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Motivated by experimental observations, we look for the diffusion of Brownian particles in a medium where
they can be either trapped in randomly disposed deep traps or where they diffuse by the regular Fick’s law outside
of the traps. This process can be represented by two coupled equations—one valid inside the traps and another
one outside —yielding the probability distribution of the distance run as a function of time. This probability
depends on a unique dimensionless parameter λ which is proportional to the product of the (small) density of the
traps times the long time of staying in the traps. The mean-square displacement is proportional to the lag time,
and for finite or large λ the probability density is no longer Gaussian but exponential on intermediate time scales.

DOI: 10.1103/PhysRevE.98.040101

This work is inspired in part by recent observations of
Brownian motion in complex media (colloidal beads on the
surface of phospholipid bilayer tubes [1,2] or in entangled
actin gels [1], or fluorescent nanoparticles in hard-sphere
colloidal suspensions [3]) where the mean-square distance
grows linearly with time, as in regular Brownian motion, but
where the probability distribution of this distance is markedly
non-Gaussian, which differs from the standard theoretical
results. Related behaviors have been observed in numerical
simulations of particle diffusion in a two-dimensional col-
loidal system [4] or in diffusion among swimming cells [5].
Any theory of this Fickean but anomalous diffusion will have
to introduce a wide range of timescales for the interaction be-
tween the diffusing particle and the surrounding medium. This
implies that there is a timescale that is long when compared to
the standard time of interaction of the particle with most fluid
particles. A prime candidate for a long timescale is the trap-
ping of particles in deep potential wells [6–9]. In this Rapid
Communication, we put it in the framework of a statistical
theory giving the long-term effects of such trapping events
on Brownian motion. We study the diffusion of a Brownian
particle in a medium where this particle has regular Brownian
dynamics, except when it falls in traps disposed randomly
but with a low density (Fig. 1). Traps may nevertheless play
an important role in the diffusion process because their low
density is somehow balanced by a long trapping time. The
role of traps is embedded mathematically in a dimensionless
parameter called λ, which may be either small or large. The
results of our analysis depend in a nontrivial way on the
magnitude of λ, and in some range of its values the statistics of
the distances run during a fixed amount of time is exponential-
like, as observed in experiments [1–3].

We consider dilute and steady traps and we develop a
theoretical approach relying on the Langevin equation [10],
in which we introduce (i) the physical parameters describing
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the interaction of a single trap with a diffusing particle and
(ii) the nonuniformity in the space of the structure where the
particle diffuses. Owing to this we can relate the observed
properties with the physical characteristics of the medium
where the particles diffuse. Within these assumptions the
dynamics of a trap itself is not relevant even if the existence
of traps fluctuating in time is consistent with our approach,
because fluctuations in the trap properties should most likely
lead to Poissonian statistics of the trapping times, although
other possibilities may exist, depending on the structure of the
potential.

A major constraint on theories of Brownian motion at
equilibrium is time-reversal symmetry [11]. It is satisfied
by the classical Langevin equation because of its linearity
which, as is well known, leads to Gaussian statistics for
the fluctuations. Therefore one must introduce nonlinearity
somewhere in the equations to find non-Gaussian statistics.
Even though the Langevin equation in its original form [12] is
linear, it is possible to make it nonlinear without violating this
constraint of reversibility [13,14]. For simplicity, we assume
that the surrounding fluid is viscous enough so that the inertia
term in the Langevin equation is negligible. Let us add to the
right-hand side of the overdamped Langevin equation a force
equal to minus the gradient ∇� of a given potential �(r),
where r is the position of the Brownian particle, with vectors
in bold,

