous moment may lead to bigger error of model at the latter mo-
ment. The simulation error of dynamic systems cumulated and its influences
on the SA need to be considered. In the MA, numerical errors may domi-
nate the EEi calculation of non-influential parameters as show in eq.12 , where
Y (X1, X2 . . . Xi + ∆, . . . ) ≈ Y (X1, X2, . . . ) and ei1, ei2 represent the numerical
errors. Screening analyses with samples taken by FD or FFD run the model
multiple times with every uncertain parameter at each level, which helps to
offset the influence of numerical errors on uncertainty analysis of the complex
systems. Screening methods such as OAT, CD and PS can be efficient for SA of
models with special assumptions, but of low accuracy for complex model with
unknown properties as they run the model only one//two times with every un-
certain parameter at each level and the numerical error or the interaction effects
of uncertain parameters could dominate the evaluation of main effect.

EEi =
[Y (X1, X2 . . . Xi + ∆, . . . ) + ei1]− [Y (X1, X2, . . . ) + ei2]

∆
≈ ei1 − ei2

∆
(12)
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Restrained by the high number of uncertain parameters and time expensive
cost in the simulation of VRS crash tests, current SA of the VRS remain qualita-
tive [29][30][31] and assumptions are made to cut back the number of uncertain
parameters. By taking samples through FD, Goubel [29] analyzed qualitatively
the robustness of a steel-wood VRS. His analysis could illustrate the uncertainty
of model outputs, but only 3 uncertain parameters are analyzed according to
the failure modes of the VRS during crash test. Many other uncertain parame-
ters exist and the number of model runs could be numerous if we take samples
considering all the uncertain parameters (nk samples for n level FD of k uncer-
tain parameters). Two-level screening with uncertain parameters taken through
FFD (e.g. OA) could greatly reduce the number of samples required and well
identify the non-influential uncertain parameters according to previous SA of
the bending test. Comparing to MA, although could only be used in qualita-
tive SA of monotonous models, two-level screening with FFD could eliminate
the numerical error and identify the most non-influential uncertain parameters
with much less samples and model runs.

As a consequence, the steps for SA of complex engineering systems (i.e. high
calculation cost models) can be summarized as follows:

1) Two-level screening — OA

2) Multi-level screening—MA

3) Sobol’ indices with Kriging metamodeling

A complex model may have tens or hundreds of input parameters, but only a
few of them may be influential. By carefully choosing the samples, although with
low precision, two-level FFD (e.g. OA) screening are of lowest calculation cost
for SA to find the non-influential parameters. And the influences of numerical
errors on SA could cancel each other out by running the model multiple times
with every uncertain parameter at each level. VRS performances generally
have monotonous relationship with rigidity of the device. Two-level screening
methods can be used for SA of such models.

Limited by calculation precision, OA screening can only preliminarily select
the parameters. Non-influential variables will then be treated as constant, which
can greatly facilitate the multi-level screening. MA will then be used to classify
the influential variables with a multi-level screening.

The few most important parameters may remain undetected through the
first two steps. Sobol’ indices will then be used to quantify the influences of
parameters that are classified as influential in the MA. Even for a model with
few parameters, thousands of model runs might be needed for the quantitative
SA. Monte-Carlo based procedure can be used in calculation of the Sobol’
indices with Kriging metamodeling.

4. VRS Sensitivity Analysis

4.1. VRS Crash Model

12



Figure 6: Profile of VRS components: A = 100mm; B = 50mm; H = 310mm; E = 81mm

The crash test of a VRS was carried out [32] according to the Norm EN1317
[2] : a vehicle of 1431 kg impacts the VRS at 113.6 km h−1 with the impact angle
at 20◦. The VRS components (Rail, Spacer and Post) are shown in Fig.6 and
the device is shown in Fig.7.

The crash test is simulated using the FE platform LS-DYNA. Detailed sim-
ulation of the crash test requires unacceptable calculation cost. In fact, only
the parts which are exposed directly to impact loads are of large deformations.
Considering the magnitude of component’s deformation, the crash test model

is simplified in the four following aspects:

1) Right front parts of the vehicle are in direct contact with the VRS during
crash and experience severe deformations; the posts of VRS are bent at
the ground positions and the bolts may pull out from the holes after crash.
Meshes are refined at these local positions (see. Fig.8 and Fig.9).