ζ
dr
dt

= −∇� + X(t ), (1)

where ζ is the Stokes friction coefficient and X(t ) is the
Langevin Gaussian white noise. This is a delta correlated
function of time with zero average whose pair correlation is
〈Xi (t )Xj (t ′)〉 = 2ζ δij δ(t − t ′)kBT , where i and j stand for
the Cartesian indices, δij is the Kronecker delta, δ(t − t ′) is
the Dirac delta, kB is the Boltzmann constant, and T the
temperature. Our theory is based on the Langevin equation (1)
with a potential �(r), consistent with the constraint of re-
versibility. The complex surrounding the Brownian particle
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FIG. 1. Sketch of a Brownian particle (represented by the small
black disk) in a medium containing spherical traps (represented in
gray) of radius r0.

is represented by a “landscape” of the potential �(r) with
randomly distributed wells (or traps) of depth (−w0), w0

positive and larger than kBT . We shall assume identical traps
all with the same long trapping time, �(r) = −∑

i w(r − ri),
where −w(r) is the potential of a unique trap and ri are the
random positions of the traps. For simplicity, w is assumed to
be isotropic, hence w(r) = w(r ) with r the radial distance.

In previous works [2,15–18], the probability density func-
tion of the displacement was assumed to result from a finite
distribution of the diffusivity. This distribution was estab-
lished by considering time-dependent but spatially homo-
geneous diffusivity fluctuations, whereas experiments corre-
spond to diffusion in complex media where the fluctuations
(e.g., in density) are also in the space dependence of the
physical parameters. Indeed, the dynamics of these fluctua-
tions is driven by short-range interactions, and the involved
timescales cannot be neglected with respect to the character-
istic times of the diffusion of a particle. Therefore, fluctuations
generate spatial heterogeneities in the surrounding material
of Brownian particles. In the absence of laws governing the
time evolution of a spatially homogeneous diffusivity that are
entirely based on physical principles, the authors have found
an exponential decay of the probability function as observed
in experiments [1–3] by choosing ad hoc rules of the random
process for the (spatially homogeneous) time-dependent fluc-
tuations of the diffusion coefficient (for instance, in Ref. [17]
the diffusivity is chosen to fit with the square of the solution
of an Ornstein-Uhlenbeck process so that the decay of the
probability function is exponential).

In contrast with these previous models and following
Ref. [19], we address here the diffusion of Brownian particles
in a spatially heterogeneous medium, as expected in the
experimental systems. Contrary to other approaches [20,21],
our model is free from any makeshift distribution function,
and relies only on basic physical laws.

Here, the disorder originates from the random distribution
in the traps’ location. We consider a unique depth of the
traps, and we show that it is enough to predict an exponential
decay of the probability density function with the advantage
of starting from a unique and clear microscopic mechanism.
Of course, our approach can be extended afterwards to more
complex situations, e.g., a given distribution of potential
depths in order to account for a more complex environment.

Let r0 be the radius of the traps and ν be their number
density. The product νr3

0 is small by assumption. A diffusing

particle can either be trapped, or can freely diffuse over finite
distances. We shall here introduce two densities for the diffus-
ing particles (although we have in mind only one particle, it is
easier to formulate the problem for a large number of diffusing
and noninteracting identical Brownian particles). Let ntr(r, t )
be the density inside the traps: This is the total number of
trapped particles divided by the volume of traps in a small
region of space but large enough to include many traps. The
density nu(r, t ) is the density outside of the traps: This is the
number of untrapped particles divided by the total element of
volume they are in, which can be taken as the total volume
because the volume of the traps is relatively small. Attention
should be paid to the fact that ntr(r, t ) is measured inside
traps only: Even if it is large, the density of trapped particles
averaged over the whole space, inside or outside the traps, can
be very small if there are only very few traps in the system.
The number density in the whole space of trapped particles is
4π
3 ntr(r, t )νr3

0 . The density inside the traps changes under two
effects: First, it decays by a rare escape due to thermal fluctu-
ations, a process taking a long time called τ later. The other
process is the refilling of traps by particles coming from the
outside, with density nu(r, t ). Since the traps are fed from the
outside by a diffusion process and the traps have a size r0, the
typical timescale for this rate of feeding is τ0 = r2

0 /D, a priori
much shorter than τ . The dynamical equation for ntr(t ) reads

∂ntr

∂t
= nu

τ0
− ntr

τ
. (2)

This equation shows already that, at equilibrium [namely,
for a steady solution of Eq. (2)] the density inside the traps
is much larger, by a factor τ/τ0 than outside, because of
the long time spent there (later on, because of rescaling, the
transformed densities will be made “equal” at equilibrium).
Moreover, the validity of Eq. (2) requires that the density
of the traps is small. Otherwise, correlations between the
positions of the traps would create a memory of their location
at different times. This would forbid us to consider, as done
when writing Eq. (2), that the interaction of the diffusing
particle with the traps is always with a trap not met before
and located randomly, independent of the path followed by
the diffusing particle.

Equation (2) is to be completed by an equation for the
untrapped density nu(r, t ). This equation is of the same gen-
eral form as Eq. (2). It is constrained by the principle that
particles after escaping traps go outside, a way of telling that
the total number of particles is conserved. The corresponding
number density (trapped and untrapped particles) is n(r, t ) =
4π
3 ntr(r, t )νr3

0 + nu(r, t ). The only possibility for an equation
of this type with this property is the standard Fick equation
with added gain and loss terms balancing the right-hand side
of Eq. (2) to guarantee conservation of the number of particles,

∂nu

∂t
= D∇2nu + 4π

3
νr3

0

(
ntr

τ
− nu

τ0

)
. (3)

Equations (2) and (3) can be written in a dimensionless form
by taking τ as the time unit, (Dτ )1/2 as the length unit, and
by writing ntr(r, t ) as τ

τ0
ntr(r, t ). This dimensionless form of
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Eqs. (2) and (3) depends on the parameter λ ≡ 4π
3

νr3
0 τ

τ0
,

∂ntr

∂t
= nu − ntr, (4)

∂nu

∂t
= ∇2nu + λ(ntr − nu). (5)

The parameter λ takes into account two opposite effects:
4π
3 νr3

0 is the small amount of space filled by the traps, whereas
τ/τ0 is the large ratio of the trapping time versus the typical
time of free diffusion outside of the traps. This turns out to be
also the ratio of the total number of particles inside the traps
versus the ones outside of the traps at equilibrium. Therefore
λ may be either large, finite, or small. Note that the time of
escape out of a trap is well defined in three dimensions, but
not in one or two dimensions because the return to the place
visited on the journey of a Brownian particle then is certain.
We shall not consider this kind of situation.

From equilibrium statistics the parameter λ is given by the
integral of the Boltzmann statistical weight computed inside a
trap times the density of traps. This yields

λ = ν

∫
drew(r )/kBT = νew0/kBT

∫
dre[w(r )−w0]/kBT , (6)

where w0 is the maximum of w(r ), a smooth function of
the radius r . This is readily estimated in the limit in which
w0/kBT is large by expanding w(r ) near its maximum at
r = 0, assuming this is a quadratic maximum, such that for
small r , w(r ) = w0(1 − r2

r2
0

+ · · · ). This introduces explicitly
the radius r0 of the trap. We shall drop below the next order
term. This amounts to taking as the potential −w(r ) the exact
parabolic form for 0 < r < r0 and zero for r0 < r , namely,
outside of the trap. In the limit in which w0/kBT is large one
may estimate this integral by keeping the quadratic term only,
to obtain

λ ≈ νew0/kBT

∫
dre

− w0r2

kB T r2
0 = νr3

0 ew0/kBT

(
2πkBT

w0

)3/2

. (7)

This estimate of λ, even computed at equilibrium, is valid
for the out-of-equilibrium situations we shall consider. This
is because the relaxation to equilibrium involved there is
very quick and depends on fast molecular relaxation inside
the traps, whereas the out-of-equilibrium processes we shall
consider have much longer timescales, of the order of the
Kramers escape time, so that the ratio of population out of and
in the traps has enough time to reach its equilibrium value.