2) The crash model is illustrated in Fig.10 . A tested VRS may hundred meters
in length, but only the parts exposed to crash contact with vehicle have
large deformations, the rails at two ends serve to apply boundary constraints.
These constraints are applied by spring elements in the FE model and the
length of modeled VRS is reduced.

3) Bending of the post can cause soil deformations in the crash test. The soil
is modeled with solid elements inside the crash area (see. Fig.9(d)). The
posts outside crash area have small deformation and the soil constraints are
applied by spring elements (see Fig. 10).

4) As shown in Fig.11, the failure of VRS bolted connections is the bolt pull-
out from spacer slotted hole. Fig.12 illustrates the bolted connections in FE
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Figure 7: The VRS tested in [32]

model: the Rail-Rail connections are simplified with high-strength spring el-
ements as no failure is detected for these connections; the bolted connections
of Post-Spacer and of Spacer-Rail are modeled in detail. The bending of
post, deformation of soil and bolted connection failure are well simulated in
the FE model (see. Fig.11 and Fig.13).

Fig.14 compared the experimental test and simulation results at different
impact time. The FE model has well simulated the crash test of VRS within 5
hours using a regular PC [33].

4.2. VRS Parameters & Performance Criteria

4.2.1. Model input parameters

Due to the material mechanical properties variations and the tolerances in
manufacturing, the uncertainties of the following parameters are considered:

1) VRS components Rail, Spacer and Post are fabricated with structure S235
steel. S235 mechanical properties have been analyzed statistically in litera-
ture studies [24] Supposing that the steel tensile strength is proportional to
its yield strength, uncertainties in steel mechanical properties influence Rail
Yield strength (RY ), Rail Young’s Modulus (RM), Spacer Yield strength
(SY ), Spacer Young’s Modulus (SM), Post Yield strength (PY ) and Post
Young’s Modulus (PM);
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Figure 8: FE model of the vehicle

Figure 9: FE model of the VRS components

Figure 10: Simplified FE crash test model of VRS
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Figure 11: Bolts pull out failure of post-spacer connection

Figure 12: Bolted connections of VRS in the FE model

Figure 13: Bolted connection failure in the FE simulation
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Figure 14: Crash test and simulation at different impact times

Table 4: VRS crashing model input variables

Type Vars Unit Mean St D

Steel S235
mechanical

properties[24]

RY MPa 284.5 21.5
RM GPa 203 12.6
SY MPa 284.5 21.5
SM GPa 203 12.6
PY MPa 284.5 21.5
PM GPa 203 12.6

Tolerances of
fabrication

RT mm 3 0.15
ST mm 3 0.15
PT mm 5 0.25

Installation
uncertainties

SoilM MPa 400 100
BP N 12432 4144

2) The designed Rail Thickness (RT ), Spacer Thickness (ST ) and Post Thick-
ness (PT ) are 3 mm, 3 mm and 5 mm respectively, and the standard devi-
ations of the thickness parameters caused by the fabrication tolerances is
defined to be 5 % of their mean values;

3) Fixed to the ground, the VRS performances are affected by Soil bulk Modulus
(SoilM) [34]. The VRS components are connected by bolts and the Bolt
Pre-load (BP ) is defined.

The uncertain parameters are supposed to have normal distributions, and
their mean values and standard deviations are defined in Table 4.

4.2.2. Performance Criteria

Two performance criteria are defined:
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Figure 15: Dynamic deflection of a VRS[2]

• Impact severity Criterion [2] – the Theoretical Head Impact Velocity
(THIV ): the occupant is considered to be a freely moving object (head)
that, as the vehicle changes its speed during contact with the safety fea-
ture, continues moving until it strikes an inner surface of the vehicle with
the velocity THIV .