Expressed in the Fourier-Laplace domain (r, t ) → (k, z),
the linear equations (4) and (5) yield

nu(z, k) = nu(t = 0, k)(z + 1) + λntr(t = 0, k)

P2(z)
, (8)

ntr(z, k) = nu(t = 0, k) + (z + λ + k2)ntr(t = 0, k)

P2(z)
, (9)

where k denotes the magnitude of k and P2(z) = (z + k2 +
λ)(z + 1) − λ. In order to explicitly derive the probability
density function Q(r, t ) of the position of a unique diffusing
particle, we consider an initial distribution of trapped and
untrapped particles accordingly with the statistical distribu-
tion at equilibrium which writes, as already seen, nu(r, t ) =

ntr (r, t ) [see Eq. (4)]. The total density of particles, n(r, t ) =
nu(r, t ) + λntr(r, t ), is normalized by imposing

∫
drn(r, t ) =

1 so that the probability density function is equal to the total
density of particles, Q(r, t ) = n(r, t ). With the equilibrium
distribution written just above, the normalization yields

nu(r, t = 0) = ntr(r, t = 0) = δ(r)

λ + 1
. (10)

The Fourier-Laplace transform of the probability density
function (or, equivalently, of the total density of particles)
is obtained from Eqs. (8) and (9) with the initial condition
Eq. (10),

Q(k, z) = (1 + z + λ)(λ + 1) + λk2

(λ + 1)[zλ + (z + 1)(k2 + z)]
. (11)

One gets the expression of the mean-square displacement
in terms of the lag time of the Brownian particle by computing
the inverse Laplace transform of the second derivative of
Q(k, z) computed for k = 0,

〈�r2(t )〉 = 6Dt

λ + 1
. (12)

Since it is a linear function of the lag time, the diffusion
process is Fickean with an apparent diffusivity equal to Deff =
D/(λ + 1).

Except in the limiting cases of large or short lag times (see
Sec. C in the Supplemental Material (SM) [22]) or small λ

(SM Sec. D [22]), the expression of Q(k, z) [Eq. (11)] does
not match with the Fourier transform of a Gaussian distribu-
tion (SM Sec. E [22]): Hence, the diffusion of a Brownian
particle in the dilute field of traps is Fickean but non-Gaussian.

We first look at the case of large λ, the one where the effects
of the traps are the biggest, and we show that the Fickean dif-
fusion is anomalous with an exponential tail of the probability
density function. In this limit the Fourier-Laplace transform
of the density probability function [Eq. (11)] simplifies in

Q(k, z) 	 1

z + k2/(k2 + λ)
, (13)

which is the Laplace transform of

Q(k, t ) = exp

(
− k2t

k2 + λ

)
. (14)

Developing the exponential in a Taylor expansion, one gets

Q(r, t ) = e−t δ(r) + λe−t e−√
λr

2π2r

∞∑
n=1

tn

n!
Pn(

√
λr ), (15)

where

Pn(r ) = er

∫ ∞

0
dk

k

(k2 + 1)n
sin (kr ) (16)

is a polynomial of degree n − 1. The first term in Eq. (15)
corresponds to the particles trapped initially and remaining
so. It is a delta function in space because we neglected until
now the width of the traps compared to any other length scale.
This is only approximate and the thermal fluctuations widen
the probability distribution of the particles inside the traps,
an effect considered in SM Sec. A [22]. Q(r, t ) is plotted
in Fig. 2 for t = 0.1, 1, and 2. One observes a significant
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FIG. 2. Large λ limit. Probability density function normalized by
λ3/2 as a function of r for t = 0.1τ , t = τ , and t = 2τ , calculated
from Eq. (15) with the sum truncated beyond n = 8. No significant
differences were observable if one had taken n = 7 of n = 9 instead.
Inset: Q(r, t )/λ3/2 calculated from Eq. (15) with the sum truncated
at different n, for r = 20

√
Dτ/λ, t = 0.1τ (squares), t = τ (circles),

and t = 2τ (diamonds).

change in the shape of Q(r, t ) compared with the Gaussian
probability density function of standard diffusion processes.
Indeed, the main variation of Q(r, t ) is driven by the prefactor
e−r

√
λ for large r , hence the exponential-like decay observed

in Fig. 2 over numerous decades. This property is reminiscent
of the experimental observations of Refs. [1–3].

We now release the assumption λ � 1. The inverse
Laplace transform of Q(k, z) is first computed without any
approximation from Eq. (11) (SM Sec. B [22]) and the prob-
ability density function is obtained by calculating (numeri-
cally) the inverse Fourier transform of Q(k, t ),

Q(r, t ) = 1

2π2

∫ ∞

0
dkQ(k, t )k sin(kr ). (17)

Q(r, t ) is plotted in Fig. 3 for λ = 10, at various diffusing
times, showing an exponential-like decay for t = 0.5, 1, 2, and
4 over more than seven decades. The characteristic lengths 	

of the exponential-like parts of Q(r, t ) are found to be well
described by the power law 	 ∼ tα for any λ � 2 and t in
ranges including [0.2; 4]. Exponent α depends on λ, as shown
in the inset of Fig. 3. Because our model considers identical
traps, we do not recover the exponent α = 0.5 observed over
two decades in experiments [1–3]. It is likely that the observed
scaling behavior (α = 0.5) could be recovered by choosing
a proper statistical distribution in the size or depth of the
traps. For λ < 2, any exponential decay would fit Q(r, t ) over
two decades with a root-mean-square relative deviation larger
than 5%.

The exponential tail predicted in our model originates from
a well-identified microscopic mechanism, namely, the inter-
action of the Brownian particle with a diluted field of deep

FIG. 3. Colored disks: Probability density function Q(r, t ) as a
function of r/

√
Dt , computed from the complete expression (11) for

λ = 10 at various diffusion times t . Inset: Exponent α in the time
variation of the characteristic length 	 appearing in the exponential-
like decay of the probability density function Q(r, t ), as a function
of λ: 	 	 tα .

wells. No ad hoc hypothesis on the distribution of relaxation
times [19,23,24] or diffusion coefficient distributions [2,15] is
necessary to capture this important characteristic of anoma-
lous Fickean diffusion. Indeed, our theory is fundamentally
different from the theories relying on an average of standard
Gaussian probability resulting from a set of weighted dif-
fusivities [2,15–18]. Our approach mixes two domains, the
deep traps where the diffusivity is zero and the rest of the
system where it has a finite value. The result of the averaged
solutions of the diffusion equation weighted by the probability
that the particle is in free space or inside traps, would be the
sum of a delta function corresponding to trapped particles
plus a regular Gaussian. This average does not correspond
at all to our solution of the phenomenon of diffusion in a
random field of traps. The explanation for this discrepancy
comes from the consideration, in our model, of the exchange
between the two domains of small (or even zero) diffusion and
of regular diffusion. This highlights the crucial importance of
these exchanges.

To conclude, we introduced a model of diffusion of a
particle in a dilute field of deep traps and solved the relevant
equations. This model has some flexibility because it relies
on a unique dimensionless parameter that just depends on the
density, the size, and the depth of the traps, and on tempera-
ture, but may change widely with the physical conditions. The
resulting diffusion is Fickean but with a non-Gaussian prob-
ability density function of the displacement in large ranges
of time and of dimensionless parameter. This gives a unique
possibility of comparing the present theory and experimental
data in a range of physical parameters. On a more fundamental
side, the theory presented makes the Kramers escape time
directly observable owing to its occurrence in the single
parameter of the problem.
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