• Deformation of VRS [2] – the Dynamic deflection (D) is the maximum
lateral dynamic displacement of the side facing the traffic of the VRS (see
Fig.15).

4.3. VRS Model Variables Screening

4.3.1. Two-level screening—OA

Influences of the 11 uncertain parameters on the model performances are
studied by two-level OA screening. The OA and the outputs THIV and D
are listed in Table 5. Columns in OA represent the 11 variables in Table 4.
Every variable takes two values: 0, which corresponds to µk − σk and 1, which
corresponds to µk+σk (µk: average value of parameter k; σk: standard deviation
of parameter k).

A total number of 12 model runs were realized. MEr(Y ) of each variable on
the two outputs THIV and D were calculated and their influences were ranked
from the most influential (1) to the least influential (11) according to absolute
value of MEr(Y ) in Table 6.

Limited by the analysis precision, the two-level screening with OA can only
identify qualitatively the influential parameters. The first 4 influential param-
eters for both THIV and D are chosen separately and a total number of 6
variables (variables on bold in Table 6) out of 11 are considered as influential
after this analysis.

4.3.2. Multi-level Screening—MA

The 6 selected variables are re-screened with MA: 4 levels (1/8, 3/8, 5/8, 7/8)
are taken for the CDF of each input variable with ∆ = 0.5. 6 trajectories with
each trajectory corresponding to 7 model executions based on a Once-at-A-
Time sampling strategy were selected and a total number of 42 model runs were
realized. The analytical values are plotted in Fig.16, for both outputs THIV
and D.
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Table 5: OA sampling and simulation outputs of the VRS

No. OA THIV (km/h) D(mm)

1 1 1 1 1 1 1 1 1 1 1 1 22.4481 1044
2 1 1 1 1 1 0 0 0 0 0 0 21.2421 1182
3 1 1 0 0 0 1 1 1 0 0 0 20.3844 1221
4 1 0 1 0 0 1 0 0 1 1 0 21.5142 1160
5 1 0 0 1 0 0 1 0 1 0 1 21.4796 1170
6 1 0 0 0 1 0 0 1 0 1 1 20.2277 1159
7 0 1 1 0 0 0 1 0 0 1 1 21.5688 1213
8 0 1 0 1 0 0 0 1 1 1 0 21.5030 1186
9 0 1 0 0 1 1 0 0 1 0 1 22.9677 1150
10 0 0 1 1 0 1 0 1 0 0 1 21.5258 1246
11 0 0 1 0 1 0 1 1 1 0 0 22.1834 1092
12 0 0 0 1 1 1 1 0 0 1 0 22.3825 1167

Table 6: Main Effect for OA screening

Param. THIV D

ME(km/h) Rank ME(mm) Rank
RY -0.4029 1 -9.8 4
RM 0.1227 8 9.8 4
SY 0.1281 7 -9.7 6
SM 0.1446 6 0 11
PY 0.2896 3 -33.5 1
PM 0.2315 5 -1.2 10
RT 0.1222 9 14.7 3
ST -0.2402 4 -7.8 8
PT 0.3971 2 -32.2 2

SoilM -0.0116 11 -9.7 6
BP 0.0840 10 -2.2 9
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Figure 16: ME and Inter: (a) THIV (km/h) and (b) D(m)

The value of µ∗ (eq.8) is used to calculate the main effect (ME) of the
parameter, and large value of the standard deviation σ implies significant in-
teraction effects (Inter) of a parameter. Considering ME and Inter with both
THIV and D as criteria, the three variables PT , PY and RT are of significant
influence on VRS performances (see Fig.16).

4.4. Quantitative analysis—Sobol’ indices

3 variables out of 11 were identified as of great influence on VRS perfor-
mances after the screening analyses. Sobol’ indices are calculated to quantify
influences of the three variables — PT , PY and RT : 100 model runs were real-
ized with samples taken by LHS; the Kriging metamodel was created and then
validated with 20 additional samples; The Sobol’ indices were calculated with
the metamodel. The scatter plots of simulation results are given in Fig.17 :
THIV has positive correlation with PT & PY , while deformation of the device
D has negative correlation with the input values. Correlations between RT and
the output criteria are not evident, especially for THIV .

The Sobol’ indices of inputs parameters are plotted in Fig.18 . The quantita-
tive analysis results show that among the three parameters: the variance of post
thickness (PT ) is the most influential parameter for VRS performances (with
SPT = 0.6069, STPT = 0.6311 for THIV and SPT = 0.529, STPT = 0.5583
for D); uncertainties of post yield strength (PY ) also play an important role
for VRS robustness (with SPY = 0.3283, STPY = 0.3534 for THIV and
SPY = 0.3762, STPY = 0.3903 for D); relative to the other two parame-
ters, the influences of rail thickness (RT ) is negligible (with SRT = 0.0648,
STRT = 0.0695 for THIV and SRT = 0.0948, STRT = 0.0890 for D). For
all the three variables, their main effects are approximately equal to their total
effects, which indicate that there are nearly no interactions effects.
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Figure 17: Scatter plots of THIV , D in function of the CDF values of inputs RT , PT , PY

Figure 18: Evolution of Sobol’ indices against the sample data size: (a) THIV ; (b) D (Solid
line: total effects of PT (STPT ), PY (STPY ) and RT (STRT ); Dotted line: main effects of
PT (SPT ), PY (SPY ), RT (SRT ))
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5. Conclusions

Uncertainties can significantly degrade the performances of engineering sys-
tems. SA helps to identify the few key factors that contribute to the robustness
of a design. Approaches for SA of complex engineering systems are discussed
and the SA of a VRS were carried out combining screening analyses and Sobol’
indices:

• For SA of the VRS and many other complex models, screening analysis
is needed before quantitative analysis in order to identify the influential
uncertain parameters. By taking samples at multi-level, MA is one of the
most commonly used screening methods as it can analyze qualitatively
both the main effect and the interaction effects of an uncertain parameter,
whatever the linearity or monotonicity of the model. The samples required
for MA are still enormous for models of high simulation cost and with
large number of uncertain parameters. In addition, influences of a non-
influential parameter may be overestimated because of numerical errors in
modeling & simulation process with MA. Two-level OA screening helps to
identify the non-influential uncertain parameters with the least number of
model runs, and the influences of numerical errors on SA of the model are
offset by running the model multiple times with every uncertain parameter
at each level. Performances of a model have monotonous relationship with
the values of its uncertain parameters in many engineering problems, two-
level OA screening can be used as the first step for SA of such models.

• The SA of a VRS is realized by combining two-level OA screening, MA
and Sobol’ indices: the crash test FE model is created and simplified con-
sidering deformations of the VRS & vehicle components; eleven uncertain
parameters were selected; PY , PT , RT were identified as influential af-
ter two-level OA screening and MA; Kriging metamodeling was used to
calculate Sobol’ indices of the selected three parameters. The two most
influential parameters, tolerance of the Post Thickness (PT ) and the un-
certainties of Post material Yield strength (PY ), are identified after the
sequential SA.

Performance of the VRS must be evaluated before being installed on the
road side. Crash test result of a VRS provides a view of the VRS performance
of only one set of parameters, and one cannot know how robust the design is
because the repetition of crash tests is economically infeasible and the system
uncertainties cannot be controlled.

FE simulation helps to realize the robustness analysis of VRS. “What makes
modeling and scientific inquiry in general so painful is uncertainty” [1] . ‘How to
define the parameters with existence of uncertainties in the simulations’ is one of
the main questions that need to be considered in the FE modeling of engineering
problems. SA of the VRS with FE simulations could, on the one hand, illustrate
the performance dispersions (i.e. robustness) of a device instead of the single
experimental crash test result. On the other hand, the critical parameters are
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identified after the SA, which could greatly facilitate the definition of FE model
parameters.

SA of the VRS provides useful instructions for its design: the most efficient
way to increase model robustness is to decrease the fabrication tolerance of the
Post Thickness; considering influences of the two influential uncertain parame-
ters on the reliability of device instead of all the eleven, multi-objective robust
optimization of the VRS has be realized in the other study [35].
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